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Given the non-renewable nature of global phosphate reserves, there is a push to increase
the phosphorus (P) efficiency of agricultural crops. Research has typically focussed on
investigating P acquisition efficiency or internal P utilization efficiency to reduce crop
fertilizer requirements. A novel option that would reduce the amount of P exported from
fields at harvest, and may ultimately reduce P fertilizer requirements, would be to reduce
the amount of P translocated to grains to minimize grain P concentrations. While such a trait
has been mentioned in a number of studies over the years, there has not been a concerted
effort to target this trait in breeding programs. In this perspective piece we explore the
reasons why a low grain P trait has not been pursued, and discuss the potential benefits
and drawbacks of such a trait in the context of breeding to improve the P efficiency of
cropping systems.
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INTRODUCTION
The majority of the world’s mined rock phosphate is used for the
manufacture of phosphorus (P) fertilizers applied in agriculture
to improve or sustain crop yields. Over 17.5 mt P per year was used
for agricultural purposes from 2004 to 2008, and this figure is pro-
jected to increase over the coming years (Lott et al., 2011). While
P fertilizer prices remained at a stable and low level for several
decades, they have more than doubled recently and considering the
non-renewable nature of rock-P resources, further price increases
seem inevitable (Cordell et al., 2009). Increasing the efficiency
with which P is used in agricultural systems is therefore criti-
cal for sustainable food and fiber production in the twenty-first
century.

Crop P efficiency (PE) can improve if either yields increase at
a given rate of P fertilizer application, or if yields remain stable
with lower levels of P fertilizer application. This could be broadly
achieved by enhancing P uptake (P acquisition efficiency; PAE) or
by improving internal P utilization efficiency (PUE). Given that
only a portion of the P applied in fertilizers is actually taken up
by a crop on high P fixing soils, with the remaining P being slowly
immobilized in the soil, there seems to be opportunity for further
improvement in PAE. Several reviews on the topic of enhancing
PAE have recently been published and the reader is referred to
Richardson et al. (2009) for further discussion.

Far less research has been conducted on the topic of how to
improve PUE. While numerous agronomic definitions of PUE
exist (e.g., grain yield per unit of P fertilizer applied, grain yield
per unit of P in aboveground biomass), from a physiological and

breeding perspective we define PUE as shoot biomass produced
per unit P in shoots (Rose and Wissuwa, 2012). Essentially, plants
with higher PUE operate at lower shoot P concentrations. During
the vegetative growth phase most plant P is contained in shoot
tissue and shoot P concentrations (as opposed to root P concen-
trations) are therefore of primary importance for improved PUE
(Rose and Wissuwa, 2012). However, at harvest, cereals typically
contain 70+% of their total P in grains with very little remain-
ing in straw, prompting us to investigate whether reductions in
grain P concentrations are a possible way to improve overall crop
PE in cereal systems. Previous studies have already demonstrated
that grain P can be lowered through recurrent selection (Wardyn
and Russell, 2004) or by mutation (Raboy, 2009). In this opinion
piece, we discuss the advantages and possible disadvantages of a
low grain P trait in the context of breeding P-efficient crops for
sustainable cropping systems.

REDUCING P FLOWS THOUGH CROPPING SYSTEMS:
IMPLICATIONS FOR FERTILIZER REQUIREMENTS
AND THE ENVIRONMENT
The importance of P in harvested products is highlighted by cal-
culations showing that the total P removed annually in grain
and fleshy fruit crops equates to 85% of fertilizer P applied to
crops globally (Lott et al., 2009). While this calculation would
suggest that the global P balance is positive, it has to be kept
in mind that huge imbalances in the application of P fertil-
izer exist across the globe, with P surpluses in many European
and East-Asian countries and large P deficits in many poorer
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areas including sub-Saharan Africa (MacDonald et al., 2011).
The high P removal rate in harvested grains drives the need
to replace soil-P by fertilizer application or leads to P mining
where fertilizer application rates are low. Developing crop vari-
eties that translocate less P to developing grains may offer one
option to balance P budgets in agriculture at reduced fertilizer
requirements.

