
Chapter 3
Improving Pre-trained Language Models

Abstract This chapter describes a number of different approaches to improve
the performance of Pre-trained Language Models (PLMs), i.e. variants of BERT,
autoregressive language models similar to GPT, and sequence-to-sequence models
like Transformers. First we may modify the pre-training tasks to learn as much
as possible about the syntax and semantics of language. Then we can extend the
length of the input sequence to be able to process longer inputs. Multilingual models
are simultaneously trained with text in different languages. Most important is the
inclusion of further knowledge into the PLM to produce better predictions. It turns
out that by increasing the number of parameters, the size of the training data and the
computing effort the performance of the models can always be increased. There are
a number of different fine-tuning strategies which allow the model to be adapted to
special tasks. In addition, models may be instructed by few-shot prompts to solve
specific tasks. This is especially rewarding for larger PLMs, which therefore are
called Foundation Models.

Keywords Pre-training objective · Input size · Multilingual model · Long
dependencies · Additional knowledge · Fine-tuning

This chapter describes a number of different approaches to improve the performance
of Pre-trained Language Models (PLMs), i.e. variants of BERT, autoregressive lan-
guage models similar to GPT, and sequence-to-sequence models like Transformers.
When these models have a large number of parameters, they can be instructed by
input prompts to solve new tasks and are called Foundation Models.

• Modification of the pre-training tasks. During pre-training with a large corpus
the PLM should learn as much as possible about the syntax and semantics of
language. By adapting and enhancing the pre-training objectives the performance
of PLMs can be improved markedly, as shown in Sect. 3.1.

• Increase of the input size. The length of the input sequence restricts the context,
which can be taken into account by a PLM. This is especially important for
applications like story generation. Simply increasing input length does not work,

© The Author(s) 2023
G. Paaß, S. Giesselbach, Foundation Models for Natural Language Processing,
Artificial Intelligence: Foundations, Theory, and Algorithms,
https://doi.org/10.1007/978-3-031-23190-2_3

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23190-2protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-3-031-23190-2_3
https://doi.org/10.1007/978-3-031-23190-2_3
https://doi.org/10.1007/978-3-031-23190-2_3
https://doi.org/10.1007/978-3-031-23190-2_3
https://doi.org/10.1007/978-3-031-23190-2_3
https://doi.org/10.1007/978-3-031-23190-2_3
https://doi.org/10.1007/978-3-031-23190-2_3
https://doi.org/10.1007/978-3-031-23190-2_3
https://doi.org/10.1007/978-3-031-23190-2_3
https://doi.org/10.1007/978-3-031-23190-2_3
https://doi.org/10.1007/978-3-031-23190-2_3

80 3 Improving Pre-trained Language Models

as then the number of parameters grows quadratically. In Sect. 3.2, alternatives
for establishing sparse attention patterns for remote tokens are explored.

• Multilingual training simultaneously trains the same model in different lan-
guages. By appropriate pre-training targets the models can generate a joint
meaning representation in all languages. Especially for languages with little
training data better results can be achieved Sect. 3.3.

• Adding extra knowledge. PLMs can be enhanced by including additional
information not covered by the training data. This is important as due to the
restricted number of parameters PLMs cannot memorize all details included in
the training data. Moreover, strict rules are usually represented only as weak
associations and need to be reinforced. By incorporating facts and rules from an
outside knowledge base (KB) or an additional text collection PLMs can obtain
necessary information and keep the content up-to-date, as shown in Sect. 3.4.

• Changing the model size. Theoretical results show that model performance
improves when the PLMs become larger (Foundation Models). Hence, there is a
general trend to increase model size, e.g. by forming mixture-of-experts. On the
other hand, it may be necessary to reduce the computation effort and the memory
footprint of a PLM. There are a number of techniques to achieve this without
sacrificing much performance, as described in Sect. 3.5.

• Fine-tuning for specific applications. This can be performed according to
different strategies, e.g. with several fine-tuning steps or multiple fine-tuning
tasks. Larger PLMs usually can be instructed by prompts to perform specific
tasks and are called Foundation Models. In addition, few-shot prompts may
be optimized to achieve a more adequate model reaction. This is described in
Sect. 3.6.

Note that nearly all proposals may be combined for most model types, resulting in
the vast number of model variants that is currently discussed.

3.1 Modifying Pre-training Objectives

The basic BERT model [49] has two pre-training tasks: the prediction of masked
tokens with the masked language model (MLM) and next sentence prediction (NSP)
(Sect. 2.1). These tasks were chosen heuristically and there are many plausible
loss functions and architectures. Researchers have investigated many alternative
training objectives, model structures, and attention mechanisms. In this section, the
most promising of these variations of the BERT and Transformer architecture are
discussed and their relative merits are compared.

An important question is the level of aggregation of the input sequence. Here
subword tokens are standard. One option is to use raw letters as input. However,
this may lead to a high computational burden, as the computational cost of self-

3.1 Modifying Pre-training Objectives 81

attention grows quadratically with the size of the input. Another option is the use of
domain-adapted knowledge to model the input sequence by learned tokenizations or
patch embeddings (e.g. for image representation, Sect. 7.2). These methods reduce
the input complexity, but may potentially ignore useful information in the input [19].

3.1.1 Autoencoders Similar to BERT

To improve BERT’s performance a number of alternatives to capture knowledge
from the unlabeled data were proposed:

• RoBERTa dynamically changes masks during training.
• ALBERT replaces the matrices for self-attention by a matrix product and shares

parameters across all layers.
• Predicting single masked tokens can be generalized. SpanBERT masks spans

of tokens and predicts them. ELECTRA detects randomly replaced tokens at
arbitrary positions. XLNet permutes the order of tokens in a sentence and predicts
tokens left to right similar to a language model.

• DeBERTa disentangles the embeddings for content and position.

The details are given in the following paragraphs. Popular loss functions are defined
in Table 3.1. A list of prominent autoencoders is provided in Table 3.2. They
can be compared by their performance on natural language understanding tasks
(Sect. 2.1.5) like GLUE [218].

RoBERTa [127] is an enhanced BERT model boosted by tweaking parts of
the pre-training process. The authors improved the BERT.BASE architecture by the
following changes: (1) Instead of using the same mask for all epochs, they replicate
training sequences with different masks. (2) They remove the Next-Sentence-
Prediction objective and found that performance is best, when all sentences in
a batch are from the same document. (3) Larger batches with larger step sizes
increase perplexity for both the masked language model task and downstream task
performance. (4) A 10-fold increase of training data to 160GB, which is used in
large batches. The resulting model achieves an impressive SOTA result of 88.5 on
GLUE (language understanding [217]), and the reading comprehension tasks RACE
and SQuAD [173].

SpanBERT [98] introduces a span-level pre-training approach. Rather than
masking single tokens during pre-training, spans of one or more complete words are
masked covering about 15% of the tokens. A new span-boundary objective (SBO)
is introduced, where tokens inside of the masked span are predicted, using only
representations of the tokens just outside the boundaries of the span combined with
positional information. The details are shown in Fig. 3.1. SBO is used together with
the usual MLM objective. Finally, the authors omit the next sentence prediction task
as in [127] and only use single text fragments/sentences for training. The authors
find that masking random spans is more effective than masking linguistic units.
SpanBERT has the same configuration as BERT.LARGE and is pre-trained on the

82 3 Improving Pre-trained Language Models

Table 3.1 Loss functions for PLMs. A sequence is denoted by .x = (x1, . . . , xT) and . z =
(z1, . . . , zR) is a related sequence, e.g. a translation

Name Loss function Description

MC multivariate
classification

.LMC = − logp(y|x) For each training instance
.(x, y), e.g. logistic classifier,
Sect. 1.3

NM neighborhood model .LNM =
− ∑T

t=1
∑

i∈N(t) logp(xi |xt)

For neighborhood . N(t) =
.{t−k, . . . , t−1, t+1, . . . , t+k},
e.g. word2vec, Sect. 1.5

LM language model .LLM = − ∑T
t=1 logp(xt |x<t) e.g. RNN Sect. 1.6, GPT

Sect. 2.2.2

S2S
sequence-to-sequence
model

.LS2S =
− ∑nz

t=1 logp(zt |z<t , x)

For input sequence
.x = (x1, . . . , xT) and
translation . z = (z1, . . . , zR)

Sects. 1.6 and 2.3

MLM masked language
model

.LMLM =
− ∑

t∈m(x) logp(xt |x̃)

.m(x) contains the indices of
masked tokens in . x. In . ̃x the
masked tokens are replaced by
MASK, e.g. BERT, Sect. 2.1

TLM translation masked
language model

.LT LM = − ∑
t∈m(x) logp(xt |x̃) .m(x) contains the indices of

masked tokens. . ̃x contains a
sentence and its translation.
Masked tokens are replaced by
MASK, e.g. mBERT, Sect. 3.3

SBO span boundary
objective

.LSMLM =
− ∑

(i:j)∈m(x) logp(xi:j |x̃)

.m(x) contains the spans . (i : j)

of masked tokens in . x. In . ̃x the
masked tokens are replaced by
other tokens, e.g. SpanBERT,
Sect. 3.1.1

PLM permutation
language model

.LPLM = − ∑T
t=1 logp(zt |z<t) .z = perm(x) is a permutation

of . x, e.g. XLNet, Sect. 3.1.1

NSP next sentence
prediction

.LNSP = − logp(ξ |x, z) .ξ=1 if text . z after x (else . z is
randomly selected), e.g. BERT,
Sect. 2.1

SOP sentence order
prediction

.LSOP = − logp(ξ |x, z) .ξ=1 if text . z after . x (else . x after
. z), e.g. ALBERT, Sect. 3.1.1

RTD replaced token
detection

.LRT D =
− log

∑T
t=1 p(xt=x̃t |x̃)

In . ̃x randomly selected elements
of . x were replaced, e.g.
ELECTRA, Sect. 3.1.1

BooksCorpus and the EnglishWikipedia. SpanBERT achieves a new SOTA of 79.6%
F1 on the OntoNotes coreference task [164], which requires identifying pronouns
and the corresponding nouns or two phrases referring to the same thing (Sect. 5.4.1).

3.1 Modifying Pre-training Objectives 83

Table 3.2 Autoencoders similar to BERT. The pre-training and fine-tuning loss functions are
defined in Table 3.1. The benchmark figures are only a hint, as they depend on the number of
parameters and the computing effort

Model Section Pre-training Fine-tuning Extra Benchmark

ELMo [156] 1.6 BiLM MC Use bidirectional
LSTM

GLUE 71.0

BERT [49] 2.1 MLM + NSP MC Predict masked tokens GLUE 80.5

RoBERTa [127] 3.1.1 MLM MC Train longer, new
mask in new epoch

GLUE 88.5

SpanBERT [98] 3.1.1 PLM, SBO MC Predict spans of
tokens

GLUE 82.8

ELECTRA [223] 3.1.1 RTD MC Replaced token
detection

GLUE 89.4

StructBERT [39] 3.1.1 RTD MC Reorder shuffled
tokens

GLUE 89.0

ALBERT [113] 3.1.1 MLM + SOP MC Factorized
embeddings,
parameter sharing

GLUE 89.4

XLNET [240] 3.1.1 PLM MC Predict permuted
tokens

GLUE 90.5

DeBERTa [76] 3.1.1 MLM MC, S2S Disentangled attention GLUE 90.0

Prod. Key [112] 3.1.1 MLM MC Nearest neighbor –

UniLM [8] 3.1.3 MLM, LM MC, LM Uni- and bidirectional GLUE 87.3

BigBird [247] 3.2.1 MLM MC, S2S Sparse attention
mechanism

TriviaQA 84.5

Fig. 3.1 SpanBERT [98] concatenates the embeddings outside the border of a span with a position
embedding. With this input a 2-layer model predicts the probabilities of masked tokens

StructBERT [223] enhances the original BERT MLM objective by the task to
predict the order of shuffled token triples. In addition, the order of three sentences
has to be detected. Using models with the same number of parameters, StructBERT
can increase the SOTA on GLUE in comparison to BERT and RoBERTa to 83.9 and
89.0, respectively.

84 3 Improving Pre-trained Language Models

Electra [39] proposes a new pre-training task called replaced token detection
(RTD). In the paper a generator network, trained with a masked language model
loss, is combined with a discriminator network. Some tokens in the input sequence
are replaced with plausible alternatives which are generated by a small language
model (about .1/4 of the size of the discriminator). The discriminator network has
to predict for every token, whether it is a replacement or not. This corruption
procedure solves a mismatch in BERT, where MASK tokens appear in pre-training
but not in fine-tuning. The model learns from all input tokens instead of just the
small masked subset, making it more computationally efficient than e.g. BERT
and RoBERTa, while performing better on several tasks, e.g. 89.4% on the GLUE
language understanding task.

ALBERT (a lite BERT) [113] uses two parameter-reduction techniques to tackle
the huge memory consumption of BERT and its slow training speed. The first tweak
is untying the dimensionality of the WordPiece embeddings from the hidden layer
size of BERT. Instead of using a single embedding matrix M , the authors factorize
.M = A ∗ B, such that the joint number of parameters in A and B is much lower
than the number of parameters in M . The second tweak is sharing all parameters
across all layers of BERT, which is shown to stabilize training and keep the number
of parameters fixed even if more layers are added. In addition to the two tweaks, a
new sentence order prediction (SOP) is introduced. Specifically, the model has to
predict if the order of two sentences is correct or reversed. The authors report that
this task improves accuracy compared to BERT’s NSP task, which could be solved
by comparing the topics of the two sentences. It is still unclear, however, if this is
the best way to incorporate text structure in training. ALBERT achieved new SOTA
results on GLUE and SQuAD.

XLNet solves an autoregressive pre-training task instead of predicting masked
words [240]. This addresses the problem that BERT’s [MASK] token only appears
during pre-training and not in fine-tuning. The words in a sequence, e.g. “The. 1
mouse. 2 likes. 3 cheese. 4”, are reordered together with their position information
(indices) by a random permutation, e.g. “cheese. 4 The. 1 likes. 3 mouse. 2”. The task
is to successively predict the tokens in the permuted sequence similarly to a GPT
language model. The model has to predict, e.g. p(mouse|2, cheese. 4, The. 1, likes. 3).
Note that the model must additionally know the position, here 2, of the word
to be predicted. The transformer, however, mixes the position information with
the content information by forming a sum. Hence, the position information is
inseparable from the token embedding.

Therefore, the authors decided to compute an additional self-attention embedding
called query stream, which as query only receives the target position and then can
compute the attention with the key and value vectors (Sect. 2.1.1). The resulting
embedding encodes the position of the token to be predicted and correlations to other
tokens, but has no information on the content of that token. This information can be
added as input to the model. The normal self-attention and the query stream have
the same parameter matrices Q (query),K (key), V (value). To save training effort,
XLNet only predicts a few tokens at the end of the permuted sequence. In addition,
XLNet integrates the segment recurrence mechanism and relative encoding scheme

3.1 Modifying Pre-training Objectives 85

of Transformer-XL (Sect. 3.2.2) into pre-training, which empirically improves the
performance especially for tasks involving a longer text sequence.

When a token is predicted information about tokens before and after it may
be used. Therefore, the model is a bidirectional encoder. With BERT, if the two
tokens “New” and “York” are masked, both words are predicted independently,
ignoring valuable information. In contrast, XLNet properly handles the dependence
of masked tokens. XLNet was able to outperform BERT and RoBERTa on many
tasks, e.g. the GLUE language understanding tasks, reading comprehension tasks
like SQuAD (Sect. 2.1.5), text classification tasks such as IMDB (movie review
classification) [130].

Product Keys [112] replace the dot-product attention by a nearest neighbor
search. A query . qr is split into two sub-queries .q

[1]
r and . q

[2]
r . For each sub-query the

k closest sub-keys .k
[1]
i and .k

[2]
j are selected. From the . k2 combinations of sub-keys

the highest dot products can be efficiently computed and the k highest combinations
are selected. The results are normalized with the softmax function and used for
the computation of a weighted sum of value vectors. During optimization only
the k optimal keys are affected reducing the training effort. The approach allows
very large transformers to be defined with only a minimal computational overhead.
With 12 layers the authors achieve the same performance as a 24 layer BERT
model using only half of the computation time. In a comprehensive comparison
of transformer architectures [142] the approach yields an increase for SuperGLUE
NLU task (Sect. 4.1.2) from 71.7% for the standard T5 model to 75.2%.

DeBERTa [76] uses a disentangled attention mechanism, where each word is
represented by two different types of vectors encoding content and position. The
attention weights between tokens are computed using different matrices for content
and relative position. In addition, DeBERTa includes absolute word positions in
the last layer to capture different syntactic roles in the sentence. During fine-
tuning the model employs an “adversarial” training approach, where embeddings
are normalized to probability vectors. Then the model is trained to be robust against
small perturbations of embeddings. According to the authors, this improves the
performance of fine-tuned models. The large version of the model with 1.5B param-
eters has superior performance in several application areas, e.g. in natural language
understanding (Sect. 4.1.2), where DeBERTa surpasses the human performance on
the SuperGLUE benchmark [219] for the first time, increasing the macro-average
score to 89.9%.

Bengio et al. [12] argue that representations, e.g. embeddings, should be disen-
tangled and should represent different content aspects, e.g. syntax, style, semantics,
in different parts of the embedding vector. Locatello et al. [129] have proven that
this is not possible in an unsupervised way. Hence, some explicit supervision or
prior information has to be used to generate interpretable subvectors of embeddings.

DeBERTaV3 [75] substitutes theMLM loss of DeBERTa with the replaced token
detection (RTD) of Electra (Sect. 3.1.1). In addition, a new gradient-disentangled
embedding sharing method is employed that improves both training efficiency and
the quality of the pre-trained model. Its largest version has a 128k-token vocabulary,

86 3 Improving Pre-trained Language Models

24 layers, and 304M parameters. For the GLUE benchmark with fine-tuning, the
model increases the score by 1.4% to a new SOTA of 91.4%. The multi-language
version of the model mDeBERTa.BASE outperforms XLM-R.BASE by 3.6% in terms
of the cross lingual transfer accuracy on the XNLI task (Sect. 3.3.1).

3.1.2 Autoregressive Language Models Similar to GPT

By increasing the number of parameters and the training set size the capabilities of
GPT models can be markedly improved. An overview is given in Table 3.3.

GPT-3 [25] is a language model with extreme dimensions. Its largest version has
96 layers, 96 attention heads, 175 billion parameters and covers sequences of length
2048. It was trained on a text collection of books, Wikipedia and web pages of
about 500 billion tokens. The details of the architecture are not known yet. GPT-3 is
structurally similar to GPT-2, and therefore its higher level of accuracy is attributed
to its increased capacity and higher number of parameters. The model achieved an
unprecedented performance in language modeling, question answering, etc. Some
results are compiled in Table 3.4 and many more in the paper [25].

Table 3.3 Autoregressive language models (LM) similar to GPT. ‘Details’ provides the number
of parameters and specific features. The ‘benchmark’ figures are only a hint, as they depend on the
selected number of parameters and the computing effort. Best benchmark value printed in bold

Model Section Details Benchmark

GPT-2 [167] 2.2 1.6B LM to generate text Lambada 0-shot 63.2%

Retro [21] 6.2.3 7B LM with retrieval to generate text Lambada 73.0%

Megatron-LM [193] 3.1.2 8.3B LM to generate text Lambada 66.5%

Turing-NLG [179] 3.1.2 17B LM to generate text Lambada 68.0%

Chinchilla [83] 3.1.2 70B LM to generate text Lambada 0-shot 77.4%

GPT-3 [25] 3.1.2 175B long sequence LM to generate
text

Lambada 0-shot 76.2%

WebGPT [25] 6.2.3 175B GPT-3 + Bing search engine Same as GPT-3

InstructGPT [151] 3.6.5 175B GPT-3 fine-tuned for
instructions

Same as GPT-3

OPT [151] 3.1.2 free 175B LM similar to GPT-3 Lambada 0-shot 74.7%

BLOOM [151] 3.1.2 176B LM for European languages Lambada 0-shot 67.2%

PanGu-. α [248] 3.1.2 200B long sequence LM to generate
text

Chinese benchmarks

Gopher [168] 3.1.2 280B LM to generate text Lambada 0-shot 74.5%

MT-NLG [4] 3.1.2 530B Megatron variant Lambada 76.6%

PaLM [35] 3.1.2 540B shared key-value projections Lambada 0-shot 77.9%
GLaM [51] 3.5.2 1200B mixture-of-experts LM Lambada 0-shot 73.7%

WuDao-2.0 [178] 3.5.2 1750B mixture-of-experts LM Lambada: better than
Turing-NLG

3.1 Modifying Pre-training Objectives 87

Table 3.4 Comparing different versions of PaLM, GPT-3, Chinchilla, Gopher, OPT, GLaM, and
BLOOM on a number of popular benchmarks covering text completion, pronoun coreference,
common sense reasoning and question answering (QA) [22, 25, 35, 51]. FLOPS measures the
computational effort in floating point operations per second. Best benchmark values printed in
bold

PaLM PaLM PaLM GPT-3 Chinchilla Gopher OPT GLaM BLOOM

Model size (billion
parameters)

8 62 540 175 70 280 175 1200 176

Num. training
Tokens (billion)

780 795 780 400 1400 300 180 1600 350

Training effort
(.1021 FLOPS)

37.4 295.7 2527 314.0 588.0 504.0 .≈ 50 . ≈ 105

Lambada 0-shot
(text compl.)

69.5 75.4 77.9 76.2 77.4 74.5 73.7 67.2

HellaSWAG 0-shot
(text compl.)

68.7 79.7 83.4 78.9 80.8 79.2 79.0 77.1 73.0

PIQA 0-shot
(common sense)

77.1 80.5 82.3 80.5 81.8 81.8 78.5 80.4

Winogrande 0-shot
(coreference)

66.3 77.0 81.1 70.2 74.9 70.1 74.0 73.4 70.1

BoolQ 0-shot (QA) 68.3 84.8 88.0 60.5 83.7 79.3 64.0 83.0

Natural questions
0-shot (QA)

8.4 18.1 21.2 14.6 16.6 10.1 21.5

Natural questions
few-shot (QA)

14.6 27.6 36.0 29.9 31.5 24.5

Trivia QA 0-shot
(QA)

39.5 67.3 76.9 64.3 67.0 52.8 68.0

Trivia QA few-shot
(QA)

48.5 72.7 81.4 71.2 73.2 63.6

Average task metric 51.2 64.8 69.8 60.7 65.2 59.5

GPT-3 is able to generate fluent texts and covers a huge amount of world
knowledge, as the example in Fig. 3.2 shows. Examples of generated texts can be
found in many locations [23, 149]. The amount and quality of knowledge captured
by PLMs is discussed in Chap. 4. In contrast to other language models, GPT-3
can be instructed by a few sentences to perform quite arbitrary tasks (few-shot
learning). This is a very simple way to use GPT-3 to solve quite specific tasks such
as translating into another language, summarizing a document, correcting grammar,
writing an essay on a given topic, etc. Details are discussed in Sect. 3.6.3.

At the end of 2021 OpenAI provided an API to fine-tune GPT-3 with user-specific
data [123]. In this way, the model can be adapted to a specific domain language
and, in addition, be prepared to perform specific classification tasks. In general, this
yields higher quality results than prompt design. In addition, no few-shot examples
are necessary anymore. Details of fine-tuning GPT-3 are discussed in Sect. 3.6.2.
Table 3.4 compares GPT-3 with other more recent language models on a number of
popular benchmarks. There is a clear advantage of the new PaLM model.

88 3 Improving Pre-trained Language Models

Fig. 3.2 Text generated by GPT-3 in response to an input. Quoted with kind permission of the
authors [25, p. 28]

GPT-J-6B is an open-source GPT model with 28 layers, 16 heads, a context size
of 2048, and 6B parameters [221]. It has a similar performance as the GPT-3 version
with 6.7B parameters. There is an interactive web demo where users can enter
their prompts and a continuation text is generated [220]. GPT-Neo [16] is another
free version of GPT with 2.7B parameters. It was trained on the Pile, a 825GB
data set containing data from 22 diverse sources, including academic sources (e.g.
ArXiv), Internet webpages (e.g. StackExchange), dialogs from subtitles, GitHub,
etc. It outperforms the GPT-3 version with the same parameter size on some natural
language understanding tasks [89]. Recently, GPT-NeoX-20B [215] was released.
It has 44 layers, an internal vector dimension of 6144, 64 heads and uses batches of
size 3.1M for training. In the LAMBADA benchmark (Sect. 4.1.3) with the task of
predicting the missing last word of the last sentence of each passage, it achieves an
accuracy of 72.0%. This value is close to GPT-3 with 75.2%.

Megatron-LM [193] scale language models such as GPT-2 and BERT efficiently
by introducing intra-layer model parallelism. The authors place self-attention heads
as well as feed-forward layers on different GPUs, reducing the memory burden
of a single GPU. They present a GPT-variant with 8.3B parameters and a 3.9B

3.1 Modifying Pre-training Objectives 89

parameter model similar to BERT. Highlights of the approach include 76% scaling
efficiency when using 512GPUs. Their GPT model reduces the WikiText-103 [134]
SOTA perplexity from 15.8 to 10.8 and their BERT model increases RACE (reading
comprehension) [110] accuracy to 90.9%.

Jurassic-1 [122] is an autoregressive language model similar to GPT-3 with
178B parameters. The authors chose a token vocabulary of 256k instead of 50k for
GPT-3, which also included frequent multi-word expressions such as named entities
and common phrases. The training text could be represented with 28% fewer tokens
than GPT-3. Hence, the model can process queries up to 1.4. × faster when using the
same architecture. The model used a maximal sequence length of 2048 tokens. In
spite of the larger vocabulary only 2% of all parameters were required for the input
embeddings. The model was trained on 300B tokens drawn from public text corpora
using a final batch size of 3.2M tokens.

PanGu-. α [248] is a model of Huawei similar to GPT-3 with up to 200B
parameters. It was trained on 1.1TB Chinese text, and was applied to a large number
of tasks in zero-shot, one-shot, and few-shot settings without any fine-tuning. The
model has a performance comparable to GPT-3.

OPT-175B (Open Pre-trained Transformer) [253] is a suite of 8 GPTmodels with
125M to 175B parameters developed by Meta. It was trained on publicly available
datasets with 180B tokens. The largest models has 96 layers, each with 96 heads.
Although OPT-175B has the same parameter count as GPT-3, its training required
only 1/7th of computing effort of GPT-3. The model was evaluated on 16 NLP tasks
and showed approximately the same performance as GPT-3 (Table 3.4). All trained
models up to 30B parameters are freely available. The large 175B parameter model
is only available to academic researchers upon request to discourage the production
of fake news. The model can be trained and deployed on only 16 NVIDIA V100
GPUs. Some benchmark results are provided in Table 3.4.

BLOOM [139] is an autoregressive large language model with 176B parameters.
It has 70 layers with 112 attention-heads per layer and 2048 token sequence length.
It was developed by the BigScience initiative of over 1000 AI researchers to provide
a free large language model for everyone who wants to try. Its training data covers
46 natural languages (English 30%, Chinese 16%, French 12%, Spanish 11%, . . .)
and 11% code (java, php, . . .) with 350B tokens. The 176B BLOOM model has
been trained using the Megatron-DeepSpeed library [26] offering different types of
parallelism. The model can be evaluated on 8 large GPUs. Hence, BLOOM is one of
the largest trained model available for research purposes. Some benchmark results
are provided in Table 3.4.

