Improving power posterior estimation of statistical evidence

Nial Friel, Merrilee Hurn and Jason Wyse
Department of Mathematical Sciences, University of Bath, UK

$$
10 \text { June } 2013
$$

Bayesian Model Choice

- Possible models m_{1}, \ldots, m_{l} for data y.
- Posterior distribution given data y model m_{i} is

$$
p\left(\theta_{i} \mid y, m_{i}\right)=\frac{p\left(y \mid \theta_{i}, m_{i}\right) p\left(\theta_{i} \mid m_{i}\right)}{p\left(y \mid m_{i}\right)}
$$

where θ_{i} are the parameters for model m_{i}.

- The evidence/marginal likelihood for data y given model m_{i} is the normalising constant of the posterior distribution within model m_{i},

$$
p\left(y \mid m_{i}\right)=\int_{\theta_{i}} p\left(y \mid \theta_{i}, m_{i}\right) p\left(\theta_{i} \mid m_{i}\right) d \theta_{i}
$$

- The marginal likelihood is often then used to calculate Bayes factors to compare two competing models, m_{i} and m_{j},

$$
B F_{i j}=\frac{p\left(y \mid m_{i}\right)}{p\left(y \mid m_{j}\right)}=\frac{p\left(m_{i} \mid y\right)}{p\left(m_{j} \mid y\right)} \frac{p\left(m_{j}\right)}{p\left(m_{i}\right)}
$$

Estimating the Marginal Likelihood

Estimation of the evidence is non-trivial for most statistical models:

$$
p\left(y \mid m_{i}\right)=\int_{\theta_{i}} p\left(y \mid \theta_{i}, m_{i}\right) p\left(\theta_{i} \mid m_{i}\right) d \theta_{i}
$$

- Laplace's method (Tierney and Kadane, 1986)
- Chib's method (Chib 1995)
- bridge sampling (Meng and Wong, 1996)
- annealed importance sampling (Neal 2001)
- nested sampling (Skilling 2006)
- power posteriors (Friel and Pettitt, 2008)
- stepping stone sampler (Xie, Lewis, Fan, Kuo and Chen, 2011)

A recent review Friel and Wyse (2012)

Power posteriors - theory

Dropping the explicit conditioning on model m_{i} for notational simplicity, define the power posterior at inverse temperature t by

$$
\begin{aligned}
p_{t}(\theta \mid y) & \propto p(y \mid \theta)^{t} p(\theta), t \in[0,1] \\
\text { with } z(y \mid t) & =\int_{\theta} p(y \mid \theta)^{t} p(\theta) d \theta
\end{aligned}
$$

Two extremes:

- $t=0: p_{0}(\theta \mid y)$ is the prior and $z(y \mid 0)=1$ by assumption
- $t=1: p_{1}(\theta \mid y)$ is the posterior and $z(y \mid 1)$ is the evidence The power posterior estimator for the evidence uses identity

$$
\begin{aligned}
\int_{0}^{1} \mathbf{E}_{\theta \mid y, t} \log (p(y \mid \theta)) d t & =[\log (z(y \mid t))]_{0}^{1} \\
& =\log (z(y \mid 1))-\log (1)
\end{aligned}
$$

which is the log of the desired marginal likelihood.

Power posteriors - implementation and costs

- Discretise the inverse temperatures $0=t_{0}<t_{1}<\ldots<t_{n}=1$ (Friel and Pettitt recommend powered fraction $\left.t_{i}=(i / n)^{5}\right)$
- For each t_{i} in turn, sample from $p\left(\theta \mid y, t_{i}\right)$ to estimate $\mathbf{E}_{\theta \mid y, t_{i}} \log (p(y \mid \theta))$.
- Approximate the integral using the trapezoidal rule
$\log p(y) \approx \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right) \frac{\left(\mathbf{E}_{\theta \mid y, t_{i-1}} \log (p(y \mid \theta))+\mathbf{E}_{\theta \mid y, t_{i}} \log (p(y \mid \theta))\right)}{2}$
- Discretising t introduces extra approximation into the method
- The cost of estimating $\log p(y)$ is all in estimating the
sampling from the posterior

