
Improving Portability of Linux Applications by

Early Detection of Interoperability Issues

Denis Silakov and Andrey Smachev

Institute for System Programming at the
Russian Academy of Sciences, Moscow, Russia

{silakov,biga}@ispras.ru
http://www.ispras.ru

Abstract. This paper presents an approach aimed at simplifying devel-
opment of portable Linux applications, suggesting a method of detecting
compatibility problems between any Linux application and distribution
by means of static analysis of executable files and shared libraries.

In the paper we concern the idea of successful launching of application
in a distribution. A formal model is constructed that describes interfaces
invoked during the program launching. A set of conditions is derived
that should be satisfied by application’s and distribution’s files in order to
make it possible for application to successfully launch in distribution. The
Linux Application Checker tool is described that supports the approach
and allows to detect portability problems of applications at early stage
of development.

Keywords: Software portability, Software maintenance, Linux.

1 Introduction

Nowadays hundreds of Linux distributions exist. Most of them are based on the
same set of components – Linux kernel, GNU utilities and libraries, KDE or
Gnome desktop environment, etc. Many of these components follow the “Re-
lease Early, Release Often” principle, and new versions can be released every
month or even every week. As a result, different distributions provide different
versions of the same components. Unfortunately, though changes between succes-
sive versions can be relatively small, it is not uncommon for developers to break
backward compatibility. In addition, distribution vendors often modify original
code of components in order to fix known issues, to increase performance or to
add some features that would be unique for their distribution. Thus, there are
a lot of differences in functionality of the same components in different Linux
distributions. This significantly complicates the task of development of Linux
applications that could be launched on as many Linux distributions as possible.

Developers of open source applications usually rely on distribution vendors –
most distributions have a maintainer for every application, who is responsible
for correct functionality of the application in the distribution and can modify its
code, if necessary. However, application should be rather popular to be included

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416, pp. 357–370, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.ispras.ru


358 D. Silakov and A. Smachev

in many distributions; and even for open source programs, increasing portability
allows to save maintainers’ efforts. Finally, sometimes modifications introduced
by distribution developers are criticized by original application authors.

Developers of proprietary software cannot rely on distribution vendors, since
they don’t publish the code and only provide compiled binary files. In this case,
it is application vendor who is responsible for proper functionality of software
product on all supported platforms. However, large amount of existing Linux-
based systems makes systematic testing of application on every platform quite
expensive even for large vendors. Moreover, not only hundreds of different Linux
distributions exist, but many Linuxes run on dozen of hardware architectures.
Many hardware platforms are not broadly accessible, while they are still poten-
tially interesting for application vendors (for example, IBM zSeries platform is
even more interesting for some developers of large enterprise software then the
’usual’ x86).

Very often impossibility of guarantying proper functionality of the product in
many distributions leads to limitation of officially supported systems – usually
to a very few number of distributions that have the major market share, such
as SUSE Enterprise Linux (SLES) or Red Hat Enterprise Linux (RHEL). That
is, vendors do not tend to cover the whole Linux market. But as for end users,
they normally want to have applications for ’Linux’, not for ’RHEL’ or ’SLES’.

Thus, it is desired for application developers to be able to achieve compatibil-
ity of their product with as many Linux distributions as possible. Since manual
testing of applications in every existing system is a very hard task, it is important
to detect as many portability problems as possible without performing runtime
testing. One of the possible approaches that can help here is static analysis of
application binary files. In general, such analysis may not guarantee the full
compatibility of application and distribution, but can allow developers to save
their efforts by decreasing time of problem detection.

The remainder of the paper is structured as follows: Section 2 gives a review
of existing approaches to allow Linux application developers to support as many
distributions as possible. Section 3 introduces a formal approach to analysis
of compatibility of any pair of application and distribution by means of static
analysis of their executable files and shared libraries. Section 4 presents the Linux
Application Checker tool that supports the suggested approach and allows to
detect issues in compatibility between any given application and most popular
Linux distributions. Finally, Section 5 summarizes the main ideas.

