
Chapter 3 
Improving Pre-trained Language Models 

Abstract This chapter describes a number of different approaches to improve 
the performance of Pre-trained Language Models (PLMs), i.e. variants of BERT, 
autoregressive language models similar to GPT, and sequence-to-sequence models 
like Transformers. First we may modify the pre-training tasks to learn as much 
as possible about the syntax and semantics of language. Then we can extend the 
length of the input sequence to be able to process longer inputs. Multilingual models 
are simultaneously trained with text in different languages. Most important is the 
inclusion of further knowledge into the PLM to produce better predictions. It turns 
out that by increasing the number of parameters, the size of the training data and the 
computing effort the performance of the models can always be increased. There are 
a number of different fine-tuning strategies which allow the model to be adapted to 
special tasks. In addition, models may be instructed by few-shot prompts to solve 
specific tasks. This is especially rewarding for larger PLMs, which therefore are 
called Foundation Models. 

Keywords Pre-training objective · Input size · Multilingual model · Long 
dependencies · Additional knowledge · Fine-tuning 

This chapter describes a number of different approaches to improve the performance 
of Pre-trained Language Models (PLMs), i.e. variants of BERT, autoregressive lan-
guage models similar to GPT, and sequence-to-sequence models like Transformers. 
When these models have a large number of parameters, they can be instructed by 
input prompts to solve new tasks and are called Foundation Models. 

• Modification of the pre-training tasks. During pre-training with a large corpus 
the PLM should learn as much as possible about the syntax and semantics of 
language. By adapting and enhancing the pre-training objectives the performance 
of PLMs can be improved markedly, as shown in Sect. 3.1. 

• Increase of the input size. The length of the input sequence restricts the context, 
which can be taken into account by a PLM. This is especially important for 
applications like story generation. Simply increasing input length does not work, 
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as then the number of parameters grows quadratically. In Sect. 3.2, alternatives 
for establishing sparse attention patterns for remote tokens are explored. 

• Multilingual training simultaneously trains the same model in different lan-
guages. By appropriate pre-training targets the models can generate a joint 
meaning representation in all languages. Especially for languages with little 
training data better results can be achieved Sect. 3.3. 

• Adding extra knowledge. PLMs can be enhanced by including additional 
information not covered by the training data. This is important as due to the 
restricted number of parameters PLMs cannot memorize all details included in 
the training data. Moreover, strict rules are usually represented only as weak 
associations and need to be reinforced. By incorporating facts and rules from an 
outside knowledge base (KB) or an additional text collection PLMs can obtain 
necessary information and keep the content up-to-date, as shown in Sect. 3.4. 

• Changing the model size. Theoretical results show that model performance 
improves when the PLMs become larger (Foundation Models). Hence, there is a 
general trend to increase model size, e.g. by forming mixture-of-experts. On the 
other hand, it may be necessary to reduce the computation effort and the memory 
footprint of a PLM. There are a number of techniques to achieve this without 
sacrificing much performance, as described in Sect. 3.5. 

• Fine-tuning for specific applications. This can be performed according to 
different strategies, e.g. with several fine-tuning steps or multiple fine-tuning 
tasks. Larger PLMs usually can be instructed by prompts to perform specific 
tasks and are called Foundation Models. In addition, few-shot prompts may 
be optimized to achieve a more adequate model reaction. This is described in 
Sect. 3.6. 

Note that nearly all proposals may be combined for most model types, resulting in 
the vast number of model variants that is currently discussed. 

3.1 Modifying Pre-training Objectives 

The basic BERT model [49] has two pre-training tasks: the prediction of masked 
tokens with the masked language model (MLM) and next sentence prediction (NSP) 
(Sect. 2.1). These tasks were chosen heuristically and there are many plausible 
loss functions and architectures. Researchers have investigated many alternative 
training objectives, model structures, and attention mechanisms. In this section, the 
most promising of these variations of the BERT and Transformer architecture are 
discussed and their relative merits are compared. 

An important question is the level of aggregation of the input sequence. Here 
subword tokens are standard. One option is to use raw letters as input. However, 
this may lead to a high computational burden, as the computational cost of self-
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attention grows quadratically with the size of the input. Another option is the use of 
domain-adapted knowledge to model the input sequence by learned tokenizations or 
patch embeddings (e.g. for image representation, Sect. 7.2). These methods reduce 
the input complexity, but may potentially ignore useful information in the input [19]. 

3.1.1 Autoencoders Similar to BERT 

To improve BERT’s performance a number of alternatives to capture knowledge 
from the unlabeled data were proposed: 

• RoBERTa dynamically changes masks during training. 
• ALBERT replaces the matrices for self-attention by a matrix product and shares 

parameters across all layers. 
• Predicting single masked tokens can be generalized. SpanBERT masks spans 

of tokens and predicts them. ELECTRA detects randomly replaced tokens at 
arbitrary positions. XLNet permutes the order of tokens in a sentence and predicts 
tokens left to right similar to a language model. 

• DeBERTa disentangles the embeddings for content and position. 

The details are given in the following paragraphs. Popular loss functions are defined 
in Table 3.1. A list of prominent autoencoders is provided in Table 3.2. They  
can be compared by their performance on natural language understanding tasks 
(Sect. 2.1.5) like GLUE [218]. 

RoBERTa [127] is an enhanced BERT model boosted by tweaking parts of 
the pre-training process. The authors improved the BERT.BASE architecture by the 
following changes: (1) Instead of using the same mask for all epochs, they replicate 
training sequences with different masks. (2) They remove the Next-Sentence-
Prediction objective and found that performance is best, when all sentences in 
a batch are from the same document. (3) Larger batches with larger step sizes 
increase perplexity for both the masked language model task and downstream task 
performance. (4) A 10-fold increase of training data to 160GB, which is used in 
large batches. The resulting model achieves an impressive SOTA result of 88.5 on 
GLUE (language understanding [217]), and the reading comprehension tasks RACE 
and SQuAD [173]. 

SpanBERT [98] introduces a span-level pre-training approach. Rather than 
masking single tokens during pre-training, spans of one or more complete words are 
masked covering about 15% of the tokens. A new span-boundary objective (SBO) 
is introduced, where tokens inside of the masked span are predicted, using only 
representations of the tokens just outside the boundaries of the span combined with 
positional information. The details are shown in Fig. 3.1. SBO is used together with 
the usual MLM objective. Finally, the authors omit the next sentence prediction task 
as in [127] and only use single text fragments/sentences for training. The authors 
find that masking random spans is more effective than masking linguistic units. 
SpanBERT has the same configuration as BERT.LARGE and is pre-trained on the
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Table 3.1 Loss functions for PLMs. A sequence is denoted by .x = (x1, . . . , xT ) and . z =
(z1, . . . , zR) is a related sequence, e.g. a translation 

Name Loss function Description 

MC multivariate 
classification 

.LMC = − logp(y|x) For each training instance 
.(x, y), e.g. logistic classifier, 
Sect. 1.3 

NM neighborhood model .LNM =
− ∑T

t=1
∑

i∈N(t) logp(xi |xt )

For neighborhood . N(t) =
.{t−k, . . . , t−1, t+1, . . . , t+k}, 
e.g. word2vec, Sect. 1.5 

LM language model .LLM = − ∑T
t=1 logp(xt |x<t ) e.g. RNN Sect. 1.6, GPT  

Sect. 2.2.2 

S2S 
sequence-to-sequence 
model 

.LS2S =
− ∑nz

t=1 logp(zt |z<t , x)

For input sequence 
.x = (x1, . . . , xT ) and 
translation . z = (z1, . . . , zR)

Sects. 1.6 and 2.3 

MLM masked language 
model 

.LMLM =
− ∑

t∈m(x) logp(xt |x̃)

.m(x) contains the indices of 
masked tokens in . x. In . ̃x the 
masked tokens are replaced by 
MASK, e.g. BERT, Sect. 2.1 

TLM translation masked 
language model 

.LT LM = − ∑
t∈m(x) logp(xt |x̃) .m(x) contains the indices of 

masked tokens. . ̃x contains a 
sentence and its translation. 
Masked tokens are replaced by 
MASK, e.g. mBERT, Sect. 3.3 

SBO span boundary 
objective 

.LSMLM =
− ∑

(i:j)∈m(x) logp(xi:j |x̃)

.m(x) contains the spans . (i : j)

of masked tokens in . x. In . ̃x the 
masked tokens are replaced by 
other tokens, e.g. SpanBERT, 
Sect. 3.1.1 

PLM permutation 
language model 

.LPLM = − ∑T
t=1 logp(zt |z<t ) .z = perm(x) is a permutation 

of . x, e.g. XLNet, Sect. 3.1.1 

NSP next sentence 
prediction 

.LNSP = − logp(ξ |x, z) .ξ=1 if text . z after x (else . z is 
randomly selected), e.g. BERT, 
Sect. 2.1 

SOP sentence order 
prediction 

.LSOP = − logp(ξ |x, z) .ξ=1 if text . z after . x (else . x after 
. z), e.g. ALBERT, Sect. 3.1.1 

RTD replaced token 
detection 

.LRT D =
− log

∑T
t=1 p(xt=x̃t |x̃)

In . ̃x randomly selected elements 
of . x were replaced, e.g. 
ELECTRA, Sect. 3.1.1 

BooksCorpus and the EnglishWikipedia. SpanBERT achieves a new SOTA of 79.6% 
F1 on the OntoNotes coreference task [164], which requires identifying pronouns 
and the corresponding nouns or two phrases referring to the same thing (Sect. 5.4.1).
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Table 3.2 Autoencoders similar to BERT. The pre-training and fine-tuning loss functions are 
defined in Table 3.1. The benchmark figures are only a hint, as they depend on the number of 
parameters and the computing effort 