Gopher [168] employed the GPT-2 architecture with two modifications. For
regularization the authors used RMSNorm (Sect. 2.4.2) instead of LayerNorm and
they employed the relative positional encoding scheme [44] instead of absolute
positional encoding. Gopher has 80 layers with 128 attention heads and 280B
parameters. All models were trained on 300B tokens with a context window of
2048 tokens and a batch size of up to 6M tokens. For the large models a 16 bit
float numbers was used to reduce memory and increase training throughput.

90 3 Improving Pre-trained Language Models

Six model versions with different numbers of parameters were trained to assess
the effect of model size. The authors present a comprehensive evaluation on 152
tasks described in Table 4.3. Gopher shows an improvement on 100 of 124 tasks.
One of these is the LAMBADA benchmark [154] where Gopher generates a zero-shot
score of 74.5, which is only slightly below the value 76.6 of MT-NLG model with
530B parameters [106]. For instance Gopher achieves SOTA for all 12 benchmarks
on humanities covering areas like econometrics and psychology surpassing the best
supervised results for 11 benchmarks. Some results are provided in Table 3.4 while
Sect. 4.1.4 describes more details.

Chinchilla [83] is a mid-size encoder model with 70B parameters, which has
the same compute budget as the larger Gopher model, but four times as much
data. Chinchilla consistently has a better performance than Gopher (Table 3.4) and
significantly outperforms GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing
NLG (530B) on a large set of downstream evaluation tasks. For every doubling of
model size the number of training tokens should also be doubled. This is a much
larger scaling rate than that predicted by Kaplan et al. [102] in Sect. 3.5.1.

Turing-NLG [179] introduces an autoregressive language model with 78 trans-
former layers, a hidden vector-size of 4256, 28 attention heads and 17B parameters.
As a model with more than 1.3B parameters cannot fit into a single GPU with
32GB memory it must be parallelized, or broken into pieces, across multiple GPUs.
Turing-NLG leverages a SOTA Deep Learning hardware with high communication
bandwidth, the Megatron-LM framework, and the DeepSpeed library, which further
optimizes the training speed and reduces the resources needed. The model achieved
SOTA performance on language modeling tasks and also proved to be effective for
zero-shot question answering and abstractive summarization.

Its successor MT-NLG [4] is a 105-layer encoder model with 530B parameters
and was trained across 280GPUs with a huge batch size of 1920. Similar to GPT-
3 it improves performance on zero-, one- and few-shot tasks. For the LAMBADA
benchmark [154], for example, the model has to predict the last word of paragraph
(Sect. 4.1.3). On this benchmark MT-NLG improves the few-shot accuracy of GPT-
3 (86.4%) to the SOTA 87.2%.

PaLM [35] is an autoregressive language model developed by Google with 540B
parameters. It has 118 layers, 48 heads and an input sequence length of 2048.
There are also smaller versions with 8B and 62B parameters. It uses a standard
autoregressive decoder with SwiGLU activation function and shared query-value
projections for the heads of a layer, which improves autoregressive decoding speed.
The model is trained on a high-quality dataset with 780B tokens, where sloppy
and toxic language have been filtered. Each training example is used only once.
The training set contains social media conversation (50%), multilingual web pages
(27%), books (13%), source code files (5%), multilingual Wikipedia articles (4%),
and news articles (1%). Training required 3072 TPU chips for 1368 h, resulting in a
total emission that is 50% higher than the emissions for a direct round-trip flight in
an aircraft between San Francisco and New York [35, p. 18].

PaLM was evaluated on hundreds of natural language inference, mathematical,
reasoning and knowledge intensive tasks and achieved SOTA accuracy in the large

3.1 Modifying Pre-training Objectives 91

Fig. 3.3 Evaluation of PaLM, GPT-3, Gopher, and Chinchilla (left). Previous models were only
evaluated on a subset of tasks, so this graph shows the aggregated results on the 58 tasks where all
three models have been evaluated [35]. The medium accuracy of PaLM is better than the average
performance of humans. The right side shows the results for four specific BIG-tasks. A detailed
comparison between the performance of three PaLM models of different size as well as human
levels is presented in [35, p. 15f]

majority of benchmarks, e.g. in 28 of 29 most widely evaluated English language
understanding benchmarks (cf. Table 3.4). This demonstrates that the scaling effects
continue to hold for large Foundation Models. Figure 3.3 shows the results on BIG-
bench data compared to prior models. PaLM 540B 5-shot outperforms the prior
SOTA on 44 out of the 58 common tasks, and on average is significantly better
than the other models (Gopher, Chinchilla, GPT-3). Moreover, PaLM 540B 5-shot
achieves a higher score than the average score of the humans asked to solve the same
tasks. When fine-tuned on SuperGLUE, the model outperforms the best decoder-
only model and is competitive with encoder-decoder models, which in general
perform better for fine-tuning. A significant number of tasks showed discontinuous
improvements from model scale, meaning that the performance improvement from
the smaller version to the largest model was higher than expected.

PaLM has been fine-tuned on program code documents. The resulting model is
called PaLM-Coder [35, p.23]. The quality of the code is measured by the pass@k
metric, in which for each problem in the test set, k samples of source code are
generated by PaLM-Coder, and a problem is counted as solved if any sample solves
the problem. PaLM-Coder is able to solve a number of benchmark tasks with about
a pass@1-value of about 50. There is an elaborate evaluation of the properties of the
PaLM-Coder model.

92 3 Improving Pre-trained Language Models

Fig. 3.4 Few-shot example of a chain-of-thought prompt for a common sense question-answering
task [35, p. 38]. The same two example chains of thought were combined with different prompts
requiring an answer

For about a quarter of tasks the authors observe a discontinuous jump in accuracy,
if the model is increased from 58B to 540B parameters, far exceeding the ‘power
law’ postulated by Kaplan et al. [102] (Sect. 3.5.1). Examples are ‘english proverbs’
and ‘logical sequence’ shown in Fig. 3.3. This suggests that new abilities of PLMs
can evolve when the model reaches a sufficient size, and that these abilities also
develop beyond the model sizes studied so far.

The training data contains 22% multilingual documents. For translation between
different languages, the few-shot PaLM model comes close to or even exceeds the
fine-tuned SOTA. For English-French translation, Palm 540B few-shot achieves 44.0
BLEU compared to a SOTA of 45.6. For German-English, PaLM 540B few-shot
reaches 47.5 BLEU vs. a 45.6 BLEU SOTA. For other tasks like summarization and
question answering, Palm 540B few-shot comes close to the fine-tuned models, and
can outperform them in a few cases.

Reasoning with a number of intermediate steps was always difficult for language
models. Recently chain-of-thought prompting (Sect. 3.6.4) was proposed which
adds intermediate reasoning steps [226] into the few-shot prompts (Fig. 3.4).
Following this recipe, the PaLM model similarly produces its own intermediate
steps for a multistep problem before giving the final answer. This leads to a boost in
performance for a number of benchmark tasks. Using this technique PaLM is even
able to explain jokes, as Fig. 3.5 demonstrates.

3.1 Modifying Pre-training Objectives 93

Fig. 3.5 By using thought-chain-prompts PaLM can explain jokes [35]

3.1.3 Transformer Encoder-Decoders

The Transformer encoder-decoder [212] was pre-trained with a translation task
(Sect. 2.3). To improve performance a number of alternatives were proposed:

• Different targets to restore corrupted pre-training data are proposed by MASS,
BART and PEGASUS. Examples are predicting masked spans, ordering per-
muted sentences, or inserting omitted tokens.

• T5 formulates many language understanding and language generation tasks as
text translations and handles them with the same model.

• Longformer, Reformer and Transformerl-XL extend the size of the input text
without increasing the number of parameters. They are discussed in Sect. 3.2.

The details are given in the following paragraphs. A representative list of trans-
former encoder-decoders is provided in Table 3.5.

MASS [196] is based on the transformer architecture. In contrast to the original
transformer, a sequence of consecutive tokens in the encoder is masked and the
decoder’s task is to predict the masked tokens recursively (Fig. 3.6). Therefore,
MASS can jointly train the encoder and decoder to develop the capability of
extracting embeddings and language modeling. MASS is fine-tuned on language
generation tasks such as neural machine translation, summarization and con-
versational response generation. It shows significant performance improvements
compared to prior transformer architectures.

BART [119] uses a standard Transformer-based encoder-decoder architec-
ture. The pre-training task is to recover text corrupted by a number of different
approaches (Fig. 3.6): predict masked tokens as with BERT; predict deleted tokens
and their positions, predict the missing tokens replaced by a single mask, reconstruct
a permuted sentence as with XLNet, and find the beginning of a rotated document.
BART was fine-tuned on a number of tasks like GLUE, SQuAD, summarization,
and machine translation. BART achieved the best performance with the prediction
of missing tokens replaced by a single mask. A large version of BART was trained

94 3 Improving Pre-trained Language Models

Table 3.5 Transformer encoder-decoders. The pre-training and fine-tuning loss functions are
defined in Table 3.1. Benchmarks: En-De WMT2014 English-to-German BLEU, GLUE Sect. 4.1.1
accuracy, SuperGLUE Sect. 4.1.2 accuracy, TriviaQA [99] Sect. 6.2.1 accuracy, Penn Treebank
[136] perplexity. The benchmark figures are only a hint, as they depend on the number of
parameters and the computing effort

Model Section Pre-training Fine-tuning Extra Benchmark

Transformer [212] 2.3 S2S S2S Predict translated
tokens

En-De 26.4

UniLM [8] 3.1.3 MLM, LM MC, LM Uni- and
bidirectional

GLUE 87.3

MASS [196] 3.1.3 S2S S2S Predict masked
tokens

En-De 28.3

BART [119] 3.1.3 DAE MC, LM, S2S Restore corrupted
text

GLUE 88.4

T5 [170] 3.1.3 S2S MC, LM, S2S Solve many NLP
tasks as S2S
problems

GLUE 89.7

GLM [54] 3.1.3 LM LM Solve all task by
autoregressive
prediction

SuperGLUE
82.9

Longformer [10] 3.2.1 MLM, S2S LM, MC, S2S Sparse attention
mechanism

TriviaQA
77.3

Reformer [108] 3.2.2 LM, S2S LM, MC, S2S Locality-sensitive
hashing, reversible
residual layers

En-De 29.1

Transformer-XL [44] 3.2.2 MLM, S2S MC, S2S Sparse attention
mechanism

Penn-Tree
Bank 54.5

Fig. 3.6 Different pre-training tasks to restore corrupted text by the transformer. Span masking is
the task for MASS [196]. BART uses all tasks from token masking to document rotation [119]

with a hidden size of 1024 and 12 encoder and decoder layers with a similar dataset
as used by RoBERTa. The resulting performance was similar to that of RoBERTa.
For abstractive summarization, e.g. on the CNN/Daily Mail benchmark [78], BART
achieves SOTA.

3.1 Modifying Pre-training Objectives 95

Fig. 3.7 Every task in T5 is expressed as a translation task, where the type of the task is a prefix
to the input text (on the left) and the model produces the corresponding output (right) . Adapted
from [170, p.3] with kind permission of the authors

PEGASUS [251] proposed pre-training large Transformer-based Seq2seq mod-
els on massive text corpora with a new objective: gap-sentences generation, where
sentences instead of tokens are masked or removed. The model has to generate these
modified parts as a one sentence output. On 12 document summarization tasks the
model achieves SOTA performance.

T5 [170] is based on the standard transformer architecture. Pre-training is
performed on a huge training set by restoring corrupted texts, which is formulated as
a sequence-to-sequence tasks. The comparison of different pre-training tasks listed
in Fig. 3.6 found that, similar to BART, text infilling achieves the best results. If
the original text is “Thank you for inviting me to your party last week .” the model
receives the input “Thank you [X] me to your party [Y] week .” with masked phrases
and has to generate the output “[X] for inviting [Y] last [Z]” to reconstruct the
masked phrases.

Salient span masking [72] was especially effective. To focus on relevant phrases
a BERT-tagger was trained to recognize named entities (person names, locations,
etc. Sect. 2.1.3), and dates were identified by regular expressions. If the model
had to recreate these spans the model performance was significantly increased. By
predicting the omitted tokens, the model is able to collect an enormous amount of
information on syntactic and semantic knowledge. Extensive comparisons show that
the sequence-to-sequence architecture yields better results than other architectures,
e.g. autoregressive language models.

T5 is pre-trained on a multitask mixture of unsupervised and supervised tasks
using a training dataset of 750GB of cleaned English web text. Its largest version
has 24 layers, 128 attention heads, and 11B parameters. For each task the data is
converted into a text-to-text format (Fig. 3.7). The model achieves SOTA results on
many benchmarks, for example summarization, question answering, text classifica-
tion, and more. The results for GLUE is 90.3% [11].

96 3 Improving Pre-trained Language Models

Primer [195] proposes two modifications of the original self-attention architec-
ture. First the ReLU activation function is squared. In addition, a convolution layer
is added after each of the multi-head projections for query Q, key K , and value V .
For the original T5 architecture this reduces the training cost by a factor 4.

UniLM2 [8] simultaneously pre-trains a bidirectional language models and a
sequence-to-sequence model for language generation. The model parameters are
shared between the two tasks, and the encoding results of the context tokens are
reused. The model uses two mask types, one for bidirectional masking similar to
BERT and pseudo masks for language modeling. With special self-attention masks
and position embeddings, the model can perform both language modeling tasks
in one forward pass without redundant computation of context. The model beats
BART.BASE for reading comprehension on SQuAD 1.1 and T5.BASE for abstractive
summarization on CNN/Daily Mail.

GLM (General Language Model) [54, 55] is a successor of UniLM2 aiming to
combine the different learning paradigms of BERT, GPT and the transformer. For
pre-training GLM has the task to generate multiple text spans in an autoregressive
way basically using the GPT architecture. From the input text . x = (x1, . . . , xT)

a number m spans .xi1 , . . . , xi1+li are sampled. Each span is replaced with a single
[MASK] token yielding the corrupted input .xcorrupt. The model then successively
generates the tokens of the spans having access to the corrupted input and the
already generated tokens of the spans (Fig. 3.8). Within the input text all tokens
are connected by self attention while in the output section a masked self-attention
is used. Each span is finished by an [END] token. To identify the positions of
generated tokens two positions are encoded by embeddings: the input position and
the position within a span. Note that the mask prediction can be done in arbitrary
sequence and the model has to predict the length of the spans during reconstruction.

For fine-tuning, text classification tasks are converted to word predictions. To
assess the sentence “The waiters were friendly.” in a sentiment classification task

Fig. 3.8 During pre-training GLM has the task to reconstruct masked single words or multi-word
phrases. The position of generated words in the text and in the masks are indicated by position
embeddings, which are added to the token embeddings. The generated answers are terminated by
an [END] token [54]

3.1 Modifying Pre-training Objectives 97

the input is extended to “The waiters were friendly. It’s really [MASK].” where
[MASK] has to be replaced by “good” or “bad”. For a text generation task
a [MASK] token is appended to the input text. Then the model generates the
continuation as the output text in an autoregressive way. In contrast to BERT the
model observes the dependency between masked tokens yielding more consistent
predictions. In comparison to XLNet no additional attention for position encoding
is needed reducing the computational requirements. Compared to T5, GLM predicts
the spans in arbitrary order and requires fewer extra tokens.

To evaluate the model performance, Du et al. [54] train GLM.BASE and
GLM.LARGE with the same training data and parameter counts (110M and 340M)
as BERT.BASE and BERT.LARGE. For both model configurations, GLM outperforms
BERT on SuperGLUE (Sect. 4.1.2), e.g. GLM.LARGE has an average score of 77.0
compared to 72.0 for BERT.LARGE. On a larger pre-training dataset for a model
with the same size as RoBERTa they yield an average SuperGLUE score of 82.9
compared to 81.5 for RoBERTa. They show that by multitask learning, a single
model with the same parameters can simultaneously achieve higher accuracy in
NLU, generating text given an input, and solve other tasks such as summarization
[53].

Larger models like GLaM [51] and WuDao-2.0 [257] have a mixture-of-experts
architecture and are described in Sect. 3.5.2.

3.1.4 Systematic Comparison of Transformer Variants

As an example of a fair comparison of architectural features, we report the following
experimental analysis of PLMs, where Narang et al. [142] evaluated the effect of
a number of transformer modifications. The following transformer features were
investigated:

• Activation functions: In addition to the ReLU-activation in the feedforward layers
11 different activations functions were assessed.

• Normalization: Together with the original layer normalization, five different
regularization techniques were explored.

• Number of layers: The number . dL of layers was varied between 6 and 24. To keep
the comparison fair, the number of parameters was held constant by varying the
number . dH of heads and the widths . dff of internal embeddings.

• Token embeddings: The original transformer embeddings were compared to five
variants of factored embeddings. In addition, the sharing of transformer blocks
was investigated.

• Softmax: The standard softmax to compute token probabilities was contrasted to
three softmax variants.

• Architecture: The authors compared the base transformer with 17 other architec-
tures. In most cases, the number of parameters was kept about the same.

98 3 Improving Pre-trained Language Models

The authors evaluated the variants in two settings: Transfer learning based on the
T5 transformer (Sect. 3.1.3) and supervised machine translation on the WMT2014
En-De [17]. With some caution, the results can also be applied to other types of
PLMs like BERT and GPT.

Each architecture variant of T5 was pre-trained on the C4 dataset [171] of
806GB using the “span corruption” masked language modeling objective. Subse-
quently, T5 was fine-tuned on three tasks: the SuperGLUE language understanding
task [219], the XSum abstractive summarization dataset [143], and the WebQuestions
benchmark [13], where no additional knowledge was provided as background
information. The computing effort and the number of parameters for each model
was fixed to the same level. An exception was an architecture with significantly
fewer parameters, which was trained for longer.

Several activation functions achieve a better performance compared to the
ReLU activation, especially SwiGLU and GEGLU, which are gated linear units
(GLU) forming a product with another activation [189]. The improvement can be
observed for pre-training, fine-tuning, and supervised training without affecting the
computation time. For SuperGLUE, for instance, an increase from 71.7% to about
76.0% can be observed. Replacing layer normalization with RMS normalization
[249] causes performance gains for all tasks. The SuperGLUE score, for example,
was improved from 71.7% to 75.5%. In addition, the training speed was higher.

As expected, increasing the depth of a models usually led to a better performance
even if the number of parameters is kept constant. On SuperGLUE the model with
18 layers achieved a score of 76.5% compared to 71.7% for the base model. Similar
improvements can be observed for WebQuestions and translation, while there were
no improvements for the summarization task. This is in line with theoretical results
(Sect. 3.5.1). A drawback is that deeper models require more computation time.

Architectures, which share parameters in different layers, usually lead to a
decreased performance. The effect of using the same embeddings for encoders
and decoders is mixed. Factorization of embeddings into a matrix product usually
cause inferior results. If a Mixture of Softmaxes [239] is used to predict the output
probabilities, the performance usually is better, e.g. an increase to 76.8% for
SuperGLUE. However, this approach requires up to 40% more computation effort.

Of the architectural variants evaluated, two combinations of the Synthesizers with
dot-product attention (Sect. 3.2.2) perform better than the standard Transformer.
The Synthesizers do not compute a “correlation” of embeddings but determine
the attention weights from a single embedding or randomly. Switch Transformer,
Mixture-of-experts, and Product key memories all have significantly more parame-
ters than the baseline transformer but are able to improve performance. The Switch
transformer ([56] Sect. 3.5.2) has many more parameters than the base T5 model.
To reach the same performance as Switch, T5 needs seven times more training
FLOPS (floating point operations per second). The Mixture-of-experts model [116]
distributes computations to 2 expert models in both the encoder and the decoder.
Product key memory ([112] Sect. 3.1.1) replaces the dot-product attention by a
nearest neighbor search.

3.1 Modifying Pre-training Objectives 99

For all other 12 architectures, there were no improvements over the standard
transformer [142]. This is different to the findings of the papers proposing the mod-
els. A reason seems to be that changes of the transformer architecture are difficult to
transfer to other code bases and applications. Therefore, the authors propose to try
out new modifications on different low-level implementations. In addition, a new
approach should be evaluated on a variety of downstream applications including
transfer learning, supervised learning, and language modeling. Hyperparameter
optimization should be kept fixed to assure the robustness of the approach. Finally,
the mean and standard deviation of results should be reported to avoid the selection
of a single best result.

3.1.5 Summary

The modification of pre-training tasks has a profound influence on the performance
of PLMs. Many different types of pre-training losses have been evaluated, such as
masked phrase prediction, replaced token detection, or sentence order recognition.
According to the benchmarks, the prediction of permuted tokens by XLNET is
especially rewarding because XLNET takes into account the dependency between
masked tokens. In addition, DeBERTa’s disentangled token and position embed-
dings are able to boost the performance in downstream classifiers. With respect
to applications, autoencoders like BERT are particular important for information
extraction in Chap. 5.

For autoregressive PLMs like GPT, a number of variants with larger model
size and larger training data have been presented. However, in most cases, the
pre-training tasks were not changed. The training of the larger models required
improvements in the parallel computing infrastructure and resulted in an unprece-
dented performance in text generation. By creating custom start texts (prompting),
the models can solve a large number of specific tasks with very high accuracy
without further fine-tuning (Sect. 3.6.3). The amount and quality of knowledge
captured by PLMs is surprisingly high and is discussed in Chap. 4. In terms of
applications, autoregressive PLMs are used in particular for text (Chap. 6) and image
generation (Sect. 7.2). Because of their versatility and the tremendous increase in
performance, recent large-scale PLMs are called Foundation Models.

Encoder-decoder transformers were introduced for translating a text from one
language to another. A number of new pre-training tasks were evaluated for these
models. Some of them are similar to the tasks for autoencoders, such as predicting
masked spans or inserting omitted tokens. Others were adapted to the input-
output architecture, e.g. the reconstruction of sentence permutations and document
rotations. Here BART and T5 achieved the best performances in the GLUE and
SuperGLUE natural language understanding tasks. By creating additional synthetic
training examples, the performance of T5 and other models can be increased
(Sect. 3.6.6).

100 3 Improving Pre-trained Language Models

A systematic comparison of transformer architectures demonstrated that several
architectural changes increased performance. The SwiGLU and GEGLU activation
function instead of ReLU increased accuracy for SuperGLUE by more than 4%.
Similar gains were observed when using RMS normalization instead of layer
normalization. Increasing the model depth resulted in better performance even when
the number of parameters was held constant. Synthesizers, mixtures-of-experts, and
Product keys replacing scalar products by k-means clustering also performed better
than the standard transformer.

T5 and GLM demonstrate that transformers, controlled by instructive prompts,
can be used to solve arbitrary problems of text classification, text generation, and
text translation. They thus combine the capabilities of BERT, GPT, and translation
models. Transformers are used extensively in complex text generation tasks, e.g.
machine translation (Sect. 6.3), dialog (Sect. 6.6), and image generation (Sect. 7.2).

3.2 Capturing Longer Dependencies

A well-known concern with self-attention is the quadratic time and memory com-
plexity, which can hinder the scalability of the model in many settings (Sect. 2.1.6).
If the sequence length T is increased to 2T then four times as many associations
(attentions) between tokens have to be computed. This limits the direct applicability
of models when a task requires larger contexts, such as answering questions or
summarizing a document. Moreover, a larger memory is required to store the
attentions for training. Therefore, a number of concepts have been proposed to cover
long sequences without excessive computational and memory demands.

• Sparse attention matrices are employed by BigBird, the Sparse Transformer,
Longformer, and GPT-3 to reduce the number of parameters.

• Clustering tokens by locality-sensitive hashing reduces the number of attentions
computed by the Reformer.

• Low-rank-approximation of attention matrices or by a kernel-based formulation
of self-attention decreases the number of parameters of the Performer and the
Linear Transformer.

• Transformer-XL and the Linear Transformer reuse computations from previous
text segments in an autoregressive manner to lower computational overhead.

Surveys of techniques for enlarging the input sequence are provided by Tay et al.
[207] and Fournier et al. [59].

3.2.1 Sparse Attention Matrices

BigBird [247] reduces the number of attention computations by omitting entries
according to some pre-determined pattern from the matrix of attention relations.

3.2 Capturing Longer Dependencies 101

Fig. 3.9 Attention mechanism used in BigBird [247] to compute the association between input
tokens. Matrix indicating attention between pairs of tokens: attentions between sequence neighbors
(left), global attentions to a few tokens (second left), random attentions (third from left), the
combined BigBird attentions (right). White blocks indicate omitted attention pairs

BigBird extends transformer-based models, e.g. BERT, and uses a set of g global
tokens attending on all tokens of the sequence. In addition, each token . vt attends to
a set of . nl local neighboring tokens and to a set of . nr random tokens. The resulting
association matrices are shown in Fig. 3.9. If the numbers g, . nl , and . nr do not
increase with sequence length T the number of attentions grows linearly with T .

The model is constructed in such a way that the length of the path between
arbitrary token pairs along intermediate tokens is kept small, as in a small-world
graph. The authors prove that their model allows to express all continuous sequence-
to-sequence functions with only .O(T) inner products (Table 3.6). In addition,
they show that under standard assumptions BigBird is Turing complete, i.e. can
perform arbitrary computations (see also [246]). The BigBird attention module can
be used in BERT, autoregressive language models, and Transformer architectures.
In a number of applications BigBird using a sequence length of 4096 is able to
improve the SOTA, e.g. for question answering requiring multi-hop reasoning from
the given evidences. Note that BigBird without random attention performed better
than BigBird with random attention in a set of experiments.

Prior models using these concepts were the Sparse Transformer [33] and the
Longformer [10], which similarly to WaveNet [148] employ strided or “dilated”
neighborhoods. Here not all adjacent neighbors are attended by a token, but only
every d-th neighbor with .d > 1. If k layers are used, this construction covers . dk

neighbors and thus allows associations over large distances. The Extended Trans-
former Construction (ETC) model [3] generalizes the idea of global tokens, which
can communicate associations between far-away tokens of the whole sequence.

GPT-3 [25] (Sect. 3.1.2) is a recent language model with 96 layers, 96 attention
heads, 175 billion parameters covering sequences of length 2048. To cope with the
excessive sequence length the authors used “alternating dense and locally banded
sparse attention patterns in the layers of the transformer, similar to the Sparse
Transformer” [33]. The details of the architecture are not yet known. The model
achieved an unprecedented performance in language modeling, question answering,
etc., which is discussed in Sect. 3.6.3.

102 3 Improving Pre-trained Language Models

Table 3.6 Important models with sparse self-attention for long dependencies. T is the sequence
length, g number of global tokens, k is window size. (cf. [207])

Complexity Low Sparse/random Learnable
Model O(·) rank/Kernels Recurrence Memory patterns patterns

Transformer-XL
[44]

T 2 – X – – –

Reformer [108] T log T – – – – X

Routing
transformer
[180]

T log T – – X – X

Compressive
transformer
[169]

T 2 – X X – –

ETC [3] g2 + T g – – X X –

GPT–3 [25] T
√

T – – – X –

Performer [34] T X – – – –

Linear
transformer
[105]

T X – – – –

BigBird [247] T – – X X –

S4 [68] T X – – – –

3.2.2 Hashing and Low-Rank Approximations

The Reformer [108] introduces locality-sensitive hashing to cluster tokens with
similar key/query vectors. This approach hashes similar input items into the same
“buckets” with high probability. For each cluster the same query/key parameters are
used. In this way, tokens are aggregated in a data-driven fashion. In a similar way,
the Routing Transformer [180] clusters tokens by k-means clustering.