2 Existing Approaches

Importance of improving portability of Linux applications is realized by all mem-
bers of the Linux community and all participants of the market – distribution
vendors, developers of open source projects, independent vendors of proprietary
software and end users. Naturally, initiatives and approaches to increasing appli-
cation portability come from different categories of community members. In this



Improving Portability of Linux Applications 359

section we consider the most popular ways for application vendors to achieve
compatibility of their product with existing Linux distributions.

2.1 Using a Testing Farm

The most straightforward way for developers to guarantee compatibility of their
program with some distribution is to thoroughly test the program in this distri-
bution. In order to perform such testing, one should set up a separate machine
(either physical or virtual), install the target distribution there, then install the
program itself and run the tests. During the development process, developers
should have a set of machines with target distributions, where their application
is periodically built and subjected to testing. Such a set of machines is often
referred to as a testing farm.

Large set of target platforms requires large set of machines to be set up. Even
if machines are virtual, this can consume significant resources. Testing farms are
usually served by automated scripts that schedule regularly builds, testing and
other actions. Such infrastructure does not require much efforts for maintenance,
but in general it increases the duration of ’detect problem – fix it – test again’
chain (if compared to the case when developer is able to perform testing directly
on his machine).

In addition, if developers want to cover hardware platform which is not
broadly accessible, then they can find that time of real machines is expensive,
while performance of emulators (if any) is usually poor.

Thus, though runtime testing in all target platforms is a really important
thing, it is desired to detect as many problems as possible before running the
tests inside the testing farm. It is especially important to detect critical issues
whose presence will make the further testing useless.

2.2 OpenSUSE Build Service

An interesting initiative is provided by the OpenSUSE Build Service (OBS) – an
infrastructure that can used by developers to build their applications for different
distributions without direct access to the target systems. Nowadays, the OBS
supports OpenSUSE, Mandriva, Fedora, Debian and Ubuntu; more systems to
be added in future [4]. Though it is clear that periodic build of a large variety of
applications requires significant resources, so it is not cheap to add a new target
distribution.

As for portability, the service allows to handle several kinds of differences
between distributions, such as package format or system file location. However,
many aspects (e.g., differences in the behavior of the same function) are out of its
scope. Surely, developers can integrate execution of automated tests in the build
process – this will allow them to use OBS as a testing farm, whose disadvantages
were discussed above.

Finally, the OBS approach makes sense only for developers of the open source
products, since one have to provide application source code to the service.



360 D. Silakov and A. Smachev

2.3 Creating Standard-Compliant Applications

One more way to create a portable application is to focus on standards for op-
erating systems that specify the set of interfaces that every compliant system
should provide. The advantage of this approach is that standards not only guar-
antee the presence of interfaces, but also specifies all their characteristics that
should be accessible by applications (e.g., behavior of functions). In order to be
able to give such guarantees to its users, every standard usually provides a set of
tests (usually referred to as certification test suite) that perform thorough test-
ing of the standardized interfaces and should be passed by every implementation
in order to confirm its compliance with the standard. Thus, if application uses
only standard interfaces, it is guaranteed that application will demonstrate the
same behavior in all standard-compliant distributions.

In the Linux world, the most famous standards are POSIX and Linux Stan-
dard Base (LSB), that concern Application Programming Interface (API) and
Application Binary Interface (ABI) correspondingly. Both POSIX and LSB take
into account existing systems (UNIX-like systems in case of POSIX and Linux
in case of LSB) and try to standardize only those items that are implemented
in all major distributions and proved to be mature, stable and useful. In those
cases when some interface is provided by all systems but with slightly different
characteristics, both POSIX and LSB try to specify only those aspects that are
common for all implementations; relying on other aspects is not recommended
for developers.

However, no standard can cover all possible interfaces – for example, POSIX
only concerns the core system libraries (specifying about 1.000 of functions) and
utilities. LSB covers more libraries, including some desktop and multimedia ones;
however even its scope is still not broad enough for many programs – LSB 4.0
contains specifications for 57 libraries and about 38.000 functions, but a usual
Linux distribution on a single DVD disc provides about several thousands of
libraries and hundreds of thousands of functions [6]. Finally, trying to specify
the ’common core’ of existing systems often leaves many interface characteristics
unspecified or declared to be ’implementation defined’.