Power posteriors - implementation and costs

- Discretise the inverse temperatures $0=t_{0}<t_{1}<\ldots<t_{n}=1$ (Friel and Pettitt recommend powered fraction $\left.t_{i}=(i / n)^{5}\right)$
- For each t_{i} in turn, sample from $p\left(\theta \mid y, t_{i}\right)$ to estimate $\mathbf{E}_{\theta \mid y, t_{i}} \log (p(y \mid \theta))$.
- Approximate the integral using the trapezoidal rule

$$
\log p(y) \approx \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right) \frac{\left(\mathbf{E}_{\theta \mid y, t_{i-1}} \log (p(y \mid \theta))+\mathbf{E}_{\theta \mid y, t_{i}} \log (p(y \mid \theta))\right)}{2}
$$

- Discretising t introduces extra approximation into the method
- The cost of estimating $\log p(y)$ is all in estimating the $\mathbf{E}_{\theta \mid y, t_{i}} \log (p(y \mid \theta))$, so an extra n times the cost of just sampling from the posterior

Power posteriors - implementation and costs

- Discretise the inverse temperatures $0=t_{0}<t_{1}<\ldots<t_{n}=1$ (Friel and Pettitt recommend powered fraction $\left.t_{i}=(i / n)^{5}\right)$
- For each t_{i} in turn, sample from $p\left(\theta \mid y, t_{i}\right)$ to estimate $\mathbf{E}_{\theta \mid y, t_{i}} \log (p(y \mid \theta))$.
- Approximate the integral using the trapezoidal rule

$$
\log p(y) \approx \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right) \frac{\left(\mathbf{E}_{\theta \mid y, t_{i-1}} \log (p(y \mid \theta))+\mathbf{E}_{\theta \mid y, t_{i}} \log (p(y \mid \theta))\right)}{2}
$$

- Discretising t introduces extra approximation into the method
- The cost of estimating $\log p(y)$ is all in estimating the $\mathbf{E}_{\theta \mid y, t_{i}} \log (p(y \mid \theta))$, so an extra n times the cost of just sampling from the posterior
- How do we minimise the costs by minimising the error for a fixed number of t_{i} ?

Key new observation

We can show that the gradient of the expected curve $\mathbf{E}_{\theta \mid y, t} \log (p(y \mid \theta))$ we want to integrate is given by the variance $\operatorname{Var}_{\theta \mid y, t} \log (p(y \mid \theta))$.

The same MCMC samples at fixed values of t lead to estimates of the mean and variance of $\log (p(y \mid \theta))$.

We can we use this information in two ways.

1. Choosing the interior t_{i} points

Rationale Since we now know that the curve is increasing, we have an upper and lower bound on the integral by considering the two bounding step functions. Aim to place the t_{i} to minimise the area between the two.
(More formally, minimising this area minimises the Kullback-Leibler distance between the true curve and the approximation.)

Choosing the interior t_{i} points - iterative approximation

Start with $t_{0}=0$ and $t_{n}=1$. All we have is estimates of the function and its derivative at these two points.

Site the next t at the point where the two tangents meet.

Choosing the interior t_{i} points - iterative approximation

Start with $t_{0}=0$ and $t_{n}=1$. All we have is estimates of the function and its derivative at these two points.
Site the next t at the point where the two tangents meet.
We now have three evaluations and two rectangular contributions to the difference area. Subdivide the larger area using the intersection of tangents.

Choosing the interior t_{i} points - iterative approximation

Start with $t_{0}=0$ and $t_{n}=1$. All we have is estimates of the function and its derivative at these two points.
Site the next t at the point where the two tangents meet. We now have four evaluations and three rectangular contributions to the difference area. Subdivide the larger area using the intersection of tangents.

Choosing the interior t_{i} points - iterative approximation

Start with $t_{0}=0$ and $t_{n}=1$. All we have is estimates of the function and its derivative at these two points.
Site the next t at the point where the two tangents meet.
We now have five evaluations and four rectangular contributions to the difference area. Subdivide the larger area using the intersection of tangents.

Choosing the interior t_{i} points - iterative approximation

Start with $t_{0}=0$ and $t_{n}=1$. All we have is estimates of the function and its derivative at these two points.
Site the next t at the point where the two tangents meet. We now have six evaluations and five rectangular contributions to the difference area. Subdivide the larger area using the intersection of tangents.

Choosing the interior t_{i} points - iterative approximation

Start with $t_{0}=0$ and $t_{n}=1$. All we have is estimates of the function and its derivative at these two points.
Site the next t at the point where the two tangents meet.
We now have seven evaluations and six rectangular contributions to the difference area. Subdivide the larger area using the intersection of tangents.