Transformer-XL [44] reuses computation results from prior segments of a
sequence. With this recurrence mechanism applied to every two consecutive
segments of a corpus, it essentially creates a segment-level recurrence in the hidden
states. With multiple layers, the effective context being utilized can go way beyond
just two segments. A similar approach is used by the Compressive Transformer
[169]. Segatron is a variant that encodes a paragraph index in a document, a sentence
index in a paragraph, and token index in a sentence as embeddings to be added to
the token embedding. This modification leads to a better perplexity in language
modeling.

The Performer [34] reduces the computational load by employing low rank
approximations of the self-attention matrix. It uses a random kernel with positive
orthogonal random features to compute the self-attention. By orthogonality, the
authors avoid computing the full square matrix of products, since the dot product
of orthogonal features is 0. Hence, computation requirements grow linearly with
sequence length. The authors are able to prove that their model allows nearly-

3.2 Capturing Longer Dependencies 103

unbiased estimation of the full attention matrix as well as uniform convergence and
lower variance of the approximation.

The Linear Transformer [105] also uses a kernel-based formulation of self-
attention reducing complexity to linear. For predicting the future elements from past
inputs, the authors are able to construct an iterative algorithm similar to RNNs that
is dramatically faster than standard transformers. The model has been shown to
improve inference speeds up to three orders of magnitude without much loss in
predictive performance.

The Transformer-LS (Long-Short Transformer) [258] has a local sliding win-
dow attention between neighboring tokens and a long-range attention with dynamic
projections to represent relationships between distant tokens. The dynamic low-rank
projections depends on the content of the input sequence. The authors claim that the
approach is more robust against insertion, deletion, paraphrasing, etc. The scheme
achieves SOTA perplexities in language modeling for different benchmarks, e.g. 0.99
for enwik8 and SOTA results as vision transformer on ImageNet.

The Combiner [174] represents groups of embeddings by key vectors. The
probability that a given token . vt attends to a token . vs is described by a product,
where . vt first attends to the key vector that represents a group of locations containing
. vs multiplied by the probability of choosing . vs within that group. In this way,
the Combiner can be applied to sequences of length up to 12,000. The approach
is able to achieve SOTA perplexity on large benchmarks. In addition, it improves
the average performance on the Long Range Arena benchmark [209] specifically
focused on evaluating model quality for long documents.

The Synthesizer [206] replaces the pairwise dot products of attention with
“synthesizing functions” that learn attention matrices, which may or may not depend
on the input tokens (cf. Sect. 3.1.4). In the Dense Synthesizer, each token embedding
. xi , .i = 1, . . . , T , in a layer is projected to a vector of the length T using a
two-layered nonlinear feed-forward network with a ReLU activation. The values
of this vector are used as weights to determine the mixture of values to form the
output embedding. Hence, no “correlations” between embeddings are computed to
determine their similarity, as it is done for the standard self-attention. There is an
extreme variant, where the mixing proportions are set randomly. Nevertheless, on
multiple tasks such as machine translation, language modeling, dialogue generation,
masked language modeling and document classification, this “synthetic” attention
demonstrates competitive performance compared to vanilla self-attention. The
combination of Random Synthesizers with normal dot-product attention is able to
beat T5 on several benchmarks.

The Perceiver [93] defines an asymmetric attention mechanism iteratively
converting the long input sequence .x1, . . . , xT (e.g. the 50k pixels of an image) into
a shorter sequence of latent units .u1, . . . ,un (e.g. .n = 512) that form a bottleneck
through which the inputs must pass (Fig. 3.10). With cross-attention (Sect. 2.3.1)
the Q-transformed latent sequence embeddings .Qui and the K-transformed long
input sequence embeddings .Kxj form a scalar product .(Qui)

ᵀ(Kxj). It is used
as a weight for the V -transformed long sequence embedding .V xj to generate the
new short embeddings. The Perceiver is basically a BERT model with a sequence

104 3 Improving Pre-trained Language Models

Fig. 3.10 If the input sequence is too long, a short latent sequence is defined by the Perceiver. By
cross-attention between the long sequence and the latent sequence the information is compressed.
A standard transformer block computes the self-attentions between the latent sequence elements,
which in the end generates a classification [93]

length of n instead of T , which avoids that the computing effort scales quadratically
with the input length. The iterative approach enables the model to devote its limited
capacity to the most relevant inputs. In experiments the Perceiver was able to beat
the leading ResNet-50 CNN with respect to image classification [93]. Perceiver IO
[92] projects the resulting n output embeddings of a Perceiver to a larger sequence
of output embeddings by another cross-attention operation, which, for instance, gets
the position embeddings of output elements as query vectors. The Perceiver AR
[73] extends the Perceiver to generate an output sequentially similar to the encoder-
decoder transformer.

S4 [68] is a Structured State Space Sequence model based on the Kalman filter
for the observation of a state model with errors [101]. A continuous state space
model is defined by

.x′(t) = Ax(t) + Bu(t) y(t) = Cxt + Du(t), (3.1)

which maps an input signal .u(t) to output .y(t) through a latent state .x(t). The
authors reparametrize the matrices . A and decompose them as the sum of a low-rank
and skew-symmetric term. Moreover, they compute its generating function of the
associated infinite sequence truncated to some length L in frequency space. The

3.2 Capturing Longer Dependencies 105

low-rank term can be corrected by the Woodbury identity for matrix inversion. The
skew-symmetric term can be diagonalized and can be reduced to a Cauchy kernel
[153].

The . A matrix is initialized with an special upper-triangular “HIPPO” matrix that
allows the state .x(t) to memorize the history of the input .u(t). The authors prove
that in complex space . C the corresponding state-space model can be expressed by
matrices .(� − PQ∗,B,C) for some diagonal matrix . � and vectors . P ,Q,B,C ∈
C. These are the 5N trainable parameters of S4, where N is the state dimension.
Overall, S4 defines a sequence-to-sequence map of shape (batch size, sequence
length, hidden dimension), in the same way as related sequence models such as
Transformers, RNNs, and CNNs. For sequence length L this requires a computing
effort of .∼O(N + L) and .O(N + L) memory space, which is close to the
lowest value for sequence models. Gu et al. [69] provide a detailed exposition and
implementation of the S4 model.

In empirical evaluations it turned out that S4 for an input length of 1024 is 1.6
times faster than the standard transformer and requires only 43% of its memory. For
an input length of 4096, S4 is 5 times faster and requires just 9% of the memory of
the standard transformer. For the benchmarks of the Long Range Arena benchmark
S4 increased SOTA average accuracy from 59.4% to 80.5% (Table 3.7). Moreover,
S4 was able to solve the extremely challenging Path-X task that involves reasoning
over sequences of length 16k where all previous models have failed. Finally, S4
was able to perform raw speech signal classification on sequences of length 16k and
achieves a new SOTA of 98.3% accuracy. S4 involves a genuine breakthrough in
long range sequence processing. In addition, S4 is better in long-range time-series
forecasting, e.g. reducing Mean Square Error by 37% when forecasting 30 days of
weather data. DSS [70] is a variant of S4 that is simpler to formulate and achieves a
slightly lower performance.

3.2.3 Comparisons of Transformers with Long Input
Sequences

The Long Range Arena [209] aims to evaluate the performance on tasks with long
input sequences from 1k to 16k tokens. It contains six different benchmark datasets
covering text, images, mathematical expressions, and visual spatial reasoning. The
tasks include ListOps (computations in a list-notation), text classification (classify
IMDB reviews using character sequences), document retrieval (based on document
embeddings), image classification (based on a sequence of pixels), and pathfinder
(detection of circles) in two versions. The authors evaluate nine transformer
architectures with the ability to process long inputs.

The results are shown in Table 3.7. For the hierarchically structured data of
ListOps, it turns out that kernel-based approaches, for instance the Performer and
the Linear Transformer, are not appropriate. For text classification, kernel-based

106 3 Improving Pre-trained Language Models

Table 3.7 Accuracy results for the Long-Range Arena Benchmark. The best score is printed in
bold, results improving the standard transformer are underlined (cf. [209])

Model ListOps Text classif. Retrieval Image classif. Pathfinder Path-X Average

Transformer 36.3 64.3 57.5 42.4 71.4 .× 54.4

Reformer 37.3 56.1 53.4 38.1 68.5 .× 50.7

Synthesizer 37.0 61.9 54.7 41.6 69.5 .× 52.9

BigBird 36.0 64.0 59.3 40.8 74.9 .× 55.0

Linear transf. 16.1 65.9 53.1 42.3 75.3 .× 50.6

Performer 18.0 65.4 53.8 42.8 77.0 .× 51.4

S4 58.4 76.0 87.1 87.3 86.1 88.1 80.5

methods perform particularly well. For image classification most models do well,
except for the Reformer. The pathfinder task is solved by all models with an
acceptable performance, with the Performer doing best. However, all models except
S4 fail on the extended Pathfinder task and are not able to find a solution. In terms
of all benchmarks, S4 is the best model by a wide margin.

With respect to speed, the Performer was best, being 5.7 times faster than the
standard transformer on sequences of length 4k. Memory consumption ranged from
9.5GB for the standard transformer to about 1.1GB for the Linear Transformer. All
other models except the Synthesizer require less than 3 GB with S4 doing well in
both aspects.

3.2.4 Summary

There are a variety of proposals for PLMs to efficiently process long input
sequences. Often a sparse attention matrix is employed, where only a part of the
possible attentions is used to establish the connection between far-away positions.
Usually, full attention is computed for near positions. Some tokens have a global
attention to communicate information between positions not connected directly. A
prominent example is BigBird, which adds random attentions. Its computational
effort only grows linearly with input size and it still can perform arbitrary sequence
computations. There are other architectures like the Performer and the Linear
Transformer, which also exhibit linear growth.

Some architectures either approximate the attention matrices by low-rank factor-
izations or aggregate tokens, which express similar content (Reformer, Combiner).
Another approach is to use a recurrence mechanism such that computations are
reduced for far-away tokens (Transformer-XL, Linear Transformer, Transformer-
LS, Perceiver). An alternative is the factorization of the self-attention matrix
(Performer) or its replacement with simpler computations (Synthesizer). Recently,
the S4 model has been proposed that applies a state-space model to long-range
prediction. It uses an architecture based on complex number computations, which

3.3 Multilingual Pre-trained Language Models 107

is completely different from the usual transformer setup. It outperforms all prior
models by a large margin and is efficient in terms of computation time and memory.

The performance of these approaches was evaluated with six different bench-
marks of the Long Range Arena. It turned out that S4 beats the other models
with respect to all benchmarks. All approaches were able to reduce memory
consumption compared to the standard transformer. The larger input length allow
new applications, e.g. in raw speech processing, image processing or genomics
[247].

3.3 Multilingual Pre-trained Language Models

There are more than 7100 languages in the world [9], and each language can
express almost all facts and concepts. Therefore, PLMs should also be able to
generate consistent representations for concepts in different languages. Languages
differ to some extent in the basic word order of verbs, subjects, and objects in
simple declarative sentences. English, German, French, and Mandarin, for example,
are SVO languages (subject-verb-object) [100]. Here, the verb is usually placed
between the subject and the object. Hindi and Japanese, on the other hand, are SOV
languages, meaning that the verb is placed at the end of the main clause. Irish and
Arabic, on the other hand, are VSO languages. Two languages that have the same
basic word order often have other similarities. For example, VO languages generally
have prepositions, while OV languages generally have postpositions. Also, there
may be a lexical gap in one language, where no word or phrase can express the exact
meaning of a word in the other language. An example is the word “Schadenfreude”
in German, which roughly translates to “have joy because some other person has
bad luck”. More such differences are discussed by Jurafsky and Martin [100].

To gain cross-lingual language understanding, a PLM has to be trained with more
than one language and has to capture their structural differences. During training,
PLMs can establish an alignment between concepts in different languages.

• Training large PLMs models, e.g. T5 or BERT, on multilingual data with a joint
token vocabulary leads to models that transfer information between languages by
exploiting their common structure.

• BERT-like models can be trained to associate the words of a sentence in one
language with the words of its translation to another language by masked
language modeling. However, it has been shown that multilingual processing is
possible, even when little or no parallel training data is available.

• Transformer encoder-decoder models are explicitly trained to translate a text
from one language to another language.

Training a language model with several languages in parallel can improve the
performance—especially for languages with little training data. This could already
be demonstrated for static word embeddings [194].

108 3 Improving Pre-trained Language Models

3.3.1 Autoencoder Models

mBERT (multilingual BERT) [48] is a standard BERT model. It has been pre-
trained with the MLM loss on non-parallel Wikipedia texts from 104 languages
and has a shared token vocabulary of 110k WordPiece tokens for all languages.
This implies that Chinese is effectively character-tokenized. Each training sample is
a document in one language, and there are no cross-lingual dictionaries or training
criteria. To demonstrate its properties the model was fine-tuned to a multilingual
version XNLI [40] of the Natural Language Inference (NLI) benchmark, i.e. the
task to predict, whether the first sentence entails the second. It turns out that mBERT
may be fine-tuned with a single language on NLI and still yields good test results
on related languages [40, 232].

The results for 6 languages [111] are shown in Table 3.8. Compared to fine-
tuning XNLI with all languages, there is only a small drop in accuracy for related
languages, e.g. Spanish and German, if the fine-tuning is done with XNLI in English
and the evaluation in the other language. For the other languages the reduction
of performance is larger, but the results are still good. There is even a transfer of
information between languages with different scripts, e.g. for Arabic and Urdu. The
authors also consider the embeddings of a word and its translation. It turns out that
the cosine similarity between a word and its translation is 0.55, although there is no
alignment between languages.

Karthikeyan et al. [104] investigate the factors for the success of mBERT.
They find that mBERT has cross-lingual capabilities even if there is absolutely no
overlap in the token vocabulary. Moreover, a higher number of identical tokens in
both vocabularies contributes little to the performance improvements. Comparing
different language pairs the authors show that a large network depth and a high
total number of parameters of a bilingual BERT are crucial for both monolingual
and cross-lingual performance, whereas the number of attention heads is not a
significant factor. On the other hand, the structural similarity of the source and
target language, i.e. word order and frequency of words, has a large influence on
cross-lingual performance.

XLM [111] improves the transfer of knowledge between different languages
by using translated sentences from different language pairs during pre-training.
The authors concatenate a sentence with its translations to another language for

Table 3.8 Cross-lingual natural language inference (XNLI) [40] test accuracy for 6 languages.
Fine-tuning with XNLI for all languages is compared to fine-tuning with XNLI only for English.
Results for mBERT [48] and XLM [111]

Fine-tune with . . . Model English Chinese Spanish German Arabic Urdu

All languages mBERT 81.9 76.6 77.8 75.9 70.7 61.6

English only mBERT 81.4 63.8 74.3 70.5 62.1 58.3

All languages XLM 85.0 78.6 80.8 80.3 76.5 63.2

English only XLM 85.0 76.5 78.9 77.8 73.1 57.3

3.3 Multilingual Pre-trained Language Models 109

Fig. 3.11 The translation language modeling (TLM) task is applied to pairs of translated
sentences. To predict a masked English word, the model can attend to both the English sentence
and its French translation, and is thus encouraged to align English and French representations [111]

training and introduce a new translation language modeling (TLM) objective for
improving cross-lingual pre-training. To predict masked words in the input sentence,
the algorithm can attend to the words in the translated sentence. In this way, the
model learns to correlate words from different languages. An example is shown in
Fig. 3.11. As shown in Table 3.8, XLM has a much higher cross-lingual accuracy
for XNLI compared to mBERT. The transfer from a model fine-tuned in English to
other languages incurs only a small loss. The experiments show that TLM is able
to increase the XNLI accuracy for 3.6% on average. The model was also evaluated
for unsupervised machine translation from German and other languages to English,
yielding a very good performance (cf. Sect. 6.3).

Unicoder [88] is an improved XLM model with three additional training
tasks. Cross-lingual word alignment learns to associate the corresponding words in
translated sentences. Cross-lingual paraphrase detection takes two sentences from
different languages as input and classifies whether they have the same meaning.
The document-level cross-lingual masked language model applies the MLM task to
documents where part of the sentences are replaced by their translations. On XNLI
the authors report an average accuracy improvement of 1.8%.

XLM-R is an optimized version of XLM [41]. It is based on RoBERTa and
trained on a huge multilingual CommonCrawl dataset of 2.5TB covering 100
languages with a common vocabulary of 250k tokens. It increased the SOTA on
the XNLI-score to 79.2%. For cross-lingual question answering, models are fine-
tuned on the English SQuAD dataset and evaluated on 7 other languages. XLM-R
improves the F1 score on this SQuAD version by 9.1%–70.7%. It outperforms
mBERT on cross-lingual classification by up to 23% accuracy on low-resource
languages. The performance of XLM-R is nearly as good as that of strong
monolingual models.

These results support the observation that the performance of PLMs can be
improved by training on large volumes of text [102]. More languages lead to
better cross-lingual performance on low-resource languages under the condition that

110 3 Improving Pre-trained Language Models

the model capacity is large enough. Combined with the approach of Aghajanyan
et al. [2], which avoids too large changes in representation during fine-tuning
(Sect. 3.6), the XLM-R.LARGE model increases the SOTA in XNLI to 81.4%. If
an additional criterion of separating semantically-equivalent sentences in different
languages from other sentences is added to XLM-R, the accuracy on semantic tasks
is increased [228]. Even larger models like XLM-RXXL [66] with 10.7B parameters
were pre-trained on CC-100, which consists of 167B tokens of non-parallel text also
covering low-resource languages, and increased the XNLI performance by 2.4%.

RemBERT [37] redistributes the parameters of multilingual models. First the
authors showed that using different input and output embeddings in state-of-the-art
pre-trained language models improved model performance. Then they demonstrated
that assigning more parameters to the output embeddings increased model accuracy,
which was maintained during fine-tuning. As a consequence Transformer represen-
tations were more general and more transferable to other tasks and languages. The
Xtreme collection [86] is a multitask benchmark for evaluating the cross-lingual
generalization capabilities of multilingual representations across 40 languages and
9 tasks. RemBERT outperformed XLM-R on Xtreme, despite being trained only on
a smaller subset of training data and ten additional languages.

PLMs like BERT generate contextual token embeddings. However, the user
often needs contextual embeddings for passage or sentences to compare their
content. LaBSE [57] is a language-agnostic generator of passage embeddings,
where source and target sentences are encoded separately using a shared BERT-
based encoder. The representations of [CLS] in the final layer were taken as the
sentence embeddings for each input. LaBSE combined a masked language model
(MLM) and a translation language model (TLM) loss with a margin criterion. This
criterion computes the cosine distance .cos(x, y) between the passage embeddings . x

and the embedding . y of its correct translation. Then it is required that . cos(x, y)−m

is larger than .cos(x, yi), where m is a positive margin and the . yi are embeddings
of arbitrary other passages. LaBSE was trained using 17B monolingual sentences
and 6B bilingual translated sentences. The resulting sentence embeddings markedly
improve the retrieval accuracy SOTA of sentences in cross-lingual information
retrieval (cf. Sect. 6.1). The code and pre-trained models are available.

3.3.2 Seq2seq Transformer Models

mT5 is a multilingual version of the T5 Seq2seq transformer (Sect. 3.1.3) with up
to 13B parameters [236]. It was pre-trained using a training dataset of web pages
covering 101 languages with about 48B tokens and a common vocabulary of 250k
tokens. For pre-training, the model had to predict masked phrases in monolingual
documents in the same way as T5. Similar to T5 the model may be instructed to
perform different tasks by a prefix, e.g. “summarize”. These tasks were trained by
fine-tuning on the corresponding datasets.

3.3 Multilingual Pre-trained Language Models 111

For the XNLI benchmark [40] the model has to decide, if the first sentence entails
the second sentence. When the model is fine-tuned on XNLI with English data and
performance is measured for 15 languages, accuracy is 84.8% compared to 65.4%
for mBERT, 69.1% for XLM, and 79.2% for XLM-R. Although the texts in the
different languages are not parallel, the model is able to exploit structural similarities
between languages to solve the task. The code of this model is available at [235].
Similar models are used for multilingual translation (Sect. 6.3). mT6 [31] enhances
the training of mT5 with pairs of translated sentences and defines new training
tasks. Experimental results show that mT6 has improved cross-lingual capabilities
compared to mT5. A further improvement is Switch [56] with a mixture-of-experts
(MoE) architecture of mT5 requiring only one fifth of the training time of mT5 while
yielding a performance gain across all 101 languages (Sect. 3.5.2).

mBART [126] is a multilingual encoder-decoder based on the BART model
(Sect. 3.1.3). The input texts are corrupted by masking phrases and permuting
sentences, and a single Transformer model is pre-trained to recover the corrupted
text. This is performed for the training documents covering 25 languages. Sub-
sequently, the pre-trained model is fine-tuned with a translation task between a
single language pair. In addition, back-translation may be used, where another
model is trained to translate the target sentence back to the source language and
an additional loss encourages to reconstruct the source sentence. mBART adds
a language symbol both to the end of the encoder input and the beginning of
the decoder input. This enables models to know the languages to be encoded
and generated. It turns out that pre-training improves translation, especially for
languages with little parallel training data. In addition, back-translation markedly
ameliorates the translation results. Many experiments are performed to analyze
the effect of different algorithmic features. Pre-training is especially important if
complete documents are translated instead of single sentences.

mBART may also be used for unsupervised machine translation, where no
parallel text of any kind is used. Here the authors initialize the model with pre-
trained weights and then learn to predict the monolingual sentences from the source
sentences generated by back-translation. The results for languages with similar
structure are very good, e.g. for En-De mBART achieves a BLEU-value of 29.8,
which is close to the supervised value of 30.9. Note that mBART has a similar
performance as MASS (Sect. 3.1.3). For dissimilar pairs of languages, e.g. English-
Nepali, mBART has reasonable results where other approaches fail.

MARGE [118] is a multilingual Seq2seq model that is trained to reconstruct a
document x in one language by retrieving documents .z1, . . . , zk in other languages.
It was trained with texts in 26 languages from Wikipedia and CC-News. A document
was encoded by the output embedding of the first token of a Transformer [212].
A retrieval model scores the relevance .f (x, zj) of the target document x to each
evidence document . zj by embedding each document and computing their cosine
similarities. A transformer receives the embedded texts of .z1, . . . , zk and auxiliary
relevance scores .f (x, zj) from retrieval as input and is trained to generate the target
document x as output. The similarity score is used to weight the cross-attention
from the decoder to the encoder, so that the decoder will pay more attention to

112 3 Improving Pre-trained Language Models

more relevant evidence documents. The models jointly learn to do retrieval and
reconstruction, given only a random initialization. In a zero-shot setting the model
can do document translation with BLEU scores of up to 35.8 in the WMT2019
De-En benchmark, as well as abstractive summarization, question answering and
paraphrasing. Fine-tuning gives additional strong performance on a range of tasks
in many languages, showing that MARGE is a generally applicable pre-training
method.

XLNG [32] pre-trains the same Seq2seq model simultaneously using an MLM
and a translation TLM loss (Table 3.1). The pre-training objective generates
embeddings for different languages in a common space, enabling zero-shot cross-
lingual transfer. In the fine-tuning stage monolingual data is used to train the
pre-trained model on natural language generation tasks. In this way, the model
trained in a single language can directly solve the corresponding task in other
languages. The model outperforms methods based on machine translation for zero-
shot cross-lingual question generation and abstractive summarization. In addition,
this approach improves performance for languages with little training data by
leveraging data from resource-rich languages.

3.3.3 Autoregressive Language Models

Generative models like GPT-3 are trained on huge collections of documents which
usually contain texts from different languages. By this training data, the model
also acquires the knowledge about these languages and generates joint contextual
representations of meanings. As described in Sect. 3.6.3, it is able to translate
between languages if given an appropriate prompt and some examples (few-shot
learning). On WMT2016 En. →De, for instance, GPT-3 achieves a few-shot BLEU

of 29.7 compared to a supervised SOTA of 41.2, whereas in the De. →En direction
GPT-3 outperforms the current SOTA of 40.2 BLEU with 40.6 BLEU [25].

Winata et al. [231] evaluate in detail the multilingual capabilities of GPT-2,
GPTNEO and T5 with 1.6B, 6B, and 3B parameters respectively. The models are
able to use the context from English to predict the answer in non-English languages.
The authors find that the largest model GPTNEO always performs best on a set
of multilingual benchmarks. The performance depends on the language pair. The
models, for instance, achieve higher performance for En. →Es than for the other two
target languages (De and Fr). For the MultiNLU benchmark [187] the error 12.1%
of the SOTA model fully trained on the target language is not much lower than the
error of 17.3% for few-shot prompts of GPTNEO.

3.4 Additional Knowledge for Pre-trained Language Models 113

3.3.4 Summary

Machine translation is one of the most widely used applications of NLP. Languages
have both structural and lexical differences that make translation difficult. The joint
processing of multiple languages must take these differences into account.

When BERT is trained with documents from multiple languages, it is able to
transfer knowledge between languages, e.g. solve language inference tasks, even if
it has no access to parallel texts. Knowledge transfer is improved in XLM by using
the translation language modeling loss, such that translated sentences are employed
to reconstruct masked tokens. There are a number of improved versions of XLM
that are able to increase the accuracy of cross-language inference.

Encoder-decoder models such as T5 can be generalized to multiple languages and
induce powerful multilingual embeddings. mT5 can be controlled by a prefix and
solves various task like translation, summarization, and language inference. mT6
and Switch are more effective variants of mT5. mBART is pre-trained by recovering
corrupted text in different languages. It can even be used for unsupervised machine
translation. XNLG generates joint embeddings in a multilingual space and MARGE
leverages retrieval of background documents to reconstruct a target document.
Both models are able to perform multiple tasks such as abstractive summarization,
question answering, and paraphrasing. Note, however that specialized models are
used for translating single language pairs (Sect. 6.3.1).

Autoregressive language models such as GPT-3 are trained on huge corpora,
which also contain multilingual documents. Therefore, these models can also be
instructed by few-shot learning to perform multilingual tasks such as translations or
question answering. However, performance is usually not as good as for dedicated,
fine-tuned models.

3.4 Additional Knowledge for Pre-trained Language Models

During unsupervised pre-training, PLMs like BERT and GPT2 are forced to predict
missing words from the context. They are optimized to predict either the next word
in a sequence or some masked words (e.g. “Einstein was [MASK] in the city of
Ulm.”). Trained on this task, they obviously gather knowledge about real-world
facts and relations from the training data. PLMs do surprisingly well in reproducing
facts and relations based on unsupervised training. In Sect. 4.2 we discuss, what
knowledge is covered by standard PLMs. It turns out, however that due to the
still limited number of parameters only a fraction of knowledge contained in the
training data can be remembered by a PLM. In addition, events that occurred after
the training are missed.

114 3 Improving Pre-trained Language Models

Fig. 3.12 A PLM gets an input text and collects additional knowledge from different sources. This
knowledge may be added beforehand or can be retrieved on demand. Subsequently, an output is
generated using the additional knowledge

This section presents methods for extending factual knowledge in PLMs, either
during training or on the fly during actual model usage Fig. 3.12. A Knowledge
Base (KB) describes knowledge about the world, e.g. by entities and their relations.
We outline a number of different approaches with which information in KBs or
other knowledge sources such as text collections can be incorporated into PLMs
(Table 3.9):

Knowledge Base Embeddings: There are techniques to represent the entities and
relations in a KB by embeddings. A number of approaches try to combine these
embeddings with the token embeddings created by a PLM. In this way, the
information in the KB can be injected into the PLM and used for downstream
tasks.