Thus, among the existing methods described above, only the latter approach
allows developers to avoid runtime testing of their applications in every target
distribution. However, the main disadvantage of the approach (small coverage of
existing interfaces) is hard to fix – standardization can be even more complicated
and expensive task than development of tests, since creation of tests is usually
only a part of the standardization process [10].

In this paper we suggest an approach that can be used to detect certain
portability issues without runtime testing, allowing to decrease the time spent on
problem detection. To detect portability problems, a lightweight static analysis
of binary files of application and target distributions is used. The approach
can be also used in cooperative with the standard-oriented method in order to
analyze portability of those application parts that are not covered by existing
standards.



Improving Portability of Linux Applications 361

3 Static Analysis of Interfaces Involved in Interaction
between Distributions and Applications

Let Distros and Apps be the sets of all the Linux distributions and applications
respectively. Below we will consider compatibility aspects of some application
A ∈ Apps and some distribution D ∈ Distros. First, let’s clarify what do we
mean under compatibility.

In general, interaction between two systems is performed by means of inter-
faces – one participant provides interfaces, the other uses them. For example, op-
erating systems provides libraries that export functions, applications load these
libraries and call their functions.

If distribution D provides a set of interfaces Ip and application A uses a set
of interfaces Ir, then in order for successful interaction between A and D to be
possible, the following condition is necessary:

Ir ⊆ Ip (1)

This is a very general criterion – in every particular case one should point out
concrete kinds of interfaces that should be taken into account. Provided that all
possible kinds of interfaces and their properties are taken into account, this is
also a sufficient condition.

For practical usage, it is important to have a way to analyze which interfaces
are provided by distribution and which are used by application. Every interface
may have a large set of different properties, all of which can be divided on two
groups:

1. Properties that can be checked statically, without a need to invoke the in-
terface (e.g., function signature).

2. Properties that require runtime testing (e.g., function behavior).

Surely, this classification is not ultimate – for example, one may claim that
function behavior can be verified statically if its source code is available; and
on the opposite side, even checking function signature in some situations may
require function invocation (e.g., when there is no access to its declaration, but
only to binary library that exports this function).

In this paper, we consider only those interfaces between Linux distributions
and applications for which the condition 1 can be checked statically at a relatively
low cost. Though the resulting set of interfaces is quite limited (in particular, it
doesn’t include any behavioral aspects), satisfaction of the condition 1 for this set
guarantees that the application can be successfully launched in the distribution.
To start with, let’s clarify what we mean under these two words.

In our work, we consider binary applications – that is, applications that consist
of binary executable files and shared libraries (shared objects, in Linux termi-
nology). Any application in our model is a set of binary files, every of which is
either a shared library or an executable file. Similarly, every Linux distribution
is considered to be a set of shared libraries and binary executables.



362 D. Silakov and A. Smachev

Let’s say that the application A successfully launches in distribution D, if
dynamic loader in this distribution is able to form an executable image of the
application in memory and pass the control to the application’s entry point.

In Linux, for executable files and shared objects the Executable and Linking
Format (ELF) is used, described in [1] and [2]. An ELF file can be self-sufficient
in that sense that it may not require any external interfaces to be present in the
system and work directly with hardware (maybe using low-level kernel interfaces,
if direct access to hardware is not allowed). In this case dynamic loader just
loads the file into memory and right after that passes control to its entry point;
however, such files are used rarely and are not interesting for us.

Most programs nowadays use the advantage of dynamic linking, leaving the
task of implementing routine functions for system libraries and concentrating
only on unique features of their own. In this case dynamic loader has to per-
form much more actions to form a memory image for application. The precise
algorithm is quite complex [5], but we are interested only in the following steps
where the process can fail because distribution doesn’t provide interfaces with
required properties:

– Check that ELF files participating in dynamic linking have format acceptable
for the loader – don’t contain unknown ELF sections, have proper target
hardware architecture, etc.

– Resolve dependencies on libraries – detect which shared libraries should be
loaded to satisfy application’s needs.

