1

Improving Power Efficiency with an
Asymmetric Set-Associative Cache

Zhigang Hu', Stefanos Kaxiras?, and Margaret Martonosi®

1'T.J. Watson Research Center, IBM Corporation, Armonk, NY, USA
zhiganghQus.ibm.com

2 Commnunication System and Software, Agere Systems, Allentown, PA, USA
kaxiras@agere.com

3 Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
mrm@ee.princeton.edu

Summary. Data caches are widely used in general-purpose processors as a means
to hide long memory latencies. Set-associativity in these caches helps programs avoid
performance problems due to cache mapping conflicts. Current set associative caches
are symmetric in the sense that each way has the same number of cache lines. More-
over, each way is searched in parallel so energy is consumed by all the ways even
though at most one way will hit. With this in mind, this paper proposes an asym-
metric cache structure in which the size of each way can be different. The ways of the
cache are different powers of two, and allow for a “tree-structured” cache in which
extra associativity can be shared. We accomplish this by having two cache blocks
from the large ways align with individual cache blocks in the smaller ways. This
structure achieves performance comparable to a conventional cache of similar size
and equal associativity. Most notably, the asymmetric cache has the nice property
that accesses hit in the smaller ways can immediately terminate accesses to larger
ways so that power can be saved. For the SPEC2000 benchmarks, we found cache
energy per access was reduced by as much as 23% on average. The characteristics
of the asymmetric set-associative design (low power, uncompromised performance,
compact layout) make them particularly attractive for low power processors.

1.1 Introduction

To bridge the widening speed gap between the processor and the main mem-
ory, caches are widely employed in current general purpose microprocessors.
For example, Alpha 21264 processor [8] has a 64KB, 2-way set associative
L1 data cache and an L1 instruction cache of the same size. The design of
caches must take into consideration many factors including hit latency, miss
rate, chip area and power consumption. Balancing all these factors results in
complex cache designs with multiple cache levels.

A key design choice for caches is the associativity. The associativity of a
cache is the number of places in the cache where a block may reside. In the
simplest form, there is only one place for each data block so the associativity is
1. In this case the cache is called a direct-mapped cache. More generally, in a
n-way set associative cache, a data block could appears in n different places so
to search for a match all these n locations need to be checked. Figure 1.1 shows

2 Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi

TAG ARRAY DATA ARRAY

[smooomo |

Comparators

Sense Amps E ﬁ Sense Amps

MUX drivers Select Output Data

Fig. 1.1. The conventional cache organization

a typical cache organization with associativity of 4. Increasing associativity
can improve cache hit rate by reducing the mapping conflict between cache
lines that interference with each other. Hill and Smith [9] report that using
a two-way set associative cache reduces the number of cache misses by about
30% compared to a direct-mapped cache. However, with conventional set-
associative cache design, increasing associativity comes with a high cost of
extended hit latency and extra power consumption.

Hit Latency: The latency of a set-associative cache is larger than that of
a direct-mapped cache due to the delay associated with the multiplexing logic
that selects the correct way. Based on the CACTI 3.0 [23] tool, Figure 1.2
gives the access latencies of three 16K-byte caches with different associativity.
When going from a direct-mapped cache to a 2-way set associative cache, the
cache latency is increased by about 25%. For many processors cache latency
is on the critical path, so increasing associativity could severely impact the
cycle time. Furthermore, since memory reference instructions comprise about
1/3 of total executed instructions, increasing cache latencies could result in
longer execution time which will have a global impact on the performance and
the power consumption of the whole microprocessor.

Power Consumption: In a conventional set-associative cache, all the
ways are searched in parallel. Since at most only one way will hit, power
consumed by other ways is expended without providing any useful data. From
Figure 1.2, we noticed that the average energy consumed per cache access to
a 2-way 16K-byte cache is about 51% higher than that of a direct-mapped
cache. Increasing the associativity to 4 causes the access energy to increase
by another 64%.

A major reason for the problems above is the symmetric organization and
operation of conventional set associative caches. In this organization, each way
is physically designed to have the same number of cache lines. Furthermore,
each way is activated simultaneously thus their results come out at the same
time and selection hardware must be employed to decide which result to use.
In this paper, we propose a new cache architecture, called an “asymmetric
cache”, which allows non-uniform sizes for each cache way.

In an asymmetric cache, we propose to use larger sizes for some ways while
smaller sizes for other ways. For instance, a 15K-byte 4-way set-associative
cache can have 4 ways, with sizes of 8K-byte, 4K-byte, 2K-byte and 1K-byte
respectively. We describe how an access to this cache can be conducted and

1 Improving Power Efficiency with an Asymmetric Set-Associative Cache 3

‘ —#- hit latency =¥-access energy‘

0.8 0.45
0.7 + T 040 &
Z 06+ 1035 i
Sos 1030 3
S04 7025 8
e i 1o20 &
T 03 * 1015 §
go27 1010 &
0.1+ +0.05 ©
0.0 t t 0.00
16KB/1way 16KB/2way 16KB/4way

Fig. 1.2. The hit latency and energy per access for 16K-byte caches with different
associativity. From left to right: direct-mapped, 2-way set associative and 4-way set
associative.

how LRU replacement policy can be implemented in such a cache. We show
that asymmetric caches have similar performance compared to conventional
caches of similar sizes and associativity. Furthermore, since in asymmetric
caches, smaller ways are faster, we show how a hit on smaller ways can im-
mediately signal other larger ways to stop the lookup. This effect, similar
to “Short Circuit Evaluation” of Boolean expressions, can reduce the aver-
age power consumed by the slower and larger ways. With this technique, the
asymmetric cache described above achieves up to 23% cache energy savings
compared to a 4-way conventional cache of similar size.