Textual Encoding of Tables: Often additional knowledge is available in tables.
The entries in these tables can be encoded in a special text format. A PLM can
be trained with this text to acquire the knowledge in the rows and columns, in a
similar way as the relation between the words of two languages can be learned.

Textual Encoding of KB Relations: An alternative way to use KB information
starts with identifying entities or concepts in a text. The relations available for
these entities and concepts can be extracted from the KB and can be included in
the training process either as text or in another appropriate form.

Adding Retrieved Facts: When a PLM needs to answer a question or create a text,
it can formulate a query on the topic and retrieve corresponding text content from
a KB or the Internet. This textual information may be picked up by a transformer
and enhance the output. In this way, the model can use comprehensive and up-
to-date information on the fly.

3.4 Additional Knowledge for Pre-trained Language Models 115

Table 3.9 Models integrating additional knowledge (cf. [166, p. 10]). Benchmarks: GLUE nat-
ural language understanding Sect. 4.1.1, TACRED relation extraction Sect. 5.4.2 [199], TriviaQA
question answering Sect. 6.2.1 [99], English all word WSD [14], Nat. Quest question answering
[109] Sect. 6.1.2

Model Train task Fine-tuning Extra Benchmark

Using knowledge base embeddings in pre-trained language models

ERNIE(THU) [255] MLM+NSP +
masked NEs

GLUE, etc. KB NE embeddings
combined with
token embeddings

GLUE 79.6

KnowBERT [157] MLM+NSP +EL GLUE, etc Translate token
embeddings . ↔ KB
NE embeddings

KEPLER [224] MLM+KE GLUE, etc Combine token
embeddings with
NE embeddings; use
TransE loss

TACRED
71.5 F1

Using textual information from knowledge bases

K-Adapter [222] MLM + rel. extr. – Add parallel adapter
network to
RoBERTa

TACRED
72.0 F1

WKLM [234] MLM+ERD – Detect replaced NEs
in text

TriviaQA
63.1 F1

CoLAKE [202] MLM – Create graph from
textual relation
triples and tokens

GLUE 86.3

LUKE [234] MLM+ERD – Masked language
modeling for text
and contained
entities

TACRED
72.7% F1

EWISER [14] MLM Word sense
classification

Include wordnet
supersense graph

English all
word WSD
80.1% F1

Using text passages retrieved from text collections

FiD [91] MLM, S2S QA Encode query and
KB by BERT;
combine query and
retrieved docs with
Seq2seq

Nat. Quest.
51.4% acc.

Retro [21] LM Language
generation with
periodical retrieval

Nat. Quest.
45.5% acc.

Enhancing Logical Consistency: PLMs sometimes do not generate logically con-
sistent content. By additional fine-tuning tasks a model can be trained to respect
logical consistency.

Surveys of methods to incorporate domain knowledge into Deep Neural Networks
are given by Dash et al. [45] and Yu et al. [243].

116 3 Improving Pre-trained Language Models

3.4.1 Exploiting Knowledge Base Embeddings

Typically, Knowledge Bases are graph structures where the nodes correspond to
entities and the edges represent relations connecting the entities. Many large-scale
KBs, such as WordNet [137], YAGO [200], Freebase [18], DBpedia [15], and DiffBot
[77] have been released in recent years with millions of entities. Figure 3.13 shows
a small subset of the WordNet hierarchy. In most cases a KB can be described by
triples .(h, r, t), where h and t are entities in a set E, and r is a relation holding
between these entities. To assess the semantic contents of a KB, it was proposed to
encode its entities as well as its relations as embeddings in a low-dimensional space,
allowing to determine the similarity of entities and relations [43]. Subsequently,
these embeddings can be used to disambiguate entities (entity linking, Sect. 5.3.3),
or predict new relations (Sect. 5.4).

For the embeddings .emb(word) of words generated by Word2Vec [135] it
turned out that relations between entities often are represented in the space of
word embeddings as vector differences between entity embeddings (Sect. 1.5). An
example is the relation between a country and its capital, for which we have
approximately .emb(Germany) − emb(Berlin) ≈ emb(France) − emb(Paris) .

The TransE model [20] is built on this pattern. TransE adapts the embeddings in
such a way that whenever .(h, r, t) holds and .emb(h) and .emb(t) are the embeddings
of h and t , then equation .emb(h) + emb(r) ≈ emb(t) should be approximately
valid for some vector .emb(r), which is considered as the embedding of the relation
r . Consequently, for all triples .(h, r, t) in the set S of correct triples the TransE-loss

Fig. 3.13 Small part of the WordNet knowledge base describing the relations between English
words. It contains synsets of word with approximately the same meaning, which are related by the
hypernym (is-a) meronym (has-part) and member-of relations [137]

3.4 Additional Knowledge for Pre-trained Language Models 117

Fig. 3.14 KEPLER [224] trains a conventional BERT-like model by the MLM-loss. For a
knowledge base with text entries it generates entity embeddings using the special .<S> token
and encodes relations by the TransE-loss. Both loss functions are added during training

.fr(h, t) = ‖emb(h) + emb(r) − emb(t)‖22 should become 0. The TransE-model
uses the hinge loss to approximate this goal, which modifies the embeddings in
such a way that .fr(h, t) for correct relation triples gets lower than .fr(h̃, t̃) for
randomly selected incorrect triples .(h̃, r, t̃). The models and embeddings are trained
with relations from WordNet and Freebase.

There are a number of more elaborate models to encode relations from KBs, as
described in the surveys [43, 94]. TransH overcomes TransE’s inability to model
complex relations, and TransD aims to reduce the parameters by proposing two
different mapping matrices for head and tail. But these alternatives are rarely
used for contextual embeddings. Another method for KB representation is tensor
factorization [144, 145]. This approach, however, is not based on word embeddings
and therefore mainly used for KB completion and not to enhance PLMs.

In the rest of the section we describe approaches, which merge KB-embeddings
usually computed by TransE and token embeddings generated by language models.
A difficulty is to establish a relation between the token embeddings and the entities,
which usually contain several tokens.

KEPLER [224] consists of a BERT-like language model generating token
embeddings by the MLM objective. In addition, it computes embeddings for entities
from descriptive text in the KB using a special token “.<S>” at the beginning of
the input text. This token is trained to produce an embedding of the named entity
argument of the relation, e.g. for the input “.<S> Johannes Kepler” in Fig. 3.14. In
this way, the arguments h and t of the relation are embedded. The embedding of the
relation r is either a parameter to be trained, or it may be determined by the text
verbalizing the relation. These embeddings are fed into the TransE loss and used as
an extra training criterion in addition to MLM (Fig. 3.14). In a number of language
understanding tasks the approach is able to achieve good results. On the relation
extraction benchmark TACRED [254] the approach reaches 71.5% F1-value.

KnowBERT [157] explicitly models entity spans in the input text and uses
an entity linker to retrieve precomputed entity embeddings from a KB to form
knowledge enhanced entity-span representations. The KB-embeddings are precom-

118 3 Improving Pre-trained Language Models

puted with a loss function similar to TransE. Projection mappings are used to
transform LM-embeddings to KB-embeddings and vice versa. Information from
the best matching KB-embeddings is averaged and retransformed to enhance the
LM-embeddings. These computations form an additional layer of BERT. Wikipedia
and WordNet were used as KBs. To test KnowBERT’s ability to retrieve facts
from the KB, a relation was formulated and one argument of the relation was
masked. KnowBERT reaches a mean reciprocal rank (MRR) of 0.31, indicating
that on average the correct entity appeared on rank 3, whereas for BERT it shows
up on rank 9. Hence, the model generates better answers than BERT, but is only
approximately able to reproduce the relations of the KB. However, it often leads to
improvements in downstream tasks.

ERNIE-THU [255] relates named entities in a KB to the named entities in a
document in a similar way, and transforms embeddings between these two spaces.
E-BERT [162] is similar in spirit to KnowBert, but it requires no expensive further
pre-training of the BERT encoder. Facts as Experts [213] also links factual informa-
tion and entities using embeddings, and in this way can inject new information into
the model.

In summary the methods presented in this section directly infuse domain-specific
knowledge expressed by relation embeddings into token embeddings of PLMs.
There are, however, a number of disadvantages. The KB entity embeddings are
separately pre-trained with some knowledge embedding models (e.g., TransE [20])
and fixed during training of the PLMs. Thus KB-embedding and token embeddings
are not learned simultaneously. Moreover, the KB entity embeddings often cannot
fully capture the rich contextual and relational information of an entity in the KB.
Furthermore, they are static and do not depend on the context. In addition, they rely
to a great extent on the performance of the linking algorithm and on the reliability
of graph embeddings. This means that in general other approaches perform better,
e.g. for relation extraction (Sect. 5.4).

3.4.2 Pre-trained Language Models for Graph Learning

Relations between objects and concepts can be joined in a graph and provide a
uniform representation for the relatedness of many items. Using the structure of
a graph many properties of nodes can be predicted. In recent years there was
a great effort to design models which can capture the composition of a graph
and predict its parts, e.g. node2vec [67] or graph convolutional networks [107].
However, the node representations obtained by such deep models tend to be over-
smoothed and also become very vague. PLMs potentially are able to improve the
representation by self-attention over long distances. Xia et al. [233] provide a survey
on PLMs for graphs. Nodes and edges are characterized by different feature and
position embeddings, and are processed with different types of PLMs. Prominent
applications are recommender systems exploiting user-product graphs and drug
discovery evaluating molecule structures.

3.4 Additional Knowledge for Pre-trained Language Models 119

Graph-BERT [250] is trained on sample nodes taken from a large graph together
with their context. These samples are drawn using the closeness according to the
PageRank algorithm [24] and contain no direct link information. Nodes are char-
acterized by feature embeddings, embeddings based on the PageRank information,
and hop-based distance embeddings. These embeddings are summarized and form
the input of a BERT model. The model is pre-trained to reconstruct the information
of masked nodes and to predict the relation between two nodes by evaluating
their cosine similarity. The model is fine-tuned for node classification and graph
clustering. Graph-BERT achieves the second-best accuracies for node classification
on three graph benchmarks [128, p. 16].

GPT-GNN [87] proposes an autoregressive PLM to perform an iterative recon-
struction on given graphs. The method assumes a random order on the edges and
nodes. Given the edges and nodes up to a specific position, it predicts the properties
of the next nodes/edges. GPT-GNN generates one masked node and its edges at
a time and optimizes the parameterized models via maximizing the likelihood of
the node and edges generated in the current iteration. Then, it iteratively generates
nodes and edges until all masked nodes are generated. The model is trained on a
graph of 178M scientific papers with their features, the venue and the authors, and
on a graph with 83M Amazon reviews, users and products. On both benchmarks the
model has the best accuracies.

MPG [120] consists of a BERT model encoding node and edge features. As a
pre-training task, the model has to learn whether two graphs divided into two halves
actually belong together or whether the halves are a random pair. The model is
applied to the modeling of molecules and achieves SOTA results on a range of 14
benchmarks, especially drug discovery.

GraphFormers [238] jointly models a graph structure together with sequences
of words. Each node of the graph contains a text. A center node and its neighbors
are tokenized into sequences of tokens. The model has special transformer layers for
computing the embeddings of text tokens and for the derivation of node embeddings
by aggregating the corresponding text embeddings. The model is pre-trained with
the task to predict, if two nodes are linked or not. GraphFormers is tested on three
benchmark tasks, e.g. a graph with scientific papers characterized by their titles and
their citation graph. The model consistently outperforms all prior approaches in the
prediction of links.

3.4.3 Textual Encoding of Tables

Tabular data probably makes up the majority of all business and administrative
data today. Examples are retail transactions, official statistics, processing data from
industrial applications, etc. A survey on the interpretation of tables on the web is
provided by de Alwis et al. [46]. Previous work often relies on manually selected
features, cannot handle the flexible schemas in web tables, and does not generalize
well across tasks.

120 3 Improving Pre-trained Language Models

Fig. 3.15 Learning table relations with TURL [47]. On the left side the table caption and the
column headers are trained. On the right side the row markers together with input entities (cells in
a specific row) are processed

Fig. 3.16 TaBERT [241] encodes the rows of a table as text in a special format. The “context”
contains corresponding text. Each table cell is represented as (column header, column value type,
value). Here the first table row is encoded by the line starting with [CLS]

TURL [47] characterizes a relational table by the table caption C (a short
text, may be enhanced by section title), column headers . hi (a sequence of tokens)
describing the table scheme .H = {h1, . . . , hm} and cell values, where each cell
may represent an entity, e.g. a person. Cells in the same row share some relation,
and cells in the same column share another relation. This requires a structure-
aware attention mechanism implemented by a visibility matrix, which restricts the
attention to specific columns and rows.

TURL is pre-trained according to the masked language model loss on a large
unstructured dataset consisting of the table captions and headers. Subsequently, the
relation between entities in the same row or column can be learned. Entities in a
table are masked, and the model has the task to predict them based on the table
context and the visibility matrix. By this target TURL can learn factual relations
from the table and encode them into entity embeddings (Fig. 3.15).

The model is trained on 570k tables extracted from Wikipedia. All columns
containing at least one linked cell are marked as entity columns. After fine-tuning,
the model is able to predict the masked contents of table cells in the test set with
precision of 54.8%, beating competing approaches. An ablation study shows that
the visibility attention matrix is essential for achieving a high performance.

TaBERT [241] aims to include both, natural language text and structured table
data. TaBERT is trained on 26.6M tables and surrounding text from English
Wikipedia and the WDC WebTable Corpus [115]. Each table cell is described
as (column header, column value type, value). Subsequently, the table rows are
encoded as text, as shown in Fig. 3.16. For pre-training 20% of the columns of

3.4 Additional Knowledge for Pre-trained Language Models 121

a table are randomly selected and the model has to predict the masked column
names and types. In addition, the cell values are reconstructed according to a special
scheme. The model is fine-tuned on the WikiTableQuestions benchmark [155],
which contains questions requiring compositional, multi-hop reasoning over a series
of entries in the given table. To reduce effort only table rows containing query tokens
are encoded. TaBERT is able to increase the SOTA accuracy on this benchmark
to 51.8%. The authors show that their table cell encoding is more effective than
alternatives. RPT [205] proposes a similar scheme for table encoding. BRIDGE
[124] is a system for semantic parsing, which converts information from text and
tables to an SQL query extracting information from a database.

Tapas [81] is a variant of BERT optimized for table processing. The table is
flattened row-by-row, tokenized and enhanced with position embeddings. Following
embeddings are added: a row id embedding, a column id embedding, and a rank
embedding indicating the rank in the sorted sequence, e.g. for numbers. The model
is pre-trained on 6.2M table-text pairs from the English Wikipedia with the task to
restore words in both table and text that have been replaced with a mask. The model
can do this with relatively high accuracy (71.4% accuracy on a test set).

During fine-tuning the model learns to answer questions from a table, e.g.
“Which wrestler had the most number of reigns?” for a table with wrestling
results. [CLS] and a query are prepended to the flattened table and both parts are
distinguished by an additional segment embedding. The model has two output types:
(1) a score for each table cell with the probability that this cell will be part of
the answer and (2) a probability of the result type (none, count, sum, average) for
[CLS] to produce the final answer. Together the result indicates which operation
should be performed over which table cells to generate the final answer. On several
benchmarks Tapas reaches SOTA results, e.g. improving from 55.1% to 67.2% for
SQA benchmark [90]. The source code and pre-trained models are available at
Hugging Face.

The results show that the models described above are able to extract information
from tables and answer question about the table content. This makes it possible to
use a large source of information, since tables are ubiquitous in text documents and
web pages. In principle, the approach can also be used by large Foundation Models
to include table information in the text they generate.

TableGPT [63] generate a text from a table using the GPT-2 language model. It
enhances GPT-2 for table-to-text generation with two auxiliary tasks, table structure
reconstruction and content matching, for improving text fidelity.

3.4.4 Textual Encoding of Knowledge Base Relations

A number of proposals try to verbalize KB-relations as text. In this way, KB-
relations may be directly incorporated in the training text of the language models.

WKLM [234] randomly replaces a fraction of the entity mentions in the original
document with names of other entities of the same type. The model is trained to

 -2016 35693 a -2016
35693 a

122 3 Improving Pre-trained Language Models

Fig. 3.17 CoLAKE [202] identifies entities and encodes them with specific embeddings. Type
embeddings distinguish words, entities and relations. The input embeddings are the sum of
token/entity, position, and type embeddings. For all entities in the input text relations are extracted
from the Knowledge Base and appended after “[SEP]”, e.g. mother(Harry Potter, Lily Potter). A
masking mechanism ensures that relation elements can attend only to their corresponding elements
in the input text. During pre-training the model has to predict masked tokens and entities

distinguish the correct entity mention from the randomly chosen ones. In addition,
the model has to predict masked token. The types of entities are obtained from
Wikidata [214]. In this way, the model can better capture entity information from
natural language and yields better results for entity-related NLP tasks. WKLM is
able to predict relation arguments much better than BERT. In question answering
(SQuAD and open domain, Sect. 6.2) the model is also able to reach SOTA
results. Similar approaches [191, 203, 234] propose entity and phrase masking and
replacement schemes.

CoLAKE [202] extracts the knowledge context of an entity from large-scale
knowledge bases. The model links entity mentions to the underlying entities in a
KB by an entity linker. The mention nodes are then replaced by their linked entities.
The CoLAKE model is initialized with the RoBERTa.BASE model. It is trained on
Wikipedia with 3million entity embeddings and 822 relation embeddings aligned
to the Wikidata5M KB [224] on 26M training samples. The example input “[CLS]
Harry Potter points his wand at Lord Voldemort [SEP]” is shown in Fig. 3.17. The
type of inputs (word, entity, relation) is encoded as type embeddings and added
to the token and position embeddings. To introduce a relation from the KB, e.g.
“(Harry Potter, mother, Lily Potter)”, the relation node “mother” and the entity
node “Lily Potter” are introduced with the position embeddings 2 and 3, as the first
relation argument “Harry Potter” is located at position 1. Self attention is computed
between text inputs. There is a masking mechanism restricting the self-attention for
relation elements, e.g. to the pairs “(Harry Potter, mother)” as well as “(mother, Lily
Potter)” in our example.

During pre-training about 15% of the input elements (words, entities, relations)
are masked and have to be predicted by the model. As entity nodes simultaneously
appear in the input text and the knowledge base this helps to align the representations

3.4 Additional Knowledge for Pre-trained Language Models 123

of language and relations. Masking relation nodes helps CoLAKE to learn contex-
tualized representation for relations. On the language understanding tasks of GLUE
the CoLAKE model achieves a similar average of 86.3 as RoBERTa. An alternative
task consist of the completion of relation triplets .(h, r, t) using a sentence describing
the relation. It turns out that CoLAKE is much better than its competitors, e.g. the
correct relation is inferred from two entities in 72.1% of the cases.

LUKE [237] treats words and entities in a given text as independent tokens,
and outputs contextualized representations of both. The model is based on BERT
and trained to predict randomly masked words and entities in a large entity-
annotated corpus derived from Wikipedia. It contains an entity-aware self-attention
mechanism that is an extension of BERT’s self-attention. It takes into account
embeddings indicating if a token represents text or an entity. LUKE yields SOTA
results in relation classification, entity typing and NER. K-adapter [222] is a related
approach using RoBERTa (Sect. 3.1.1) as fixed background model and building
several independent “Adapters” to include knowledge from different KBs.

EWISER [14] similarly targets word sense disambiguation (WSD). Starting with
BERT embeddings, it computes scores for WordNet synsets (sets of words with
similar meaning). Exploiting the interdependence of the synset graph the approach
computes final scores that a word belongs to a synset. It achieves a new SOTA on a
number of WSD benchmarks (Sect. 5.2).

PET (Pattern-Exploiting Training) [184] as an alternative constructs an addi-
tional training set using only a few labeled examples. Consider a 5-star scale rating
for a restaurant in the Yelp dataset [185]. The authors add text to the reviews to
express the ratings, e.g. “All in all it was great”. Using this approach the authors
convert the Yelp dataset to a task for predicting masked words, e.g. “All in all it was
[MASK]”. However, they provide the verbalized labels only for a small number of
examples. Subsequently, they predict the best class for the non-labeled examples
and train the model with the predicted classes as well as the language modeling loss
to avoid catastrophic forgetting. This can be done in several iterations. Although
only a few labels have been used, the model performs better on Yelp than standard
supervised approaches. The SuperGLUE benchmark data covers eight challenging
NLP tasks. With just 32 labeled examples the PET approach trained according to the
above schema yields a better average (75.4%) than GPT-3 (71.8%) with the same
number of few-shot examples. This shows that good results can be achieved with
a small model (223M) and only few labeled examples. Note that the fine-trained
SOTA for SuperGLUE is 90.4% using T5 and Meena.

TeKGen [1] is a data-to-text sequence-to-sequence model to verbalize a com-
plete KB. It is applied to the English Wikidata knowledge base [214] with . ≈ 6M
entities and about 1500 relations. The model starts with a large training corpus
of heuristically aligned Wikipedia text and Wikidata triples. Relations sharing a
common entity subject are converted to the input subject relation. 1 object. 1, . . . ,
relation. n object. n for the T5 transformer (Sect. 3.1.3). As an example “To kill a
Mockingbird, author: Harper Lee, publication date: 11 July 1960” is translated to
“To Kill a Mockingbird is a novel by Harper Lee published in 1960.” The T5 model
is fine-tuned and subjected to an addition check to generate good verbalizations.

124 3 Improving Pre-trained Language Models

The resulting dataset of verbalized triples was used in a question answering task.
It was able to increase the accuracy in the Natural QuestionsNatural Questions
(NQ) benchmark [109] (Sect. 6.1.2) from 38.8% to 41.5%. KGPT [30] in a similar
way converts structural knowledge into the serialized text and lets model learn
knowledge-text alignments.

In summary these methods transform KB relations into text, e.g. as complete
sentences expressing relations or as concatenated triples (e.g., [head text, relation
text, tail text]) into LMs for training or fine-tuning. This text is transformed into
contextual embeddings and the model is trained to detect the underlying relation.
The drawback is that focusing on knowledge base completion tends to over-adapt
the models to this specific task, which comes at the cost of generalization.

3.4.5 Enhancing Pre-trained Language Models by Retrieved
Texts

An open domain question answering system has the task of answering questions
not restricted to a specific domain [27]. Consider the following example from the
TriviaQA benchmark [99]. “Question: The Dodecanese Campaign of WWII that
was an attempt by the Allied forces to capture islands in the Aegean Sea was the
inspiration for which acclaimed 1961 commando film?” “Answer: The Guns of
Navarone”. It is not plausible that the model can reproduce such a specific response
from the knowledge stored in its parameters, even if it was present in the data
before training. Therefore, it would be desirable for the system to be able to gather
additional evidence by a retriever collecting relevant documents from a large text
repository. Subsequently, it has to align the retrieved information with the question
and generate an answer by another PLM, a reader. New web search techniques
can be used for this approach. They are based on comparing embeddings for
words or passages consisting of several sentences. There are numerous applications
such as question answering, summarization, and dialog systems. In Sect. 6.1 this is
discussed in more detail. Recent surveys are provided by Zhu et al. [259] and Yu et
al. [244].

DPR (Dense Passage Retriever) [103] employs a PLM to encode KB-passages
. di , e.g. from Wikipedia, as embeddings .emb(di). This can be achieved by fine-
tuning a BERT model to encode passages by the embedding of the token [CLS].
These embeddings can be stored in an index for fast access. Then the DPR retriever
processes the query sequence x by another BERT model and generates the query
embedding .emb(x). A number of .k = 100 passages . dj with maximal inner product
.emb(x)ᵀemb(dj) is retrieved by a nearest-neighbor search. Both BERT encoders
can be trained together to generate appropriate embeddings using weak supervision
in the form of question-answer pairs (cf. Sect. 6.1.5). If, for instance, the query is
“Who is the bad guy in lord of the rings”, the algorithm can retrieve “Sala Baker
is best known for portraying the villain Sauron in the Lord of the Rings trilogy”,

3.4 Additional Knowledge for Pre-trained Language Models 125

because “bad guy” and “villain” have similar embeddings. Therefore, DPR can
find passages with similar meaning, expressed with different words. Karpukhin et
al. [103], for instance, show that already with 1000 training examples the dense
retriever is better than the classical keyword search. For 40k training examples the
top-20 retrieved passages contain the correct answer in about 79% of the time, while
this value is only 59% for the classical retrieval. An in-depth discussion is given in
Sect. 6.1.5.

The DPR reader is another BERT model. Similar to BERT’s text pair classi-
fication, it is fine-tuned to predict a probability for each retrieved passage that
this passage contains the correct answer. In addition, it selects a span of tokens
by span prediction, which probably provides the answer. In the example it selects
“Sala Baker” as the answer. Together both components form a retriever-reader
architecture, which recently became popular. The approach can be easily applied to
KBs with billions of passages [103, 201]. On the Natural Questions [109] it yields
a test set accuracy of 41.5%.

DensePhrases is a different system creating embeddings for phrases of up
to 20 words in the KB, which are computed without knowing the query [114].
The processing of the retrieved phrases directly yields the answer without much
computational effort. Using careful workflow optimization the authors achieve near-
SOTA results with a much lower processing time than dense passage retrieval
systems, e.g. a test set accuracy of 40.9% on Natural Questions.

FiD (Fusion in Decoder) [91] employs DPR as retriever. In the reader step it
uses the special tokens “question:”, “title:”, and “context:”. These tokens mark
the question, the retrieved passage title and the passage text and are concatenated
forming the input. Subsequently, these k retrieved triples are fed one-by-one into
a transformer encoder like T5 [170] (770M parameters), which independently
processes each triples by the encoder. Only in the decoder the passages are handled
jointly and the text of the answer is generated. This approach drastically reduces the
computational effort. The transformer is fine-tuned on a QA-task. The architecture
of the model is shown in Fig. 3.18. Raffel et al. [170] provided evidence that

"Ques�on: The
Dodecanese

Campaign of …

BERT
encoder

inner
product text 3

text 2

text 1

BERT
encoded

KB

Ques�on:
The …

T5
encoder

encoded
ques�on

+ text
T5

decoder
concat Answer:

The Guns of
Navarone

retriever reader

Fig. 3.18 A retrieval enhanced language model [91] encodes the query and the KB passages as
embeddings and uses a pre-trained retriever to find passages corresponding to the query. The reader
is a Seq2seq model (T5) combining the query and the passages to generate the answer. This model
setup is fine-tuned with different benchmark datasets

126 3 Improving Pre-trained Language Models

generative models like T5 are even competitive for QA-tasks such as SQuAD [173],
where answers are spans in a given document.

The system achieves a test set exact match accuracy of 51.4% on the Natural
Questions benchmark compared to 41.5% for DPR. The TriviaQA benchmark [99]
contains a set of trivia questions with answers that were originally scraped from the
Web. On this benchmark the model yields SOTA results with 80.1% exact match
accuracy [211]. This is better than the accuracy of other much larger models,
like GPT3 with 175B parameters (71.2% EM), or T5 without retrieval and 11B
parameters (60.5% EM). It turns out that increasing the number of retrieved passages
strongly enhances the answer quality.

There are a number of new approaches to augment PLMs with text from an
external KB. In Sect. 6.1 we describe different PLMs for retrieval that can be used by
web search engines. In Sect. 6.2 we investigate systems for question answering that
often employ a PLM-based retrieval mechanism and an additional PLM to generate
the answer text. It combines the query, the knowledge acquired during training, as
well as the information in the retrieved documents.