– Check that all dependencies on versions of binary symbols required for the
loaded files are satisfied.

– Resolve addresses of external binary symbols of every loaded file – for every
such symbol the actual implementation should be found among the loaded
libraries.

After these tasks are complete, a memory image is constructed and dynamic
loader passes control to the entry point of the file being launched. If this point
is reached, we can say that the application has been successfully launched (in
our terms).

Using the terms from the dynamic loading algorithm description, we can make
our representation of Linux applications and distributions more accurate – every
application and every distribution is considered as a set of ELF files, every of
which can provide and require libraries, binary symbols and symbol versions.
Using this representation, in the next sections we will derive a set of conditions
that should be satisfied in order for the application A to be successfully launched
in the distribution D. All these conditions can be checked statically by analyzing
ELF files of application and distribution without a need to actual installation and
launching. Moreover, there is no need to emulate the work of the dynamic loader
– all conditions can be checked in a much more simple way and a lightweight
analyzer can be developed to automate this process.

Now let’s consider every kind of interfaces involved in the dynamic loading
process.



Improving Portability of Linux Applications 363

3.1 ELF Sections

The ELF format evolves quite slowly (if compared to other parts of the Linux
ecosystem). However, from time to time significant additions are introduced and
files that use these additions cannot be used in older systems. The most notable
example of the last years is introduction of the .gnu.hash section aimed to pro-
vide hashing with higher performance than the ’usual’ .hash section. Introduced
in 2006, this change led to the fact that programs compiled in new generation
of distributions (such as RHEL 5 or Fedora 6) failed to run in previous releases
of the same systems (RHEL 4, Fedora 5) [3].

Though such significant changes are introduced very rare, one should remem-
ber about them and check that dynamic loaders in target distributions support
all aspects of the ELF format that are used in the application files. Thus, if
SysSupportedELF (D) is a set of ELF features supported by the distribution
D, and FileReqELF (f) is a set of ELF features used by the file f , then the
following condition should be satisfied in order to launch application A in D:

∀f ∈ A → FileReqELF (f) ⊆ SysSupportedELF (D) (2)

3.2 Shared Libraries

Let SharedLibs be a set of all shared objects in the Linux ecosystem. Every
library lib ∈ SharedLibs is characterized by its soname (a special name visible
to dynamic loader which may or may not be equal to the library file name) and
hardware architecture: lib = (soname, arch). It is the soname that is ’required’
by ELF files; however, when looking for library that provides the requested
soname, dynamic loader takes into account both library’s soname and name of
its file – if any of them matches the requested soname, than the loader picks the
library up to satisfy the request. Thus, if soname of some library differs from its
file name, then this library should be represented in the SharedLibs set by two
entities: (soname, arch) and (filename, arch). Let FileProvLibs(f) to be a set
of SharedLibs elements provided by a file f (this set consists of either one or
two elements).

Every ELF file can have a set of DT NEEDED entries in its dynamic section
that store sonames of libraries required by the file. Let’s designate this set of
required libraries as FileReqLibs(f). This is a subset of our SharedLibs set,
with target hardware architecture of every FileReqLibs(f) element been equal
to target architecture of the file f itself (that can be detected on the basis of
Class and Machine fields of the ELF header, as described in [6]).

For every distribution D, we are interested in the whole set of libraries pro-
vided by it, which is a union of libraries provided by all distribution files:

SysProvLibs(D) =
⋃

f∈D

FileProvLibs(f)

For applications, on the opposite, one should build a set of required libraries
that are not provided by the application itself and thus are expected to be present
in the system:



364 D. Silakov and A. Smachev

AppReqLibs(A) =

=
⋃

f∈A

FileReqLibs(f) \
⋃

f∈A

FileProvLibs(f)

The second necessary condition that should be satisfied in order for the ap-
plication A to be launched in the distribution D is that all libraries required by
A should be provided by D:

AppReqLibs(A) ⊆ SysProvLibs(D) (3)

3.3 Symbol Versions

A specific feature of ELF files in Linux is possibility of assigning a particular
version to any binary symbol – different (from the source code point of view)
functions or global variables can be made visible on the binary level under the
same name but with different versions. This allows to keep backward compat-
ibility with old applications when library developers decide to change function
behavior – the old function implementation in this case becomes frozen and vis-
ible on the binary level with the same name as before. The new implementation
is also visible under this name, but with a different version.