Low grain P crop varieties may also have environmental ben-
efits because much of the P removed from fields ultimately ends
up in landfill or water bodies via sewage pathways (Cordell et al.,
2009). This occurs because there are losses of P through inefficien-
cies at each step in the food chain, including inefficient recovery or
suboptimal redistribution of high-P animal wastes, losses of P dur-
ing food manufacturing processes, and particularly poor recovery
and use of P in human waste (Figure 1). One of the major causes
of inefficiency is phytate, the organic storage form of P which
usually accounts for around 75% of total P in grains, because
animals – particularly monogastric animals including humans –
cannot properly digest phytate, leading to high P concentrations
in feces and urine (Raboy, 2007). In the case of livestock, the poor
digestibility of phytate can also lead to P deficiency in the animals,
which has traditionally been rectified by using P feed supplements
or by the addition of phytase enzymes to feed rations (Raboy,

2009). More recently, low phytic acid (lpa) mutants have been
identified in major crop species, which typically have a reduced
concentration of phytate with concurrent increases in inorganic P
in grains, providing better P nutrition in livestock and a reduction
of P in feces and urine (Raboy, 2009).

In contrast to livestock, humans rarely suffer from P deficiency
(see“Grain P implications for human health”below), so additional
inorganic P in grains for human consumption is of little benefit
and P concentrations in human waste will remain high. While
recycling of P in human and animal waste needs to be improved
globally to alleviate environmental effects and close the P loop
(Figure 1), it seems unlikely that it will occur rapidly and effi-
ciently enough over the coming decades to prevent substantial
loss of valuable P from agricultural systems. Thus, attempting to
minimize the throughput of P in the agricultural sector would be
the best way of minimizing negative environmental impacts while
maintaining high productivity. The most logical way to reduce the
throughput is to address the removal of P from farms in harvested
grain (Figure 1).

Interestingly, the concept of reducing grain P has been raised on
numerous occasions in the past (e.g., Batten, 1992; Ockenden et al.,
2004; Raboy, 2009) but there has not yet been a global effort to
address the issue, presumably because of the association between

FIGURE 1 | Major flows of phosphorus in the global agricultural phosphorus cycle. Broken green line indicates a major break in the cycle due to poor
recovery and recycling of human waste; gray box indicates potential point to slow the flow of P through agricultural systems.
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seed P levels and seedling vigor. We argue that given the economic
and environmental gains to be made with a low grain P trait,
seedling vigor should not be seen as an impediment for further
exploration, but rather an issue that should also be addressed
through further research.

PHOSPHORUS EFFECTS ON SEED GERMINATION AND
SEEDLING VIGOR
Early crop vigor is critical in productive farming systems and typ-
ically relates to higher biomass and/or grain yields. Sustaining or
increasing seed P content is thought to improve seedling establish-
ment and vigor (Bolland and Baker, 1988; White and Veneklaas,
2012). Two separate lines of inquiry have contributed to these con-
clusions: the first of these was a series of studies from the 1980s
and 1990s which reported that seeds obtained from plants grown
in P-deficient soil (which had lower P concentrations than seeds
obtained from plants grown in high-P soils) had poor germination
and establishment, and subsequent lower biomass or grain yields
(Bolland and Baker, 1988; de Marco, 1990; Burnett et al., 1997;
Derrick and Ryan, 1998; Zhu and Smith, 2001).

We recently conducted a study using low-P rice seed obtained
from plants grown in P-deficient soil and found that seed germi-
nation and seedling vigor were impaired, as per the earlier studies
mentioned above (Rose et al., 2012). However, we concluded that
a significant proportion of the reduced germination and seedling
vigor was likely due to the severe P deficiency stress suffered by the
mother plants during grain filling, rather than caused by low seed
P concentration per se. Further experiments using seeds differ-
ing in P concentration that were not obtained from plants grown
under severe P deficiency found no differences in yields when
plants were grown in P-replete or P-deficient soil (Rose et al., 2012).
More recently, experiments have suggested that genotypic differ-
ences have a much larger effect on seedling vigor than seed P
concentrations or total seed P content. Even seed P concentra-
tions as low as 1 mg g−1 did not impair germination, seeding
vigor, or final grain yield in a generally vigorous rice genotype,
presumably because such vigorous genotypes rapidly compen-
sate for low seed P by seedling P uptake (Wissuwa, unpublished
data).