Model Section Pre-training Fine-tuning Extra Benchmark 

ELMo [156] 1.6 BiLM MC Use bidirectional 
LSTM 

GLUE 71.0 

BERT [49] 2.1 MLM + NSP MC Predict masked tokens GLUE 80.5 

RoBERTa [127] 3.1.1 MLM MC Train longer, new 
mask in new epoch 

GLUE 88.5 

SpanBERT [98] 3.1.1 PLM, SBO MC Predict spans of 
tokens 

GLUE 82.8 

ELECTRA [223] 3.1.1 RTD MC Replaced token 
detection 

GLUE 89.4 

StructBERT [39] 3.1.1 RTD MC Reorder shuffled 
tokens 

GLUE 89.0 

ALBERT [113] 3.1.1 MLM + SOP MC Factorized 
embeddings, 
parameter sharing 

GLUE 89.4 

XLNET [240] 3.1.1 PLM MC Predict permuted 
tokens 

GLUE 90.5 

DeBERTa [76] 3.1.1 MLM MC, S2S Disentangled attention GLUE 90.0 

Prod. Key [112] 3.1.1 MLM MC Nearest neighbor – 

UniLM [8] 3.1.3 MLM, LM MC, LM Uni- and bidirectional GLUE 87.3 

BigBird [247] 3.2.1 MLM MC, S2S Sparse attention 
mechanism 

TriviaQA 84.5 

Fig. 3.1 SpanBERT [98] concatenates the embeddings outside the border of a span with a position 
embedding. With this input a 2-layer model predicts the probabilities of masked tokens 

StructBERT [223] enhances the original BERT MLM objective by the task to 
predict the order of shuffled token triples. In addition, the order of three sentences 
has to be detected. Using models with the same number of parameters, StructBERT 
can increase the SOTA on GLUE in comparison to BERT and RoBERTa to 83.9 and 
89.0, respectively.
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Electra [39] proposes a new pre-training task called replaced token detection 
(RTD). In the paper a generator network, trained with a masked language model 
loss, is combined with a discriminator network. Some tokens in the input sequence 
are replaced with plausible alternatives which are generated by a small language 
model (about .1/4 of the size of the discriminator). The discriminator network has 
to predict for every token, whether it is a replacement or not. This corruption 
procedure solves a mismatch in BERT, where MASK tokens appear in pre-training 
but not in fine-tuning. The model learns from all input tokens instead of just the 
small masked subset, making it more computationally efficient than e.g. BERT 
and RoBERTa, while performing better on several tasks, e.g. 89.4% on the GLUE 
language understanding task. 

ALBERT (a lite BERT) [113] uses two parameter-reduction techniques to tackle 
the huge memory consumption of BERT and its slow training speed. The first tweak 
is untying the dimensionality of the WordPiece embeddings from the hidden layer 
size of BERT. Instead of using a single embedding matrix M , the authors factorize 
.M = A ∗ B, such that the joint number of parameters in A and B is much lower 
than the number of parameters in M . The second tweak is sharing all parameters 
across all layers of BERT, which is shown to stabilize training and keep the number 
of parameters fixed even if more layers are added. In addition to the two tweaks, a 
new sentence order prediction (SOP) is introduced. Specifically, the model has to 
predict if the order of two sentences is correct or reversed. The authors report that 
this task improves accuracy compared to BERT’s NSP task, which could be solved 
by comparing the topics of the two sentences. It is still unclear, however, if this is 
the best way to incorporate text structure in training. ALBERT achieved new SOTA 
results on GLUE and SQuAD. 

XLNet solves an autoregressive pre-training task instead of predicting masked 
words [240]. This addresses the problem that BERT’s [MASK] token only appears 
during pre-training and not in fine-tuning. The words in a sequence, e.g. “The. 1
mouse. 2 likes. 3 cheese. 4”, are reordered together with their position information 
(indices) by a random permutation, e.g. “cheese. 4 The. 1 likes. 3 mouse. 2”. The task 
is to successively predict the tokens in the permuted sequence similarly to a GPT 
language model. The model has to predict, e.g. p(mouse|2, cheese. 4, The. 1, likes. 3). 
Note that the model must additionally know the position, here 2, of the word 
to be predicted. The transformer, however, mixes the position information with 
the content information by forming a sum. Hence, the position information is 
inseparable from the token embedding. 

Therefore, the authors decided to compute an additional self-attention embedding 
called query stream, which as query only receives the target position and then can 
compute the attention with the key and value vectors (Sect. 2.1.1). The resulting 
embedding encodes the position of the token to be predicted and correlations to other 
tokens, but has no information on the content of that token. This information can be 
added as input to the model. The normal self-attention and the query stream have 
the same parameter matrices Q (query),K (key), V (value). To save training effort, 
XLNet only predicts a few tokens at the end of the permuted sequence. In addition, 
XLNet integrates the segment recurrence mechanism and relative encoding scheme
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of Transformer-XL (Sect. 3.2.2) into pre-training, which empirically improves the 
performance especially for tasks involving a longer text sequence. 

When a token is predicted information about tokens before and after it may 
be used. Therefore, the model is a bidirectional encoder. With BERT, if the two 
tokens “New” and “York” are masked, both words are predicted independently, 
ignoring valuable information. In contrast, XLNet properly handles the dependence 
of masked tokens. XLNet was able to outperform BERT and RoBERTa on many 
tasks, e.g. the GLUE language understanding tasks, reading comprehension tasks 
like SQuAD (Sect. 2.1.5), text classification tasks such as IMDB (movie review 
classification) [130]. 

Product Keys [112] replace the dot-product attention by a nearest neighbor 
search. A query . qr is split into two sub-queries .q

[1]
r and . q

[2]
r . For each sub-query the 

k closest sub-keys .k
[1]
i and .k

[2]
j are selected. From the . k2 combinations of sub-keys 

the highest dot products can be efficiently computed and the k highest combinations 
are selected. The results are normalized with the softmax function and used for 
the computation of a weighted sum of value vectors. During optimization only 
the k optimal keys are affected reducing the training effort. The approach allows 
very large transformers to be defined with only a minimal computational overhead. 
With 12 layers the authors achieve the same performance as a 24 layer BERT 
model using only half of the computation time. In a comprehensive comparison 
of transformer architectures [142] the approach yields an increase for SuperGLUE 
NLU task (Sect. 4.1.2) from 71.7% for the standard T5 model to 75.2%. 

DeBERTa [76] uses a  disentangled attention mechanism, where each word is 
represented by two different types of vectors encoding content and position. The 
attention weights between tokens are computed using different matrices for content 
and relative position. In addition, DeBERTa includes absolute word positions in 
the last layer to capture different syntactic roles in the sentence. During fine-
tuning the model employs an “adversarial” training approach, where embeddings 
are normalized to probability vectors. Then the model is trained to be robust against 
small perturbations of embeddings. According to the authors, this improves the 
performance of fine-tuned models. The large version of the model with 1.5B param-
eters has superior performance in several application areas, e.g. in natural language 
understanding (Sect. 4.1.2), where DeBERTa surpasses the human performance on 
the SuperGLUE benchmark [219] for the first time, increasing the macro-average 
score to 89.9%. 

Bengio et al. [12] argue that representations, e.g. embeddings, should be disen-
tangled and should represent different content aspects, e.g. syntax, style, semantics, 
in different parts of the embedding vector. Locatello et al. [129] have proven that  
this is not possible in an unsupervised way. Hence, some explicit supervision or 
prior information has to be used to generate interpretable subvectors of embeddings. 

DeBERTaV3 [75] substitutes theMLM loss of DeBERTa with the replaced token 
detection (RTD) of Electra (Sect. 3.1.1). In addition, a new gradient-disentangled 
embedding sharing method is employed that improves both training efficiency and 
the quality of the pre-trained model. Its largest version has a 128k-token vocabulary,
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24 layers, and 304M parameters. For the GLUE benchmark with fine-tuning, the 
model increases the score by 1.4% to a new SOTA of 91.4%. The multi-language 
version of the model mDeBERTa.BASE outperforms XLM-R.BASE by 3.6% in terms 
of the cross lingual transfer accuracy on the XNLI task (Sect. 3.3.1). 

3.1.2 Autoregressive Language Models Similar to GPT 

By increasing the number of parameters and the training set size the capabilities of 
GPT models can be markedly improved. An overview is given in Table 3.3. 

GPT-3 [25] is a language model with extreme dimensions. Its largest version has 
96 layers, 96 attention heads, 175 billion parameters and covers sequences of length 
2048. It was trained on a text collection of books, Wikipedia and web pages of 
about 500 billion tokens. The details of the architecture are not known yet. GPT-3 is 
structurally similar to GPT-2, and therefore its higher level of accuracy is attributed 
to its increased capacity and higher number of parameters. The model achieved an 
unprecedented performance in language modeling, question answering, etc. Some 
results are compiled in Table 3.4 and many more in the paper [25]. 

Table 3.3 Autoregressive language models (LM) similar to GPT. ‘Details’ provides the number 
of parameters and specific features. The ‘benchmark’ figures are only a hint, as they depend on the 
selected number of parameters and the computing effort. Best benchmark value printed in bold 

Model Section Details Benchmark 

GPT-2 [167] 2.2 1.6B LM to generate text Lambada 0-shot 63.2% 

Retro [21] 6.2.3 7B LM with retrieval to generate text Lambada 73.0% 

Megatron-LM [193] 3.1.2 8.3B LM to generate text Lambada 66.5% 

Turing-NLG [179] 3.1.2 17B LM to generate text Lambada 68.0% 

Chinchilla [83] 3.1.2 70B LM to generate text Lambada 0-shot 77.4% 

GPT-3 [25] 3.1.2 175B long sequence LM to generate 
text 

Lambada 0-shot 76.2% 

WebGPT [25] 6.2.3 175B GPT-3 + Bing search engine Same as GPT-3 

InstructGPT [151] 3.6.5 175B GPT-3 fine-tuned for 
instructions 

Same as GPT-3 

OPT [151] 3.1.2 free 175B LM similar to GPT-3 Lambada 0-shot 74.7% 

BLOOM [151] 3.1.2 176B LM for European languages Lambada 0-shot 67.2% 

PanGu-. α [248] 3.1.2 200B long sequence LM to generate 
text 

Chinese benchmarks 

Gopher [168] 3.1.2 280B LM to generate text Lambada 0-shot 74.5% 

MT-NLG [4] 3.1.2 530B Megatron variant Lambada 76.6% 

PaLM [35] 3.1.2 540B shared key-value projections Lambada 0-shot 77.9% 
GLaM [51] 3.5.2 1200B mixture-of-experts LM Lambada 0-shot 73.7% 

WuDao-2.0 [178] 3.5.2 1750B mixture-of-experts LM Lambada: better than 
Turing-NLG
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Table 3.4 Comparing different versions of PaLM, GPT-3, Chinchilla, Gopher, OPT, GLaM, and 
BLOOM on a number of popular benchmarks covering text completion, pronoun coreference, 
common sense reasoning and question answering (QA) [22, 25, 35, 51]. FLOPS measures the 
computational effort in floating point operations per second. Best benchmark values printed in 
bold 

PaLM PaLM PaLM GPT-3 Chinchilla Gopher OPT GLaM BLOOM 

Model size (billion 
parameters) 

8 62 540 175 70 280 175 1200 176 

Num. training 
Tokens (billion) 

780 795 780 400 1400 300 180 1600 350 

Training effort 
(.1021 FLOPS) 

37.4 295.7 2527 314.0 588.0 504.0 .≈ 50 . ≈ 105

Lambada 0-shot 
(text compl.) 