Every version is a simple literal string. Information about versions exported
by file and versions required by it is stored in the appropriate ELF sections.
When loading a file into memory, the system loader compares the set of required
versions with versions provided by libraries loaded as file dependencies. Let’s
designate the latter set as FileLoadedLibs(f, D); it is built using the following
algorithm:

1. Set FileLoadedLibs(f, D) = ∅.
2. Put all FileReqLibs(f) elements to FileLoadedLibs(f, D) and to a tempo-

rary AddedLibs set.
3. For each library l ∈ AddedLibs, calculate dependencies FileReqLibs(l) of

the ELF file that represents the library, calculate its difference with the
FileLoadedLibs(f, D) and union such differences to a new set:

FileIndirectDeps(f, D) =

=
⋃

l∈AddedLibs

FileReqLibs(l) \ FileLoadedLibs(f, D)

4. If FileIndirectDeps(f, D) is not empty, then put all its elements to the
FileLoadedLibs(f, D) set.
Rebuild AddedLibs to be equal to FileIndirectDeps(f, D).
Set FileIndirectDeps(f, D) = ∅ and go to step 3.

5. Otherwise, everything is done and FileLoadedLibs(f, D) is built.

Thus, the FileLoadedLibs(f, D) set consists of libraries directly required by the
file (that is, FileReqLibs(f) ⊆ FileLoadedLibs(f, D)), expanded with libraries



Improving Portability of Linux Applications 365

recursively loaded as dependencies of these libraries in a particular distribution.
Since dependencies of system libraries are specific to a particular distribution,
the FileLoadedLibs set for the same file f can be different on different systems.
That’s why we write that this set is a function of both file f and distribution D.

Let SysProvV ers(f, D) to be a union of versions provided by files from
FileLoadedLibs(f, D). With FileReqV ers(f) standing for versions required by
the file f , we can formulate the following necessary condition that should be
satisfied for the application A to be launched in the distribution D:

∀f ∈ A → FileReqV ers(f) ⊆ SysProvV ers(f, D) (4)

3.4 Binary Symbols

If all previous checks are completed successfully, the dynamic loader proceeds
with resolution of external binary symbols for the files been loaded. Every binary
symbol is unambiguously identified by name and version: s = (name, version).
The resolution process is similar to the one for versions of binary symbols – the
loader takes a set of binary symbols required by file (FileReqSyms(f)) and then
compares it with SysProvSyms(f, D) – a set of symbols provided by libraries
from the FileLoadedLibs(f, D) set. So one more necessary condition for the
successful launch is like the following:

∀f ∈ A → FileReqSyms(f) ⊆ SysProvSyms(f, D) (5)

Strictly speaking, there can be a situation that if f ∈ A is a shared object,
then it is never launched directly, but only loaded along with other files. In
this case some symbols required by it can be provided not by libraries from the
SysProvSyms(f, D) set, but by libraries from SysProvSyms sets for files that
are loaded together with f , since finally all these files are joined to a single im-
age. Build tools in Linux allow programmers to perform such tricks. However,
dependencies of the same library in different systems can vary (and may change
as time goes by), so these tricks are not considered to be a good practice, espe-
cially from portability point of view. In our work, we ignore such possibility and
treat 5 as required condition.

Now let’s consider the fact the sets of required and provided versions are con-
structed automatically during application or library build as unions of versions
of required and provided symbols respectively. That is,

version ∈ FileReqV ers(f) ⇔ ∃s = (name, version) ∈ FileReqSyms(f)

version ∈ SysProvV ers(f) ⇔ ∃s = (name, version) ∈ SysProvSyms(f, D)

So if 5 is satisfied, then 4 is also satisfied, that is, 5 ⇒ 4, and it is actually
enough to only check the condition 5. However, in real systems a number of
required symbols is usually much more greater than number of required versions,
so 4 can be checked much more faster. Thus, it may still make sense to check
4 in order to detect possible problems at early stage, without deep analysis of
binary symbols.