In summary, combining language models with retrieval is currently the most
efficient way to incorporate additional information into PLMs. The new information
is focused on the current query and thus very informative. The retrieval model
can access semantically related passages within fractions of a second using new
approximate open-source nearest neighbor index structures. By relying on embed-
dings, synonyms and paraphrases can be found and the meaning of words can be
disambiguated. In addition, the underlying knowledge bases can be updated on the
fly to keep the information current.

3.4.6 Summary

The knowledge covered by the textual training data can be leveraged in various
ways to improve the performance of PLMs. Entities and relations from a knowledge
base can be represented by embeddings, e.g. by TransE. However, the utilization
of these embeddings for PLMs is not very efficient and error-prone. A more
promising alternative is the direct use of table content or knowledge base relations
by specialized PLMs, which capture relationships between entities and table cells
by specific self-attention patterns. Similar to Graph-CNNs PLMs have been directly
used to acquire the relationship between the nodes of a graph by encoding the
features of links by embeddings in a BERT-like model. Along this line a promising
way to transfer relational knowledge from a graph to a language model is proposed
by GraphFormers.

A very simple and efficient approach of incorporating tables and knowledge
bases in PLMs is the creation of text that expresses the information content. This can
be used by the PLM either as conditioning text or during training. However, the most
promising way to include knowledge is retrieval, since most information is stored
in the form of unstructured text on the Web or databases. Here, the retriever-reader

3.5 Changing Model Size 127

architecture emerged as an effective way to collect relevant passages. Subsequently,
the PLM generates new text by combining the internal knowledge, the start text, and
the retrieved passages.

Much effort was devoted to the extension of the length of input sequences
(Sect. 3.2). This was mainly achieved by sparse attention patterns reducing the
increase in computational effort from quadratic to linear with S4 as a leading
approach. Nevertheless, larger input sequences still have limited range of context
both within the same sample and outside of it.

In contrast, retrieval can cover an indefinite context within the same sample by
gathering appropriate passages, even if there is no simultaneous attention over the
whole context. In addition, retrieval can access relevant information in huge docu-
ment collections. Either the highly developed traditional keyword search engines
may be used. Alternatively dense retrieval may be employed which compares
embeddings of the query and passages using approximate nearest neighbor search
over an index. It turns out that relatively small retrieval-based models outperform
large Foundation Models like GPT-3. FiD, for example, achieves an exact match
accuracy of 51.4% on the Natural Questions benchmark compared to 29.9% for
GPT-3. Retrieval is extensively used by recent models such as WebGPT and Retro.

3.5 Changing Model Size

The size of a model, especially its number of parameters, has a marked influence
on the performance of the model, its memory requirements and the computational
resources required for training. In the first section we discuss that models with
more parameters potentially have a better performance. This, however, requires a
larger computational effort during training and model utilization. An alternative
are mixture-of-experts models, which define a number of parallel model structures
which selectively compute a solution. This is described in the second section.

As initial versions of successful models often are extremely large, a variety of
model compression and acceleration techniques have been developed. They reduce
memory requirements and training time without noticeable degradation of accuracy,
and allow the models to be deployed on low resource computing devices, such as cell
phones. There are three main techniques for model size reduction [65]—parameter
compression and reduction, low-rank factorization, and knowledge distillation—
which are outlined in the subsequent sections.

3.5.1 Larger Models Usually Have a better Performance

As a rule for machine learning, the number of parameters of a model should be
limited to avoid overfitting, i.e. adapting to random fluctuations in the data. It turned
out that this does not hold for PLMs if the amount of training data and the number of

128 3 Improving Pre-trained Language Models

model parameters are increased simultaneously. Larger PLMs have been shown to
have better performance on NLP tasks, which is underscored by theoretical work on
PLMs [19, p. 117]. The benefits of increasing the number of parameters come from
two factors: additional computations at training and inference time, and increased
memorization of the training data. Kaplan et al. [102] empirically investigated
in detail the dependency between the number of model parameters R (excluding
embeddings), the size N of the training data, and the amount of computing effort C
used for training. They evaluated a large number of models and draw the following
conclusions:

• The performance of the models depends largely on the size quantities .R,N,C.
Other architectural features such as width or depth have only a weak influence.

• The performance follows a smooth power-law dependency with each of .R,N,C,
if the other quantities are not too small. As an example the loss is approximately
.L ≈ (N/(5.4 ∗ 1013))−0.095.

• If R and N are increased at the same rate, the model accuracy grows reliably. If
one of these factors is held constant the improvement gets lower. To get the best
performance, the model size R should grow with the factor 8, if the data N is
increased 5 times.

• Training loss has a predictable dependency on computing effort and can be
extrapolated.

• The performance of fine-tuning of a pre-trained model on a different training task
depends strongly on the loss for the pre-training validation set. Therefore, transfer
to a different distribution induces a constant penalty, but roughly improves with
the performance on the pre-training set.

• Large models are better able to extract information from data than small models.
They reach the same level of accuracy with fewer optimization steps and using
fewer data points. If there is only a fixed amount of computation time, but no
restrictions on size or data, one should use very large models and stop before
convergence (Fig. 3.19). The optimal batch size depends on the gradient noise,
which is easy to measure during training [132] and is larger than assumed before.

These findings show that the success of larger PLMs is a systematic feature. A
larger number of model parameters is much more sample efficient than thought
before, when overfitting was a major problem for smaller training tasks. This also
explains the success of large models like T5, BigBird, or GPT-3. Hernandez et
al. [80] investigate empirical scaling laws for the transfer from pre-training to fine-
tuning. Figure 3.20 plots the training efforts of some Deep Learning models during
the last two decades.

3.5 Changing Model Size 129

Fig. 3.19 A series of language model training runs with varying model sizes [102]. The left
graph shows that larger models require fewer samples to reach a fixed test loss. The right graph
demonstrates that the model size should grow with compute budget. Image reprinted with kind
permission of the authors [102, p. 4]

Fig. 3.20 Number of parameters for Deep Learning Models since 2017 [188]. Note that the
parameter scale is logarithmic. The number of parameters roughly increased from 100M up to
1000B

3.5.2 Mixture-of-Experts Models

As discussed above a model with more parameters usually can achieve a better
performance. A simple way to increase the number of parameters without a higher
training effort is a mixture-of-experts architecture. It was already proposed in the
nineties by Nowlan et al. [147] and has a strong resemblance to decision tree models

130 3 Improving Pre-trained Language Models

[152]. It consists of a single gating module and a number of expert modules with
identical architecture but different parameters. Each expert specializes in only a
subset of the data, and the gating module assigns each input to the appropriate
experts. Specifically, the gating network computes a probability distribution over
the experts indicating how well each expert is able to process the incoming input. A
reduction in computational effort can be achieved, if only a few expert modules
are actually used. The model is trained by stochastic gradient descent, which
can compute the parameter gradient despite the discontinuities if some expert is
exchanged. Increasing the number of experts keeps the computational cost constant
because the model always selects the same small number of experts for each input,
regardless of the total number of experts. The architecture enables massive models
and is particularly efficient for distributed systems where the experts are spread
across different computational devices.

Clark et al. [38] analyze the theoretical properties of such routing networks,
where each input is processed only by subnetworks with a fraction of the network’s
parameters.The authors analyze three different architectures and get the following
results.

• Routing improves the performance of PLMs in all investigated sizes and variants.
• Improvement follows a power-law in the number of experts E that diminishes

with model size N , and can be further generalized across routing architectures.

The analysis is based on the evaluation of several magnitudes of size, including
models with hundreds of experts and hundreds of billions of parameters.

GLaM [51] is an autoregressive mixture-of-experts (MoE) model with up to
1200B parameters. It replaces the fully connected layer of every second encoder
block (Sect. 2.1.1) with 64 copies having different parameters. For each embedding,
a gating module selects two of these 64 fully connected layer for processing. The
architecture is shown in Fig. 3.21. The model was trained on a huge collection of
1.6T tokens documents and quality-checked web pages. It has approximately 7 times
more parameters than GPT-3 but requires only 1/3 of its training effort. In this way,
the model has many more parameters increasing its representational capacity. As
for a given input token, only two expert models are used, the computational effort
for training and application is lower. The zero-shot and one-shot performance is
better than for GPT-3 on 29 NLP tasks. Some results are compared to those of other
models in Tables 3.3 and 3.4. GLaM is remarkable as it requires only 1/3 of the
training effort of GPT-3 but it achieves a similar or better performance than GPT-3
on NLP tasks.

WuDao-2.0 [175, 178, 257] is a recent giant autoregressive language model with
1750B parameters, ten times larger than GPT-3. It has mixture-of-experts layers,
where a gating network selects a submodule for processing based on the input.
WuDao-2.0 uses the FastMoE library [74] and employs the GLM 2.0 architecture
(Sect. 3.1.3) combining the different learning paradigms of BERT, GPT and the
encoder-decoder transformer [175].

The training data consist of 1.2TB Chinese text, 2.5TB Chinese graphic data and
1.2TB English text data from the Pile corpus [61]. The Cogview model is used for

3.5 Changing Model Size 131

Fig. 3.21 Architecture of GLaM [51]. For each input token, e.g., “likes”, the gating module
dynamically selects two most relevant experts out of 64 available experts. This is indicated by
the blue grid. The weighted average of the outputs from these two experts’ feedforward models
is then passed to the next encoder block. For the other inputs different experts are selected. A
mixture-of-experts layer is used in every second encoder block

the joint processing of images Sect. 7.2. In addition, WuDao-2.0 can learn on the fly,
draw pictures and compose poetry. These capabilities are a significant difference to
GPT-3.

The published performance claims are impressive. On the LAMA benchmark for
measuring world knowledge [158] it scores higher than AutoPrompt [192]. For the
SuperGLUE few-shot natural language understanding task [219] it achieves SOTA
and surpasses GPT-3. For the Lambada benchmark (Sect. 4.1.3), where the last word
of a paragraph has to be predicted, it yields better results than Microsoft Turing
NLG. In addition, it increases SOTA for a number of text-graphics tasks (Sect. 7.2.8).

Switch [56] is a variant of the transformer encoder-decoder T5 (Sect. 3.1.3). It
has a mixture-of-experts architecture, which replaces the fully connected layer of
each encoder block with .k = 128 copies having different parameters. There is a
simple linear gating network, which selects one of the 128 single fully connected
layers (the experts) per token. Hence, the number of parameters is drastically
increased with approximately constant computational effort. For this architecture
a gradient can be computed and the model may be optimized using a number
of specific strategies and a special TensorFlow version. It turns out that Switch
achieves the same loss level compared to the standard T5 version with 1/7 of the
computing time. On a number of fine-tuning tasks the large Switch model with
1600B parameters and 2048 experts yields better results than T5-large (Sect. 3.1.3)
with 13B parameters requiring a quarter of the computational training effort.

As an alternative to the gating network in the mixtures-of-experts architecture,
it is possible to use hash values to activate different parts of the network. Token
Switch [177] computes a hash value for each input token and routes the generated
embeddings of each token to different feedforward networks based on the hash

132 3 Improving Pre-trained Language Models

values. The authors show that their approach compares favorable to Switch and
works well on comprehensive language modeling tasks.

ST-MoE-32B [261] is a mixture-of-experts model with 269B parameters and a
comparable training cost of a 32B dense model. The authors modify the routing
algorithm which dispatches token embeddings to one or two experts, and resolve
instability issues. The model is similar to a T5-Large encoder-decoder [170]. The
ST-MoE-32B has 32 experts with an expert layer frequency of 1/4, such that every
fourth feedforward layer of T5 is replaced by an MoE layer. The authors use the
GEGLU activation function, which contains multiplicative elements [142]

.FFNGEGLU(x,W, V, b, c) = GELU(xW + b) � (xV + c). (3.2)

The authors compare a large number of variants and hyperparameters to improve
training.

The model achieves SOTA in many transfer learning benchmarks, e.g. for
SuperGLUE with an average accuracy of 93.2% beating the PaLM LM with 540B
parameters. Other SOTA results were reached for summarization (XSum [143] with
27.1 ROUGE-2, CNN/Daily Mail [78] with 21.7 ROUGE-2), closed book question
answering (WebQA [13] 47.4% exact match, Natural Questions [109] 41.9%
exact match), and adversarially constructed tasks for common sense reasoning
(Winogrande [182] 96.6%, ANLI R3 [146] 74.4%).

3.5.3 Parameter Compression and Reduction

Model quantization is a parameter reduction technique, where parameters are stored
in low precision and therefore the computations in PLMs are also less precise.
Conventional models normally use parameters of 32 bits or 16 bits, while parameters
after quantization can have 8 bits or even 1 or 2 bits. Q-BERT [190], for example,
quantizes Transformer models to ultra-low precision. This reduces the model size
13-fold while only loosing 2.3% performance. The authors avoid the naive approach
of simply reducing weight precision, but use additional training steps to adjust the
quantized weights and allow higher precision for more “sensitive” parameters. Other
authors propose to delete parameters with small values [64]. ALBERT [113] uses
the same weights across all layers and achieves a significant parameter reduction.
Nevertheless, ALBERT has the same or better performance compared to BERT.

Another approach aims to reduce the number of parameters, e.g. by removing
attention heads. It was shown that most attention heads focus only on nearly
identical positional relations and can be replaced with fixed attention patterns [172].
It turned out that high performance is possible with only 1–2 attention heads per
encoder unit instead of the 16 attention heads of the original model. A detailed
overview on parameter compression techniques is provided by Ganesh et al. [60] .

Another method to reduce model parameters is model pruning, which cuts off
irrelevant parts in PLMs to achieve a smaller memory footprint and faster execution

3.5 Changing Model Size 133

without compromising performance. It could be shown, for example that some
attention heads of the transformer may be removed with little impact on the accuracy
[256]. Other researchers prune the weights of attention layers and linear layers to
reduce the number of parameters without reducing the accuracy [29, 64]. Note that
model pruning does not always lead to speedups, as sparse computations may be
hard to parallelize on GPUs.

3.5.4 Low-Rank Factorization

This technique employs matrix and tensor decomposition to reduce the number
of parameters of full rank parameter matrices and already has been discussed
in Sect. 3.2.2 for the extension of the input sequence length. Examples are the
Performer [34] and the Linear Transformer [105] (Sect. 3.2.2). As an alternative,
ALBERT (Sect. 3.1.1) approximates the embedding matrix as a product of two
smaller matrices.

3.5.5 Knowledge Distillation

In machine learning the knowledge distillation approach [82] transfers knowledge
from a large teacher model to a smaller student model. The large model can
often be trained successfully to approximate a functional relation without using
its full representational capacity. To reduce the high computational and memory
requirements during application, a smaller model is trained to imitate the large
model without sacrificing accuracy.

The advantage of this approach is that the student model may be trained to
approximate internal activations of the teacher model. Often the target probabilities
generated by the teacher model are used to train the student network . Typically the
outputs of the teacher model for an input . x is .z(x), which can be translated to a
probability by a scaled softmax

.y(x|τ) = [exp(z1(x)/τ), . . . , exp(zk(x))/τ]
exp(z1(x)/τ) + · · · + exp(zk(x)/τ)

, (3.3)

where .y(x|τ) is a probability vector and . τ is a parameter called temperature, which
for a standard softmax is normally set to 1.0. The student model is trained to imitate
the probabilities .ŷ(x|τ) generated by the teacher model by minimizing cross entropy

.E(y|τ) = −
k∑

j=1

ŷj (x|τ) log yj (x|τ), (3.4)

134 3 Improving Pre-trained Language Models

where .y(x|τ) is the output probability vector of the student model. If observed
values are available the probabilities of the teacher model .yj (x|τ) may be replaced
by 1.0 for the observed class and 0.0 otherwise. During training the temperature
may be varied. A high temperature avoids extreme probability values and reduces
the gradients. This may lead to a faster convergence in the beginning of the
optimization.

DistilBERT [183] uses MLM cross-entropy loss to predict token probabilities
and in addition the cosine similarity between the embedding matrices of the teacher
and student networks to train a smaller BERT model. It utilizes knowledge distilla-
tion during pre-training to reduce the size of BERT by 40% while retaining 99% of
its original capabilities and making the inference 60% faster. MobileBERT [204] is
based on a specific large BERT model and transfers information about multi-head-
attention as well as the resulting embeddings. Experiments show that MobileBERT
is 4.3. × smaller and 5.5. × faster than BERT while achieving competitive results on
well-known benchmarks.

TinyBERT [97] proposes distillation of a BERT model during pre-training
and fine-tuning. The model is adapted to: (1) the output of the embedding of
selected layers; (2) the hidden states and attention matrices derived from selected
Transformer layers; (3) the logit outputs of the prediction layer. As distillation
is also performed during fine-tuning the model can be better adapted to the fine-
tuned BERT. On a number of benchmarks TinyBERT is on par with BERT.BASE and
outperforms DistilBERT.

Note that the knowledge distillation methods discussed above require the data
used for pre-training the teacher model, which is often not released because of data
copyright. It has not yet been evaluated whether distillation is also feasible with new
data. The training time for knowledge distillation is high, because the teacher model
needs to perform a forward prediction over the entire pre-training data to generate
activation values or intermediate representations.

Rogers et al. [176] list a large number of size reduction studies for BERT
and report parameter size and computing time reduction as well as the resulting
performance. For a number of approaches there is a marked reduction in memory
and computing effort with nearly identical performance.

3.5.6 Summary

The number of model parameters, the size of the training data and the amount of
computation effort for training are the determining factors for the performance of a
model. Kaplan et al. [102] show by experiments that increasing parameter count and
training set size reliably lead to a better performance and provide a detailed formula
for the dependency. If a fixed compute budget is available, one should use a very
large model and much data.

Mixtures-of-experts follow this approach by increasing the number of parameters
without requiring more computational effort. By routing inputs to specific subnet-

3.6 Fine-Tuning for Specific Applications 135

works they are able to increase performance compared to monolithic networks.
Examples are GLaM, WuDao-2.0, and Switch. However, these networks have
hundreds of billions of parameters and require a specific parallel computational
infrastructure.

Often the trained networks are too large and have to be reduced to fit to smaller
computing devices. A viable approach is low-precision computation, which reduces
memory requirements for parameter storing. Low-Rank factorization of matrices
also has a lower memory footprint as a side effect. Finally, knowledge distillation
may be employed to create a student model which imitates the inner working of
a large trained teacher network. DistilBERT, for example, was able to reduce the
memory size by 40%, kept 99% of the original performance and was 60% faster.
There are a number of other size reduction approaches with similar results.

3.6 Fine-Tuning for Specific Applications

Self-supervised pre-training of language models on large text collections and subse-
quent fine-tuning them to solve specific tasks has become the standard paradigm in
natural language processing and understanding. It has been shown that pre-trained
language models such as BERT are excellent for generalization and can easily be
fine-tuned to multiple tasks. However, sometimes simple fine-tuning to a domain-
specific task is not sufficient, and other transfer learning approaches have to be used
to better adapt models to domain-shift in the data [166]. There are a number of
surveys covering transfer learning in depth [230, 252, 260]

Fine-tuning updates all the model layers, including the embedding layer, but there
are larger changes in the higher layers [133]. First, we discuss whether fine-tuning
can destroy the knowledge gained during pre-training. Standard fine-tuning adapts
a large pre-trained PLM with many parameters to a relatively small fine-tuning
training data set with little computational effort. We investigate whether overfitting
occurs during this phase. Subsequent sections introduce different approaches for
fine-tuning:

• Intermediate Fine-Tuning performs an in-between fine-tuning step with a larger
training set before a final target fine-tuning takes place.

• Multitask fine-tuning enhances the model capabilities by simultaneously fine-
tuning on a number of tasks.

• Fine-tuning a frozen model adapts a small additional layer to the fine-tuning task
instead of changing all weights of the large pre-trained model.

• Creating Prompts for Few-Shot Instructions aims to generate inputs for a large
autoregressive PLM like GPT-3 to solve a task in a zero or few-shot approach.

136 3 Improving Pre-trained Language Models

3.6.1 Properties of Fine-Tuning

Fine-tuning of PLMs is commonly employed to adapt a pre-trained model to a
specific task by supervised training. This adaption of the model from a source task to
a related target task is also called transfer learning. Transfer learning is especially
rewarding if we have abundant training data for self-supervised learning—as it is
typical for non-annotated text—and only little annotated data for the target task. A
survey of transfer learning is provided by Zhuang et al. [260]. Fine-tuning has a
number of advantages:

• The model acquires detailed knowledge about the language, its syntax and
semantics by exploiting the content provided in the pre-training data.

• Pre-trained models can easily be adapted to new tasks, e.g. by an additional layer
with a simple classifier. The language representations of the pre-trained model
support fine-tuning and are only slightly changed during this process.

• Fine-tuning even with a small data set yields a much better performance than
direct training of a classifier on the limited data.

Autoencoder models like BERT are typically fine-tuned for classification tasks,
where the logistic classifiers for masked language modeling and next sentence
prediction have to be removed. Using the [CLS] token or other tokens as input,
new logistic classifier models as well as all model parameters are trained end-to-end
with the new task for a few epochs (Sect. 2.1.3). Compared to pre-training, fine-
tuning is relatively inexpensive. Usually, only a small fraction of the pre-training
effort is required to achieve good results.

Tripuraneni et al. [210] have theoretically proven that transfer learning requires
far less data than learn tasks in isolation. They prove that transfer learning improves
if the task diversity is enhanced. Bansal et al. [7] investigate the theoretical
properties of fine-tuning a classifier using pre-trained embeddings. The authors
prove that these classifiers have a smaller generalization gap between their train
and test accuracy, than standard classifiers.

Catastrophic Forgetting

The question is whether fine-tuning can destroy the original capabilities of the
model. This means, after fine-tuning a pre-trained model for a few epochs, it could
lose predictive performance available after pre-training. A possible reason can be
catastrophic forgetting, where all parameters are adapted to a new learning task
while forgetting learned content.

Merchant et al. [133] fine-tune BERT.BASE with three different tasks: (1) MNLI
sentence pair classification task [229] measuring if the first sentence entails the
second; (2) SQuAD question answering [173], where the answer to a question has to
be marked in a text; (3) Dependency Parsing [50] to capture the syntactic structure of
sentences. Then they investigate the performance of a number of probing classifiers

3.6 Fine-Tuning for Specific Applications 137

before and after fine-tuning. The results demonstrate that the fine-tuned models only
show a small decrease in the accuracy to detect linguistic concepts. The reduction
cause by the MNLI task in most cases is less than 1%, while higher differences (less
than 3%) are observed for SQuAD and dependency parsing. Therefore, catastrophic
forgetting cannot be observed. The authors state that fine-tuning primarily changes
the top layers of BERT, with dependency parsing also affecting deeper layers. More
detailed results are provided by Wallat et al. [216].

Fine-tuning only benefits from the pre-training, if there are similarities between
the two tasks. Hence, pre-training should have a loss function which enforces the
learning of semantics at word, phrase and document level. In addition, its training
documents should originate from a domain close to the fine-tuning task. Otherwise
the vocabulary may not include many domain-specific words. As a result, domain-
specific words are split into a number of tokens which hinders model learning and
degrades its performance in downstream tasks. In the next sections we will discuss
alternative training regimes which improve BERT’s capabilities.

Fine-Tuning and Overfitting

During pre-training BERT’s parameters are adapted to the pre-training data, acquir-
ing universal language representations. As pre-training provides a good initializa-
tion, it avoids overfitting on the small fine-tuning datasets, if the fine-tuning error is
not minimized too much.

Since PLMs have a very large number of parameters, there is the risk of
overfitting on the fine-tuning data. As a result, generalization from unseen data
can be poor and counterstrategies may be required. D’Amour [42] present a
comprehensive discussion of this underspecification phenomenon. Jiang et al. [95]
introduces a form of regularization, which makes the model invariant to small
perturbations of the input, inducing smoothness in the local neighborhood. They
develop a class of Bregman proximal point optimization methods, which penalize
large updates of the model at each iteration. Aghajanyan et al. [2] introduce the
notion of representational collapse, stating that fine-tuned models lose their ability
to generalize. They propose fine-tuning optimization based on trust-region theory,
which alleviates representational collapse at a fraction of the cost of other recently
proposed fine-tuning methods and, for instance, improves the best known results on
fine-tuning RoBERTa on GLUE.

Fine-tuning the same model with multiple random seeds can lead to large
variance in task performance. Most papers argue that this effect is caused by
catastrophic forgetting and the small size of the fine-tuning datasets. However,
Mosbach et al. [140] show that often fine-tuning has an optimization problem due to
vanishing gradients. In addition, it can often occur that a model does not generalize
well, although it has the same fine-tuning loss as a successful model. This is an
indication for the underspecification mention above. The authors recommend to
use small learning rates with bias correction to avoid vanishing gradients early
in training. In addition, they propose to use more iterations for fine-tuning. More
recipes to improve fine-tuning are provided by Rogers et al. [176].

138 3 Improving Pre-trained Language Models

3.6.2 Fine-Tuning Variants

Fine-Tuning in Two Stages

The intermediate training set should be closer to the final task. Although this
approach can increase performance in some cases, an experimental evaluation
demonstrates a decrease in performance in 44% of the cases [163]. An intermediate
training with a task requiring high-level inference and reasoning abilities tend to
work best, as was shown in a large experiment [165]. However, the authors also
observe catastrophic forgetting of the pre-trained abilities. Gururangan et al. [71]
have shown that a second phase of pre-training, using domain-specific data, leads to
significant performance gains, both in high- and low-resource settings. In addition,
pre-training on tasks-specific unlabeled data improves performance on various tasks
and domains.

Fine-Tuning for Multiple Tasks

For each task, a task-specific layer is added to the underlying pre-trained model.
Then the model is simultaneously trained with all tasks. However, it sometimes
happens that performance does not increase compared to standard fine-tuning [141],
perhaps because of contradicting requirements of tasks. As an alternative, a subset
of fine-tuning tasks from the available datasets may be selected based on similarity
measures [131].

HyperGrid [208] is a multitask learning approach evaluated on the T5 model.
It learns grid-wise projections that help to specialize regions in weight matrices
for different tasks. As an example, a single model is simultaneously adapted to all
GLUE and SuperGLUE tasks at once. In spite of the multitude of tasks, the model
has a slightly better performance on SuperGLUE than the single models.

Meta-Learning to Accelerate Fine-Tuning

During fine-tuning a pre-trained PLM is adapted to a new NLP task. It is usually
trained for two or three epochs on a labeled fine-tuning dataset. Although this is
much faster than pre-training the model on a large training corpus it still requires a
lot of effort. To reduce this effort researchers tried to prepare the pre-trained model
to fine-tuning by meta-learning. A survey of meta-learning is provided by Yin [242].

Usually, there is a set . T of related fine-tuning tasks . Ti . During meta-training
a task . Ti is sampled from a distribution .p(T). Then the model is trained with K
training samples from .T train

i and then tested on the validation set of .T val
i . The

3.6 Fine-Tuning for Specific Applications 139

validation error of . Ti is utilized as the training error of the meta-learning framework
for the current iteration. The MAML algorithm [58] follows this pattern:

• Copy .w[i] of the initial model parameters . w.
• Train the model on the training set .T train

i with a K gradient updates: . ŵ[i] ←
w[i] − γ ∂Li(w

[i], T train
i)/∂w

• Apply the model with the updated parameters .ŵ
[i] on the validation set .T val

i .
• Update the initial model parameters . w using the loss on the validation set . w ←

w − β∂Li(ŵ
[i]

, T val
i)/∂w

This scheme was applied to BERT [6]. The authors generate a large, rich, meta-
learning task distribution from unlabeled text by gathering tokens-to-be masked
from a few vocabulary terms. On 17 NLP tasks, they show that this type of meta-
training leads to better few-shot generalization than language-model pre-training
followed by fine-tuning. Chen et al. [28] provide data-dependent generalization
bounds for these approaches.