The structure of the paper is as follows. In Section 2, we discuss related
work and in Section 3 we explain the simulation environment and machine
model used to evaluate our proposed structure. Next in Section 4, we introduce
in detail the structure of an asymmetric set-associative cache and discuss some
advantages of this structure. In Section 5, we demonstrate our simulation
results. Section 6 compares asymmetric caches with other design options and
discusses our plans for future work. Finally Section 7 concludes the paper.

1.2 Related work

Caches have been the subject of much research. In general there are two main
research categories. One category of research focuses on the internal structure
and address mapping design within a single cache. Group associative caches
[18] and DASC (Direct-mapped Access Set-associative Check) caches [22] are
examples in this category. Both try to achieve the miss rate of a set associative
cache with the hit latency of a direct-mapped cache by combining an associa-
tive tag array with a direct-mapped data array. In a group-associative cache,
a direct-mapped cache is dynamically partitioned into groups of cache lines.
Each group functions as a set as in a conventional set-associative cache. Each
memory block can map to any position within a group instead of a single po-
sition in a conventional direct-mapped cache. The exact position of this block
is recorded in a directory which is accessed in parallel with data/tag array. In
DASC caches [22], the tag array is n-way set-associative but the data array
is direct-mapped. For each memory request, data in the privileged location is
optimistically used. If the tag check indicates a miss on the privileged location,
all activities using the speculative data must be canceled. Since the tag array
is set-associative, a hit on alternative locations can also be determined during
the tag check. On a miss to all the alternative locations, the referenced data
must be served from next level of the memory hierarchy. Other work in this

4 Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi

category includes column-associative cache [1], skewed associativity cache [2]
and the difference-bit cache [13].

Another category of cache research tries to split the data cache into typ-
ically two sub-caches to capture different memory access patterns. Examples
in this category include —among others—split temporal spatial data caches
(STS) [17], split spatial/non-spatial caches [19], victim buffers [12] and filter
caches [11]. A survey of this category of research can be found in [20].

Our work is similar to the skewed associativity work [2] in that each way is
indexed differently. However, in asymmetric caches, the difference in indexing
stems from the different size of each cache way but not by the deliberate use of
different decoders for each way. Within each way, we retain the conventional
index function to avoid adding new decoders. Since our work is focused on
power consumption instead of miss rate, these two mechanisms are actually
orthogonal to each other. It is possible to combine the two to achieve different
trade-offs between power and performance.

Beyond research focusing on miss rate there is also research focusing on
latency and power consumption. In an n-way set-associative cache, each cache
line has n possible locations to be placed so the possibility that a useful cache
line is driven out due to mapping conflict is reduced. However, compared to
direct-mapped caches, conventional set associative caches incur longer delay
and higher power consumption for each cache access. These two problems
have been the focus of much research [4, 5, 15, 27]. The general solution is
to assign priorities either dynamically or statically to the possible locations.
For each cache access, the location with the highest priority is first checked
for a hit. If it is a hit, then the access is completed immediately without
looking at other locations. If it is a miss, however, the remaining candidate
locations are checked subsequently. This technique has been employed in some
commercial processors [24, 26]. In the rest of this section, we describe two
previous proposals to improve the energy inefficiency of set-associative caches.

1.2.1 Phased Cache

In a phased cache, accesses to tags and data are serialized, as shown in Figure
1.3(b). During the first stage, all the tags in the selected set are examined
in parallel. The data array is not touched in this step. If the tag comparison
indicates that there is a hit, then the data array in the hit way is accessed
during the second stage. Otherwise, the second stage is skipped and the next
level cache is accessed.

Phased cache can greatly reduce the energy consumed by each access since
the tag array consumes much less energy than the data array. Also, only at
most one way in the data array is activated for each cache access. However, in
the common situation where there is a hit, the cache access latency is increased
which may delay the whole processor and lead to more energy consumed in
other parts of the processor. Therefore, an evaluation of the phased cache
must take the complete processor into account.

1.2.2 Way Prediction Cache

In a way prediction cache, as shown in Figure 1.3(c), one cache way is spec-
ulatively chosen by a predictor to be accessed before the other ways. If a hit
is detected in the predicted way, the access latency and power consumption
are similar to that of a direct-mapped cache. On the other hand, if a miss is
detected in the predicted way, the remaining ways are accessed in parallel as

1 Improving Power Efficiency with an Asymmetric Set-Associative Cache 5

way0 wayl way2 way3

1eycle
=05ns

R

R

MUX DRIVEI ‘ 1lcycle

(a). Conventional (b). Phased (c). Way-Prediction
4way cache 4way cache 4way cache t

Fig. 1.3. Access procedure for different cache structures

in the conventional caches. A simple MRU (Most Recently Used) [4, 5, 15, 10]
prediction policy is typically employed to exploit cache access locality. The
effectiveness of way prediction cache largely depends on the accuracy of the
way prediction. Our simulations reveal that the simple MRU algorithms have
a prediction rate of about 84%, which is in accordance with results in [10].
The way prediction hardware itself may, however, incur some extra latency
and energy consumption.