69.5 75.4 77.9 76.2 77.4 74.5 73.7 67.2 

HellaSWAG 0-shot 
(text compl.) 

68.7 79.7 83.4 78.9 80.8 79.2 79.0 77.1 73.0 

PIQA 0-shot 
(common sense) 

77.1 80.5 82.3 80.5 81.8 81.8 78.5 80.4 

Winogrande 0-shot 
(coreference) 

66.3 77.0 81.1 70.2 74.9 70.1 74.0 73.4 70.1 

BoolQ 0-shot (QA) 68.3 84.8 88.0 60.5 83.7 79.3 64.0 83.0 

Natural questions 
0-shot (QA) 

8.4 18.1 21.2 14.6 16.6 10.1 21.5 

Natural questions 
few-shot (QA) 

14.6 27.6 36.0 29.9 31.5 24.5 

Trivia QA 0-shot 
(QA) 

39.5 67.3 76.9 64.3 67.0 52.8 68.0 

Trivia QA few-shot 
(QA) 

48.5 72.7 81.4 71.2 73.2 63.6 

Average task metric 51.2 64.8 69.8 60.7 65.2 59.5 

GPT-3 is able to generate fluent texts and covers a huge amount of world 
knowledge, as the example in Fig. 3.2 shows. Examples of generated texts can be 
found in many locations [23, 149]. The amount and quality of knowledge captured 
by PLMs is discussed in Chap. 4. In contrast to other language models, GPT-3 
can be instructed by a few sentences to perform quite arbitrary tasks (few-shot 
learning). This is a very simple way to use GPT-3 to solve quite specific tasks such 
as translating into another language, summarizing a document, correcting grammar, 
writing an essay on a given topic, etc. Details are discussed in Sect. 3.6.3. 

At the end of 2021 OpenAI provided an API to fine-tune GPT-3 with user-specific 
data [123]. In this way, the model can be adapted to a specific domain language 
and, in addition, be prepared to perform specific classification tasks. In general, this 
yields higher quality results than prompt design. In addition, no few-shot examples 
are necessary anymore. Details of fine-tuning GPT-3 are discussed in Sect. 3.6.2. 
Table 3.4 compares GPT-3 with other more recent language models on a number of 
popular benchmarks. There is a clear advantage of the new PaLM model.
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Fig. 3.2 Text generated by GPT-3 in response to an input. Quoted with kind permission of the 
authors [25, p. 28] 

GPT-J-6B is an open-source GPT model with 28 layers, 16 heads, a context size 
of 2048, and 6B parameters [221]. It has a similar performance as the GPT-3 version 
with 6.7B parameters. There is an interactive web demo where users can enter 
their prompts and a continuation text is generated [220]. GPT-Neo [16] is another 
free version of GPT with 2.7B parameters. It was trained on the Pile, a 825GB 
data set containing data from 22 diverse sources, including academic sources (e.g. 
ArXiv), Internet webpages (e.g. StackExchange), dialogs from subtitles, GitHub, 
etc. It outperforms the GPT-3 version with the same parameter size on some natural 
language understanding tasks [89]. Recently, GPT-NeoX-20B [215] was released. 
It has 44 layers, an internal vector dimension of 6144, 64 heads and uses batches of 
size 3.1M for training. In the LAMBADA benchmark (Sect. 4.1.3) with the task of 
predicting the missing last word of the last sentence of each passage, it achieves an 
accuracy of 72.0%. This value is close to GPT-3 with 75.2%. 

Megatron-LM [193] scale language models such as GPT-2 and BERT efficiently 
by introducing intra-layer model parallelism. The authors place self-attention heads 
as well as feed-forward layers on different GPUs, reducing the memory burden 
of a single GPU. They present a GPT-variant with 8.3B parameters and a 3.9B
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parameter model similar to BERT. Highlights of the approach include 76% scaling 
efficiency when using 512GPUs. Their GPT model reduces the WikiText-103 [134] 
SOTA perplexity from 15.8 to 10.8 and their BERT model increases RACE (reading 
comprehension) [110] accuracy to 90.9%. 

Jurassic-1 [122] is an autoregressive language model similar to GPT-3 with 
178B parameters. The authors chose a token vocabulary of 256k instead of 50k for 
GPT-3, which also included frequent multi-word expressions such as named entities 
and common phrases. The training text could be represented with 28% fewer tokens 
than GPT-3. Hence, the model can process queries up to 1.4. × faster when using the 
same architecture. The model used a maximal sequence length of 2048 tokens. In 
spite of the larger vocabulary only 2% of all parameters were required for the input 
embeddings. The model was trained on 300B tokens drawn from public text corpora 
using a final batch size of 3.2M tokens. 

PanGu-. α [248] is a model of Huawei similar to GPT-3 with up to 200B 
parameters. It was trained on 1.1TB Chinese text, and was applied to a large number 
of tasks in zero-shot, one-shot, and few-shot settings without any fine-tuning. The 
model has a performance comparable to GPT-3. 

OPT-175B (Open Pre-trained Transformer) [253] is a suite of 8 GPTmodels with 
125M to 175B parameters developed by Meta. It was trained on publicly available 
datasets with 180B tokens. The largest models has 96 layers, each with 96 heads. 
Although OPT-175B has the same parameter count as GPT-3, its training required 
only 1/7th of computing effort of GPT-3. The model was evaluated on 16 NLP tasks 
and showed approximately the same performance as GPT-3 (Table 3.4). All trained 
models up to 30B parameters are freely available. The large 175B parameter model 
is only available to academic researchers upon request to discourage the production 
of fake news. The model can be trained and deployed on only 16 NVIDIA V100 
GPUs. Some benchmark results are provided in Table 3.4. 

BLOOM [139] is an autoregressive large language model with 176B parameters. 
It has 70 layers with 112 attention-heads per layer and 2048 token sequence length. 
It was developed by the BigScience initiative of over 1000 AI researchers to provide 
a free large language model for everyone who wants to try. Its training data covers 
46 natural languages (English 30%, Chinese 16%, French 12%, Spanish 11%, . . . )  
and 11% code (java, php, . . . )  with  350B tokens. The 176B BLOOM model has 
been trained using the Megatron-DeepSpeed library [26] offering different types of 
parallelism. The model can be evaluated on 8 large GPUs. Hence, BLOOM is one of 
the largest trained model available for research purposes. Some benchmark results 
are provided in Table 3.4. 

Gopher [168] employed the GPT-2 architecture with two modifications. For 
regularization the authors used RMSNorm (Sect. 2.4.2) instead of LayerNorm and 
they employed the relative positional encoding scheme [44] instead of absolute 
positional encoding. Gopher has 80 layers with 128 attention heads and 280B 
parameters. All models were trained on 300B tokens with a context window of 
2048 tokens and a batch size of up to 6M tokens. For the large models a 16 bit 
float numbers was used to reduce memory and increase training throughput.
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Six model versions with different numbers of parameters were trained to assess 
the effect of model size. The authors present a comprehensive evaluation on 152 
tasks described in Table 4.3. Gopher shows an improvement on 100 of 124 tasks. 
One of these is the LAMBADA benchmark [154] where Gopher generates a zero-shot 
score of 74.5, which is only slightly below the value 76.6 of MT-NLG model with 
530B parameters [106]. For instance Gopher achieves SOTA for all 12 benchmarks 
on humanities covering areas like econometrics and psychology surpassing the best 
supervised results for 11 benchmarks. Some results are provided in Table 3.4 while 
Sect. 4.1.4 describes more details. 

Chinchilla [83] is a mid-size encoder model with 70B parameters, which has 
the same compute budget as the larger Gopher model, but four times as much 
data. Chinchilla consistently has a better performance than Gopher (Table 3.4) and 
significantly outperforms GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing 
NLG (530B) on a large set of downstream evaluation tasks. For every doubling of 
model size the number of training tokens should also be doubled. This is a much 
larger scaling rate than that predicted by Kaplan et al. [102] in Sect. 3.5.1. 

Turing-NLG [179] introduces an autoregressive language model with 78 trans-
former layers, a hidden vector-size of 4256, 28 attention heads and 17B parameters. 
As a model with more than 1.3B parameters cannot fit into a single GPU with 
32GB memory it must be parallelized, or broken into pieces, across multiple GPUs. 
Turing-NLG leverages a SOTA Deep Learning hardware with high communication 
bandwidth, the Megatron-LM framework, and the DeepSpeed library, which further 
optimizes the training speed and reduces the resources needed. The model achieved 
SOTA performance on language modeling tasks and also proved to be effective for 
zero-shot question answering and abstractive summarization. 

Its successor MT-NLG [4] is a 105-layer encoder model with 530B parameters 
and was trained across 280GPUs with a huge batch size of 1920. Similar to GPT-
3 it improves performance on zero-, one- and few-shot tasks. For the LAMBADA 
benchmark [154], for example, the model has to predict the last word of paragraph 
(Sect. 4.1.3). On this benchmark MT-NLG improves the few-shot accuracy of GPT-
3 (86.4%) to the SOTA 87.2%. 

PaLM [35] is an autoregressive language model developed by Google with 540B 
parameters. It has 118 layers, 48 heads and an input sequence length of 2048. 
There are also smaller versions with 8B and 62B parameters. It uses a standard 
autoregressive decoder with SwiGLU activation function and shared query-value 
projections for the heads of a layer, which improves autoregressive decoding speed. 
The model is trained on a high-quality dataset with 780B tokens, where sloppy 
and toxic language have been filtered. Each training example is used only once. 
The training set contains social media conversation (50%), multilingual web pages 
(27%), books (13%), source code files (5%), multilingual Wikipedia articles (4%), 
and news articles (1%). Training required 3072 TPU chips for 1368 h, resulting in a 
total emission that is 50% higher than the emissions for a direct round-trip flight in 
an aircraft between San Francisco and New York [35, p. 18]. 