Fine-Tuning a Frozen Model by Adapters

A downside of fine-tuning for task-adoption is that new model parameters are
needed for every task. Task adapters [84] aim to mitigate this problem. The authors
introduce adapter layers, which are inserted in a encoder block after the multi-head
attention and the feedforward layer (2.7). Now, to fine-tune transformer models to
new tasks, instead of relearning all parameters, all weights of the network are frozen
except for the adapter layers and the normalization layers. On tasks like GLUE this
yields a significant reduction of parameters that need to be trained while preserving
model quality.

Rather than having multiple adapters for different tasks, Stickland et al. [197]
propose training a multitasking version of BERT that can be used for several tasks
simultaneously. They add low-dimensional projected attention layers as bypass
to BERT encoder blocks, which connect the input to layer-norm layers and the
subsequent layer-norm layers. They sample data from the different tasks during
training proportionally to the sizes of the respective training sets and use an
annealing mechanism to converge towards equally distributed training samples by
the end of the training. Their results surpass the results of a BERT.BASE model.

MAD-X [160] is a framework to adapt multilingual models to arbitrary lan-
guages and tasks. The authors introduce language- and task-specific adapters, which
consist of a linear down-projection to a small vector, a ReLU activation and a linear
up-projection. The language specific adapters are trained with an MLM objective,
while the rest of the model is frozen. The task-specific adapters are trained with
the task-specific data, fixing the rest of the parameters. Finally, invertible adapters
are added after the input embedding layer and before the output embedding layer
to mitigate differences between the multilingual vocabulary and the target language

140 3 Improving Pre-trained Language Models

vocabulary. MAD-X achieves SOTA for NER and common sense reasoning for a set
of different languages.

LoRA [85] freezes the weights of the pre-trained model and adds trainable
bypasses to the model, which consist of trainable matrix transformations to a
short vector and to the full rank. This drastically reduces the number of trainable
parameters (1/30 for GPT-3 and 1/100 for GPT-2) while achieving better results than
with traditional fine-tuning on many NLP tasks. AdapterHub [161] is a repository
for adapters that as of writing contains around 380 adapters. AdapterHub is built
on the Hugging Face transformer library for compatibility with existing transformer
models.

Fine-Tuning GPT-3

GPT-3 is an extremely powerful Foundation Model, but it is not publicly available
(Sect. 3.1.2). By using the API for fine-tuning GPT-3 with user-specific data [123],
the model can be adapted to specific domain languages and particular tasks.
This typically yields a higher quality than few-shot examples and prompt design
described below. To fine-tune the 175B parameter model on a 1M token file for four
epochs OpenAI charges about $120. The fine-tuning can be used in a number of
ways [123]:

• Completion: Generate a completion for a prompt.
• Search: Given a search query and a set of documents or labels, the model ranks

each document with a score based on its semantic similarity to the query.
• Classification: Input is a query and a set of labeled examples, e.g., [“I am feeling

awesome”, “Positive”]. Then GPT-3 will predict the most probable label for the
query. This can be used similar to BERT for any type of classification task.

• Answer: Input is a question, a set of documents with background information, and
some examples. Based on the information in the documents and the examples, an
answer is generated. This is similar to the reading comprehension task of question
answering (Sect. 6.2).

• Fine-tune: Adapts GPT-3 to a specific domain text.
• Embeddings: Get a vector of contextual embeddings for an input text for further

processing or exploration.

It can be assumed that GPT-3 and other Foundation Models like PaLM fine-tuned in
this way will increase SOTA in many areas due to their comprehensive knowledge
about language.

3.6.3 Creating Few-Shot Prompts

For zero-shot learning the model just gets a task description or prompt, e.g.
“Translate English to French: cheese =. >”, and directly generates the answer

3.6 Fine-Tuning for Specific Applications 141

Fig. 3.22 The accuracy of few-shot learning of GPT-3 is increased by extending the model size
as well as the number of presented examples [25]. The task is to remove random symbols from a
word. A natural language description of the task can support the model especially in the one-shot
regime. Image reprinted with kind permission of the authors [25, p. 4]

“fromage”. For one-shot or few-shot learning the model receives a task description
as well as one or more examples, e.g. “Translate English to French: sea otter =. >

loutre de mer; cheese =. >”, which helps the model to find the answer “fromage”.
This happens without training, the parameters of the model are not changed, and the
model creates the answer based on the knowledge acquired during pre-training.

In this way, GPT-3 can be instructed by natural language prompts to generate
short stories, songs, answers to questions, press releases, technical manuals, and
more [181]. It can adapt its output texts to specific styles, personalities or ideologies.
Here are some of the recommended prompts used for few-shot learning [150]:

• Summarization: the model receives a long story and the prompt “tl;dr:”.
• Grammar correction “Original: She no went to the market. Standard American

English:”
• Translation: “English: I do not speak French. French: Je ne parle pas français.

English: Where is the restroom?” French:
• Generate an outline for an essay: “Create an outline for an essay about Walt

Disney and his contributions to animation:
I: Introduction”

Figure 3.22 shows the accuracy of “few-shot learning” for different GPT-3 model
sizes and different numbers of given examples.

In a comprehensive survey Liu et al. [125] compile approaches to prompt design
to create prompts for language models that reliably generate the desired response.
For example, when we want to recognize the sentiment of the text “I missed the

142 3 Improving Pre-trained Language Models

bus today.”, we may insert the prompt “I felt so ”, and use the language model to
replace the blank. There are two types of prompts: cloze prompts [159], which fill in
the blanks of a textual string by an autoencoder model similar to BERT, and prefix
prompts [117], which continue a text by an autoregressive language model.

For prompt mining [96], for instance, a large number of sentences with phrases x
and y are collected. Subsequently, prompts are generated using the words between
x and y, or on the dependency path generated by parser. Another approach is
based on paraphrasing existing prompts, for instance by translation to another
language and back-translation. The probability of desired answers may be increased
by gradient-based search [192] as demonstrated with the AutoPrompt model.
Alternative approaches are described in [62, 245]. It should be noted, however, that
the output of a model instructed with few-shot prompts can be easily altered if an
adversary adds some new prompts [79].

Instead of improving prompt tokens, which generate a desired output by the
language model, one can optimize the input embeddings of some “virtual” tokens,
such that the desired answer is created. The embeddings of this “continuous” prompt
can be optimized by gradient descent while keeping the parameters of the language
model fixed [121]. Lester et al. [117] apply this approach with a continuous prompt
sequence of 100 tokens to the T5 transformer. On the SuperGLUE benchmark they
achieve the same performance of 90.5% as for fine-tuning T5. This demonstrates
that prompt tuning becomes competitive with fine-tuning and is much better than
few-shot instructions. Note that the effort for prompt tuning is much lower than for
fine-tuning, as the number of parameters is much smaller. It would be interesting to
see this technique applied to recent autoregressive models like GPT-3 or PaLM.

3.6.4 Thought Chains for Few-Shot Learning of Reasoning

To improve the reasoning capabilities of language models, prompts can contain a
chain of thought, a sequence of short sentences that imitate the reasoning process
a person might have when answering a question [226]. Two examples are shown
in Fig. 2.21. The idea is that a chain of thought allows language models to split a
multistep problem into intermediate steps that are solved one at a time, rather than
solving an entire multistep problem in a single pass.

The approach has a number of advantages. First, the chain-of-thought approach
enables a model to decompose complex reasoning tasks into simpler intermediate
steps, which can be solved by the model. To solve an entire class of problems, only
a few chains of thought need to be provided. Second, when a model performs the
intermediate steps, it is easier to check where the model has introduced an error. This
may give a clue how to improve the chain of thought. Chain of thought reasoning
can be applied to symbolic manipulation, common sense reasoning and math tasks,
and is potentially applicable to any task that humans can solve via language.

Prompts also do not need to be restricted to input-output pairs or explanations
and can cover many arguments, including things to avoid, rules of thumb, reasoning

3.6 Fine-Tuning for Specific Applications 143

chains, positive or negative examples. Mishra et al. [138] consider instructions
for crowdworkers, which contain very detailed prescriptions how to solve a task.
They compile a dataset of tasks, instructions and generated input-output pairs.
Subsequently, they investigate how well models are able to generalize to similar
tasks. The results show that PLMs benefit from instructions when evaluated in terms
of generalization to unseen tasks (19% improvement). However, there is much room
for improvement.

Du et al. [52] investigate few-shot learning theoretically. They investigate the
case that a model is pre-trained on a number of tasks with a large training set and
subsequently fine-tuned on a related task. They theoretically derive bounds on the
required sample size for the fine-tuning task, which can be reduced when there is a
good common representation.

3.6.5 Fine-Tuning Models to Execute Instructions

Instead of querying autoregressive PLMs by few-shot instructions it is possible to
fine-tune these models to execute instructions without additional examples.

InstructGPT [151] is a new version of GPT-3. It is optimized to follow
instructions instead of predicting the probable next words. Instead of needing a
series of examples, GPT-3 now directly executes an instruction, e.g. “Write a short
story about the moon and the stars:”, and the model generates a plausible story. In
a first trial a dataset of 13k pairs of instructions and completions was collected
to adapt GPT-3. GPT-3 was fine-tuned using this data. However, the model did
not adequately match the intended human preferences. Therefore, the model was
modified using a different training approach.

To adjust GPT-3 a reinforcement learning approach with human feedback was
used. The proximal policy optimization (PPO) [186] follows the policy gradient
pattern. It approximates the conditional distribution .π(at |st ;w) of actions . at ∈ A
at step t conditional to the current observation .st ∈ S about the state of the
environment and a vector . w of parameters. In usual reinforcement learning, the
environment generates a reward and the algorithm tries to maximize the weighted
sum of rewards. The gradient for this optimization (policy gradient) can be easily
computed from the model. PPO computes an update at each step that minimizes
the cost function while ensuring the deviation from the previous policy is relatively
small [186].

The algorithm needs a numeric score to measure the quality of each generated
sequence. To reduce the data necessary for optimization, a human can express
preferences [198] between trajectories .τ = (y, x) for pairs of instructions . x and
generated text . y. Informally, the goal is to produce trajectories which are preferred
by the human, while querying the human as little as possible. To achieve this
goal, a reward function .r(y, x) ∈ R is postulated [36] with the property that
.(y[1], x[1]) is preferred to .(y[2], x[2]) if .r(y[1], x[1]) > r(y[2], x[2]). The original
policy .π(at |st ;w) induces a conditional distribution .π(y|x;w). To construct this,

144 3 Improving Pre-trained Language Models

Fig. 3.23 InstructGPT is trained in three steps [151, p. 3]. First GPT-3 is fine-tuned on instructions
and the corresponding completions. Then a reward model is generated by optimizing the selection
of a completion for an instruction. Finally, a policy is trained to generate token by token of the
answer with maximal reward. Credits for image parts in Table A.1

the reward function .r(y, x) is approximated by a deep neural network . ̂r(y, x;u)

with parameter . u. The network is trained by three alternating steps (Fig. 3.23):

1. The policy .π(y|x;w) is used to generate set of trajectories .{τ 1, . . . , τ i}. The
parameter . w is updated by reinforcement learning in order to maximize the
reward .r̂(y, x;u).

2. Pairs of trajectories .(σ [1], σ [2]) from the .{τ 1, . . . , τ i} are selected and submitted
to a human for comparison.

3. The parameters . u of the reward function .r̂(y, x;u) are optimized to correspond
to the comparisons collected from the human up to now.

For a set of 33k instructions, a reward model .r̂(y, x;u) was built with 6B
parameters, where . x is the instruction and . y a completion [198]. It selects the best
completion from a small set of proposed completions. Proximal policy optimization
(PPO) was used as reinforcement model [151, p. 41]. To avoid catastrophic
forgetting (Sect. 3.6.1), pre-training samples were mixed into fine-tuning.

The reward model was then applied to create a final model by another reinforce-
ment learning step. During this process, InstructGPT generates a completion for
an instruction. The reward model calculates a reward and the policy is updated to
approximate the preferences encoded in the reward model. By mimicking human
utterances, the model implicitly learns human intentions and preferences. This
process is called alignment to human preferences and is extensively discussed by
Askell et al. [5].

3.6 Fine-Tuning for Specific Applications 145

InstructGPT Results

The GPT-3 model with 175B parameters fined-tuned in a supervised way to the 13k
instruction-completion examples was taken as the base model called SFT. The final
completions were again scored by human raters [151]. The InstructGPT completions
were preferred to the standard GPT-3 output in 85% of cases and to few-shot-GPT-3
in 71% of cases.

Specifically, raters found that InstructGPT attempts to follow the correct instruc-
tion in 92% of cases, compared to 85% for SFT and 75% for few-shot GPT-3
[151, p. 53]. In addition, InstructGPT follows explicit constraints in 50% of the
cases, compared to 43% for SFT and 34% for SFT and 28% for few-shot GPT-
3. Hallucinations were observed for 20% of the cases for InstructGPT compared
to 16% for SFT and 50% for few-shot GPT-3. Finally, the raters found that the
language use is appropriate for a customer assistant in 92% of the cases for
InstructGPT, about 90% for SFT and about 85% for GPT-3 few-shot. InstructGPT
was also evaluated on a few natural language benchmarks where it achieved very
similar results to GPT-3 [151, p. 56].

It turned out that InstructGPT is able to generalize to unseen labeler preferences.
Thus, InstructGPT does not simply adapt to the preferences of a few training label-
ers. In addition, InstructGPT produces slightly less toxic language than standard
GPT-3. However, InstructGPT still makes simple mistakes, e.g., given an instruction
with a false premise, the model sometimes incorrectly assumes the premise is true.
Note that the results depend on the subjective preferences of the labelers.

Comparisons between alternatives are not necessarily the most effective
approach to generate an improvement signal. For example, one could ask labelers to
edit model responses to make them better, or generate critiques of model responses
in natural language. There is also a vast space of options for designing interfaces
for labelers to provide feedback to language models; this is an interesting human-
computer interaction problem. The authors note that the cost of aligning GPT-3 to
human preferences described above is just 1.6% of the cost spent to train GPT-3.
Therefore, it seems to make sense to put more effort into alignment than into the
mere enlargement of the models.

The results show that the InstructGPT techniques potentially make language
models more helpful, truthful, and harmless. In a way InstructGPT works like an
intelligent assistant for speech generation and information provision. However, the
model is currently not fit for use in safety-critical applications, because failures
cannot be ruled out. What is still missing is a comprehensive evaluation similar to
Gopher or PaLM (Sect. 3.1.2) that shows the real utility of this approach. It can be
expected that the combination of this approach with retrieval techniques as used
for WebGPT (Sect. 6.2.3) and Retro (Sect. 6.2.3) will increase the performance,
reliability, and correctness of InstructGPT.

146 3 Improving Pre-trained Language Models

Fig. 3.24 FLAN instruction tuning fine-tunes a pre-trained language models on a set of tasks with
instructions of ten different templates (left). The trained model can be applied to unseen tasks by
formulating prompts according to these templates (right). Image adapted from [227, p. 1] with kind
permission of the authors

Instruction Tuning with FLAN

FLAN [227] uses instruction tuning to improve the ability of the language model
to respond to natural language prompts. The language model has to learn through
supervision to perform tasks described by prompts, and to follow instructions,
even for unfamiliar tasks (Fig. 3.24). The authors group 62 publicly available NLP
datasets into twelve task clusters, e.g. “sentiment” “natural language inference”,
“summarization”, etc. For each of the datasets they compose ten templates describ-
ing the task in natural language. Then an existing language model is fine-tuned to
provide better answers to the prompts.

The approach was applied to a LaMDA-PT language model with 137B param-
eters using retrieval and filters (Sect. 6.6.3). For 18 NLI tasks the FLAN model
was compared to LaMDA-PT 137B, GPT-3 175B, and GLaM 64B. In 14 of 18
cases FLAN substantially improved the performance of its unmodified counterpart
and achieved better results than the competitors, while in 4 cases it was surpassed
by GLaM [227]. FLAN even outperforms few-shot GPT-3 by a large margin on a
number of tasks.

3.6.6 Generating Labeled Data by Foundation Models

The performance of GPT-3 and other Foundation Models in few-shot learning
enables the generation of new high-quality training data for other models. By
Unsupervised Data Generation (UDG) the creation of fine-tuning data for models
of downstream tasks is possible that would otherwise be produced by manual human
annotation. This approach is similar to Sect. 4.2.3.

3.6 Fine-Tuning for Specific Applications 147

Fig. 3.25 New data can be generated by GPT-3 and other Foundation Models using the few-shot
UDG strategy. Here the prompts for two examples, Amazon reviews and Copa common sense
reasoning, and the generated answers are shown [225]

The idea for data generation is to utilize the language model to learn the input-
label relation based on the task description and a few sample input-label pairs [225].
Instead of generating and predicting a label for a classification task the language
model has to create the input text using the output class and a task description as
input. For a classification task like product reviews on Amazon, the approach is able
to produce 10k new examples for each class, covering a much larger spectrum as
the currently available labeled data. It turns out that up to 32 few-shot examples still
increase the quality of the generated training data. Examples are shown in Fig. 3.25.
The authors use an additional module to filter out noisy examples. In this approach,
a given training example is removed if the trained classifier does not match its label
with high probability.

The T5-XXL encoder-decoder model fine-tuned on SuperGLUE data enhanced
with UDG data is able to improve the overall accuracy on the SuperGLUE task for
natural language understanding to 90.4% and is even able to beat DeBERTa with
90.3%. Moreover, the approach achieves very high performance scores on a list of
text classification and sentiment analysis tasks [225].

3.6.7 Summary

When pre-training Foundation Models on a big text collection and subsequent
supervised fine-tuning on a small labeled dataset, PLMs achieved unprecedented
performance on many NLP tasks. Fine-tuning has been shown to change model
parameters only slightly and, in general, no catastrophic forgetting occurs. Usually,
no overfitting is observed if fine-tuning is stopped after a few epochs. If necessary,
there are some approaches to avoid overfitting.

Fine-tuning can be performed in different ways. It has been suggested to use an
intermediate fine-tuning with a more related dataset before the final fine-tuning on

148 3 Improving Pre-trained Language Models

the small dataset takes place. The results of such approaches have been mixed. Also,
simultaneous fine-tuning to several tasks is possible. In some cases, it could improve
performance. As an alternative, there are strategies to accelerate fine-tuning by
meta-learning. To avoid that the full model is changed adapter layers can be defined,
and only their parameters are adapted. This can drastically reduce the number of
trainable parameters and nevertheless lead to good performance on the fine-tuning
tasks. Finally, fine-tuning APIs have been recently provided for proprietary models
like GPT-3.

Foundation Models like GPT-3 and PaLM can be instructed by prompts to
solve specific tasks without training. A large number of different prompts has been
collected to order the model to complete a task. InstructGPT is a new version of
GPT-3 that directly takes instructions and provides the answers for a large spectrum
of tasks. The model was customized to carry out the instructions by adapting to user
judgments through reinforcement learning. Instruction tuning is a variant, where a
Foundation Model is fine-tuned to provide improved answers to instructions for a
number of tasks. It turns out that afterwards the model generates better answers even
for unseen tasks.

Finally, big language models may be employed to generate high-quality training
data for fine-tuning. Again, the few-shot learning technique is used to generate input
texts for specific learning tasks. In this way, the scarce training data can be expanded
and better fine-tuning results can be achieved.

References

1. O. Agarwal, H. Ge, S. Shakeri, and R. Al-Rfou. “Knowledge Graph Based Synthetic Corpus
Generation for Knowledge-Enhanced Language Model Pre-training”. Mar. 13, 2021. arXiv:
2010.12688.

2. A. Aghajanyan, A. Shrivastava, A. Gupta, N. Goyal, L. Zettlemoyer, and S. Gupta. “Better
Fine-Tuning by Reducing Representational Collapse”. Aug. 6, 2020. arXiv: 2008.03156.

3. J. Ainslie, S. Ontanon, C. Alberti, P. Pham, A. Ravula, and S. Sanghai. “ETC: Encoding Long
and Structured Data in Transformers”. 2020. arXiv: 2004.08483.

4. A. Alvi. Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, the World
fs Largest and Most Powerful Generative Language Model. Microsoft Research. Oct. 11,
2021. URL: https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-
to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-
language-model/ (visited on 11/12/2021).

5. A. Askell et al. “A General Language Assistant as a Laboratory for Alignment”. Dec. 9, 2021.
arXiv: 2112.00861 [cs].

6. T. Bansal, R. Jha, T. Munkhdalai, and A. McCallum. “Self-Supervised Meta-Learning for
Few-Shot Natural Language Classification Tasks”. 2020. arXiv: 2009.08445.

7. Y. Bansal, G. Kaplun, and B. Barak. “For Self-Supervised Learning, Rationality Implies
Generalization, Provably”. 2020. arXiv: 2010.08508.

8. H. Bao et al. “Unilmv2: Pseudo-masked Language Models for Unified Language Model Pre-
Training”. In: Int. Conf. Mach. Learn. PMLR, 2020, pp. 642–652.

9. A. Bapna et al. Building Machine Translation Systems for the Next Thousand Languages.
May 16, 2022. arXiv: 2205.03983 [cs].

10. I. Beltagy, M. E. Peters, and A. Cohan. “Longformer: The Long-Document Transformer”.
2020. arXiv: 2004.05150.

https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

References 149

11. benchmark. GLUE Benchmark. Aug. 5, 2021. URL: https://gluebenchmark.com/ (visited on
08/05/2021).

12. Y. Bengio, A. Courville, and P. Vincent. “Representation Learning: A Review and New
Perspectives”. In: IEEE Trans. Pattern Anal. Mach. Intell. 35.8 (2013), pp. 1798–1828.

13. J. Berant, A. Chou, R. Frostig, and P. Liang. “Semantic Parsing on Freebase from Question-
Answer Pairs”. In: Proc. 2013 Conf. Empir. Methods Nat. Lang. Process. EMNLP 2013.
Seattle, Washington, USA: Association for Computational Linguistics, Oct. 2013, pp. 1533–
1544. URL: https://aclanthology.org/D13-1160 (visited on 12/14/2021).

14. M. Bevilacqua and R. Navigli. “Breaking through the 80% Glass Ceiling: Raising the State
of the Art in Word Sense Disambiguation by Incorporating Knowledge Graph Information”.
In: Proc Assoc. Comput. Linguist. 2020, pp. 2854–2864.

15. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann.
“DBpedia-A Crystallization Point for the Web of Data”. In: J. Web Semant. 7.3 (2009),
pp. 154–165.

16. S. Black, G. Leo, P. Wang, C. Leahy, and S. Biderman. GPT-Neo: Large Scale Autoregressive
Language Modeling with Mesh-Tensorflow. Zenodo, Mar. 21, 2021. https://doi.org/10.5281/
zenodo.5297715.

17. O. Bojar et al. “Findings of the 2014 Workshop on Statistical Machine Translation”. In: Proc.
Ninth Workshop Stat. Mach. Transl. 2014, pp. 12–58.

18. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. “Freebase: A Collaboratively
Created Graph Database for Structuring Human Knowledge”. In: Proc. 2008 ACM SIGMOD
Int. Conf. Manag. Data. 2008, pp. 1247–1250.

19. R. Bommasani et al. “On the Opportunities and Risks of Foundation Models”. 2021. arXiv:
2108.07258.

20. A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. “Translating
Embeddings for Modeling Multi-Relational Data”. In: Adv. Neural Inf. Process. Syst. 26
(2013), pp. 2787–2795.

21. S. Borgeaud et al. “Improving Language Models by Retrieving from Trillions of Tokens”.
Dec. 8, 2021. arXiv: 2112.04426 [cs].

22. A. Borzunov et al. Petals: Collaborative Inference and Fine-tuning of Large Models. Sept. 2,
2022. https://doi.org/10.48550/2209.01188. arXiv: 2209.01188 [cs].

23. G. Branwen. “GPT-3 Creative Fiction”. In: (June 19, 2020). URL: https://www.gwern.net/
GPT-3 (visited on 11/14/2021).

24. S. Brin and L. Page. “The Anatomy of a Large-Scale Hypertextual Web Search Engine”. In:
Comput. Netw. ISDN Syst. 30.1-7 (1998), pp. 107–117.

25. T. B. Brown et al. “Language Models Are Few-Shot Learners”. 2020. arXiv: 2005.14165.
26. J. Casper. What Is This Fork of Megatron-LM and Megatron-DeepSpeed. BigScience Work-

shop, Oct. 25, 2022. URL: https://github.com/bigscience-workshop/Megatron-DeepSpeed
(visited on 10/25/2022).

27. D. Chen. Openqa-Tutorial Danqi/Acl2020. July 5, 2020. URL: https://github.com/danqi/
acl2020-openqa-tutorial (visited on 02/24/2021).

28. Q. Chen, C. Shui, and M. Marchand. “Generalization Bounds For Meta-Learning: An
Information-Theoretic Analysis”. In: Adv. Neural Inf. Process. Syst. 34 (2021).

29. T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, and M. Carbin. “The Lottery Ticket
Hypothesis for Pre-Trained Bert Networks”. 2020. arXiv: 2007.12223.

30. W. Chen, Y. Su, X. Yan, and W. Y. Wang. “KGPT: Knowledge-Grounded Pre-Training for
Data-to-Text Generation”. 2020. arXiv: 2010.02307.

31. Z. Chi, L. Dong, S. Ma, S. H. X.-L. Mao, H. Huang, and F. Wei. “mT6: Multilingual
Pretrained Text-to-Text Transformer with Translation Pairs”. 2021. arXiv: 2104.08692.

32. Z. Chi, L. Dong, F. Wei, W. Wang, X.-L. Mao, and H. Huang. “Cross-Lingual Natural
Language Generation via Pre-Training.” In: AAAI. 2020, pp. 7570–7577.

33. R. Child, S. Gray, A. Radford, and I. Sutskever. “Generating Long Sequences with Sparse
Transformers”. 2019. arXiv: 1904.10509.

34. K. Choromanski et al. “Rethinking Attention with Performers”. 2020. arXiv: 2009.14794.

https://gluebenchmark.com/
https://gluebenchmark.com/
https://gluebenchmark.com/
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.48550/2209.01188
https://doi.org/10.48550/2209.01188
https://doi.org/10.48550/2209.01188
https://doi.org/10.48550/2209.01188
https://doi.org/10.48550/2209.01188
https://doi.org/10.48550/2209.01188
https://doi.org/10.48550/2209.01188
https://www.gwern.net/GPT-3
https://www.gwern.net/GPT-3
https://www.gwern.net/GPT-3
https://www.gwern.net/GPT-3
https://www.gwern.net/GPT-3
https://www.gwern.net/GPT-3
https://github.com/bigscience-workshop/Megatron-DeepSpeed
https://github.com/bigscience-workshop/Megatron-DeepSpeed
https://github.com/bigscience-workshop/Megatron-DeepSpeed
https://github.com/bigscience-workshop/Megatron-DeepSpeed
https://github.com/bigscience-workshop/Megatron-DeepSpeed
https://github.com/bigscience-workshop/Megatron-DeepSpeed
https://github.com/bigscience-workshop/Megatron-DeepSpeed
https://github.com/danqi/acl2020-openqa-tutorial
https://github.com/danqi/acl2020-openqa-tutorial
https://github.com/danqi/acl2020-openqa-tutorial
https://github.com/danqi/acl2020-openqa-tutorial
https://github.com/danqi/acl2020-openqa-tutorial
https://github.com/danqi/acl2020-openqa-tutorial
https://github.com/danqi/acl2020-openqa-tutorial

150 3 Improving Pre-trained Language Models

35. A. Chowdhery et al. “PaLM: Scaling Language Modeling with Pathways”. Apr. 5, 2022.
arXiv: 2204.02311 [cs].

36. P. F. Christiano, J. Leike, T. Brown,M.Martic, S. Legg, and D. Amodei. “Deep Reinforcement
Learning from Human Preferences”. In: Adv. Neural Inf. Process. Syst. 30 (2017).