Both phased caches and way prediction caches maintain the symmetric
structure of conventional caches, but they modify the access procedure to
trade extra latency for reduced power consumption. In the paper, we propose
a structurally asymmetric cache design which achieves a different trade-off
between latency, power consumption and design complexity. Before discuss
this structure in detail, we first introduce the simulator and the benchmarks
we used to evaluate our design.

1.3 Methodology and Modeling

Our performance results shown in this paper are based on simulations using
the SimpleScalar [3] tool set. The cache energy and timing results are ob-
tained with CACTT 3.0 [23] which is an updated version of CACTT [25]. We
augmented the cache model in SimpleScalar to simulate asymmetric caches,
phased caches and way prediction caches. Our simulated processor is a 2GHz
4-issue out-of-order processor based on the 0.lum technology. The main pa-
rameters of this processor are shown in Table 1.1.

We evaluate our results using benchmarks from the SPEC CPU2000 bench-
mark suite [6]. The benchmarks are compiled and statically linked for the
Alpha instruction set using the Compaq Alpha compiler with SPEC peak set-
tings. For each program, we skip the first 1 billion instructions to avoid the
initial startup behavior of the benchmarks. We then simulate the program
until 2 billion instructions are committed. Our simulation is conducted with
SimpleScalar’s EIO traces using the reference input set to ensure reproducible
results for each benchmark across multiple simulations.

1.4 Asymmetric Set Associative Cache

In this section, we will describe the basic structure, the access policy and
replacement policy of asymmetric caches and analyze the latency and power
consumption associated with this design.

6 Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi

General
Clock Frequency 2GHz (0.5ns cycle time)
Feature Size 0.1um

Processor Core
Instruction Window|64-RUU, 32-LSQ

Issue width 4 instructions per cycle
Functional Units |4 IntALU,1 IntMult/Div,
4 FPALU,1 FPMult/Div,

2 MemPorts
Memory Hierarchy

L1 Dcache Size 16KB, 4-way, 32B blocks, 2-cycle
L1 Icache Size 8KB, 1-way, 32B blocks, 1-cycle
L2 Unified, 512KB, 8-way LRU,

64B blocks,8-cycle latency, WB
Memory 100 cycles
TLB Size 128-entry, 30-cycle miss penalty

Table 1.1. Configuration of Simulated Processor

TAG ARRAY DATA ARRAY wayO wayl way2 way3

1 cycle

l ! !!I! hit =0.5ns
[Crmmiss? }

e hit

Fig. 1.4. Structure (left) and access procedure (right) of an asymmetric cache.

]
‘ IMOOOmOo ‘

H
LI
o Data Sense Amps
Disable H
MUX drivers
Output Data

Tag Sense Amps

Comparators

hit 1 cycle

EHEHT)
[EHEH

Select

\

1.4.1 Structure

As the name implies, in an asymmetric set associative cache, the cache ways
are asymmetric; that is, they are of different sizes. Figure 1.4 shows the di-
agram of the asymmetric 4-way set associative cache that is modeled in our
simulation. In a 15K-byte asymmetric cache with 32-byte cache lines, each of
the four ways has 256, 128, 64 and 32 cache lines respectively.

Since the sizes of each way are different, decoder design becomes an issue
for asymmetric caches. In conventional cache design, caches are broken into
several smaller banks/blocks to balance the wire length of each direction [23,
25]. With this design, the large decoder shown in Figure 1.1 is actually made
up of simpler sub-decoders. By choosing sizes of each way to be powers of two,
we can share these subdecoders among the ways. Thus, no extra decoders are
required in asymmetric caches.

Due to the size difference of each way, asymmetric caches have the following
characteristics:

1. Because of their smaller sizes, smaller ways are faster.

2. Tag comparisons in different ways happen in different speeds: hits are
detected faster in smaller ways.

3. Smaller ways consume less power.

In the following subsections we describe how an asymmetric cache is ac-
cessed and how the replacement is conducted. We will also demonstrate how

1 Improving Power Efficiency with an Asymmetric Set-Associative Cache 7

100%
90%
80%
70% —
60%
50% -
40% -
30%
20%
10%

0%

data sense amplifier energy as
percentage of total energy

2KB/iway 4KB/lway 8KB/lway 4KB/2way 8KB/2way 16KB/2way 8KB/4way 16KB/4way 32KB/4way

Fig. 1.5. The energy of data sense amplifiers as a percentage of total energy per
cache access for various cache configurations.

we can take advantage of the asymmetric characteristics to achieve a new
trade-off between performance and power consumption.