PaLM was evaluated on hundreds of natural language inference, mathematical, 
reasoning and knowledge intensive tasks and achieved SOTA accuracy in the large
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Fig. 3.3 Evaluation of PaLM, GPT-3, Gopher, and Chinchilla (left). Previous models were only 
evaluated on a subset of tasks, so this graph shows the aggregated results on the 58 tasks where all 
three models have been evaluated [35]. The medium accuracy of PaLM is better than the average 
performance of humans. The right side shows the results for four specific BIG-tasks. A detailed 
comparison between the performance of three PaLM models of different size as well as human 
levels is presented in [35, p. 15f]  

majority of benchmarks, e.g. in 28 of 29 most widely evaluated English language 
understanding benchmarks (cf. Table 3.4). This demonstrates that the scaling effects 
continue to hold for large Foundation Models. Figure 3.3 shows the results on BIG-
bench data compared to prior models. PaLM 540B 5-shot outperforms the prior 
SOTA on 44 out of the 58 common tasks, and on average is significantly better 
than the other models (Gopher, Chinchilla, GPT-3). Moreover, PaLM 540B 5-shot 
achieves a higher score than the average score of the humans asked to solve the same 
tasks. When fine-tuned on SuperGLUE, the model outperforms the best decoder-
only model and is competitive with encoder-decoder models, which in general 
perform better for fine-tuning. A significant number of tasks showed discontinuous 
improvements from model scale, meaning that the performance improvement from 
the smaller version to the largest model was higher than expected. 

PaLM has been fine-tuned on program code documents. The resulting model is 
called PaLM-Coder [35, p.23]. The quality of the code is measured by the pass@k 
metric, in which for each problem in the test set, k samples of source code are 
generated by PaLM-Coder, and a problem is counted as solved if any sample solves 
the problem. PaLM-Coder is able to solve a number of benchmark tasks with about 
a pass@1-value of about 50. There is an elaborate evaluation of the properties of the 
PaLM-Coder model.



92 3 Improving Pre-trained Language Models

Fig. 3.4 Few-shot example of a chain-of-thought prompt for a common sense question-answering 
task [35, p. 38]. The same two example chains of thought were combined with different prompts 
requiring an answer 

For about a quarter of tasks the authors observe a discontinuous jump in accuracy, 
if the model is increased from 58B to 540B parameters, far exceeding the ‘power 
law’ postulated by Kaplan et al. [102] (Sect. 3.5.1). Examples are ‘english proverbs’ 
and ‘logical sequence’ shown in Fig. 3.3. This suggests that new abilities of PLMs 
can evolve when the model reaches a sufficient size, and that these abilities also 
develop beyond the model sizes studied so far. 

The training data contains 22% multilingual documents. For translation between 
different languages, the few-shot PaLM model comes close to or even exceeds the 
fine-tuned SOTA. For English-French translation, Palm 540B few-shot achieves 44.0 
BLEU compared to a SOTA of 45.6. For German-English, PaLM 540B few-shot 
reaches 47.5 BLEU vs. a 45.6 BLEU SOTA. For other tasks like summarization and 
question answering, Palm 540B few-shot comes close to the fine-tuned models, and 
can outperform them in a few cases. 

Reasoning with a number of intermediate steps was always difficult for language 
models. Recently chain-of-thought prompting (Sect. 3.6.4) was proposed which 
adds intermediate reasoning steps [226] into the few-shot prompts (Fig. 3.4). 
Following this recipe, the PaLM model similarly produces its own intermediate 
steps for a multistep problem before giving the final answer. This leads to a boost in 
performance for a number of benchmark tasks. Using this technique PaLM is even 
able to explain jokes, as Fig. 3.5 demonstrates.
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Fig. 3.5 By using thought-chain-prompts PaLM can explain jokes [35] 

3.1.3 Transformer Encoder-Decoders 

The Transformer encoder-decoder [212] was pre-trained with a translation task 
(Sect. 2.3). To improve performance a number of alternatives were proposed: 

• Different targets to restore corrupted pre-training data are proposed by MASS, 
BART and PEGASUS. Examples are predicting masked spans, ordering per-
muted sentences, or inserting omitted tokens. 

• T5 formulates many language understanding and language generation tasks as 
text translations and handles them with the same model. 

• Longformer, Reformer and Transformerl-XL extend the size of the input text 
without increasing the number of parameters. They are discussed in Sect. 3.2. 

The details are given in the following paragraphs. A representative list of trans-
former encoder-decoders is provided in Table 3.5. 

MASS [196] is based on the transformer architecture. In contrast to the original 
transformer, a sequence of consecutive tokens in the encoder is masked and the 
decoder’s task is to predict the masked tokens recursively (Fig. 3.6). Therefore, 
MASS can jointly train the encoder and decoder to develop the capability of 
extracting embeddings and language modeling. MASS is fine-tuned on language 
generation tasks such as neural machine translation, summarization and con-
versational response generation. It shows significant performance improvements 
compared to prior transformer architectures. 

BART [119] uses a standard Transformer-based encoder-decoder architec-
ture. The pre-training task is to recover text corrupted by a number of different 
approaches (Fig. 3.6): predict masked tokens as with BERT; predict deleted tokens 
and their positions, predict the missing tokens replaced by a single mask, reconstruct 
a permuted sentence as with XLNet, and find the beginning of a rotated document. 
BART was fine-tuned on a number of tasks like GLUE, SQuAD, summarization, 
and machine translation. BART achieved the best performance with the prediction 
of missing tokens replaced by a single mask. A large version of BART was trained
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Table 3.5 Transformer encoder-decoders. The pre-training and fine-tuning loss functions are 
defined in Table 3.1. Benchmarks: En-De WMT2014 English-to-German BLEU, GLUE Sect. 4.1.1 
accuracy, SuperGLUE Sect. 4.1.2 accuracy, TriviaQA [99] Sect. 6.2.1 accuracy, Penn Treebank 
[136] perplexity. The benchmark figures are only a hint, as they depend on the number of 
parameters and the computing effort 

Model Section Pre-training Fine-tuning Extra Benchmark 

Transformer [212] 2.3 S2S S2S Predict translated 
tokens 

En-De 26.4 

UniLM [8] 3.1.3 MLM, LM MC, LM Uni- and 
bidirectional 

GLUE 87.3 

MASS [196] 3.1.3 S2S S2S Predict masked 
tokens 

En-De 28.3 

BART [119] 3.1.3 DAE MC, LM, S2S Restore corrupted 
text 

GLUE 88.4 

T5 [170] 3.1.3 S2S MC, LM, S2S Solve many NLP 
tasks as S2S  
problems 

GLUE 89.7 

GLM [54] 3.1.3 LM LM Solve all task by 
autoregressive 
prediction 

SuperGLUE 
82.9 

Longformer [10] 3.2.1 MLM, S2S LM, MC, S2S Sparse attention 
mechanism 

TriviaQA 
77.3 

Reformer [108] 3.2.2 LM, S2S LM, MC, S2S Locality-sensitive 
hashing, reversible 
residual layers 

En-De 29.1 

Transformer-XL [44] 3.2.2 MLM, S2S MC, S2S Sparse attention 
mechanism 

Penn-Tree 
Bank 54.5 

Fig. 3.6 Different pre-training tasks to restore corrupted text by the transformer. Span masking is 
the task for MASS [196]. BART uses all tasks from token masking to document rotation [119] 

with a hidden size of 1024 and 12 encoder and decoder layers with a similar dataset 
as used by RoBERTa. The resulting performance was similar to that of RoBERTa. 
For abstractive summarization, e.g. on the CNN/Daily Mail benchmark [78], BART 
achieves SOTA.
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Fig. 3.7 Every task in T5 is expressed as a translation task, where the type of the task is a prefix 
to the input text (on the left) and the model produces the corresponding output (right) . Adapted 
from [170, p.3] with kind permission of the authors 

PEGASUS [251] proposed pre-training large Transformer-based Seq2seq mod-
els on massive text corpora with a new objective: gap-sentences generation, where 
sentences instead of tokens are masked or removed. The model has to generate these 
modified parts as a one sentence output. On 12 document summarization tasks the 
model achieves SOTA performance. 

T5 [170] is based on the standard transformer architecture. Pre-training is 
performed on a huge training set by restoring corrupted texts, which is formulated as 
a sequence-to-sequence tasks. The comparison of different pre-training tasks listed 
in Fig. 3.6 found that, similar to BART, text infilling achieves the best results. If 
the original text is “Thank you for inviting me to your party last week .” the model 
receives the input “Thank you [X] me to your party [Y] week .” with masked phrases 
and has to generate the output “[X] for inviting [Y] last [Z]” to reconstruct the 
masked phrases. 

Salient span masking [72] was especially effective. To focus on relevant phrases 
a BERT-tagger was trained to recognize named entities (person names, locations, 
etc. Sect. 2.1.3), and dates were identified by regular expressions. If the model 
had to recreate these spans the model performance was significantly increased. By 
predicting the omitted tokens, the model is able to collect an enormous amount of 
information on syntactic and semantic knowledge. Extensive comparisons show that 
the sequence-to-sequence architecture yields better results than other architectures, 
e.g. autoregressive language models. 

T5 is pre-trained on a multitask mixture of unsupervised and supervised tasks 
using a training dataset of 750GB of cleaned English web text. Its largest version 
has 24 layers, 128 attention heads, and 11B parameters. For each task the data is 
converted into a text-to-text format (Fig. 3.7). The model achieves SOTA results on 
many benchmarks, for example summarization, question answering, text classifica-
tion, and more. The results for GLUE is 90.3% [11].
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Primer [195] proposes two modifications of the original self-attention architec-
ture. First the ReLU activation function is squared. In addition, a convolution layer 
is added after each of the multi-head projections for query Q, key  K , and value V . 
For the original T5 architecture this reduces the training cost by a factor 4. 

UniLM2 [8] simultaneously pre-trains a bidirectional language models and a 
sequence-to-sequence model for language generation. The model parameters are 
shared between the two tasks, and the encoding results of the context tokens are 
reused. The model uses two mask types, one for bidirectional masking similar to 
BERT and pseudo masks for language modeling. With special self-attention masks 
and position embeddings, the model can perform both language modeling tasks 
in one forward pass without redundant computation of context. The model beats 
BART.BASE for reading comprehension on SQuAD 1.1 and T5.BASE for abstractive 
summarization on CNN/Daily Mail. 

