
Improving power posterior estimation of

statistical evidence

Nial Friel, Merrilee Hurn and Jason Wyse

Department of Mathematical Sciences, University of Bath, UK

10 June 2013



Bayesian Model Choice

◮ Possible models m1, . . . ,ml for data y .

◮ Posterior distribution given data y model mi is

p(θi |y ,mi ) =
p(y |θi ,mi )p(θi |mi )

p(y |mi)

where θi are the parameters for model mi .

◮ The evidence/marginal likelihood for data y given model mi is
the normalising constant of the posterior distribution within
model mi ,

p(y |mi ) =

∫

θi

p(y |θi ,mi )p(θi |mi ) dθi .

◮ The marginal likelihood is often then used to calculate Bayes
factors to compare two competing models, mi and mj ,

BFij =
p(y |mi )

p(y |mj)
=

p(mi |y)

p(mj |y)

p(mj)

p(mi)
.



Estimating the Marginal Likelihood

Estimation of the evidence is non-trivial for most statistical models:

p(y |mi ) =

∫

θi

p(y |θi ,mi )p(θi |mi ) dθi .

◮ Laplace’s method (Tierney and Kadane, 1986)

◮ Chib’s method (Chib 1995)

◮ bridge sampling (Meng and Wong, 1996)

◮ annealed importance sampling (Neal 2001)

◮ nested sampling (Skilling 2006)

◮ power posteriors (Friel and Pettitt, 2008)

◮ stepping stone sampler (Xie, Lewis, Fan, Kuo and Chen, 2011)

A recent review Friel and Wyse (2012)



Power posteriors - theory

Dropping the explicit conditioning on model mi for notational
simplicity, define the power posterior at inverse temperature t by

pt(θ|y) ∝ p(y |θ)tp(θ), t ∈ [0, 1]

with z(y |t) =

∫

θ

p(y |θ)tp(θ)dθ.

Two extremes:

◮ t = 0: p0(θ|y) is the prior and z(y |0) = 1 by assumption

◮ t = 1: p1(θ|y) is the posterior and z(y |1) is the evidence

The power posterior estimator for the evidence uses identity

∫ 1

0

Eθ|y ,t log(p(y |θ))dt = [ log(z(y |t)) ]10

= log(z(y |1))− log(1)

which is the log of the desired marginal likelihood.



Power posteriors - implementation and costs

◮ Discretise the inverse temperatures 0 = t0 < t1 < . . . < tn = 1
(Friel and Pettitt recommend powered fraction ti = (i/n)5)

◮ For each ti in turn, sample from p(θ|y , ti) to estimate
Eθ|y ,ti log(p(y |θ)).

◮ Approximate the integral using the trapezoidal rule

log p(y) ≈

n
∑

i=1

(ti−ti−1)
(Eθ|y ,ti−1

log(p(y |θ)) + Eθ|y ,ti log(p(y |θ)))

2

◮ Discretising t introduces extra approximation into the method

◮ The cost of estimating log p(y) is all in estimating the
Eθ|y ,ti log(p(y |θ)), so an extra n times the cost of just
sampling from the posterior

◮ How do we minimise the costs by minimising the error for a
fixed number of ti?
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Key new observation

We can show that the
gradient of the expected curve
Eθ|y ,t log(p(y |θ)) we want to
integrate is given by the
variance Varθ|y ,t log(p(y |θ)).

The same MCMC samples at
fixed values of t lead to
estimates of the mean and
variance of log(p(y |θ)).

We can we use this
information in two ways.
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1. Choosing the interior ti points

Rationale Since we now know
that the curve is increasing,
we have an upper and lower
bound on the integral by
considering the two bounding
step functions. Aim to place
the ti to minimise the area
between the two.

(More formally, minimising
this area minimises the
Kullback-Leibler distance
between the true curve and
the approximation.)
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Choosing the interior ti points - iterative approximation

Start with t0 = 0 and tn = 1.
All we have is estimates of
the function and its derivative
at these two points.

Site the next t at the point
where the two tangents meet.

We now have three
evaluations and two
rectangular contributions to
the difference area. Subdivide
the larger area using the
intersection of tangents.

And so on...
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Choosing the interior ti points - iterative approximation

Start with t0 = 0 and tn = 1.
All we have is estimates of
the function and its derivative
at these two points.

Site the next t at the point
where the two tangents meet.

We now have three
evaluations and two
rectangular contributions to
the difference area. Subdivide
the larger area using the
intersection of tangents.

And so on...
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Choosing the interior ti points - iterative approximation

Start with t0 = 0 and tn = 1.
All we have is estimates of
the function and its derivative
at these two points.

Site the next t at the point
where the two tangents meet.