1.4.2 Access Policy

Figure 1.4 also depicts the access procedure of the asymmetric 4-way set-
associative cache. Similarly to conventional set associative caches, each way
in asymmetric caches starts searching in parallel to look for a hit. Unlike
conventional caches however, asymmetric caches have different hit latencies
for each way due to their size differences. In the situation when an access
hits a smaller (thus faster) way, it is desirable to signal other slower ways to
terminate their lookup. We refer to this mechanism as “shorting the lookups”.
This can reduce cache hit latency and power consumption.

Terminating a lookup can be conducted at various stages in the process
of a cache access. We can add termination control logic to the wordline, the
bitline, the sense amplifier and the output drivers. The choice of the control
point depends on the latency overhead and the power savings achieved. Figure
1.5 shows the percentage of cache energy per access attributed to data sense
amplifiers for various caches with 32-byte cache line size in 0.1um technology.
The simulation are conducted with the CACTI 3.0 tool [23]. Across the differ-
ent cache configurations, we observed that more than half of the energy per
access is consumed on the data sense amplifiers. This suggests that to save
power we should gate the data sense amplifiers and only activate them when
needed.

In [23], control logic is proposed to gate the foot transistors of the sense
amplifiers. In this section, we introduce an alternative way to gate the sense
amplifiers. As shown in Figure 1.6, typical sense amplifier designs incorporate
a sense signal that is pulled down (simultaneously with wordline) to engage
the sense amplifier [16]. Our approach is to gate the sense signal of the larger
ways using the result (miss) from the smaller ways. Only in case of a miss in
the smaller ways the sense amplifiers are enabled in the larger ways. We can
cascade this gating signal from smaller to larger ways but we may delay a hit
on the largest way. Alternatively any hit in any of the ways disables sensing
in all larger ways. We simulate the latter in our evaluations.

Gating the sense signal for a small period does not affect the correctness
of the circuits as long as we are dealing with static RAM cells [7]. In this
case, the static memory cell only enlarges the differential voltage in the bit
and bit-bar lines making it easier for the sense amplifier to amplify this to full
swing down the road. The same is not true for dynamic RAM cells, however.
There the sense signal has to be asserted simultaneously with wordline signal

8 Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi

BIT BIT
SENSE ‘

Fwﬁ%ss JL JL

ouT “ouT

Fig. 1.6. Conventional sense amplifier augmented with gated sense signal.

since with the passage of time it becomes harder for the sense amps to detect
the differential between bit and bit-bar. Under such conditions, transient noise
can easily introduce errors.

Gating the data sense amplifiers will affect the hit latency and the power
consumption of a cache access. We discuss this issue in detail below:

Hit Latency: Since the larger ways only activate their sense amplifiers
after the tag comparison completed in all smaller ways, access latencies to
these ways could be extended. For the 15K-byte asymmetric 4-way cache we
simulated, our evaluation based on CACTI 3 shows that while the access to
the two smaller ways (way 2 and way 3 in Figure 1.4) can be finished in a
single clock cycle, the access to the two larger ways (way 0 and way 1 in Figure
1.4) needs two cycles to complete. Compared to a conventional 4-way cache,
the hit latency to the smaller ways has a one-cycle advantage.

Power Consumption: The potential hit latency benefits can lead to
improvements in a program’s overall energy consumption and energy-delay
product since they may reduce the program execution time. Moreover, our
scheme for shorting cache lookups can be effective in reducing cache energy per
hit, when hits occur in the smaller cache ways. As was explained above, if an
access hits on a smaller way, the larger ways can be prevented from continuing
the lookups. Thus, the energy consumed by the data sense amplifiers can be
saved. Thus, early hits on faster ways are much more power-efficient than
other hits. As shown in Section 4, this significantly reduces the total power
consumption of asymmetric caches.

1.4.3 Replacement Policy

Because of the asymmetry among cache ways, conventional replacement al-
gorithms are not directly applicable to an asymmetric cache. Replacement
strategies in an asymmetric cache can affect where heavily accessed data is
stored in the cache, thus impacting both performance and power consumption.

Since hits in a smaller way have smaller latency and lower power consump-
tion, one might want to devise schemes in which the most heavily accessed
data is dynamically pushed to the smallest ways. However, data movement
within the cache would significantly increase the power consumption. In this
paper we examine asymmetric caches using simple LRU replacement policies
without data movement.

An LRU replacement strategy is necessary to maintain low miss rates in
set associative caches, especially when power is a major concern and we want

1 Improving Power Efficiency with an Asymmetric Set-Associative Cache 9

way 0 wayl way?2 LRU counter array

Physical Structure (3 way) . D . [. . D D

o e e =

Logical Structure (7 way)

Fig. 1.7. An LRU counter based replacement policy for asymmetric cache.