GLM (General Language Model) [54, 55] is a successor of UniLM2 aiming to 
combine the different learning paradigms of BERT, GPT and the transformer. For 
pre-training GLM has the task to generate multiple text spans in an autoregressive 
way basically using the GPT architecture. From the input text . x = (x1, . . . , xT )

a number m spans .xi1 , . . . , xi1+li are sampled. Each span is replaced with a single 
[MASK] token yielding the corrupted input .xcorrupt. The model then successively 
generates the tokens of the spans having access to the corrupted input and the 
already generated tokens of the spans (Fig. 3.8). Within the input text all tokens 
are connected by self attention while in the output section a masked self-attention 
is used. Each span is finished by an [END] token. To identify the positions of 
generated tokens two positions are encoded by embeddings: the input position and 
the position within a span. Note that the mask prediction can be done in arbitrary 
sequence and the model has to predict the length of the spans during reconstruction. 

For fine-tuning, text classification tasks are converted to word predictions. To 
assess the sentence “The waiters were friendly.” in a sentiment classification task 

Fig. 3.8 During pre-training GLM has the task to reconstruct masked single words or multi-word 
phrases. The position of generated words in the text and in the masks are indicated by position 
embeddings, which are added to the token embeddings. The generated answers are terminated by 
an [END] token [54]
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the input is extended to “The waiters were friendly. It’s really [MASK].” where 
[MASK] has to be replaced by “good” or “bad”. For a text generation task 
a [MASK] token is appended to the input text. Then the model generates the 
continuation as the output text in an autoregressive way. In contrast to BERT the 
model observes the dependency between masked tokens yielding more consistent 
predictions. In comparison to XLNet no additional attention for position encoding 
is needed reducing the computational requirements. Compared to T5, GLM predicts 
the spans in arbitrary order and requires fewer extra tokens. 

To evaluate the model performance, Du et al. [54] train  GLM.BASE and 
GLM.LARGE with the same training data and parameter counts (110M and 340M) 
as BERT.BASE and BERT.LARGE. For both model configurations, GLM outperforms 
BERT on SuperGLUE (Sect. 4.1.2), e.g. GLM.LARGE has an average score of 77.0 
compared to 72.0 for BERT.LARGE. On a larger pre-training dataset for a model 
with the same size as RoBERTa they yield an average SuperGLUE score of 82.9 
compared to 81.5 for RoBERTa. They show that by multitask learning, a single 
model with the same parameters can simultaneously achieve higher accuracy in 
NLU, generating text given an input, and solve other tasks such as summarization 
[53]. 

Larger models like GLaM [51] and WuDao-2.0 [257] have a mixture-of-experts 
architecture and are described in Sect. 3.5.2. 

3.1.4 Systematic Comparison of Transformer Variants 

As an example of a fair comparison of architectural features, we report the following 
experimental analysis of PLMs, where Narang et al. [142] evaluated the effect of 
a number of transformer modifications. The following transformer features were 
investigated: 

• Activation functions: In addition to the ReLU-activation in the feedforward layers 
11 different activations functions were assessed. 

• Normalization: Together with the original layer normalization, five different 
regularization techniques were explored. 

• Number of layers: The number . dL of layers was varied between 6 and 24. To keep 
the comparison fair, the number of parameters was held constant by varying the 
number . dH of heads and the widths . dff of internal embeddings. 

• Token embeddings: The original transformer embeddings were compared to five 
variants of factored embeddings. In addition, the sharing of transformer blocks 
was investigated. 

• Softmax: The standard softmax to compute token probabilities was contrasted to 
three softmax variants. 

• Architecture: The authors compared the base transformer with 17 other architec-
tures. In most cases, the number of parameters was kept about the same.
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The authors evaluated the variants in two settings: Transfer learning based on the 
T5 transformer (Sect. 3.1.3) and supervised machine translation on the WMT2014 
En-De [17]. With some caution, the results can also be applied to other types of 
PLMs like BERT and GPT. 

Each architecture variant of T5 was pre-trained on the C4 dataset [171] of  
806GB using the “span corruption” masked language modeling objective. Subse-
quently, T5 was fine-tuned on three tasks: the SuperGLUE language understanding 
task [219], the XSum abstractive summarization dataset [143], and the WebQuestions 
benchmark [13], where no additional knowledge was provided as background 
information. The computing effort and the number of parameters for each model 
was fixed to the same level. An exception was an architecture with significantly 
fewer parameters, which was trained for longer. 

Several activation functions achieve a better performance compared to the 
ReLU activation, especially SwiGLU and GEGLU, which are gated linear units 
(GLU) forming a product with another activation [189]. The improvement can be 
observed for pre-training, fine-tuning, and supervised training without affecting the 
computation time. For SuperGLUE, for instance, an increase from 71.7% to about 
76.0% can be observed. Replacing layer normalization with RMS normalization 
[249] causes performance gains for all tasks. The SuperGLUE score, for example, 
was improved from 71.7% to 75.5%. In addition, the training speed was higher. 

As expected, increasing the depth of a models usually led to a better performance 
even if the number of parameters is kept constant. On SuperGLUE the model with 
18 layers achieved a score of 76.5% compared to 71.7% for the base model. Similar 
improvements can be observed for WebQuestions and translation, while there were 
no improvements for the summarization task. This is in line with theoretical results 
(Sect. 3.5.1). A drawback is that deeper models require more computation time. 

Architectures, which share parameters in different layers, usually lead to a 
decreased performance. The effect of using the same embeddings for encoders 
and decoders is mixed. Factorization of embeddings into a matrix product usually 
cause inferior results. If a Mixture of Softmaxes [239] is used to predict the output 
probabilities, the performance usually is better, e.g. an increase to 76.8% for 
SuperGLUE. However, this approach requires up to 40% more computation effort. 

Of the architectural variants evaluated, two combinations of the Synthesizers with 
dot-product attention (Sect. 3.2.2) perform better than the standard Transformer. 
The Synthesizers do not compute a “correlation” of embeddings but determine 
the attention weights from a single embedding or randomly. Switch Transformer, 
Mixture-of-experts, and Product key memories all have significantly more parame-
ters than the baseline transformer but are able to improve performance. The Switch 
transformer ([56] Sect. 3.5.2) has many more parameters than the base T5 model. 
To reach the same performance as Switch, T5 needs seven times more training 
FLOPS (floating point operations per second). The Mixture-of-experts model [116] 
distributes computations to 2 expert models in both the encoder and the decoder. 
Product key memory ([112] Sect. 3.1.1) replaces the dot-product attention by a 
nearest neighbor search.
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For all other 12 architectures, there were no improvements over the standard 
transformer [142]. This is different to the findings of the papers proposing the mod-
els. A reason seems to be that changes of the transformer architecture are difficult to 
transfer to other code bases and applications. Therefore, the authors propose to try 
out new modifications on different low-level implementations. In addition, a new 
approach should be evaluated on a variety of downstream applications including 
transfer learning, supervised learning, and language modeling. Hyperparameter 
optimization should be kept fixed to assure the robustness of the approach. Finally, 
the mean and standard deviation of results should be reported to avoid the selection 
of a single best result. 

3.1.5 Summary 

The modification of pre-training tasks has a profound influence on the performance 
of PLMs. Many different types of pre-training losses have been evaluated, such as 
masked phrase prediction, replaced token detection, or sentence order recognition. 
According to the benchmarks, the prediction of permuted tokens by XLNET is 
especially rewarding because XLNET takes into account the dependency between 
masked tokens. In addition, DeBERTa’s disentangled token and position embed-
dings are able to boost the performance in downstream classifiers. With respect 
to applications, autoencoders like BERT are particular important for information 
extraction in Chap. 5. 

For autoregressive PLMs like GPT, a number of variants with larger model 
size and larger training data have been presented. However, in most cases, the 
pre-training tasks were not changed. The training of the larger models required 
improvements in the parallel computing infrastructure and resulted in an unprece-
dented performance in text generation. By creating custom start texts (prompting), 
the models can solve a large number of specific tasks with very high accuracy 
without further fine-tuning (Sect. 3.6.3). The amount and quality of knowledge 
captured by PLMs is surprisingly high and is discussed in Chap. 4. In terms of 
applications, autoregressive PLMs are used in particular for text (Chap. 6) and image 
generation (Sect. 7.2). Because of their versatility and the tremendous increase in 
performance, recent large-scale PLMs are called Foundation Models. 

Encoder-decoder transformers were introduced for translating a text from one 
language to another. A number of new pre-training tasks were evaluated for these 
models. Some of them are similar to the tasks for autoencoders, such as predicting 
masked spans or inserting omitted tokens. Others were adapted to the input-
output architecture, e.g. the reconstruction of sentence permutations and document 
rotations. Here BART and T5 achieved the best performances in the GLUE and 
SuperGLUE natural language understanding tasks. By creating additional synthetic 
training examples, the performance of T5 and other models can be increased 
(Sect. 3.6.6).
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A systematic comparison of transformer architectures demonstrated that several 
architectural changes increased performance. The SwiGLU and GEGLU activation 
function instead of ReLU increased accuracy for SuperGLUE by more than 4%. 
Similar gains were observed when using RMS normalization instead of layer 
normalization. Increasing the model depth resulted in better performance even when 
the number of parameters was held constant. Synthesizers, mixtures-of-experts, and 
Product keys replacing scalar products by k-means clustering also performed better 
than the standard transformer. 

T5 and GLM demonstrate that transformers, controlled by instructive prompts, 
can be used to solve arbitrary problems of text classification, text generation, and 
text translation. They thus combine the capabilities of BERT, GPT, and translation 
models. Transformers are used extensively in complex text generation tasks, e.g. 
machine translation (Sect. 6.3), dialog (Sect. 6.6), and image generation (Sect. 7.2). 

3.2 Capturing Longer Dependencies 

A well-known concern with self-attention is the quadratic time and memory com-
plexity, which can hinder the scalability of the model in many settings (Sect. 2.1.6). 
If the sequence length T is increased to 2T then four times as many associations 
(attentions) between tokens have to be computed. This limits the direct applicability 
of models when a task requires larger contexts, such as answering questions or 
summarizing a document. Moreover, a larger memory is required to store the 
attentions for training. Therefore, a number of concepts have been proposed to cover 
long sequences without excessive computational and memory demands. 

• Sparse attention matrices are employed by BigBird, the Sparse Transformer, 
Longformer, and GPT-3 to reduce the number of parameters. 

• Clustering tokens by locality-sensitive hashing reduces the number of attentions 
computed by the Reformer. 