366 D. Silakov and A. Smachev

3.5 Sufficient Requirement

Up to this moment, we have considered the four necessary conditions 2, 3, 4 and
5 that should be met in order for the application A to be successfully launched
in the distribution D. Since we have considered all interfaces involved in the
launching process, then the sufficient condition of the successful launching is a
conjunction of these conditions. As we have shown above, 5 ⇒ 4, so the final
sufficient condition can be formulated as a conjunction of 2, 3 and 5:

∀f ∈ A → FileReqELF (f) ⊆ SysSupportedELF (D)
AppReqLibs(A) ⊆ SysProvLibs(D)

∀f ∈ A → FileReqSyms(f) ⊆ SysProvSyms(f, D)

3.6 Method Value

It is clear that the approach suggested allows to detect only a limited set of
compatibility problems; many kinds of issues (such as runtime function behavior)
are out of its scope. In order to estimate the value of the approach in the real
world, we have performed investigation of issue trackers of several Open Source
projects and calculated percentage of issues that could be avoided if our approach
were applied before the product release. We took into account errors concerning
missing libraries and symbols; errors concerning symbol versions are relatively
rare so they are joined with other symbol-related issues in the ’Failed symbols’
column. Finally, it was found that issues related to the ELF format are very
rare, so we haven’t included them in the table below.

For our analysis, we have selected three popular applications that are broadly
used in all Linux distributions – OpenOffice.org, Firefox and MySQL. In addi-
tion, we have investigated issues reported in the Launchpad software portal that
provides hosting for more than 18,000 of Open Source projects. In our research,
we have considered only critical bugs (either issues with severity set to ’Criti-
cal’ or ’Blocker’, or issues with the highest priority). Results of the analysis are
shown in Table 1. The ’Total issue’ column contains number of all critical bugs
reported for the project; it would be also useful to calculate total number of
bugs that concern portabilty, but this will require detailed investigation of every
issue and is too time-consuming, so we haven’t gathered such statistics.

Table 1. Number of issues in different projects that could be detected using the
approach

Product Total issues Failed symbols Failed libraries Percentage

OpenOffice.org 20,000 190 110 1.5
Firefox 19,000 254 114 1.9
MySQL 6,400 98 20 1.8

Launchpad 42,000 95 60 0.3



Improving Portability of Linux Applications 367

It is clear that large applications that are actively used on almost all Linux
distributions have greater percentage then relatively small projects hosted at
the Launchpad whose target audience is, in general, much more smaller. Some
projects from the Launchpad are not the binary ones, but created using inter-
preted languages (such as Perl or Python). For such programs, our approach is
not applicable. Also note that our investigation only concerned bugs detected by
customers, not by developers – that is, these are primarily bugs in the released
products missed by QA teams.

Thus, using the approach suggested, large applications could decrease the
number of critical issues discovered by customers by 1-2%. At the first glance,
this is not a very high number, but it can be achieved at a very low cost –
for example, the Linux Application Checker tool described below can perform
all necessary analysis fully automatically, so developers will only have to spend
several minutes launching the tool and checking the reports.

4 Linux Application Checker

The approach presented in this paper is implemented into an automated tool
called Linux Application Checker. The tool can be used to analyze application
binary files (in a form which is usually distributed to users) and check conditions
2, 3 and 5 for application and every distribution known to the tool. For every
distribution, a verdict is given if application can be successfully launched there,
and if not, a detailed list of compatibility problems is provided.

Data about distributions is collected by separate automated tools as described
in [6] and is shipped with the tool, so the set of supported distributions is fixed
for every tool version. The data collection process is fully automated and doesn’t
require for distribution to be installed – the analysis is performed on the basis
of distribution installation packages (RPM and Deb packages are supported). In
order to collect information about binary symbols and their versions exported
by distribution libraries, these libraries are analyzed using ’readelf’ and other
tools from GNU Binary Utilities [7]. The same tools are used by the Application
Checker to analyze application binary files on the user side.