to minimize accesses to the outlying levels of the memory hierarchy. In asym-
metric caches, LRU replacement is slightly more complex than in conventional
caches. We illustrate this assuming an LRU implementation with N modulo-N
counters per set, where N is the associativity. The counters are updated so as
to preserve a total order within the set, the largest value indicating the LRU
line in the set. Figure 1.7 shows the LRU scheme of a 3-way asymmetric cache.
In the asymmetric cache, for the purpose of LRU replacement, we consider
that the number of sets to be equal to the number of lines in the smallest way.
This is illustrated by the “logical structure” of the asymmetric cache shown in
Figure 1.7. Each set however, consists of more lines than the associativity of
the cache. Specifically each set contains all the alternative lines that map to
the same line in the smallest way. Thus, the LRU array has only as many en-
tries as the size of the smallest way but each entry contains more counters for
the larger ways. Assume the asymmetric cache in the figure has 256,128 and
64 cache lines for each way respectively. Then there are just 64 LRU counter
entries corresponding to the 64 lines of the smallest way. Each LRU counter
entry, as shown on the right side of the figure, contains 4 LRU counters for
the largest way (256 lines), 2 counters for the second largest (128 lines), and
1 counter for the smallest way (64 lines). When new data items are brought
into the cache, a set of lines is selected according to the address of the new
data. This address maps onto a single line in each of the 3 ways specifying
a unique path in the mapping tree (see Figure 1.7). Only the LRU counters
that correspond to the specific mapping path are considered for the replace-
ment decision. The evicted line is the one with the largest value among the
counters selected. However, the LRU entry is updated with any access that
corresponds to the mapping tree, and therefore behaves as if it were not 3-way
but 7-way set associative. Overall, the LRU counters in a 3-way asymmetric
cache are maintained like a 7-way conventional set-associative cache, but the
victim selection is done similarly to a 3-way conventional cache.

While the above paragraph shows that the counter based LRU replacement
algorithm can be revised to work with asymmetric caches, it complicates the
update and lookup operations of the LRU counters. Here we introduce an
alternative way to implement a decay based replacement algorithm that emu-
lates a true LRU algorithm. Cache decay [14] uses 2-bit counters to gauge the
idle time of cache lines and proposes to shut off cache lines with long idle times
to save cache leakage energy. These decay counters contain similar informa-
tion as LRU counters. Specifically, within a cache set, the cache line with the

10 Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi

way 0O wayl way?2 way3

I] I] I] I]
01 11 00 10

Fig. 1.8. A decay counter based replacement policy for asymmetric cache. The
cache line with the longest idle time (i.e. largest decay counter value) is replaced.

largest idle time is the LRU block and conversely, the one with the shortest
idle time is the MRU block. This observation suggests that we can use the
decay counters to approximate LRU counters. For each cache replacement,
we evict the cache block with the largest decay counter value within the set.
Compared to the LRU implementation described in the previous paragraph,
the update and lookup operations for the decay counters are much more sim-
pler. As in cache decay, we reset the decay counter with every cache line access
and increase the counter with every global clock tick. During an eviction, all
decay counters within a cache set are read out and the cache line with the
largest counter value is chosen for replacement. In our simulation, we use a
2-bit local counter for each cache line and use a global cycle counter which
ticks every 256 cycles. With these coarse grained counters, an interesting sit-
uation could occur when more than one decay counter holds the same largest
value within a cache set. In this situation, we consider all those cache lines
with the largest counter value as candidates for replacement. Among these
candidates, there is no further information to decide their exact LRU order,
so we can assign priority based on their way sizes. Since accesses to smaller
ways are faster and more energy-efficient, we prefer to place active cache lines
in smaller ways. This leads to our first policy, where we always choose the
smaller way to replace in case of equal counters. We call this policy “favor
smaller ways”. Conversely, the “favor larger ways” policy tries to replace the
larger way if the counters are the same. In comparison, we also considered an
ideal implementation where the counter is very fine grained so that the situ-
ation where two decay counters equal never occurs. We call this policy “ideal
LRU”. Notice that the counter-based LRU algorithm shown in Figure 1.7 can
be used to implement “ideal LRU”. In the next section, we will evaluate the
performance and power consumption of these three policies.

1.5 Results

In this section, we will examine simulation results for asymmetric caches com-
pared to conventional symmetric caches. The conventional 4-way set associa-
tive cache has size of 16K-byte and block size of 32 bytes, with each way
having 128 cache lines. The 15K-byte asymmetric caches have 256, 128, 64
and 32 cache lines for its 4 ways respectively. For the conventional cache, we
employ a true LRU algorithm. The asymmetric caches are evaluated with the
three LRU algorithms we described in the previous section, including “favor
smaller ways”, “favor larger ways” and “ideal LRU”.

1 Improving Power Efficiency with an Asymmetric Set-Associative Cache 11

[@way 0 mway 1 Oway 2 Oway 3]

3
8 70% .
g 63%
T 60%
©
.L:J 50% 4%
[
o
E 40%
<}
= 30% - 27% 27% 28%
= T 20006 25% 2496 26% 25%
o 20%
© 20% T
g
9% o
= 10% - — 9%
g 3%
o 0% T
Q symmetric cache asym-"favor smaller asym-"favor larger asym-"ideal LRU"
ways" ways"

Fig. 1.9. Access to each way with a conventional symmetric cache and 3 asymmetric
caches with different LRU implementations.