37. H. W. Chung, T. Févry, H. Tsai, M. Johnson, and S. Ruder. “Rethinking Embedding Coupling
in Pre-Trained Language Models”. 2020. arXiv: 2010.12821.

38. A. Clark et al. “Unified Scaling Laws for Routed Language Models”. Feb. 9, 2022. arXiv:
2202.01169 [cs].

39. K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. “Electra: Pre-training Text Encoders as
Discriminators Rather than Generators”. 2020. arXiv: 2003.10555.

40. A. Conneau, G. Lample, R. Rinott, A. Williams, S. R. Bowman, H. Schwenk, and V.
Stoyanov. “XNLI: Evaluating Cross-lingual Sentence Representations”. Sept. 13, 2018.
arXiv: 1809.05053.

41. A. Conneau et al. “Unsupervised Cross-Lingual Representation Learning at Scale”. Apr. 8,
2020. arXiv: 1911.02116.

42. A. D’Amour. How Underspecification Presents Challenges for Machine Learning. Google AI
Blog. Oct. 18, 2021. URL: http://ai.googleblog.com/2021/10/how-underspecificationpresents.
html (visited on 10/25/2021).

43. Y. Dai, S. Wang, N. N. Xiong, and W. Guo. “A Survey on Knowledge Graph Embedding:
Approaches, Applications and Benchmarks”. In: Electronics 9.5 (2020), p. 750.

44. Z. Dai, Z. Yang, Y. Yang, W. W. Cohen, J. Carbonell, Q. V. Le, and R. Salakhutdinov.
“Transformer-XL: Language Modeling with Longer-Term Dependency, 2019”. In: URL
Httpsopenreview Netforum. 2019.

45. T. Dash, S. Chitlangia, A. Ahuja, and A. Srinivasan. “Incorporating Domain Knowledge into
Deep Neural Networks”. 2021. arXiv: 2103.00180.

46. L. de Alwis, A. Dissanayake, M. Pallewatte, K. Silva, and U. Thayasivam. “Survey on
Semantic Table Interpretation”. In: (July 13, 2018). URL: http://semantic-web-journal.org/
system/files/swj1946.pdf.

47. X. Deng, H. Sun, A. Lees, Y. Wu, and C. Yu. “Turl: Table Understanding through Represen-
tation Learning”. Dec. 3, 2020. arXiv: 2006.14806.

48. J. Devlin. mBERT - Multilingual BERT. GitHub. 2019. URL: https://github.com/
googleresearch/bert/blob/master/multilingual.md (visited on 02/21/2021).

49. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of Deep Bidirectional
Transformers for Language Understanding”. 2018. arXiv: 1810.04805.

50. T. Dozat and C. D. Manning. “Deep Biaffine Attention for Neural Dependency Parsing”.
2016. arXiv: 1611.01734.

51. N. Du et al. “GLaM: Efficient Scaling of Language Models with Mixture-of-Experts”. Dec.
13, 2021. arXiv: 2112.06905 [cs].

52. S. S. Du, W. Hu, S. M. Kakade, J. D. Lee, and Q. Lei. “Few-Shot Learning via Learning the
Representation, Provably”. 2020. arXiv: 2002.09434.

53. Z. Du. GLM. THUDM, Dec. 14, 2021. URL: https://github.com/THUDM/GLM (visited on
12/17/2021).

54. Z. Du, Y. Qian, X. Liu, M. Ding, J. Qiu, Z. Yang, and J. Tang. “All NLP Tasks Are Generation
Tasks: A General Pretraining Framework”. Mar. 18, 2021. arXiv: 2103.10360 [cs].

55. Z. Du, Y. Qian, X. Liu, M. Ding, J. Qiu, Z. Yang, and J. Tang. GLM: General Language Model
Pretraining with Autoregressive Blank Infilling. Nov. 1, 2021. URL: https://aclanthology.org/
2022.acl-long.26/ (visited on 12/17/2021).

56. W. Fedus, B. Zoph, and N. Shazeer. “Switch Transformers: Scaling to Trillion Parameter
Models with Simple and Efficient Sparsity”. 2021. arXiv: 2101.03961.

57. F. Feng, Y. Yang, D. Cer, N. Arivazhagan, and W. Wang. “Language-Agnostic BERT Sentence
Embedding”. July 3, 2020. arXiv: 2007.01852 [cs].

58. C. Finn, P. Abbeel, and S. Levine. “Model-Agnostic Meta-Learning for Fast Adaptation of
Deep Networks”. In: Int. Conf. Mach. Learn. PMLR, 2017, pp. 1126–1135.

http://ai.googleblog.com/2021/10/how-underspecificationpresents.html
http://ai.googleblog.com/2021/10/how-underspecificationpresents.html
http://ai.googleblog.com/2021/10/how-underspecificationpresents.html
http://ai.googleblog.com/2021/10/how-underspecificationpresents.html
http://ai.googleblog.com/2021/10/how-underspecificationpresents.html
http://ai.googleblog.com/2021/10/how-underspecificationpresents.html
http://ai.googleblog.com/2021/10/how-underspecificationpresents.html
http://ai.googleblog.com/2021/10/how-underspecificationpresents.html
http://ai.googleblog.com/2021/10/how-underspecificationpresents.html
http://semantic-web-journal.org/system/files/swj1946.pdf
http://semantic-web-journal.org/system/files/swj1946.pdf
http://semantic-web-journal.org/system/files/swj1946.pdf
http://semantic-web-journal.org/system/files/swj1946.pdf
http://semantic-web-journal.org/system/files/swj1946.pdf
http://semantic-web-journal.org/system/files/swj1946.pdf
http://semantic-web-journal.org/system/files/swj1946.pdf
http://semantic-web-journal.org/system/files/swj1946.pdf
http://semantic-web-journal.org/system/files/swj1946.pdf
https://github.com/googleresearch/bert/blob/master/multilingual.md
https://github.com/googleresearch/bert/blob/master/multilingual.md
https://github.com/googleresearch/bert/blob/master/multilingual.md
https://github.com/googleresearch/bert/blob/master/multilingual.md
https://github.com/googleresearch/bert/blob/master/multilingual.md
https://github.com/googleresearch/bert/blob/master/multilingual.md
https://github.com/googleresearch/bert/blob/master/multilingual.md
https://github.com/googleresearch/bert/blob/master/multilingual.md
https://github.com/googleresearch/bert/blob/master/multilingual.md
https://github.com/THUDM/GLM
https://github.com/THUDM/GLM
https://github.com/THUDM/GLM
https://github.com/THUDM/GLM
https://github.com/THUDM/GLM
https://aclanthology.org/2022.acl-long.26/
https://aclanthology.org/2022.acl-long.26/
https://aclanthology.org/2022.acl-long.26/
https://aclanthology.org/2022.acl-long.26/
https://aclanthology.org/2022.acl-long.26/
https://aclanthology.org/2022.acl-long.26/
https://aclanthology.org/2022.acl-long.26/

References 151

59. Q. Fournier, G. M. Caron, and D. Aloise. “A Practical Survey on Faster and Lighter
Transformers”. Mar. 26, 2021. arXiv: 2103.14636 [cs].

60. P. Ganesh et al. “Compressing Large-Scale Transformer-Based Models: A Case Study on
Bert”. 2020. arXiv: 2002.11985.

61. L. Gao et al. “The Pile: An 800GB Dataset of Diverse Text for Language Modeling”. 2020.
arXiv: 2101.00027.

62. T. Gao, A. Fisch, and D. Chen. “Making Pre-Trained Language Models Better Few-Shot
Learners”. 2020. arXiv: 2012.15723.

63. H. Gong, Y. Sun, X. Feng, B. Qin, W. Bi, X. Liu, and T. Liu. “Tablegpt: Few-shot Tableto-
Text Generation with Table Structure Reconstruction and Content Matching”. In: Proc. 28th
Int. Conf. Comput. Linguist. 2020, pp. 1978–1988.

64. M. A. Gordon, K. Duh, and N. Andrews. “Compressing BERT: Studying the Effects ofWeight
Pruning on Transfer Learning”. 2020. arXiv: 2002.08307.

65. J. Gou, B. Yu, S. Maybank, and D. Tao. “Knowledge Distillation: A Survey”. Jan. 26, 2021.
arXiv: 2006.05525.

66. N. Goyal, J. Du, M. Ott, G. Anantharaman, and A. Conneau. “Larger-Scale Transformers for
Multilingual Masked Language Modeling”. 2021. arXiv: 2105.00572.

67. A. Grover and J. Leskovec. “Node2vec: Scalable Feature Learning for Networks”. In: Proc.
22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 2016, pp. 855–864.

68. A. Gu, K. Goel, and C. Ré. “Efficiently Modeling Long Sequences with Structured State
Spaces”. 2021. arXiv: 2111.00396.

69. A. Gu, K. Goel, and C. Ré. The Annotated S4. 2021. URL: https://srush.github.io/annotateds4/
(visited on 04/05/2022).

70. A. Gupta. “Diagonal State Spaces Are as Effective as Structured State Spaces”. 2022. arXiv:
2203.14343.

71. S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy, D. Downey, and N. A.
Smith. “Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks”. 2020.
arXiv: 2004.10964.

72. K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang. “Realm: Retrieval-augmented
Language Model Pre-Training”. 2020. arXiv: 2002.08909.

73. C. Hawthorne et al. “General-Purpose, Long-Context Autoregressive Modeling with Per-
ceiver AR”. 2022. arXiv: 2202.07765.

74. J. He, J. Qiu, A. Zeng, Z. Yang, J. Zhai, and J. Tang. “FastMoE: A Fast Mixture-of-Expert
Training System”. Mar. 24, 2021. arXiv: 2103.13262 [cs].

75. P. He, J. Gao, and W. Chen. “Debertav3: Improving Deberta Using Electra-Style Pre-Training
with Gradient-Disentangled Embedding Sharing”. 2021. arXiv: 2111.09543.

76. P. He, X. Liu, J. Gao, and W. Chen. “DeBERTa: Decoding-enhanced BERT with Disentangled
Attention”. Jan. 11, 2021. arXiv: 2006.03654.

77. W. D. Heaven. This Know-It-All AI Learns by Reading the Entire Web Nonstop. MIT Technol-
ogy Review. Sept. 4, 2020. URL: https://www.technologyreview.com/2020/09/04/1008156/
knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/ (visited on
12/01/2021).

78. K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P.
Blunsom. “Teaching Machines to Read and Comprehend”. 2015. arXiv: 1506.03340.

79. A. Hern. “TechScape: AI’s Dark Arts Come into Their Own”. In: The Guardian. Technology
(Sept. 21, 2022). ISSN: 0261-3077. URL: https://www.theguardian.com/technology/2022/sep/
21/ais-dark-arts-come-into-their-own (visited on 10/01/2022).

80. D. Hernandez, J. Kaplan, T. Henighan, and S. McCandlish. “Scaling Laws for Transfer”. Feb.
1, 2021. arXiv: 2102.01293 [cs].

81. J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, and J. M. Eisenschlos. “Tapas: Weakly
Supervised Table Parsing via Pre-Training”. 2020. arXiv: 2004.02349.

82. G. Hinton, O. Vinyals, and J. Dean. “Distilling the Knowledge in a Neural Network”. 2015.
arXiv: 1503.02531.

https://srush.github.io/annotateds4/
https://srush.github.io/annotateds4/
https://srush.github.io/annotateds4/
https://srush.github.io/annotateds4/
https://srush.github.io/annotateds4/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.technologyreview.com/2020/09/04/1008156/knowledge-graph-ai-reads-web-machine-learning-natural-language-processing/
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own
https://www.theguardian.com/technology/2022/sep/21/ais-dark-arts-come-into-their-own

152 3 Improving Pre-trained Language Models

83. J. Hoffmann et al. “Training Compute-Optimal Large Language Models”. 2022. arXiv:
2203.15556.

84. N. Houlsby et al. “Parameter-Efficient Transfer Learning for NLP”. In: Int. Conf. Mach.
Learn. PMLR, 2019, pp. 2790–2799.

85. E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, and W. Chen. “LoRA: Low- Rank
Adaptation of Large Language Models”. 2021. arXiv: 2106.09685.

86. J. Hu, S. Ruder, A. Siddhant, G. Neubig, O. Firat, and M. Johnson. “Xtreme: A Massively
Multilingual Multi-Task Benchmark for Evaluating Cross-Lingual Generalisation”. In: Int.
Conf. Mach. Learn. PMLR, 2020, pp. 4411–4421.

87. Z. Hu, Y. Dong, K. Wang, K.-W. Chang, and Y. Sun. “Gpt-Gnn: Generative Pre-Training of
Graph Neural Networks”. In: Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
2020, pp. 1857–1867.

88. H. Huang, Y. Liang, N. Duan, M. Gong, L. Shou, D. Jiang, and M. Zhou. “Unicoder: A
Universal Language Encoder by Pre-Training with Multiple Cross-Lingual Tasks”. 2019.
arXiv: 1909.00964.

89. A. Iyer. GPT-3’s Free Alternative GPT-Neo Is Something to Be Excited About. Venture- Beat.
May 15, 2021. URL: https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-
something-to-be-excited-about/ (visited on 01/03/2022).

90. M. Iyyer, W.-t. Yih, and M.-W. Chang. “Search-Based Neural Structured Learning for
Sequential Question Answering”. In: Proc. 55th Annu. Meet. Assoc. Comput. Linguist. Vol. 1
Long Pap. 2017, pp. 1821–1831.

91. G. Izacard and E. Grave. “Leveraging Passage Retrieval with Generative Models for
Open Domain Question Answering”. In: Proc. 16th Conf. Eur. Chapter Assoc. Comput.
Linguist. Main Vol. EACL 2021. Online: Association for Computational Linguistics, Apr.
1, 2021, pp. 874–880. URL: https://www.aclweb.org/anthology/2021.eacl-main.74 (visited on
06/16/2021).

92. A. Jaegle, F. Gimeno, A. Brock, A. Zisserman, O. Vinyals, and J. Carreira. “Perceiver: General
Perception with Iterative Attention”. June 22, 2021. arXiv: 2103.03206 [cs, eess].

93. A. Jaegle et al. “Perceiver IO: A General Architecture for Structured Inputs & Outputs”. Aug.
2, 2021. arXiv: 2107.14795.

94. S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip. “A Survey on Knowledge Graphs:
Representation, Acquisition, and Applications”. In: IEEE Trans. Neural Netw. Learn. Syst.
(2021).

95. H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and T. Zhao. “SMART: Robust and Efficient
Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized
Optimization”. In: Proc. 58th Annu. Meet. Assoc. Comput. Linguist. ACL 2020. Online:
Association for Computational Linguistics, July 2020, pp. 2177–2190. https://doi.org/10.
18653/v1/2020.acl-main.197.

96. Z. Jiang, F. F. Xu, J. Araki, and G. Neubig. “How Can We Know What Language Models
Know?” In: Trans. Assoc. Comput. Linguist. 8 (2020), pp. 423–438.

97. X. Jiao et al. “Tinybert: Distilling Bert for Natural Language Understanding”. 2019. arXiv:
1909.10351.

98. M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy. “Spanbert: Improving
Pre-Training by Representing and Predicting Spans”. In: Trans. Assoc. Comput. Linguist. 8
(2020), pp. 64–77.

99. M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer. “Triviaqa: A Large Scale Distantly
Supervised Challenge Dataset for Reading Comprehension”. 2017. arXiv: 1705.03551.

100. D. Jurafsky and J. H. Martin. Speech and Language ProcessingAn Introduction to Natural
Language Processing,Computational Linguistics, and Speech Recognition. 3rd Draft. Jan. 12,
2022.

101. R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems”. In: (1960).
102. J. Kaplan et al. “Scaling Laws for Neural Language Models”. 2020. arXiv: 2001.08361.
103. V. Karpukhin, B. Oğuz, S. Min, L. Wu, S. Edunov, D. Chen, and W.-t. Yih. “Dense Passage

Retrieval for Open-Domain Question Answering”. 2020. arXiv: 2004.04906.

https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gptneo-is-something-to-be-excited-about/
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://doi.org/10.18653/v1/ 2020.acl-main.197
https://doi.org/10.18653/v1/ 2020.acl-main.197
https://doi.org/10.18653/v1/ 2020.acl-main.197
https://doi.org/10.18653/v1/ 2020.acl-main.197
https://doi.org/10.18653/v1/ 2020.acl-main.197
https://doi.org/10.18653/v1/ 2020.acl-main.197
https://doi.org/10.18653/v1/ 2020.acl-main.197
https://doi.org/10.18653/v1/ 2020.acl-main.197
https://doi.org/10.18653/v1/ 2020.acl-main.197
https://doi.org/10.18653/v1/ 2020.acl-main.197

References 153

104. K. Karthikeyan, Z. Wang, S. Mayhew, and D. Roth. “Cross-Lingual Ability of Multilingual
BERT: An Empirical Study”. Feb. 15, 2020. arXiv: 1912.07840.

105. A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. “Transformers Are Rnns: Fast
Autoregressive Transformers with Linear Attention”. In: Int. Conf. Mach. Learn. PMLR,
2020, pp. 5156–5165.

106. P. Kharya and A. Alvi. Using DeepSpeed and Megatron to Train Megatron-Turing NLG
530B, the World’s Largest and Most Powerful Generative Language Model. NVIDIA
Developer Blog. Oct. 11, 2021. URL: https://developer.nvidia.com/blog/using-deepspeed-
andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-
generativelanguage-model/ (visited on 01/08/2022).

107. T. N. Kipf and M. Welling. “Semi-Supervised Classification with Graph Convolutional
Networks”. 2016. arXiv: 1609.02907.

108. N. Kitaev, L. Kaiser, and A. Levskaya. “Reformer: The Efficient Transformer”. 2020. arXiv:
2001.04451.

109. T. Kwiatkowski et al. “Natural Questions: A Benchmark for Question Answering Research”.
In: Trans. Assoc. Comput. Linguist. 7 (2019), pp. 453–466.

110. G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy. “Race: Large-scale Reading Comprehension
Dataset from Examinations”. 2017. arXiv: 1704.04683.

111. G. Lample and A. Conneau. “Cross-Lingual Language Model Pretraining”. 2019. arXiv:
1901.07291.

112. G. Lample, A. Sablayrolles, M. Ranzato, L. Denoyer, and H. Jégou. “Large Memory Layers
with Product Keys”. 2019. arXiv: 1907.05242.

113. Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. “Albert: A Lite BERT
for Self-Supervised Learning of Language Representations”. 2020. arXiv: 1909.11942.

114. J. Lee, M. Sung, J. Kang, and D. Chen. “Learning Dense Representations of Phrases at Scale”.
Jan. 2, 2021. arXiv: 2012.12624.

115. O. Lehmberg, D. Ritze, R. Meusel, and C. Bizer. “A Large Public Corpus of Web Tables
Containing Time and Context Metadata”. In: Proc. 25th Int. Conf. Companion World Wide
Web. 2016, pp. 75–76.

116. D. Lepikhin et al. “Gshard: Scaling Giant Models with Conditional Computation and
Automatic Sharding”. 2020. arXiv: 2006.16668.

117. B. Lester, R. Al-Rfou, and N. Constant. “The Power of Scale for Parameter-Efficient Prompt
Tuning”. 2021. arXiv: 2104.08691.

118. M. Lewis, M. Ghazvininejad, G. Ghosh, A. Aghajanyan, S. Wang, and L. Zettlemoyer. “Pre-
Training via Paraphrasing”. 2020. arXiv: 2006.15020.

119. M. Lewis et al. “Bart: Denoising Sequence-to-Sequence Pre-Training for Natural Language
Generation, Translation, and Comprehension”. 2020. arXiv: 1910.13461.

120. P. Li et al. “An Effective Self-Supervised Framework for Learning Expressive Molecular
Global Representations to Drug Discovery”. In: Brief Bioinform 22.6 (Nov. 5, 2021),
bbab109. ISSN: 1477-4054. https://doi.org/10.1093/bib/bbab109. pmid: 33940598.

121. X. L. Li and P. Liang. “Prefix-Tuning: Optimizing Continuous Prompts for Generation”. 2021.
arXiv: 2101.00190.

122. O. Lieber, O. Sharir, B. Lentz, and Y. Shoham. “Jurassic-1: Technical Details and Evalua-
tion”. In: (2021), p. 9. URL: https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/
61138924626a6981ee09caf6_jurassic_tech_paper.pdf.

123. R. Lim, M. Wu, and L. Miller. Customizing GPT-3 for Your Application. OpenAI. Dec. 14,
2021. URL: https://openai.com/blog/customized-gpt-3/ (visited on 02/16/2022).

124. X. V. Lin, R. Socher, and C. Xiong. “Bridging Textual and Tabular Data for Cross-Domain
Text-to-Sql Semantic Parsing”. 2020. arXiv: 2012.12627.

125. P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig. “Pre-Train, Prompt, and Predict:
A Systematic Survey of Prompting Methods in Natural Language Processing”. 2021. arXiv:
2107.13586.

126. Y. Liu et al. “Multilingual Denoising Pre-Training for Neural Machine Translation”. 2020.
arXiv: 2001.08210.

https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://developer.nvidia.com/blog/using-deepspeed-andmegatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generativelanguage-model/
https://doi.org/10.1093/bib/bbab109
https://doi.org/10.1093/bib/bbab109
https://doi.org/10.1093/bib/bbab109
https://doi.org/10.1093/bib/bbab109
https://doi.org/10.1093/bib/bbab109
https://doi.org/10.1093/bib/bbab109
https://doi.org/10.1093/bib/bbab109
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://openai.com/blog/customized-gpt-3/
https://openai.com/blog/customized-gpt-3/
https://openai.com/blog/customized-gpt-3/
https://openai.com/blog/customized-gpt-3/
https://openai.com/blog/customized-gpt-3/
https://openai.com/blog/customized-gpt-3/
https://openai.com/blog/customized-gpt-3/

154 3 Improving Pre-trained Language Models

127. Y. Liu et al. “Roberta: A Robustly Optimized Bert Pretraining Approach”. 2019. arXiv:
1907.11692.

128. Y. Liu, S. Pan, M. Jin, C. Zhou, F. Xia, and P. S. Yu. “Graph Self-Supervised Learning: A
Survey”. 2021. arXiv: 2103.00111.

129. F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf, and O. Bachem.
“Challenging Common Assumptions in the Unsupervised Learning of Disentangled Repre-
sentations”. In: Int. Conf. Mach. Learn. PMLR, 2019, pp. 4114–4124.

130. A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. “Learning Word Vectors
for Sentiment Analysis”. In: Proc. 49th Annu. Meet. Assoc. Comput. Linguist. Hum. Lang.
Technol. 2011, pp. 142–150.

131. D. Mahajan et al. “Identification of Semantically Similar Sentences in Clinical Notes: Iterative
Intermediate Training Using Multi-Task Learning”. In: JMIR Med. Inform. 8.11 (2020),
e22508.

132. S. McCandlish, J. Kaplan, D. Amodei, and O. D. Team. “An Empirical Model of Large-Batch
Training”. 2018. arXiv: 1812.06162.

133. A. Merchant, E. Rahimtoroghi, E. Pavlick, and I. Tenney. “What Happens To BERT
Embeddings During Fine-tuning?” Apr. 29, 2020. arXiv: 2004.14448.

134. S. Merity, C. Xiong, J. Bradbury, and R. Socher. “Pointer Sentinel Mixture Models”. 2016.
arXiv: 1609.07843.

135. T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient Estimation of Word Representations
in Vector Space”. 2013. arXiv: 1301.3781.

136. T. Mikolov and G. Zweig. “Context Dependent Recurrent Neural Network Language Model”.
In: 2012 IEEE Spok. Lang. Technol. Workshop SLT. IEEE, 2012, pp. 234–239.

137. G. A. Miller. “WordNet: A Lexical Database for English”. In: Commun. ACM 38.11 (1995),
pp. 39–41.

138. S. Mishra, D. Khashabi, C. Baral, and H. Hajishirzi. “Cross-Task Generalization via Natural
Language Crowdsourcing Instructions”. Mar. 14, 2022. arXiv: 2104.08773 [cs].

139. M. Mitchell. BigScience Large Open-science Open-access Multilingual Language Model.
July 6, 2022. URL: https://huggingface.co/bigscience/bloom (visited on 10/25/2022).

140. M. Mosbach, M. Andriushchenko, and D. Klakow. “On the Stability of Fine-Tuning Bert:
Misconceptions, Explanations, and Strong Baselines”. Mar. 25, 2021. arXiv: 2006.04884.

141. A. Mulyar, O. Uzuner, and B. McInnes. “MT-clinical BERT: Scaling Clinical Information
Extraction with Multitask Learning”. In: J. Am. Med. Inform. Assoc. 28.10 (2021), pp. 2108–
2115.

142. S. Narang et al. “Do Transformer Modifications Transfer Across Implementations and
Applications?” Sept. 10, 2021. arXiv: 2102.11972 [cs].

143. S. Narayan, S. B. Cohen, and M. Lapata. “Don’t Give Me the Details, Just the Summary!
Topic-Aware Convolutional Neural Networks for Extreme Summarization”. In: Proc. 2018
Conf. Empir. Methods Nat. Lang. Process. EMNLP 2018. Brussels, Belgium: Association
for Computational Linguistics, Oct. 2018, pp. 1797–1807. https://doi.org/10.18653/v1/D18-
1206.

144. M. Nayyeri, S. Vahdati, C. Aykul, and J. Lehmann. “5* Knowledge Graph Embeddings with
Projective Transformations”. 2020. arXiv: 2006.04986.

145. M. Nickel, V. Tresp, and H.-P. Kriegel. “A Three-Way Model for Collective Learning on
Multi-Relational Data”. In: Icml. 2011.

146. Y. Nie, A. Williams, E. Dinan, M. Bansal, J. Weston, and D. Kiela. “Adversarial Nli: A New
Benchmark for Natural Language Understanding”. 2019. arXiv: 1910.14599.

147. S. J. Nowlan and G. E. Hinton. “Evaluation of Adaptive Mixtures of Competing Experts.” In:
NIPS. Vol. 3. 1990, pp. 774–780.

148. A. van den Oord et al. “Wavenet: A Generative Model for Raw Audio”. 2016. arXiv:
1609.03499.

149. OpenAi. OpenAI API. 2021. URL: https://beta.openai.com (visited on 11/14/2021).
150. OpenAi. Prompt Examples for GPT-3. Sept. 3, 2021. URL: https://beta.openai.com/examples

(visited on 09/03/2021).

https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://beta.openai.com
https://beta.openai.com
https://beta.openai.com
https://beta.openai.com
https://beta.openai.com/examples
https://beta.openai.com/examples
https://beta.openai.com/examples
https://beta.openai.com/examples
https://beta.openai.com/examples

References 155

151. L. Ouyang et al. “Training Language Models to Follow Instructions with Human Feedback”.
Jan. 31, 2022. arXiv: 2203.02155.