• Low-rank-approximation of attention matrices or by a kernel-based formulation 
of self-attention decreases the number of parameters of the Performer and the 
Linear Transformer. 

• Transformer-XL and the Linear Transformer reuse computations from previous 
text segments in an autoregressive manner to lower computational overhead. 

Surveys of techniques for enlarging the input sequence are provided by Tay et al. 
[207] and Fournier et al. [59]. 

3.2.1 Sparse Attention Matrices 

BigBird [247] reduces the number of attention computations by omitting entries 
according to some pre-determined pattern from the matrix of attention relations.
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Fig. 3.9 Attention mechanism used in BigBird [247] to compute the association between input 
tokens. Matrix indicating attention between pairs of tokens: attentions between sequence neighbors 
(left), global attentions to a few tokens (second left), random attentions (third from left), the 
combined BigBird attentions (right). White blocks indicate omitted attention pairs 

BigBird extends transformer-based models, e.g. BERT, and uses a set of g global 
tokens attending on all tokens of the sequence. In addition, each token . vt attends to 
a set of . nl local neighboring tokens and to a set of . nr random tokens. The resulting 
association matrices are shown in Fig. 3.9. If the numbers g, . nl , and . nr do not 
increase with sequence length T the number of attentions grows linearly with T . 

The model is constructed in such a way that the length of the path between 
arbitrary token pairs along intermediate tokens is kept small, as in a small-world 
graph. The authors prove that their model allows to express all continuous sequence-
to-sequence functions with only .O(T ) inner products (Table 3.6). In addition, 
they show that under standard assumptions BigBird is Turing complete, i.e. can 
perform arbitrary computations (see also [246]). The BigBird attention module can 
be used in BERT, autoregressive language models, and Transformer architectures. 
In a number of applications BigBird using a sequence length of 4096 is able to 
improve the SOTA, e.g. for question answering requiring multi-hop reasoning from 
the given evidences. Note that BigBird without random attention performed better 
than BigBird with random attention in a set of experiments. 

Prior models using these concepts were the Sparse Transformer [33] and the 
Longformer [10], which similarly to WaveNet [148] employ strided or “dilated” 
neighborhoods. Here not all adjacent neighbors are attended by a token, but only 
every d-th neighbor with .d > 1. If  k layers are used, this construction covers . dk

neighbors and thus allows associations over large distances. The Extended Trans-
former Construction (ETC) model [3] generalizes the idea of global tokens, which 
can communicate associations between far-away tokens of the whole sequence. 

GPT-3 [25] (Sect. 3.1.2) is a recent language model with 96 layers, 96 attention 
heads, 175 billion parameters covering sequences of length 2048. To cope with the 
excessive sequence length the authors used “alternating dense and locally banded 
sparse attention patterns in the layers of the transformer, similar to the Sparse 
Transformer” [33]. The details of the architecture are not yet known. The model 
achieved an unprecedented performance in language modeling, question answering, 
etc., which is discussed in Sect. 3.6.3.
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Table 3.6 Important models with sparse self-attention for long dependencies. T is the sequence 
length, g number of global tokens, k is window size. (cf. [207]) 

Complexity Low Sparse/random Learnable 
Model O(·) rank/Kernels Recurrence Memory patterns patterns 

Transformer-XL 
[44] 

T 2 – X – – – 

Reformer [108] T log T – – – – X 

Routing 
transformer 
[180] 

T log T – – X – X 

Compressive 
transformer 
[169] 

T 2 – X X – – 

ETC [3] g2 + T g – – X X – 

GPT–3 [25] T
√

T – – – X – 

Performer [34] T X – – – – 

Linear 
transformer 
[105] 

T X – – – – 

BigBird [247] T – – X X – 

S4 [68] T X – – – – 

3.2.2 Hashing and Low-Rank Approximations 

The Reformer [108] introduces locality-sensitive hashing to cluster tokens with 
similar key/query vectors. This approach hashes similar input items into the same 
“buckets” with high probability. For each cluster the same query/key parameters are 
used. In this way, tokens are aggregated in a data-driven fashion. In a similar way, 
the Routing Transformer [180] clusters tokens by k-means clustering. 

Transformer-XL [44] reuses computation results from prior segments of a 
sequence. With this recurrence mechanism applied to every two consecutive 
segments of a corpus, it essentially creates a segment-level recurrence in the hidden 
states. With multiple layers, the effective context being utilized can go way beyond 
just two segments. A similar approach is used by the Compressive Transformer 
[169]. Segatron is a variant that encodes a paragraph index in a document, a sentence 
index in a paragraph, and token index in a sentence as embeddings to be added to 
the token embedding. This modification leads to a better perplexity in language 
modeling. 

The Performer [34] reduces the computational load by employing low rank 
approximations of the self-attention matrix. It uses a random kernel with positive 
orthogonal random features to compute the self-attention. By orthogonality, the 
authors avoid computing the full square matrix of products, since the dot product 
of orthogonal features is 0. Hence, computation requirements grow linearly with 
sequence length. The authors are able to prove that their model allows nearly-
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unbiased estimation of the full attention matrix as well as uniform convergence and 
lower variance of the approximation. 

The Linear Transformer [105] also uses a kernel-based formulation of self-
attention reducing complexity to linear. For predicting the future elements from past 
inputs, the authors are able to construct an iterative algorithm similar to RNNs that 
is dramatically faster than standard transformers. The model has been shown to 
improve inference speeds up to three orders of magnitude without much loss in 
predictive performance. 

The Transformer-LS (Long-Short Transformer) [258] has a local sliding win-
dow attention between neighboring tokens and a long-range attention with dynamic 
projections to represent relationships between distant tokens. The dynamic low-rank 
projections depends on the content of the input sequence. The authors claim that the 
approach is more robust against insertion, deletion, paraphrasing, etc. The scheme 
achieves SOTA perplexities in language modeling for different benchmarks, e.g. 0.99 
for enwik8 and SOTA results as vision transformer on ImageNet. 

The Combiner [174] represents groups of embeddings by key vectors. The 
probability that a given token . vt attends to a token . vs is described by a product, 
where . vt first attends to the key vector that represents a group of locations containing 
. vs multiplied by the probability of choosing . vs within that group. In this way, 
the Combiner can be applied to sequences of length up to 12,000. The approach 
is able to achieve SOTA perplexity on large benchmarks. In addition, it improves 
the average performance on the Long Range Arena benchmark [209] specifically 
focused on evaluating model quality for long documents. 

The Synthesizer [206] replaces the pairwise dot products of attention with 
“synthesizing functions” that learn attention matrices, which may or may not depend 
on the input tokens (cf. Sect. 3.1.4). In the Dense Synthesizer, each token embedding 
. xi , .i = 1, . . . , T , in a layer is projected to a vector of the length T using a 
two-layered nonlinear feed-forward network with a ReLU activation. The values 
of this vector are used as weights to determine the mixture of values to form the 
output embedding. Hence, no “correlations” between embeddings are computed to 
determine their similarity, as it is done for the standard self-attention. There is an 
extreme variant, where the mixing proportions are set randomly. Nevertheless, on 
multiple tasks such as machine translation, language modeling, dialogue generation, 
masked language modeling and document classification, this “synthetic” attention 
demonstrates competitive performance compared to vanilla self-attention. The 
combination of Random Synthesizers with normal dot-product attention is able to 
beat T5 on several benchmarks. 

The Perceiver [93] defines an asymmetric attention mechanism iteratively 
converting the long input sequence .x1, . . . , xT (e.g. the 50k pixels of an image) into 
a shorter sequence of latent units .u1, . . . ,un (e.g. .n = 512) that form a bottleneck 
through which the inputs must pass (Fig. 3.10). With cross-attention (Sect. 2.3.1) 
the Q-transformed latent sequence embeddings .Qui and the K-transformed long 
input sequence embeddings .Kxj form a scalar product .(Qui )

ᵀ(Kxj ). It is used  
as a weight for the V -transformed long sequence embedding .V xj to generate the 
new short embeddings. The Perceiver is basically a BERT model with a sequence
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Fig. 3.10 If the input sequence is too long, a short latent sequence is defined by the Perceiver. By
cross-attention between the long sequence and the latent sequence the information is compressed.
A standard transformer block computes the self-attentions between the latent sequence elements,
which in the end generates a classification [93] 

length of n instead of T , which avoids that the computing effort scales quadratically 
with the input length. The iterative approach enables the model to devote its limited 
capacity to the most relevant inputs. In experiments the Perceiver was able to beat 
the leading ResNet-50 CNN with respect to image classification [93]. Perceiver IO 
[92] projects the resulting n output embeddings of a Perceiver to a larger sequence 
of output embeddings by another cross-attention operation, which, for instance, gets 
the position embeddings of output elements as query vectors. The Perceiver AR 
[73] extends the Perceiver to generate an output sequentially similar to the encoder-
decoder transformer. 

S4 [68] is a Structured State Space Sequence model based on the Kalman filter 
for the observation of a state model with errors [101]. A continuous state space 
model is defined by 

.x′(t) = Ax(t) + Bu(t) y(t) = Cxt + Du(t), (3.1) 

which maps an input signal .u(t) to output .y(t) through a latent state .x(t). The  
authors reparametrize the matrices . A and decompose them as the sum of a low-rank 
and skew-symmetric term. Moreover, they compute its generating function of the 
associated infinite sequence truncated to some length L in frequency space. The
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low-rank term can be corrected by the Woodbury identity for matrix inversion. The 
skew-symmetric term can be diagonalized and can be reduced to a Cauchy kernel 
[153]. 

The . A matrix is initialized with an special upper-triangular “HIPPO” matrix that 
allows the state .x(t) to memorize the history of the input .u(t). The authors prove 
that in complex space . C the corresponding state-space model can be expressed by 
matrices .(� − PQ∗,B,C) for some diagonal matrix . � and vectors . P ,Q,B,C ∈
C. These are the 5N trainable parameters of S4, where N is the state dimension. 
Overall, S4 defines a sequence-to-sequence map of shape (batch size, sequence 
length, hidden dimension), in the same way as related sequence models such as 
Transformers, RNNs, and CNNs. For sequence length L this requires a computing 
effort of .∼O(N + L) and .O(N + L) memory space, which is close to the 
lowest value for sequence models. Gu et al. [69] provide a detailed exposition and 
implementation of the S4 model. 