1.5.1 Access Frequency to Each Way

Different flavors of LRU implementation lead to different distributions of cache
accesses in each way. This effect is illustrated in Figure 1.9. As expected, in
a conventional symmetric cache, the 4 ways are roughly equally exercised so
each way has about 25% probability of being accessed. In asymmetric caches,
with the “ideal LRU” algorithm, the access distribution to each way matches
their relative sizes. In our simulated asymmetric caches, the distribution fol-
lows the “8:4:2:1” size ratio. More interesting distributions can be observed
with the decay counter-based LRU implementations. When the algorithm fa-
vors smaller ways, these ways received many more accesses than their sizes
would suggest. Particularly, in the sample configuration shown in this ex-
periment, with 256-cycle global counter and 2-bit local counters, the “favor
smaller ways” LRU implementation achieved roughly equal distributions of
accesses to each way, even though the size of the smallest way is only 1/8
of the largest way. Conversely, when the LRU algorithm favors larger ways,
smaller ways are very infrequently accessed and the bulk of the accesses are
directed to larger ways.

In the next 2 subsections, we will explore the effect of access policy and
replacement policy on the performance and power consumption of asymmetric
caches.

1.5.2 Performance

Figure 1.10 depicts the IPC for SPEC2000 benchmarks with conventional vs.
asymmetric 4-way 16K-byte caches. In asymmetric caches, hits on smaller
ways have lower latencies than larger ways. However, the impact of this effect
on performance is not significant for two reasons: the aggressive out-of-order
execution and the fully pipelined data cache access. In [8], it has been esti-
mated that increasing cache latency by 1 cycle degrades overall performance
by about 4% for the Alpha 21264 microprocessor. We expect this effect to
be even smaller for asymmetric caches since accesses hit smaller ways only
part of the time. As shown in the figure, the average IPC difference is less
than 1% comparing a 16K-byte conventional symmetric cache and a 15K-byte
asymmetric cache with various LRU implementations. In benchmarks such as
vpr and apsi, the cache size difference (15K vs.16K) causes some recognizable
IPC degradation while in most other benchmarks, this effect is not signifi-
cant. In many benchmarks, such as gzip, gap, wupwise and applu, the IPC of
“favor smaller way” outperforms other policies because more accesses hit on

12 Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi

‘Dsymmelric cache Oasym-"favor smaller ways" Basym-"favor larger ways" Oasym-"ideal LRU" ‘
2.00

1.75
1.50
1.25
g 1.00
0.75
0.50

0.25

0.00

s

Fig. 1.10. IPC of asymmetric vs. conventional 4-way caches for SPEC2000

2293

ammp
lucas
fma3d
sixtrack
apsi

wupwis
[geomean]

Way O Way 1 Way 2 Way 3 Overall
256 lines|128 lines|64 lines|32 lines
(Favor smaller ways)
Access frequency(%) [0.27 0.27 0.26 0.20
Access energy 0.27 0.22 0.17 0.10 0.77
(Favor larger ways)
Access frequency(%) [0.63 0.25 0.09 0.03
Access energy 0.63 0.21 0.06 0.02 0.91
(Ideal LRU)
Access frequency(%) [0.48 0.28 0.15 0.09
Access energy 0.48 0.23 0.10 0.04 0.86

Table 1.2. Access frequency and per-access energy for asymmetric caches

the smaller, faster ways. Overall, the performance is roughly stable among all
the configurations because all the caches considered have similar size and all
use an LRU replacement policy.

1.5.3 Power Consumption

This section compares the power consumption of our asymmetric caches with
the similar-sized conventional 4-way cache. Since both caches are 4-way set
associative, we assume the energy consumed by the mux drivers and the out-
put drivers are similar (See Figure 1.1 and Figure 1.4, these drivers account
for 1% - 2% energy in a 4-way cache.) Thus, we exclude them from our com-
parison. To calculate access energy for each way, we utilized CACTT 3.0 [23]
assuming a 0.1um technology. Considering the “shorting the lookups” effect,
we estimated that hitting in the four ways (from the smallest to the largest
way) in our sample asymmetric cache consumes about 50%, 66%, 83% and
100% of the access energy of a conventional cache.

We estimate the energy per access of a conventional 4-way cache (excluding
the mux drivers and output drives) as sum of the access energy to each way. For
the asymmetric cache, by applying lookup-shorting, we avoid the data sense
amplifier energy in the larger cache ways if we determine in time that we have
a hit in one of the smaller ways. Considering this effect, we estimate the energy
saving of each way as prob(access_in_this_way)*energy_for_hit_on_this_way.
Based on this estimation, Table 1.2 estimates average cache access energy
considering the access frequency to each cache way. Table 1.2 shows that
compared to the conventional cache, an asymmetric cache achieves about

1 Improving Power Efficiency with an Asymmetric Set-Associative Cache 13

Caches Conven. |[Phased|WP Asym
hit [Latency(cycles)|2 3 1/3 1717272

Power 1 0.37 |0.25/1]0.5/0.66/0.83/1
miss|Latency(cycles) |2 2 3 2

Power 1 0.14 |1 1

Table 1.3. Comparison of power consumption and latency for asymmetric caches
vs. conventional caches, phased caches and way prediction caches. Note: Power is
normalized to the conventional caches.

23%, 9% and 14% energy savings with “favor smaller ways”, “favor larger
ways” and “ideal LRU” replacement policies respectively.

1.6 Discussion and Future Work

In this section we compare asymmetric caches with phased caches and way
prediction caches and discuss some design issues associated with asymmetric
caches. We also outline some directions for future work.