A second line of enquiry using lpa mutants or transgenic plants
with altered phosphatase scavenging capacity has also suggested
that alterations to seed P affect seed germination and seedling vigor
(Raboy, 2009; Robinson et al., 2012). Studies with lpa mutants
across a range of species found reduced seedling vigor or impaired
germination compared to wild-type parent lines (Meis et al., 2003;
Kim and Tai, 2011). However, most lpa mutations impair the func-
tion of synthase or kinase enzymes involved in inositol phosphate
metabolism, and this metabolism is important in vegetative tis-
sues as well as developing seeds. Hence, perturbation of the phytic
acid synthesis pathway can have downstream effects on seed via-
bility, germination and seedling vigor, and general plant growth,
especially under stress conditions (Raboy, 2009). Similarly,
Robinson et al. (2012) recently reported that eliminating the pur-
ple acid phosphatase, AtPAP26, in Arabidopsis thaliana decreased
seed P levels but also reduced seed germination. These authors
concluded that reducing P translocation to the seed is undesirable;
however, the poor germination could also be explained by the fact

that AtPAP26 probably has a critical role in the seed germination
process.

In all of the above-mentioned cases, it is plausible that the dis-
ruption of key metabolic pathways induced by mutation leads to
problems with seed germination and seedling vigor rather than
a deficiency of P in seeds per se. Indeed, proof-of-concept that a
reduction in seed total P does not necessarily impact on subse-
quent crop performance is provided by the barley lpa1-1 mutant
(Raboy, 2009). This mutant has a 10–20% reduction in seed P,
and barley isolines with the mutation do not suffer from an obvi-
ous yield penalty across a range of environments (Bregitzer and
Raboy, 2006). Importantly, the mutation – to a gene which appears
to encode for a member of the sulfate transporter gene family (Ye
et al., 2011) – appears to have a seed-specific impact by reduc-
ing endosperm P levels by 30% (Ockenden et al., 2004) without
broader negative effects on plant physiological processes. The fact
that commercial barley cultivars have been developed and released
in North America (Bregitzer et al., 2007) suggests that reduc-
ing the P concentration of cereal crops by around 20% through
breeding without reducing subsequent crop yields is certainly
feasible.

THE NEED FOR A LOW GRAIN P TRAIT TO IMPROVE
INTERNAL PUE
Internal PUE has received significant attention recently due to
recognition that enhanced PAE alone cannot improve the PE of
farming systems (Rose et al., 2011; Veneklaas et al., 2012). However,
the target of improving PUE, i.e., increasing biomass production
per unit P, may clash with the perceived need to maintain high
grain P concentrations. This issue is rather elegantly explained by
Barraclough et al. (2010) with regard to internal nitrogen use effi-
ciency (NUE) and grain protein concentrations, whereby high
NUE is likely to come at the cost of reducing grain protein
(Barraclough et al., 2010). These authors applied what is known
as the “law of conservation of matter” to NUE, and the concept
applies to any nutrient, including P. Reduced shoot P concentra-
tions (higher PUE) will logically lead to reduced grain P concen-
trations unless some way can be found to uncouple both traits.
Such uncoupling could theoretically be achieved by increasing the
proportion of P located in grains at harvest (P Harvest Index;
PHI). However, given that the PHI of most crops is already general
above 70% and can be up to 90% (Batten, 1992; Rose et al., 2007,
2008; Bi et al., 2012), scope to enhance this further appears rather
limited.