In empirical evaluations it turned out that S4 for an input length of 1024 is 1.6 
times faster than the standard transformer and requires only 43% of its memory. For 
an input length of 4096, S4 is 5 times faster and requires just 9% of the memory of 
the standard transformer. For the benchmarks of the Long Range Arena benchmark 
S4 increased SOTA average accuracy from 59.4% to 80.5% (Table 3.7). Moreover, 
S4 was able to solve the extremely challenging Path-X task that involves reasoning 
over sequences of length 16k where all previous models have failed. Finally, S4 
was able to perform raw speech signal classification on sequences of length 16k and 
achieves a new SOTA of 98.3% accuracy. S4 involves a genuine breakthrough in 
long range sequence processing. In addition, S4 is better in long-range time-series 
forecasting, e.g. reducing Mean Square Error by 37% when forecasting 30 days of 
weather data. DSS [70] is a variant of S4 that is simpler to formulate and achieves a 
slightly lower performance. 

3.2.3 Comparisons of Transformers with Long Input 
Sequences 

The Long Range Arena [209] aims to evaluate the performance on tasks with long 
input sequences from 1k to 16k tokens. It contains six different benchmark datasets 
covering text, images, mathematical expressions, and visual spatial reasoning. The 
tasks include ListOps (computations in a list-notation), text classification (classify 
IMDB reviews using character sequences), document retrieval (based on document 
embeddings), image classification (based on a sequence of pixels), and pathfinder 
(detection of circles) in two versions. The authors evaluate nine transformer 
architectures with the ability to process long inputs. 

The results are shown in Table 3.7. For the hierarchically structured data of 
ListOps, it turns out that kernel-based approaches, for instance the Performer and 
the Linear Transformer, are not appropriate. For text classification, kernel-based
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Table 3.7 Accuracy results for the Long-Range Arena Benchmark. The best score is printed in 
bold, results improving the standard transformer are underlined (cf. [209]) 

Model ListOps Text classif. Retrieval Image classif. Pathfinder Path-X Average 

Transformer 36.3 64.3 57.5 42.4 71.4 .× 54.4 

Reformer 37.3 56.1 53.4 38.1 68.5 .× 50.7 

Synthesizer 37.0 61.9 54.7 41.6 69.5 .× 52.9 

BigBird 36.0 64.0 59.3 40.8 74.9 .× 55.0 

Linear transf. 16.1 65.9 53.1 42.3 75.3 .× 50.6 

Performer 18.0 65.4 53.8 42.8 77.0 .× 51.4 

S4 58.4 76.0 87.1 87.3 86.1 88.1 80.5 

methods perform particularly well. For image classification most models do well, 
except for the Reformer. The pathfinder task is solved by all models with an 
acceptable performance, with the Performer doing best. However, all models except 
S4 fail on the extended Pathfinder task and are not able to find a solution. In terms 
of all benchmarks, S4 is the best model by a wide margin. 

With respect to speed, the Performer was best, being 5.7 times faster than the 
standard transformer on sequences of length 4k. Memory consumption ranged from 
9.5GB for the standard transformer to about 1.1GB for the Linear Transformer. All 
other models except the Synthesizer require less than 3 GB with S4 doing well in 
both aspects. 

3.2.4 Summary 

There are a variety of proposals for PLMs to efficiently process long input 
sequences. Often a sparse attention matrix is employed, where only a part of the 
possible attentions is used to establish the connection between far-away positions. 
Usually, full attention is computed for near positions. Some tokens have a global 
attention to communicate information between positions not connected directly. A 
prominent example is BigBird, which adds random attentions. Its computational 
effort only grows linearly with input size and it still can perform arbitrary sequence 
computations. There are other architectures like the Performer and the Linear 
Transformer, which also exhibit linear growth. 

Some architectures either approximate the attention matrices by low-rank factor-
izations or aggregate tokens, which express similar content (Reformer, Combiner). 
Another approach is to use a recurrence mechanism such that computations are 
reduced for far-away tokens (Transformer-XL, Linear Transformer, Transformer-
LS, Perceiver). An alternative is the factorization of the self-attention matrix 
(Performer) or its replacement with simpler computations (Synthesizer). Recently, 
the S4 model has been proposed that applies a state-space model to long-range 
prediction. It uses an architecture based on complex number computations, which
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is completely different from the usual transformer setup. It outperforms all prior 
models by a large margin and is efficient in terms of computation time and memory. 

The performance of these approaches was evaluated with six different bench-
marks of the Long Range Arena. It turned out that S4 beats the other models 
with respect to all benchmarks. All approaches were able to reduce memory 
consumption compared to the standard transformer. The larger input length allow 
new applications, e.g. in raw speech processing, image processing or genomics 
[247]. 

3.3 Multilingual Pre-trained Language Models 

There are more than 7100 languages in the world [9], and each language can 
express almost all facts and concepts. Therefore, PLMs should also be able to 
generate consistent representations for concepts in different languages. Languages 
differ to some extent in the basic word order of verbs, subjects, and objects in 
simple declarative sentences. English, German, French, and Mandarin, for example, 
are SVO languages (subject-verb-object) [100]. Here, the verb is usually placed 
between the subject and the object. Hindi and Japanese, on the other hand, are SOV 
languages, meaning that the verb is placed at the end of the main clause. Irish and 
Arabic, on the other hand, are VSO languages. Two languages that have the same 
basic word order often have other similarities. For example, VO languages generally 
have prepositions, while OV languages generally have postpositions. Also, there 
may be a lexical gap in one language, where no word or phrase can express the exact 
meaning of a word in the other language. An example is the word “Schadenfreude” 
in German, which roughly translates to “have joy because some other person has 
bad luck”. More such differences are discussed by Jurafsky and Martin [100]. 

To gain cross-lingual language understanding, a PLM has to be trained with more 
than one language and has to capture their structural differences. During training, 
PLMs can establish an alignment between concepts in different languages. 

• Training large PLMs models, e.g. T5 or BERT, on multilingual data with a joint 
token vocabulary leads to models that transfer information between languages by 
exploiting their common structure. 

• BERT-like models can be trained to associate the words of a sentence in one 
language with the words of its translation to another language by masked 
language modeling. However, it has been shown that multilingual processing is 
possible, even when little or no parallel training data is available. 

• Transformer encoder-decoder models are explicitly trained to translate a text 
from one language to another language. 

Training a language model with several languages in parallel can improve the 
performance—especially for languages with little training data. This could already 
be demonstrated for static word embeddings [194].
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3.3.1 Autoencoder Models 

mBERT (multilingual BERT) [48] is a standard BERT model. It has been pre-
trained with the MLM loss on non-parallel Wikipedia texts from 104 languages 
and has a shared token vocabulary of 110k WordPiece tokens for all languages. 
This implies that Chinese is effectively character-tokenized. Each training sample is 
a document in one language, and there are no cross-lingual dictionaries or training 
criteria. To demonstrate its properties the model was fine-tuned to a multilingual 
version XNLI [40] of the Natural Language Inference (NLI) benchmark, i.e. the 
task to predict, whether the first sentence entails the second. It turns out that mBERT 
may be fine-tuned with a single language on NLI and still yields good test results 
on related languages [40, 232]. 

The results for 6 languages [111] are shown in Table 3.8. Compared to fine-
tuning XNLI with all languages, there is only a small drop in accuracy for related 
languages, e.g. Spanish and German, if the fine-tuning is done with XNLI in English 
and the evaluation in the other language. For the other languages the reduction 
of performance is larger, but the results are still good. There is even a transfer of 
information between languages with different scripts, e.g. for Arabic and Urdu. The 
authors also consider the embeddings of a word and its translation. It turns out that 
the cosine similarity between a word and its translation is 0.55, although there is no 
alignment between languages. 

Karthikeyan et al. [104] investigate the factors for the success of mBERT. 
They find that mBERT has cross-lingual capabilities even if there is absolutely no 
overlap in the token vocabulary. Moreover, a higher number of identical tokens in 
both vocabularies contributes little to the performance improvements. Comparing 
different language pairs the authors show that a large network depth and a high 
total number of parameters of a bilingual BERT are crucial for both monolingual 
and cross-lingual performance, whereas the number of attention heads is not a 
significant factor. On the other hand, the structural similarity of the source and 
target language, i.e. word order and frequency of words, has a large influence on 
cross-lingual performance. 

XLM [111] improves the transfer of knowledge between different languages 
by using translated sentences from different language pairs during pre-training. 
The authors concatenate a sentence with its translations to another language for 

Table 3.8 Cross-lingual natural language inference (XNLI) [40] test accuracy for 6 languages. 
Fine-tuning with XNLI for all languages is compared to fine-tuning with XNLI only for English. 
Results for mBERT [48] and XLM [111] 

Fine-tune with . . . Model English Chinese Spanish German Arabic Urdu 

All languages mBERT 81.9 76.6 77.8 75.9 70.7 61.6 

English only mBERT 81.4 63.8 74.3 70.5 62.1 58.3 

All languages XLM 85.0 78.6 80.8 80.3 76.5 63.2 

English only XLM 85.0 76.5 78.9 77.8 73.1 57.3
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Fig. 3.11 The translation language modeling (TLM) task is applied to pairs of translated 
sentences. To predict a masked English word, the model can attend to both the English sentence 
and its French translation, and is thus encouraged to align English and French representations [111] 

training and introduce a new translation language modeling (TLM) objective for 
improving cross-lingual pre-training. To predict masked words in the input sentence, 
the algorithm can attend to the words in the translated sentence. In this way, the 
model learns to correlate words from different languages. An example is shown in 
Fig. 3.11. As shown in Table 3.8, XLM has a much higher cross-lingual accuracy 
for XNLI compared to mBERT. The transfer from a model fine-tuned in English to 
other languages incurs only a small loss. The experiments show that TLM is able 
to increase the XNLI accuracy for 3.6% on average. The model was also evaluated 
for unsupervised machine translation from German and other languages to English, 
yielding a very good performance (cf. Sect. 6.3). 

Unicoder [88] is an improved XLM model with three additional training 
tasks. Cross-lingual word alignment learns to associate the corresponding words in 
translated sentences. Cross-lingual paraphrase detection takes two sentences from 
different languages as input and classifies whether they have the same meaning. 
The document-level cross-lingual masked language model applies the MLM task to 
documents where part of the sentences are replaced by their translations. On XNLI 
the authors report an average accuracy improvement of 1.8%. 