1.6.1 Comparing Asymmetric Caches to Previous Proposals

Asymmetric caches, like phased caches and way prediction caches, aim to
achieve a new trade-off between latency, power consumption and design com-
plexity. Table 1.3 presents a detailed comparison of latency and power con-
sumption for these cache schemes. Notice that for way prediction caches, there
are two situations for a cache hit: hit on the predicted way or hit on other
ways. For 4-way set-associative asymmetric caches, there are four situations
for a cache hit: hit on each of the four ways respectively. These situations
incur different latency/power consumption as shown in the table.

Phased Caches: In phased caches, the lookup of tag array and data array
is serialized: the data array is accessed only when the tag comparison indicates
a hit. As indicated by Table 1.3, phased cache utilized less cache access power
no matter hit or miss. However, in the common case when there is a cache
hit, the latency is one cycle longer than a conventional cache. This extra cycle
latency is tolerable in L2 caches but is a rather big overhead for L1 caches
which are typically performance constrained.

Way Prediction Caches: In way prediction caches, the lookup of one
special way (typically the MRU way) is given priority over other ways. If it
turns out that this way gets hit, then both the latency and the power con-
sumption are improved. As in other predictive mechanisms, the effectiveness
of way prediction caches are highly dependent on the accuracy of way predic-
tion and the associated access pattern. If for some reason the access pattern
is changed, for example, under a SMT environment, then the accuracy of way
prediction might deteriorate and the extended latency associated with wrong
way prediction could harm the overall performance.

Both phased caches and way prediction caches try to explicitly serialize
the cache access process. On the contrary, asymmetric caches achieved implicit
serialization through the size/speed differences among the ways. It is tempting
but difficult to reach a simple conclusion about which scheme is the best,
because each scheme targets at different balance and trade-off among many
design factors such as latency, power consumption and complexity. Together
these schemes form a rich set of design choices for cache designers. In the
next subsection we discuss some design issues related to the evaluation of
asymmetric caches vs. other cache structures.

14 Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi

1.6.2 Design Issues

Instruction Scheduling: Load/Store instructions bring challenges to the
instruction scheduler because their latencies are variable and unknown at the
time of scheduling. In particular, the latency for cache misses is much longer
than that for hits. Since cache hits are typically more common than cache
misses, current processors often optimistically issue a load-dependent instruc-
tion assuming the load will hit in the cache [21]. If it turns out that the load
misses in the cache, the speculatively-issued instructions are squashed and
re-issued after the load is completed. With way prediction and asymmetric
caches, this strategy is further complicated because the hit latency depends
on where the hit occurs. In this paper, we assume a somewhat ideal scheduler
which knows the exact cache access latency at the time of scheduling. Inter-
esting future work would be to model a more realistic scheduler and evaluate
its impact on the the cache structures we discussed in this paper, including
phased caches, way-prediction caches and asymmetric caches.

Cycle Time Considerations: In the race to better performance and
higher clock frequency, it can be very difficult to design a reasonably-sized
cache for a given cycle time. Instead, current L1 data caches are typically
pipelined into 2 or more cycles. By allowing different latencies for each way,
the asymmetric cache structure provides more flexibility for fitting the cache
access time into a desired latency.

1.6.3 Future Work

The idea of assigning different sizes to each way can be explored beyond
achieving power savings. In this section we briefly discuss the possibility of
achieving area savings using this idea. Because of the rule of locality, the
most recently used way (MRU way) is more likely to be re-accessed than the
least recently used way (LRU way). This phenomenon has been explored by
way prediction [10]. With an asymmetric cache structure, we can explore this
phenomenon by moving data around so that the MRU line in a set is always
placed in the largest way. Similarly, we can place the LRU line always in
the smallest way. Thus at the cost of extra data migrations among the ways,
an asymmetric cache could possibly achieve the miss rate of a much larger
conventional cache. This scheme is especially suitable for L2 caches since the
area savings there is more significant while extra data movements could be
better tolerated. In this paper we did not explore this mechanism but it could
be a promising direction for future work.

1.7 Conclusions

Current set-associative caches are physically symmetric. That is, all the ways
have the same number of cache lines. Moreover, current set-associative caches
are operated symmetrically which means all the ways are looked up in parallel.
This results in both extended hit latency and increased power consumption
compared to a direct-mapped cache. In this paper we take a different approach:
we propose set-associative caches in which different ways have different sizes.
In these asymmetric caches, sizes of different ways are different powers-of-2
and allow for a “tree-structured” cache. Extra associativity is shared by having
two cache blocks from the large ways align with individual cache blocks in the
smaller ways. An LRU replacement policy can be implemented by treating

1 Improving Power Efficiency with an Asymmetric Set-Associative Cache 15

all the items in a “mapping tree” as a single set with higher associativity.
Replacement decisions take into account only the items that correspond to a
single path within the mapping tree. An alternative LRU replacement is to use
decay counters instead of LRU counters. The advantage of this implementation
is that decay counters are easier to maintain for asymmetric caches.

Because of their different size, cache ways in asymmetric caches have dif-
ferent access times and power characteristics. In particular, smaller ways can
be accessed faster and at the same time expend less energy. We can further
exploit a hit on a fast cache way by “shorting” the lookups in the slower cache
ways.