We have simulated PUE improvements in rice permissible
under the “law of conservation of matter” based on different
grain P and PHI scenarios (Table 1). Calculations suggest that
if grain P concentrations were sustained at a given level (e.g.,
2.5 mg g−1), an increase in PHI from 0.7 to 0.8 would allow
for moderate reductions in shoot P concentration at flowering
– i.e., an increase in vegetative PUE (Table 1). However, much
larger gains in PUE at flowering are only possible if grain P con-
centrations are reduced (Table 1). Rose et al. (2010) suggested a
breeding target of a 20% reduction in grain P in rice (e.g., from
2.5 to 2.0 mg g−1), which, using the rough calculations in Table 1,
would allow for a reduction in shoot P concentration at flower-
ing of between 0.4 and 0.7 mg g−1, depending on the PHI and
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Table 1 | Simulated allowable changes in shoot P concentration at flowering with varying grain P concentrations or phosphorus harvest index

(PHI).

Grain yield

(kg ha–1)

Grain P concentration

(mg g–1)

Grain P content

(kg P ha–1)

Total crop P uptake

(kg P ha–1)

Shoot P concentration

at flowering (mg g–1)a

Shoot P concentration

at flowering (mg g–1)b

PHI 0.7 PHI 0.8 PHI 0.7 PHI 0.8 PHI 0.7 PHI 0.8

7000 2.5 17.5 25.0 21.9 3.6 3.1 2.4 2.1

2 14.0 20.0 17.5 2.9 2.5 1.9 1.7

1.5 10.5 15.0 13.1 2.1 1.9 1.5 1.3

The simulation presumes plants have a harvest index of 0.5, and that the PHI is not affected directly by grain yield or total P uptake. Shoot P concentrations are
calculated as total crop P uptake at flowering / straw biomass at flowering.
aAssumes straw biomass does not change from flowering to harvest and no additional P uptake after flowering.
bAssumes straw biomass 10% higher at flowering compared to harvest and 25% of P uptake after flowering.

amount of P taken up from the soil during grain filling. While
shoot P concentrations of most cereal crops range from around
4 mg g−1 at tillering to around 2 mg g−1 at flowering, as little as
1 mg g−1 P may actually be necessary for normal cellular func-
tion (Veneklaas et al., 2012). This is consistent with reports that
reduced growth under P deficiency may be due to gene expression
reprogramming rather than a direct result of low levels of shoot P
(Rouached et al., 2011). Given the fact that it may be possible to
repress the gene expression reprogramming observed under P defi-
ciency (Rouached et al., 2011) it appears that there is a real prospect
of improving PUE in crop plants. However, any reduction in shoot
P concentrations toward the theoretical limit of around 1 mg g−1

will not be possible without a subsequent reduction in grain
P concentration.

P EFFICIENCY VERSUS P BALANCE EFFECTS
Grain P concentrations could therefore, in theory, be reduced
passively as the result of improvements to crop PUE or actively
by breeding specifically for a low grain P trait. If a reduction in
grain P concentrations is the result of improvements to PUE, one
could expect that there would be a decline in P fertilizer require-
ments (because presumably the high PUE plants would not need
to acquire as much soil P as current cultivars), as well as a “slow-
down” in global P cycling as the throughput of P is minimized.
The reduced throughput of P in the system would be driven by
the lower P fertilizer requirements of crops but the low grain P
trait would also minimize the subsequent P flow through the food
chain. However, in reality breeding for improvements to PUE may
be challenging in high-input farming systems (Rose and Wissuwa,
2012). In the absence of enhanced PUE, breeding directly for a
low grain P trait would still reduce P flow through the food chain
and minimize soil P mining, but whether the return of high-
P straw residue to the soil could reduce subsequent P fertilizer
requirements is not known.

One question that must be addressed is whether additional
P retained in straw would be bioavailable or whether it would
simply contribute to the build-up of recalcitrant organic P in
soils. Given that contamination of waterways with P from dif-
fuse sources (e.g., agricultural runoff) is the major contributor
to eutrophication (Carpenter et al., 1998), the continued build-
up of P in soils is a major concern. Recalcitrant P in soils is a

particular problem because it is of little benefit to plants, but can
become biologically active while residing in the sediment layer at
the bottom of water bodies (Correll, 1998). However, the general
perception that the bulk of P returned to soil in organic material is
in an organic form is largely unfounded (McLaughlin et al., 2011)
and much of it is present as inorganic P or readily degradable
organic P forms (Noack et al., 2012). Although inorganic P from
crop residues can become immobilized in soil organic P through
microbial processes, the same processes also apply to P applied as
inorganic or organic fertilizer. Ultimately, the value of P returned
in crop residues may depend on breeding crops that can utilize
these P sources directly or indirectly through microbial mediated
pathways (Richardson et al., 2011).