152. G. Paass and J. Kindermann. “Bayesian Classification Trees with Overlapping Leaves
Applied to Credit-Scoring”. In: Res. Dev. Knowl. Discov. Data Min. Ed. by X. Wu, R. Ko
tagiri, and K. B. Korb. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
1998, pp. 234–245. ISBN: 978-3-540-69768-8. https://doi.org/10.1007/3-540-64383-4_20.

153. V. Pan. “Fast Approximate Computations with Cauchy Matrices and Polynomials”. In: Math.
Comput. 86.308 (2017), pp. 2799–2826.

154. D. Paperno et al. “The LAMBADA Dataset: Word Prediction Requiring a Broad Discourse
Context”. June 20, 2016. arXiv: 1606.06031 [cs].

155. P. Pasupat and P. Liang. “Compositional Semantic Parsing on Semi-Structured Tables”. 2015.
arXiv: 1508.00305.

156. M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer.
“Deep Contextualized Word Representations”. In: Proc. NAACL-HLT. 2018, pp. 2227–2237.

157. M. E. Peters, M. Neumann, R. L. Logan IV, R. Schwartz, V. Joshi, S. Singh, and N. A. Smith.
“Knowledge Enhanced Contextual Word Representations”. 2019. arXiv: 1909.04164.

158. F. Petroni. LAMA: LAnguage Model Analysis. Meta Research, 2020. URL: https://github.com/
facebookresearch/LAMA (visited on 03/08/2022).

159. F. Petroni, T. Rocktäschel, P. Lewis, A. Bakhtin, Y. Wu, A. H. Miller, and S. Riedel.
“Language Models as Knowledge Bases?” 2019. arXiv: 1909.01066.

160. J. Pfeiffer, I. Vulic̀, I. Gurevych, and S. Ruder. “Mad-x: An Adapter-Based Framework for
Multi-Task Cross-Lingual Transfer”. 2020. arXiv: 2005.00052.

161. J. Pfeiffer et al. “Adapterhub: A Framework for Adapting Transformers”. 2020. arXiv:
2007.07779.

162. N. Poerner, U. Waltinger, and H. Schütze. “Bert Is Not a Knowledge Base (yet): Factual
Knowledge vs. Name-Based Reasoning in Unsupervised Qa”. 2019. arXiv: 1911.03681.

163. C. Poth, J. Pfeiffer, A. Rücklé, and I. Gurevych. “What to Pre-Train on? Efficient Intermediate
Task Selection”. 2021. arXiv: 2104.08247.

164. S. Pradhan, A. Moschitti, N. Xue, O. Uryupina, and Y. Zhang. “CoNLL-2012 Shared
Task: Modeling Multilingual Unrestricted Coreference in OntoNotes”. In: Jt. Conf. EMNLP
CoNLL-Shar. Task. 2012, pp. 1–40.

165. Y. Pruksachatkun et al. “Intermediate-Task Transfer Learning with Pretrained Models for Nat-
ural Language Understanding: When and Why Does It Work?” 2020. arXiv: 2005.00628.

166. X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang. “Pre-Trained Models for Natural
Language Processing: A Survey”. In: Sci. China Technol. Sci. 63.10 (June 23, 2021),
pp. 1872–1897. ISSN: 1674–7321, 1869–1900. https://doi.org/10.1007/s11431-020-1647-3.
arXiv: 2003.08271.

167. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. “Language Models Are
Unsupervised Multitask Learners”. In: OpenAI blog 1.8 (2019), p. 9.

168. J. W. Rae et al. “Scaling Language Models: Methods, Analysis & Insights from Training
Gopher”. In: ArXiv Prepr. ArXiv211211446 (Dec. 8, 2021), p. 118.

169. J. W. Rae, A. Potapenko, S. M. Jayakumar, and T. P. Lillicrap. “Compressive Transformers
for Long-Range Sequence Modelling”. 2019. arXiv: 1911.05507.

170. C. Raffel et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer”. In: J. Mach. Learn. Res. 21.140 (2020), pp. 1–67.

171. c. raffel. C4 | TensorFlow Datasets. TensorFlow. 2019. URL: https://www.tensorflow.org/
datasets/catalog/c4 (visited on 12/14/2021).

172. A. Raganato, Y. Scherrer, and J. Tiedemann. “Fixed Encoder Self-Attention Patterns in
Transformer-Based Machine Translation”. 2020. arXiv: 2002.10260.

173. P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. “Squad: 100,000+ Questions for Machine
Comprehension of Text”. 2016. arXiv: 1606.05250.

174. H. Ren, H. Dai, Z. Dai, M. Yang, J. Leskovec, D. Schuurmans, and B. Dai. “Combiner: Full
Attention Transformer with Sparse Computation Cost”. In: Adv. Neural Inf. Process. Syst. 34
(2021).

https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://doi.org/10.1007/3-540-64383-4_20
https://github.com/facebookresearch/LAMA
https://github.com/facebookresearch/LAMA
https://github.com/facebookresearch/LAMA
https://github.com/facebookresearch/LAMA
https://github.com/facebookresearch/LAMA
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://www.tensorflow.org/datasets/catalog/c4
https://www.tensorflow.org/datasets/catalog/c4
https://www.tensorflow.org/datasets/catalog/c4
https://www.tensorflow.org/datasets/catalog/c4
https://www.tensorflow.org/datasets/catalog/c4
https://www.tensorflow.org/datasets/catalog/c4
https://www.tensorflow.org/datasets/catalog/c4

156 3 Improving Pre-trained Language Models

175. J. Rodriguez. Five Key Facts Wu Dao 2.0: The Largest Transformer Model Ever Built.
DataSeries. Sept. 21, 2021. URL: https://medium.com/dataseries/five-key-facts-wu-dao-2-0-
the-largest-transformer-model-ever-built-19316159796b (visited on 12/12/2021).

176. A. Rogers, O. Kovaleva, and A. Rumshisky. “A Primer in {Bertology}: What We Know about
How {BERT} Works”. In: Trans. Assoc. Comput. Linguist. 8 (2021), pp. 842–866.

177. S. Roller, S. Sukhbaatar, A. Szlam, and J. Weston. “Hash Layers For Large Sparse Models”.
2021. arXiv: 2106.04426.

178. A. Romero. GPT-3 Scared You? Meet Wu Dao 2.0: A Monster of 1.75 Trillion Parameters.
Medium. June 8, 2021. URL: https://towardsdatascience.com/gpt-3-scared-you-meet-wu-
dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484 (visited on 07/29/2021).

179. C. Rosset. “Turing-Nlg: A 17-Billion-Parameter Language Model by Microsoft”. In:
Microsoft Blog — 13.02 2020 (2019).

180. A. Roy, M. Saffar, A. Vaswani, and D. Grangier. “Efficient Content-Based Sparse Attention
with Routing Transformers”. 2020. arXiv: 2003.05997.

181. A. Sabeti. GPT-3: An AI That’s Eerily Good at Writing Almost Anything. Arram
Sabeti. July 9, 2020. URL: https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-
writing-almostanything/ (visited on 09/04/2021).

182. K. Sakaguchi, R. Le Bras, C. Bhagavatula, and Y. Choi. “Winogrande: An Adversarial
Winograd Schema Challenge at Scale”. In: Proc. AAAI Conf. Artif. Intell. Vol. 34. 05. 2020,
pp. 8732–8740.

183. V. Sanh, L. Debut, J. Chaumond, and T. Wolf. “DistilBERT, a Distilled Version of BERT:
Smaller, Faster, Cheaper and Lighter”. 2019. arXiv: 1910.01108.

184. T. Schick and H. Schütze. “Exploiting Cloze Questions for Few-Shot Text Classification and
Natural Language Inference”. Jan. 25, 2021. arXiv: 2001.07676.

185. T. Schick and H. Schütze. “It’s Not Just Size That Matters: Small Language Models Are Also
Few-Shot Learners”. Apr. 12, 2021. arXiv: 2009.07118.

186. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimiza-
tion Algorithms”. 2017. arXiv: 1707.06347.

187. S. Schuster, S. Gupta, R. Shah, and M. Lewis. “Cross-Lingual Transfer Learning for
Multilingual Task Oriented Dialog”. 2018. arXiv: 1810.13327.

188. J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos. Compute Trends
Across Three Eras of Machine Learning. Mar. 9, 2022. https://doi.org/10.48550/arXiv.2202.
05924. arXiv: 2202.05924 [cs].

189. N. Shazeer. “GLU Variants Improve Transformer”. Feb. 12, 2020. arXiv: 2002.05202
[cs, stat].

190. S. Shen et al. “Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT.” In:
AAAI. 2020, pp. 8815–8821.

191. T. Shen, Y. Mao, P. He, G. Long, A. Trischler, and W. Chen. “Exploiting Structured Knowl-
edge in Text via Graph-Guided Representation Learning”. 2020. arXiv: 2004.14224.

192. T. Shin, Y. Razeghi, R. L. Logan IV, E. Wallace, and S. Singh. “Autoprompt: Eliciting
Knowledge from Language Models with Automatically Generated Prompts”. 2020. arXiv:
2010.15980.

193. M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro. “Megatron-
Lm: Training Multi-Billion Parameter Language Models Using Model Parallelism”. In: arXiv
(2019), arXiv—1909.

194. K. Singla, D. Can, and S. Narayanan. “A Multi-Task Approach to Learning Multilingual
Representations”. In: Proc. 56th Annu. Meet. Assoc. Comput. Linguist. Vol. 2 Short Pap. 2018,
pp. 214–220.

195. D. R. So, W. Mańke, H. Liu, Z. Dai, N. Shazeer, and Q. V. Le. “Primer: Searching for Efficient
Transformers for Language Modeling”. Jan. 24, 2022. arXiv: 2109.08668 [cs].

196. K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu. “Mass: Masked Sequence to Sequence Pre-
Training for Language Generation”. 2019. arXiv: 1905.02450.

197. A. C. Stickland and I. Murray. “Bert and Pals: Projected Attention Layers for Efficient
Adaptation in Multi-Task Learning”. In: Int. Conf. Mach. Learn. PMLR, 2019, pp. 5986–
5995.

https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://medium.com/dataseries/five-key-facts-wu-dao-2-0-the-largest-transformer-model-ever-built-19316159796b
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-trillion-parameters-832cd83db484
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://arr.am/2020/07/09/gpt-3-an-ai-thats-eerily-good-at-writing-almostanything/
https://doi.org/10.48550/arXiv.2202.05924
https://doi.org/10.48550/arXiv.2202.05924
https://doi.org/10.48550/arXiv.2202.05924
https://doi.org/10.48550/arXiv.2202.05924
https://doi.org/10.48550/arXiv.2202.05924
https://doi.org/10.48550/arXiv.2202.05924
https://doi.org/10.48550/arXiv.2202.05924
https://doi.org/10.48550/arXiv.2202.05924

References 157

198. N. Stiennon et al. “Learning to Summarize with Human Feedback”. In: Adv. Neural Inf.
Process. Syst. 33 (2020), pp. 3008–3021.

199. G. Stoica, E. A. Platanios, and B. Póczos. “Re-Tacred: Addressing Shortcomings of the Tacred
Dataset”. In: Proc. AAAI Conf. Artif. Intell. Vol. 35. 15. 2021, pp. 13843–13850.

200. F. M. Suchanek, G. Kasneci, and G. Weikum. “Yago: A Core of Semantic Knowledge”. In:
Proc. 16th Int. Conf. World Wide Web. 2007, pp. 697–706.

201. P. Sun. Announcing ScaNN: Efficient Vector Similarity Search. Google AI Blog. July 28, 2020.
URL: http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html (visited on
02/18/2021).

202. T. Sun, Y. Shao, X. Qiu, Q. Guo, Y. Hu, X. Huang, and Z. Zhang. “CoLAKE: Contextualized
Language and Knowledge Embedding”. 2020. arXiv: 2010.00309.

203. Y. Sun et al. “Ernie: Enhanced Representation through Knowledge Integration”. 2019. arXiv:
1904.09223.

204. Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou. “MobileBERT: A Compact Task-
Agnostic BERT for Resource-Limited Devices”. Apr. 14, 2020. arXiv: 2004.02984.

205. N. Tang et al. “RPT: Relational Pre-trained Transformer Is Almost All You Need towards
Democratizing Data Preparation”. 2020. arXiv: 2012.02469.

206. Y. Tay, D. Bahri, D. Metzler, D.-C. Juan, Z. Zhao, and C. Zheng. “Synthesizer: Rethinking
Self-Attention in Transformer Models”. May 24, 2021. arXiv: 2005.00743 [cs].

207. Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. “Efficient Transformers: A Survey”. 2020.
arXiv: 2009.06732.

208. Y. Tay, Z. Zhao, D. Bahri, D. Metzler, and D.-C. Juan. “HyperGrid Transformers: Towards A
Single Model for Multiple Tasks”. In: Int. Conf. Learn. Represent. 2021.

209. Y. Tay et al. “Long Range Arena: A Benchmark for Efficient Transformers”. 2020. arXiv:
2011.04006.

210. N. Tripuraneni, M. Jordan, and C. Jin. “On the Theory of Transfer Learning: The Importance
of Task Diversity”. In: Adv. Neural Inf. Process. Syst. 33 (2020), pp. 7852–7862.

211. L. TriviaQA. CodaLab - Competition. Feb. 28, 2021. URL: https://competitions.codalab.org/
competitions/17208#results (visited on 02/28/2021).

212. A. Vaswani et al. “Attention Is All You Need”. In: Adv. Neural Inf. Process. Syst. 2017,
pp. 5998–6008.

213. P. Verga, H. Sun, L. B. Soares, and W. W. Cohen. “Facts as Experts: Adaptable and
Interpretable Neural Memory over Symbolic Knowledge”. 2020. arXiv: 2007.00849.

214. D. Vrandečić and M. Krötzsch. “Wikidata: A Free Collaborative Knowledgebase”. In:
Commun. ACM 57.10 (2014), pp. 78–85.

215. K. Wali. EleutherAI Launches GPT-NeoX-20B, the Biggest Public-Access Language
Model. Analytics India Magazine. Feb. 14, 2022. URL: https://analyticsindiamag.
com/eleutherailaunches-gpt-neox-20b-the-biggest-public-access-language-model/ (visited
on 02/23/2022).

216. J. Wallat, J. Singh, and A. Anand. “BERTnesia: Investigating the Capture and Forgetting of
Knowledge in BERT”. 2020. arXiv: 2010.09313.

217. A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. “GLUE: A Multi-
Task Benchmark and Analysis Platform for Natural Language Understanding”. 2018. arXiv:
1804.07461.

218. A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. “Glue: A Multi-Task
Benchmark and Analysis Platform for Natural Language Understanding”. Feb. 22, 2019.
arXiv: 1804.07461.

219. A. Wang et al. “Superglue: A Stickier Benchmark for General-Purpose Language Understand-
ing Systems”. In: Adv. Neural Inf. Process. Syst. 2019, pp. 3266–3280.

220. B. Wang. EleutherAI - Text Generation Testing UI. 2021. URL: https://6b.eleuther.ai/ (visited
on 11/14/2021).

221. B. Wang. Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language
Model with JAX. May 1, 2021. URL: https://github.com/kingoflolz/mesh-transformerjax
(visited on 11/14/2021).

http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
http://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
https://competitions.codalab.org/competitions/17208#results
https://competitions.codalab.org/competitions/17208#results
https://competitions.codalab.org/competitions/17208#results
https://competitions.codalab.org/competitions/17208#results
https://competitions.codalab.org/competitions/17208#results
https://competitions.codalab.org/competitions/17208#results
https://competitions.codalab.org/competitions/17208#results
https://analyticsindiamag.com/eleutherailaunches-gpt-neox-20b-the-biggest-public-access-language-model/
https://analyticsindiamag.com/eleutherailaunches-gpt-neox-20b-the-biggest-public-access-language-model/
https://analyticsindiamag.com/eleutherailaunches-gpt-neox-20b-the-biggest-public-access-language-model/
https://analyticsindiamag.com/eleutherailaunches-gpt-neox-20b-the-biggest-public-access-language-model/
https://analyticsindiamag.com/eleutherailaunches-gpt-neox-20b-the-biggest-public-access-language-model/
https://analyticsindiamag.com/eleutherailaunches-gpt-neox-20b-the-biggest-public-access-language-model/
https://analyticsindiamag.com/eleutherailaunches-gpt-neox-20b-the-biggest-public-access-language-model/
https://analyticsindiamag.com/eleutherailaunches-gpt-neox-20b-the-biggest-public-access-language-model/
https://analyticsindiamag.com/eleutherailaunches-gpt-neox-20b-the-biggest-public-access-language-model/
https://analyticsindiamag.com/eleutherailaunches-gpt-neox-20b-the-biggest-public-access-language-model/
https://analyticsindiamag.com/eleutherailaunches-gpt-neox-20b-the-biggest-public-access-language-model/
https://analyticsindiamag.com/eleutherailaunches-gpt-neox-20b-the-biggest-public-access-language-model/
https://analyticsindiamag.com/eleutherailaunches-gpt-neox-20b-the-biggest-public-access-language-model/
https://6b.eleuther.ai/
https://6b.eleuther.ai/
https://6b.eleuther.ai/
https://6b.eleuther.ai/
https://github.com/kingoflolz/mesh-transformerjax
https://github.com/kingoflolz/mesh-transformerjax
https://github.com/kingoflolz/mesh-transformerjax
https://github.com/kingoflolz/mesh-transformerjax
https://github.com/kingoflolz/mesh-transformerjax
https://github.com/kingoflolz/mesh-transformerjax

158 3 Improving Pre-trained Language Models

222. R. Wang et al. “K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters”.
Dec. 28, 2020. arXiv: 2002.01808.

223. W. Wang et al. “Structbert: Incorporating Language Structures into Pre-Training for Deep
Language Understanding”. 2019. arXiv: 1908.04577.

224. X. Wang, T. Gao, Z. Zhu, Z. Liu, J. Li, and J. Tang. “KEPLER: A Unified Model for
Knowledge Embedding and Pre-Trained Language Representation”. Nov. 23, 2020. arXiv:
1911.06136.

225. Z. Wang, A. W. Yu, O. Firat, and Y. Cao. “Towards Zero-Label Language Learning”. Sept.
19, 2021. arXiv: 2109.09193 [cs].

226. J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. “Chain of Thought
Prompting Elicits Reasoning in Large Language Models”. 2022. arXiv: 2201.11903.

227. J. Wei et al. “Finetuned Language Models Are Zero-shot Learners”. In: ICLR 2022 (2022),
p. 46.

228. X. Wei, Y. Hu, R. Weng, L. Xing, H. Yu, and W. Luo. “On Learning Universal Representations
across Languages”. 2020. arXiv: 2007.15960.

229. A. Williams, N. Nangia, and S. R. Bowman. “A Broad-Coverage Challenge Corpus for
Sentence Understanding through Inference”. 2017. arXiv: 1704.05426.

230. G. Wilson and D. J. Cook. “A Survey of Unsupervised Deep Domain Adaptation”. In: ACM
Trans. Intell. Syst. Technol. TIST 11.5 (2020), pp. 1–46.

231. G. I. Winata, A. Madotto, Z. Lin, R. Liu, J. Yosinski, and P. Fung. “Language Models Are
Few-shot Multilingual Learners”. Sept. 15, 2021. arXiv: 2109.07684.

232. S. Wu and M. Dredze. “Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of
BERT”. In: Proc. 2019 Conf. Empir. Methods Nat. Lang. Process. 9th Int. Jt. Conf. Nat.
Lang. Process. EMNLP-IJCNLP. EMNLP-IJCNLP 2019. Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 833–844. https://doi.org/10.18653/v1/D19-1077.

233. J. Xia, Y. Zhu, Y. Du, and S. Z. Li. “A Survey of Pretraining on Graphs: Taxonomy, Methods,
and Applications”. 2022. arXiv: 2202.07893.

234. W. Xiong, J. Du, W. Y. Wang, and V. Stoyanov. “Pretrained Encyclopedia: Weakly Supervised
Knowledge-Pretrained Language Model”. 2019. arXiv: 1912.09637.

235. L. Xue. mT5-code: Multilingual T5. Google Research, Feb. 25, 2021. URL: https://github.
com/google-research/multilingual-t5 (visited on 02/26/2021).

236. L. Xue et al. “mT5: A Massively Multilingual Pre-Trained Text-to-Text Transformer”. 2020.
arXiv: 2010.11934.

237. I. Yamada, A. Asai, H. Shindo, H. Takeda, and Y. Matsumoto. “LUKE: Deep Contextualized
Entity Representations with Entity-Aware Self-Attention”. 2020. arXiv: 2010.01057.

238. J. Yang et al. “GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph”. In: Adv. Neural Inf. Process. Syst. 34 (2021).

239. Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen. “Breaking the Softmax Bottleneck: A
High-Rank RNN Language Model”. 2017. arXiv: 1711.03953.

240. Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le. “Xlnet: Generalized
Autoregressive Pretraining for Language Understanding”. In: Adv. Neural Inf. Process. Syst.
2019, pp. 5753–5763.

241. P. Yin, G. Neubig, W.-t. Yih, and S. Riedel. “TaBERT: Pretraining for Joint Understanding of
Textual and Tabular Data”. 2020. arXiv: 2005.08314.

242. W. Yin. “Meta-Learning for Few-Shot Natural Language Processing: A Survey”. 2020. arXiv:
2007.09604.

243. W. Yu, M. Jiang, Z. Hu, Q. Wang, H. Ji, and N. Rajani. “Knowledge-Enriched Natural
Language Generation”. In: (Nov. 10, 2021), p. 6.

244. W. Yu, C. Zhu, Z. Li, Z. Hu, Q. Wang, H. Ji, and M. Jiang. “A Survey of Knowledge-Enhanced
Text Generation”. July 5, 2021. arXiv: 2010.04389.

245. W. Yuan, G. Neubig, and P. Liu. “Bartscore: Evaluating Generated Text as Text Generation”.
In: Adv. Neural Inf. Process. Syst. 34 (2021).

https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://github.com/google-research/multilingual-t5
https://github.com/google-research/multilingual-t5
https://github.com/google-research/multilingual-t5
https://github.com/google-research/multilingual-t5
https://github.com/google-research/multilingual-t5
https://github.com/google-research/multilingual-t5
https://github.com/google-research/multilingual-t5

References 159

246. C. Yun, Y.-W. Chang, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar. “O(n)
Connections Are Expressive Enough: Universal Approximability of Sparse Transformers”.
2020. arXiv: 2006.04862.

247. M. Zaheer et al. “Big Bird: Transformers for Longer Sequences”. In: Adv. Neural Inf. Process.
Syst. 33 (Jan. 8, 2021).

248. W. Zeng et al. “PanGu-α: Large-scale Autoregressive Pretrained Chinese Language Models
with Auto-parallel Computation”. 2021. arXiv: 2104.12369.

249. B. Zhang and R. Sennrich. “Root Mean Square Layer Normalization”. 2019. arXiv:
1910.07467.

250. J. Zhang, H. Zhang, C. Xia, and L. Sun. “Graph-Bert: Only Attention Is Needed for Learning
Graph Representations”. Jan. 22, 2020. arXiv: 2001.05140 [cs, stat].

251. J. Zhang, Y. Zhao, M. Saleh, and P. Liu. “Pegasus: Pre-training with Extracted Gap-Sentences
for Abstractive Summarization”. In: Int. Conf. Mach. Learn. PMLR, 2020, pp. 11328–11339.

252. L. Zhang. “Transfer Adaptation Learning: A Decade Survey”. 2019. arXiv: 1903.04687.
253. S. Zhang et al. OPT: Open Pre-trained Transformer Language Models. May 5, 2022. arXiv:

2205.01068 [cs].
254. Y. Zhang, V. Zhong, D. Chen, G. Angeli, and C. D. Manning. “Position-Aware Attention

and Supervised Data Improve Slot Filling”. In: Proc. 2017 Conf. Empir. Methods Nat. Lang.
Process. 2017, pp. 35–45.

255. Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu. “ERNIE: Enhanced Language
Representation with Informative Entities”. June 4, 2019. arXiv: 1905.07129.

256. Z. Zhang, F. Qi, Z. Liu, Q. Liu, and M. Sun. “Know What You Don’t Need: Single-Shot
Meta-Pruning for Attention Heads”. In: AI Open 2 (2021), pp. 36–42.

257. A. Zhavoronkov. Wu Dao 2.0 - Bigger, Stronger, Faster AI From China. Forbes. July 19, 2021.
URL: https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-
faster-ai-from-china/ (visited on 07/29/2021).

258. C. Zhu, W. Ping, C. Xiao, M. Shoeybi, T. Goldstein, A. Anandkumar, and B. Catanzaro.
“Long-Short Transformer: Efficient Transformers for Language and Vision”. In: Adv. Neural
Inf. Process. Syst. 34 (2021).

259. F. Zhu, W. Lei, C. Wang, J. Zheng, S. Poria, and T.-S. Chua. “Retrieving and Reading: A
Comprehensive Survey on Open-Domain Question Answering”. 2021. arXiv: 2101.00774.

260. F. Zhuang et al. “A Comprehensive Survey on Transfer Learning”. In: Proc. IEEE 109.1
(2020), pp. 43–76.

261. B. Zoph et al. “Designing Effective Sparse Expert Models”. 2022. arXiv: 2202.08906.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
https://www.forbes.com/sites/alexzhavoronkov/2021/07/19/wu-dao-20biggerstronger-faster-ai-from-china/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	3 Improving Pre-trained Language Models
	3.1 Modifying Pre-training Objectives
	3.1.1 Autoencoders Similar to BERT
	3.1.2 Autoregressive Language Models Similar to GPT
	3.1.3 Transformer Encoder-Decoders
	3.1.4 Systematic Comparison of Transformer Variants
	3.1.5 Summary

	3.2 Capturing Longer Dependencies
	3.2.1 Sparse Attention Matrices
	3.2.2 Hashing and Low-Rank Approximations
	3.2.3 Comparisons of Transformers with Long Input Sequences
	3.2.4 Summary

	3.3 Multilingual Pre-trained Language Models
	3.3.1 Autoencoder Models
	3.3.2 Seq2seq Transformer Models
	3.3.3 Autoregressive Language Models
	3.3.4 Summary

	3.4 Additional Knowledge for Pre-trained Language Models
	3.4.1 Exploiting Knowledge Base Embeddings
	3.4.2 Pre-trained Language Models for Graph Learning
	3.4.3 Textual Encoding of Tables
	3.4.4 Textual Encoding of Knowledge Base Relations
	3.4.5 Enhancing Pre-trained Language Models by Retrieved Texts
	3.4.6 Summary

	3.5 Changing Model Size
	3.5.1 Larger Models Usually Have a better Performance
	3.5.2 Mixture-of-Experts Models
	3.5.3 Parameter Compression and Reduction
	3.5.4 Low-Rank Factorization
	3.5.5 Knowledge Distillation
	3.5.6 Summary

	3.6 Fine-Tuning for Specific Applications
	3.6.1 Properties of Fine-Tuning
	Catastrophic Forgetting
	Fine-Tuning and Overfitting

	3.6.2 Fine-Tuning Variants
	Fine-Tuning in Two Stages
	Fine-Tuning for Multiple Tasks
	Meta-Learning to Accelerate Fine-Tuning
	Fine-Tuning a Frozen Model by Adapters
	Fine-Tuning GPT-3

	3.6.3 Creating Few-Shot Prompts
	3.6.4 Thought Chains for Few-Shot Learning of Reasoning
	3.6.5 Fine-Tuning Models to Execute Instructions
	InstructGPT Results
	Instruction Tuning with FLAN

	3.6.6 Generating Labeled Data by Foundation Models
	3.6.7 Summary

	References