Thus, asymmetric caches have the benefit of lower power consumption in
the smaller ways while maintaining the performance of conventional caches.
By immediately terminating lookups in larger ways when detecting a hit on
smaller ways, the average cache access energy is reduced by as much as 23%
for SPEC2000.

Asymmetric cache architectures do not require any elaborate new hard-
ware but rather they are simple variations in the geometry of conventional
set-associative caches. This minimal-cost approach results in power savings
and with further optimizations could even provide higher performance at the
same time.

References

1. Agarwal, A and Pudar, S (1992) Column-associative caches: A technique for
reducing the miss rate of direct-mapped caches. In: Proceedings of the 20th
Annual International Symposium on Computer Architecture

2. Bodin, F and Seznec, A (1995) Skewed associativity enhances performance
predictability. In: Proceedings of the 22nd Annual International Symposium on
Computer Architecture

3. Burger D, Austin T, and Bennett S, (1996) Evaluating future microproces-
sors: the SimpleScalar tool set. In: Tech. Report TR-1308, Univ. of Wisconsin-
Madison Computer Sciences Dept.

4. Calder B, Grunwald D, and Emer J (1996) Predictive sequential associative
cache. In: Proceedings of the 2nd Annual International Symposium on High
Performance Computer Architecture

5. Chang J. H., Chao J., and So K. (1987) Cache design of a sub-micron CMOS
system370. In: Proceedings of the 14th Annual International Symposium on
Computer Architecture

6. SPEC Corporation (2000) WWW Site http://www.spec.org.

7. Diodato P (2001) Personal communication.

8. Gwennap, L (1996) Digital 21264 sets new standard. In: Microprocessor Report,
October 1996, pp. 11-16

9. Hill M, and Smith A (1989) Evaluating associativity in CPU caches. In: IEEE
Transactions on Computers (38)12: pp. 1612-1630

10. Inoue K, Ishihara T, and Murakami K (1999) Way-Predicting Set-Associative
Cache for High Performance and Low Energy Consumption. In: Proceedings of
the 1999 International Symposium on Low Power Electronics and Design

11. Johnson M, and Mangione-Smith, W. (1997) The filter cache: An energy ef-
ficient memory structure. In: Proceedings of the 30th Annual International
Symposium on Microarchitecture

12. Jouppi, N (1990) Improving Direct-Mapped Cache Performance by the Addi-
tion of a Small Fully-Associative Cache and Prefetch Buffers. In: Proceedings
of the 17th Annual International Symposium on Computer Architecture

13. Juan T, Lang T, and Navarro J (1996) The difference-bit cache. In: Proceedings
of the 23rd Annual International Symposium on Computer Architecture

16

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi

Kaxiras S, Hu Z, and Martonosi M (2001) Cache Decay: Exploiting Genera-
tional Behavior to Reduce Cache Leakage Power. In: Proceedings of the 28th
Annual International Symposium on Computer Architecture

Kessler R, Jooss R, Lebeck A, Hill M (1989) Inexpensive implementation of
set-associativity. In: Proceedings of the 16th annual international symposium
on Computer Architecture, pp. 131-139

Villa L, Zhang M, and Asanovic K (2000) Dynamic Zero Compression for Cache
Energy Reduction. In: Proceedings of the 33rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture

Milutinovic, V, Markovic B and Tremblay M (1996) The Split Temporal /Spacial
Cache: Initial Performance Analysis. In: Proceedings of the SClzzL-5

Peir J, Lee Y, and Hsu W (1998) Capturing Dynamic Memory Reference Be-
havior with Adaptive Cache Topology. In: Proceedings of the Eighth Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems

Prvulovic, M, Marinov D, Dimitrijevic Z and Milutinovic, C (1999) The Split
Spatial/Non-Spacial Cache: A performance and Complexity Analysis. In: IEEE
TCCA Newsletters

Sahuquillo J, and Pont A (2000) Splitting the Data Cache: A Survey. In: IEEE
Concurrency 8(3): pp. 30-35

Seznec A (1993) A case for two-way skewed-associative caches. In: Proceedings
of the 20th Annual International Symposium on Computer Architecture, pp.
169-178.

Seznec A (1995) DASC cache. In: Proceedings of the 1st Annual International
Symposium on High Performance Computer Architecture

Shivakumar P, and Jouppi N (2001) Cacti 3.0: An integrated cache timing,
power, and area model. In: Technical report 2001/2, Compaq Western Research
Lab

Tremblay M, and O’Connor J (1996) UltraSparcl: A four-issue processor sup-
porting multimedia. In: IEEE Micro (16)2: pp. 42-50

Wilton S and Jouppi N (1994) An Enhanced Access and Cycle Time Model for
On-chip Caches In: Research Report 1993/5, Compaq Western Research Lab
Yeager, K. (1996) The MIPS R10000 Superscalar Microprocessor. In: IEEE
Micro (16)2: pp. 28-40

Zhang C, Zhang X, Yan Y (1997) Two fast and high-associativity cache
schemes. In: IEEE Micro (17)5: pp. 40—49