Choosing the interior t_{i} points - iterative approximation

Start with $t_{0}=0$ and $t_{n}=1$. All we have is estimates of the function and its derivative at these two points.
Site the next t at the point where the two tangents meet.
We now have eight evaluations and seven rectangular contributions to the difference area. Subdivide the larger area using the intersection of tangents.

Choosing the interior t_{i} points - iterative approximation

Start with $t_{0}=0$ and $t_{n}=1$. All we have is estimates of the function and its derivative at these two points.
Site the next t at the point where the two tangents meet.
We now have nine evaluations and eight rectangular contributions to the difference area. Subdivide the larger area using the intersection of tangents.
And so on...

2. The modified trapezium rule

We can also use the gradient information to improve the numerical integration:

When integrating a function f between points a and b

$$
\int_{a}^{b} f(x) d x=(b-a)\left[\frac{f(b)+f(a)}{2}\right]-\frac{(b-a)^{3}}{12} f^{\prime \prime}(c)
$$

where c is some point in $[a, b]$. The first term is the usual trapezium rule and the second can be approximated using

$$
f^{\prime \prime}(c) \approx \frac{f^{\prime}(b)-f^{\prime}(a)}{b-a}
$$

so $\int_{a}^{b} f(x) d x \approx(b-a)\left[\frac{f(b)+f(a)}{2}\right]-\frac{(b-a)^{2}}{12}\left[f^{\prime}(b)-f^{\prime}(a)\right]$
and, unusually, we have gradient information cheaply available via the variance terms.

Pima Indian Example

Data: diabetes incidence and possible disease indicators for $n=532$ Pima Indian women aged over 20. Seven possible disease indicators: number of pregnancies (NP), plasma glucose concentration (PGC), diastolic blood pressure (BP), triceps skin fold thickness (TST), body mass index (BMI), diabetes pedigree function (DP) and age (AGE), (all covariates standardised).

Smith, Everhart, Dickson, Knowler and Johannes (1988)
Likelihood observed incidence $y=\left(y_{1}, \ldots, y_{n}\right)$ with d covariates

$$
p(y \mid \theta)=\prod_{i=1}^{n} p_{i}^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}}, \quad \log \left(\frac{p_{i}}{1-p_{i}}\right)=\theta^{T} x_{i}
$$

- p_{i} the probability of incidence for person i
- covariates $x_{i}=\left(1, x_{i 1}, \ldots, x_{i d}\right)^{T}$
- parameters $\theta=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{d}\right)^{T}$

Prior for θ, independent Gaussian with mean zero and non-informative precision of $\tau=0.01$

$$
p(\theta) \propto \exp \left\{-\frac{\tau}{2} \theta^{T} \theta\right\}
$$

Friel and Wyse (2012)
Model choice Friel and Wyse's long RJMCMC run identifies the two highest posterior probability models as:

$$
\begin{array}{ll}
\text { Model 1: } & \operatorname{logit}(p)=1+\mathrm{NP}+\mathrm{PGC}+\mathrm{BMI}+\mathrm{DP} \\
\text { Model 2: } & \operatorname{logit}(\mathrm{p})=1+\mathrm{NP}+\mathrm{PGC}+\mathrm{BMI}+\mathrm{DP}+\mathrm{AGE}
\end{array}
$$

Experiments 100 estimates of the evidence for each model using either $n=10,20,50$ or 100 with 10000 MCMC iterations at each t_{i}. Benchmark evidence from a very long run ($n=2000,20000$ MCMC iterations).

1. Effect of tuning the t_{i}

Bias in estimating the log evidence for Model 1

Number of t

2. Effect of improving the trapezium rule

Bias using adaptive t for Model 1

Number of t

Combined effect of the two modifications

Overall Bias Gains for Model 1

Estimated log marginal likelihoods + discretisation bounds

Estimated log evidence for the two models

Discussion

- Estimating the log marginal likelihood via Power Posteriors is relatively straight-forward but computationally costly.
- To minimise the cost, we want to use as few t values as possible.
- How to choose those t ? Simple algorithm very cheaply approximates minimising the gap between an upper and a lower estimated discretisation bound on the log evidence.
- We can also very cheaply improve on the trapezium rule for the numerical integration.
- The adaptive t placement allows us to use just as many t as it takes for the estimated discretisation bounds not to overlap when comparing a pair of models.