The set of supported distributions is constantly updated; as of April, 2010,
the tool contains knowledge about 63 distributions on Intel x86 architecture
and 51 systems on x86-64 one (also known as AMD64). The tool supports five
more hardware architectures: PowerPC, PowerPC64, IA64 (Itanium), S390 and
S390X (IBM zSeries); for every of these platforms, knowledge about two dozens
of distributions is collected (this number is smaller than for x86 and x86-64 due
to the fact that many Linux variations don’t support these platforms).

Finally, since the data collection process is fully automated and all necessary
tools (including the Application Checker itself) are open, it is not hard for users
to add data about any distribution they like.

It is important to note that Application Checker contains knowledge not about
all libraries in every distribution, but only about a limited set of them (about
1,500 for every system). The thing is that according to empirical studies, there



368 D. Silakov and A. Smachev

are a lot of libraries in the Linux ecosystem that are used very rarely (usually
only by their developers), so it is unlikely that they will be required by any
third-party applications [9].

In addition to data necessary to check the conditions 2, 3 and 5, the Appli-
cation Checker also contains information about libraries and functions included
in the latest version of the LSB specification. For LSB-compliant distributions,
these libraries and functions are guaranteed not only to be present in the system,
but to provide all the functionality required by LSB. Thus, if application under
analysis uses only interfaces included in LSB, developers can be sure that the ap-
plication will not only successfully launch, but will also be able to work properly
in all distributions compliant with LSB. For symbols and libraries that were once
considered as LSB candidates but were rejected by the LSB workgroup (usually
due to their deprecated status or known bugs in the existing implementations),
the tool provides developers with appropriate warning messages, suggesting an
alternative, if possible.

While a positive result from the Application Checker does not guarantee that
application will run correctly in all distributions, it can notably reduce the port-
ing and testing costs; the tool it is easy to use, doesn’t require much user actions
and still able to detect a noticeable set of errors. Data from the LSB knowledge
base makes the tool even more valuable, allowing people to combine standard-
oriented development with the approach suggested in this paper.

Nowadays, Linux Application Checker is recommended by the Linux Foun-
dation [8] to all software developers who want to improve cross-distribution
portability of their applications. Moreover, it is possible for application vendors
to apply for LSB certification using Application Checker reports – the tool has
possibility to automatically submit reports to the LSB Certification System.

5 Conclusion

Existence of Linux applications that can be used in any Linux distribution with-
out modifications are greeted with applause by all members of the Linux commu-
nity – distribution vendors (who don’t want to maintain huge sets of patches for
every application in their systems), independent software vendors (who would
like to support as many platforms as possible) and end users (who don’t want
to be bound to a particular distribution just because their favorite software
doesn’t support the other systems). However, large variety of existing distribu-
tions makes it hard to develop and to support a product that would run every-
where, especially for proprietary vendors who cannot rely on any third parties
when solving portability problems.

Development of products compliant with some standard may help in some
respect, but existing standards cover only a small piece of the Linux ecosystem.
So systematic runtime testing on every target platform remains the most popular
approach for guarantying compatibility, but in case of large variety of platforms
it becomes too expensive.

In this paper, we have suggested an approach to detect portability problems of
applications by means of lightweight static analysis, without a need for runtime



Improving Portability of Linux Applications 369

tests. In general, the approach doesn’t guarantee full compatibility of application
and distribution, but it allows to check that the application at least can be
successfully launched in the distribution. Problems concerning impossibility of
launching of application are not rare in the real world.

The approach is based on the formal model of interfaces involved in the pro-
cess of application launching. In the paper we use formalization to derive unam-
biguous conditions (both necessary and sufficient) of this process. Existence of
clearly formulated and unambiguous requirements allows to create automated
tools that can check these requirements.

The Linux Application Checker tool combines two techniques of increasing ap-
plication portability without runtime testing. First, it allows to analyse program
compatibility with different distributions using the approach described in this
paper. Next, it supports development of applications that meet requirements of
the Linux Standard Base specification by checking application compliance with
LSB and suggesting alternatives for libraries and functions that are not included
in the standard.