We now have four evaluations
and three rectangular
contributions to the difference
area. Subdivide the larger
area using the intersection of
tangents.

And so on...
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Choosing the interior ti points - iterative approximation

Start with t0 = 0 and tn = 1.
All we have is estimates of
the function and its derivative
at these two points.

Site the next t at the point
where the two tangents meet.

We now have five evaluations
and four rectangular
contributions to the difference
area. Subdivide the larger
area using the intersection of
tangents.

And so on...
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Choosing the interior ti points - iterative approximation

Start with t0 = 0 and tn = 1.
All we have is estimates of
the function and its derivative
at these two points.

Site the next t at the point
where the two tangents meet.

We now have six evaluations
and five rectangular
contributions to the difference
area. Subdivide the larger
area using the intersection of
tangents.

And so on...
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Choosing the interior ti points - iterative approximation

Start with t0 = 0 and tn = 1.
All we have is estimates of
the function and its derivative
at these two points.

Site the next t at the point
where the two tangents meet.

We now have seven
evaluations and six
rectangular contributions to
the difference area. Subdivide
the larger area using the
intersection of tangents.

And so on...
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Choosing the interior ti points - iterative approximation

Start with t0 = 0 and tn = 1.
All we have is estimates of
the function and its derivative
at these two points.

Site the next t at the point
where the two tangents meet.

We now have eight
evaluations and seven
rectangular contributions to
the difference area. Subdivide
the larger area using the
intersection of tangents.

And so on...
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Choosing the interior ti points - iterative approximation

Start with t0 = 0 and tn = 1.
All we have is estimates of
the function and its derivative
at these two points.

Site the next t at the point
where the two tangents meet.

We now have nine evaluations
and eight rectangular
contributions to the difference
area. Subdivide the larger
area using the intersection of
tangents.

And so on...
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2. The modified trapezium rule

We can also use the gradient information to improve the numerical
integration:

When integrating a function f between points a and b

∫ b

a

f (x)dx = (b − a)

[

f (b) + f (a)

2

]

−
(b − a)3

12
f ′′(c)

where c is some point in [a, b]. The first term is the usual
trapezium rule and the second can be approximated using

f ′′(c) ≈
f ′(b)− f ′(a)

b − a

so

∫ b

a

f (x)dx ≈ (b − a)

[

f (b) + f (a)

2

]

−
(b − a)2

12

[

f ′(b)− f ′(a)
]

and, unusually, we have gradient information cheaply available via
the variance terms.



Pima Indian Example

Data: diabetes incidence and possible disease indicators for
n = 532 Pima Indian women aged over 20. Seven possible disease
indicators: number of pregnancies (NP), plasma glucose
concentration (PGC), diastolic blood pressure (BP), triceps skin fold
thickness (TST), body mass index (BMI), diabetes pedigree
function (DP) and age (AGE), (all covariates standardised).

Smith, Everhart, Dickson, Knowler and Johannes (1988)

Likelihood observed incidence y = (y1, . . . , yn) with d covariates

p(y |θ) =

n
∏

i=1

p
yi
i (1− pi)

1−yi , log

(

pi

1− pi

)

= θTxi

◮ pi the probability of incidence for person i

◮ covariates xi = (1, xi1, . . . , xid )
T

◮ parameters θ = (θ0, θ1, . . . , θd )
T



Prior for θ, independent Gaussian with mean zero and
non-informative precision of τ = 0.01

p(θ) ∝ exp
{

−
τ

2
θT θ

}

.

Friel and Wyse (2012)

Model choice Friel and Wyse’s long RJMCMC run identifies the
two highest posterior probability models as:

Model 1: logit(p)= 1+NP+PGC+BMI+DP
Model 2: logit(p)= 1+NP+PGC+BMI+DP+AGE

Experiments 100 estimates of the evidence for each model using
either n = 10, 20, 50 or 100 with 10000 MCMC iterations at each
ti . Benchmark evidence from a very long run (n = 2000, 20000
MCMC iterations).



1. Effect of tuning the ti
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2. Effect of improving the trapezium rule
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Combined effect of the two modifications
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Estimated log marginal likelihoods + discretisation bounds
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Discussion

◮ Estimating the log marginal likelihood via Power Posteriors is
relatively straight-forward but computationally costly.

◮ To minimise the cost, we want to use as few t values as
possible.

◮ How to choose those t? Simple algorithm very cheaply
approximates minimising the gap between an upper and a
lower estimated discretisation bound on the log evidence.

◮ We can also very cheaply improve on the trapezium rule for
the numerical integration.

◮ The adaptive t placement allows us to use just as many t as it
takes for the estimated discretisation bounds not to overlap
when comparing a pair of models.