GRAIN P IMPLICATIONS FOR HUMAN HEALTH
Phosphorus is the second most abundant mineral in the human
body after calcium, and 85% of it exists in bone. Dietary P
intake is critical because both P deficiency and excess can dam-
age bone health (Takeda et al., 2012; Calvo and Uribarri, 2013).
The average recommended P intake is 700 mg/day, varying
from 100 mg/day infants to 1250 mg/day for 9 to 18-year-olds
(Willett and Buzzard, 1998). The greatest contributors to P intake
are protein-rich foods (e.g., dairy products) and cereal grains
(Takeda et al., 2002; Welch et al., 2009). The P intake from cere-
als alone can reach 400–600 mg/day in some Asian countries
such as Japan where cereals (e.g., rice) are a staple food (Takeda
et al., 2002). Therefore, reducing P concentrations or modify-
ing the composition of P-containing compounds in grains may
have significant effects on human health which warrants careful
consideration.

Phosphorus in cereal grains is present in different chemical
forms including inorganic phosphate, phytate, phospholipids,
DNA, RNA, and ATP (Raboy, 2009), though phytate and phospho-
lipids have the most impact on human health (Kumar et al., 2010;
Liu et al., 2013). While phytate is poorly digestible and regarded as
an anti-nutrient because it reduces the bioavailablity of micronu-
trients and protein, it has been reported to have positive effects –
it may protect against cancer and may help treat diabetes mellitus,
atherosclerosis and heart disease (Kumar et al., 2010). However,
these authors note that the effective dosage to elicit these beneficial
effects is still not clear. Compared to phytate, cereal phospholipids
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provide a better source of bioavailable P and vitamins such as
choline. Dietary phospholipids have beneficial effects on many
human diseases including coronary heart disease, cancers, and
inflammation (Kullenberg et al., 2012). Cereal starch also contains
a significant portion of lysophospholipids which naturally form
an inclusion complex with amylose (Liu et al., 2013). When the
lysophospholipids form a complex with amylose, they may slow
down the rate of digestion and adsorption of starch which may be
beneficial to diabetics (Holm et al., 1983).

While there has been a substantial effort to breed or engi-
neer crops with reduced phytate but unchanged total P in grains
(Raboy, 2009), the impact of such crops on human health are
still unknown. As phospholipids have clearer nutritional values
and health benefits than either phyate or inorganic phosphorus,
there may be scope to breed healthier cereal grains by lowering
phytate but increasing phospholipids contents, in particular the
starch lysophospholipids which are located in the endosperm (i.e.,
in white rice, which is most commonly consumed). Research into
grain phospholipids and the potential to maintain or increase the
concentration of starch phospholipids while reducing phytate is
ongoing.

CONCLUSION
Phosphorus is a non-renewable resource and recycling is unlikely
to turn the inefficient “open ended P cycle” into a closed “cycle” in
the near future. A low grain P trait derived indirectly by improv-
ing PUE in crops, or directly through targeted breeding for low
grain P concentrations, may reduce the throughput of P in agri-
cultural systems. A number of issues are yet to be resolved. First
and foremost, the relationship between seed P concentrations and
seedling vigor needs to be clarified in a series of environments
and genotypes. Should negative associations be detected, in some
cases they may be overcome through research on seedling nursery
management and seed treatments like coating or priming. The sec-
ond main area of research would address the question of whether
natural genetic variation exists for a low-P trait within crops that
could be exploited by breeders immediately. Alternatively, one
may focus on creating novel variation through mutations or other
genetic modifications, or explore whether grain P concentrations
are similar to other grain traits like protein content that can be
altered over several cycles of recurrent selection. We believe the
financial and environmental gains to be made by introducing a
low grain P trait are sufficiently high to warrant pursuing this trait
through further research.
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