In our work, we have considered only programs represented as binary exe-
cutable files and shared objects in ELF format. Applications that are written
using interpreted languages (such as Java, Perl or Python) are beyond the scope
of this paper. The approach can be extended to cover interpreted languages, too,
since they also usually have some analogues of libraries exporting sets of func-
tions that are used by applications. However, the concept of successful launch is
not so clear for such applications, since there is no analogue of dynamic loader
that resolves all external dependencies before passing control to the application
itself. It can appear that even if a system doesn’t provide all necessary interfaces,
the application still can function correctly inside it until the missing interface is
invoked. Nevertheless, it can still be desired to require that all interfaces that can
be potentially invoked by the application should be present in the system. Our
approach can be extended to cover this area, but derivation of formal necessary
and sufficient conditions of compatibility will require investigation of interaction
between application and interpreter, and this interaction can be actually specific
to every particular interpreter language.

References

1. System V Application Binary Interface Draft (April 24, 2001),
http://refspecs.linuxfoundation.org/elf/gabi4+/contents.html

2. Linux Standard Base Core Specification 4.0. Executable And Linking Format
(ELF), http://refspecs.linuxfoundation.org/LSB_4.0.0/LSB-Core-generic/

LSB-Core-generic/elf-generic.html

3. Proffitt, B.: More Compatibility Issues Easily Managed With LSB. Linux Developer
Network (October 2008), http://ldn.linuxfoundation.org/node/7141

4. Schroter, A.: OpenSUSE.org Build Service – a Short Introduction. In: Free and
Open Source Software Developers’ European Meeting, FOSDEM (2008),
http://files.opensuse.org/opensuse/en/2/21/

FOSDEM2008-OBS-short-introduction.pdf

http://refspecs.linuxfoundation.org/elf/gabi4+/contents.html
http://refspecs.linuxfoundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/elf-generic.html
http://refspecs.linuxfoundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/elf-generic.html
http://ldn.linuxfoundation.org/node/7141
http://files.opensuse.org/opensuse/en/2/21/FOSDEM2008-OBS-short-introduction.pdf
http://files.opensuse.org/opensuse/en/2/21/FOSDEM2008-OBS-short-introduction.pdf


370 D. Silakov and A. Smachev

5. Drepper, U.: How To Write Shared Libraries. Red Hat, Inc. (August 20, 2006),
http://people.redhat.com/drepper/dsohowto.pdf

6. Silakov, D.: Linux Distributions and Applications Analysis During Linux Standard
Base Development. In: Proceedings of the Second Spring Young Researchers’ Col-
loquium on Software Engineering (SYRCoSE 2008), St.Petersburg, Russia, May
29-30, vol. 1, pp. 11–18 (2008)

7. GNU Binary Utilities, http://sourceware.org/binutils/docs/binutils/
8. The Linux Foundation: Building a Portable Application For Linux,

http://ldn.linuxfoundation.org/lsb/check-your-app

9. Rubanov, V.: Automatic Analysis of Applications for Portability Across Linux
Distributions. In: Proceedings of the Third International Workshop on Foundations
and Techniques for Open Source Software Certification (OpenCert 2009), York,
United Kingdom, March 28, pp. 44–53 (2009)

10. Khoroshilov, A.V., Rubanov, V.V., Shatokhin, E.A.: Automated Formal Testing of
C API Using T2C Framework. In: Proceedings of the Third International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA 2008), Part 3, Porto Sani, Greece, October 13-15, pp. 56–70 (2008)

http://people.redhat.com/drepper/dsohowto.pdf
http://sourceware.org/binutils/docs/binutils/
http://ldn.linuxfoundation.org/lsb/check-your-app

	Improving Portability of Linux Applications by Early Detection of Interoperability Issues
	Introduction
	Existing Approaches
	Using a Testing Farm
	OpenSUSE Build Service
	Creating Standard-Compliant Applications

	Static Analysis of Interfaces Involved in Interaction between Distributions and Applications
	ELF Sections
	Shared Libraries
	Symbol Versions
	Binary Symbols
	Sufficient Requirement
	Method Value

	Linux Application Checker
	Conclusion