XLM-R is an optimized version of XLM [41]. It is based on RoBERTa and 
trained on a huge multilingual CommonCrawl dataset of 2.5TB covering 100 
languages with a common vocabulary of 250k tokens. It increased the SOTA on 
the XNLI-score to 79.2%. For cross-lingual question answering, models are fine-
tuned on the English SQuAD dataset and evaluated on 7 other languages. XLM-R 
improves the F1 score on this SQuAD version by 9.1%–70.7%. It outperforms 
mBERT on cross-lingual classification by up to 23% accuracy on low-resource 
languages. The performance of XLM-R is nearly as good as that of strong 
monolingual models. 

These results support the observation that the performance of PLMs can be 
improved by training on large volumes of text [102]. More languages lead to 
better cross-lingual performance on low-resource languages under the condition that
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the model capacity is large enough. Combined with the approach of Aghajanyan 
et al. [2], which avoids too large changes in representation during fine-tuning 
(Sect. 3.6), the XLM-R.LARGE model increases the SOTA in XNLI to 81.4%. If 
an additional criterion of separating semantically-equivalent sentences in different 
languages from other sentences is added to XLM-R, the accuracy on semantic tasks 
is increased [228]. Even larger models like XLM-RXXL [66] with 10.7B parameters 
were pre-trained on CC-100, which consists of 167B tokens of non-parallel text also 
covering low-resource languages, and increased the XNLI performance by 2.4%. 

RemBERT [37] redistributes the parameters of multilingual models. First the 
authors showed that using different input and output embeddings in state-of-the-art 
pre-trained language models improved model performance. Then they demonstrated 
that assigning more parameters to the output embeddings increased model accuracy, 
which was maintained during fine-tuning. As a consequence Transformer represen-
tations were more general and more transferable to other tasks and languages. The 
Xtreme collection [86] is a multitask benchmark for evaluating the cross-lingual 
generalization capabilities of multilingual representations across 40 languages and 
9 tasks. RemBERT outperformed XLM-R on Xtreme, despite being trained only on 
a smaller subset of training data and ten additional languages. 

PLMs like BERT generate contextual token embeddings. However, the user 
often needs contextual embeddings for passage or sentences to compare their 
content. LaBSE [57] is a language-agnostic generator of passage embeddings, 
where source and target sentences are encoded separately using a shared BERT-
based encoder. The representations of [CLS] in the final layer were taken as the 
sentence embeddings for each input. LaBSE combined a masked language model 
(MLM) and a translation language model (TLM) loss with a margin criterion. This 
criterion computes the cosine distance .cos(x, y) between the passage embeddings . x

and the embedding . y of its correct translation. Then it is required that . cos(x, y)−m

is larger than .cos(x, yi ), where m is a positive margin and the . yi are embeddings 
of arbitrary other passages. LaBSE was trained using 17B monolingual sentences 
and 6B bilingual translated sentences. The resulting sentence embeddings markedly 
improve the retrieval accuracy SOTA of sentences in cross-lingual information 
retrieval (cf. Sect. 6.1). The code and pre-trained models are available. 

3.3.2 Seq2seq Transformer Models 

mT5 is a multilingual version of the T5 Seq2seq transformer (Sect. 3.1.3) with up 
to 13B parameters [236]. It was pre-trained using a training dataset of web pages 
covering 101 languages with about 48B tokens and a common vocabulary of 250k 
tokens. For pre-training, the model had to predict masked phrases in monolingual 
documents in the same way as T5. Similar to T5 the model may be instructed to 
perform different tasks by a prefix, e.g. “summarize”. These tasks were trained by 
fine-tuning on the corresponding datasets.
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For the XNLI benchmark [40] the model has to decide, if the first sentence entails 
the second sentence. When the model is fine-tuned on XNLI with English data and 
performance is measured for 15 languages, accuracy is 84.8% compared to 65.4% 
for mBERT, 69.1% for XLM, and 79.2% for XLM-R. Although the texts in the 
different languages are not parallel, the model is able to exploit structural similarities 
between languages to solve the task. The code of this model is available at [235]. 
Similar models are used for multilingual translation (Sect. 6.3). mT6 [31] enhances 
the training of mT5 with pairs of translated sentences and defines new training 
tasks. Experimental results show that mT6 has improved cross-lingual capabilities 
compared to mT5. A further improvement is Switch [56] with a mixture-of-experts 
(MoE) architecture of mT5 requiring only one fifth of the training time of mT5 while 
yielding a performance gain across all 101 languages (Sect. 3.5.2). 

mBART [126] is a multilingual encoder-decoder based on the BART model 
(Sect. 3.1.3). The input texts are corrupted by masking phrases and permuting 
sentences, and a single Transformer model is pre-trained to recover the corrupted 
text. This is performed for the training documents covering 25 languages. Sub-
sequently, the pre-trained model is fine-tuned with a translation task between a 
single language pair. In addition, back-translation may be used, where another 
model is trained to translate the target sentence back to the source language and 
an additional loss encourages to reconstruct the source sentence. mBART adds 
a language symbol both to the end of the encoder input and the beginning of 
the decoder input. This enables models to know the languages to be encoded 
and generated. It turns out that pre-training improves translation, especially for 
languages with little parallel training data. In addition, back-translation markedly 
ameliorates the translation results. Many experiments are performed to analyze 
the effect of different algorithmic features. Pre-training is especially important if 
complete documents are translated instead of single sentences. 

mBART may also be used for unsupervised machine translation, where no 
parallel text of any kind is used. Here the authors initialize the model with pre-
trained weights and then learn to predict the monolingual sentences from the source 
sentences generated by back-translation. The results for languages with similar 
structure are very good, e.g. for En-De mBART achieves a BLEU-value of 29.8, 
which is close to the supervised value of 30.9. Note that mBART has a similar 
performance as MASS (Sect. 3.1.3). For dissimilar pairs of languages, e.g. English-
Nepali, mBART has reasonable results where other approaches fail. 

MARGE [118] is a multilingual Seq2seq model that is trained to reconstruct a 
document x in one language by retrieving documents .z1, . . . , zk in other languages. 
It was trained with texts in 26 languages from Wikipedia and CC-News. A document 
was encoded by the output embedding of the first token of a Transformer [212]. 
A retrieval model scores the relevance .f (x, zj ) of the target document x to each 
evidence document . zj by embedding each document and computing their cosine 
similarities. A transformer receives the embedded texts of .z1, . . . , zk and auxiliary 
relevance scores .f (x, zj ) from retrieval as input and is trained to generate the target 
document x as output. The similarity score is used to weight the cross-attention 
from the decoder to the encoder, so that the decoder will pay more attention to
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more relevant evidence documents. The models jointly learn to do retrieval and 
reconstruction, given only a random initialization. In a zero-shot setting the model 
can do document translation with BLEU scores of up to 35.8 in the WMT2019 
De-En benchmark, as well as abstractive summarization, question answering and 
paraphrasing. Fine-tuning gives additional strong performance on a range of tasks 
in many languages, showing that MARGE is a generally applicable pre-training 
method. 

XLNG [32] pre-trains the same Seq2seq model simultaneously using an MLM 
and a translation TLM loss (Table 3.1). The pre-training objective generates 
embeddings for different languages in a common space, enabling zero-shot cross-
lingual transfer. In the fine-tuning stage monolingual data is used to train the 
pre-trained model on natural language generation tasks. In this way, the model 
trained in a single language can directly solve the corresponding task in other 
languages. The model outperforms methods based on machine translation for zero-
shot cross-lingual question generation and abstractive summarization. In addition, 
this approach improves performance for languages with little training data by 
leveraging data from resource-rich languages. 

3.3.3 Autoregressive Language Models 

Generative models like GPT-3 are trained on huge collections of documents which 
usually contain texts from different languages. By this training data, the model 
also acquires the knowledge about these languages and generates joint contextual 
representations of meanings. As described in Sect. 3.6.3, it is able to translate 
between languages if given an appropriate prompt and some examples (few-shot 
learning). On WMT2016 En. →De, for instance, GPT-3 achieves a few-shot BLEU 

of 29.7 compared to a supervised SOTA of 41.2, whereas in the De. →En direction 
GPT-3 outperforms the current SOTA of 40.2 BLEU with 40.6 BLEU [25]. 

Winata et al. [231] evaluate in detail the multilingual capabilities of GPT-2, 
GPTNEO and T5 with 1.6B, 6B, and 3B parameters respectively. The models are 
able to use the context from English to predict the answer in non-English languages. 
The authors find that the largest model GPTNEO always performs best on a set 
of multilingual benchmarks. The performance depends on the language pair. The 
models, for instance, achieve higher performance for En. →Es than for the other two 
target languages (De and Fr). For the MultiNLU benchmark [187] the error 12.1% 
of the SOTA model fully trained on the target language is not much lower than the 
error of 17.3% for few-shot prompts of GPTNEO.
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3.3.4 Summary 

Machine translation is one of the most widely used applications of NLP. Languages 
have both structural and lexical differences that make translation difficult. The joint 
processing of multiple languages must take these differences into account. 

When BERT is trained with documents from multiple languages, it is able to 
transfer knowledge between languages, e.g. solve language inference tasks, even if 
it has no access to parallel texts. Knowledge transfer is improved in XLM by using 
the translation language modeling loss, such that translated sentences are employed 
to reconstruct masked tokens. There are a number of improved versions of XLM 
that are able to increase the accuracy of cross-language inference. 

Encoder-decoder models such as T5 can be generalized to multiple languages and 
induce powerful multilingual embeddings. mT5 can be controlled by a prefix and 
solves various task like translation, summarization, and language inference. mT6 
and Switch are more effective variants of mT5. mBART is pre-trained by recovering 
corrupted text in different languages. It can even be used for unsupervised machine 
translation. XNLG generates joint embeddings in a multilingual space and MARGE 
leverages retrieval of background documents to reconstruct a target document. 
Both models are able to perform multiple tasks such as abstractive summarization, 
question answering, and paraphrasing. Note, however that specialized models are 
used for translating single language pairs (Sect. 6.3.1). 

Autoregressive language models such as GPT-3 are trained on huge corpora, 
which also contain multilingual documents. Therefore, these models can also be 
instructed by few-shot learning to perform multilingual tasks such as translations or 
question answering. However, performance is usually not as good as for dedicated, 
fine-tuned models. 

3.4 Additional Knowledge for Pre-trained Language Models 

During unsupervised pre-training, PLMs like BERT and GPT2 are forced to predict 
missing words from the context. They are optimized to predict either the next word 
in a sequence or some masked words (e.g. “Einstein was [MASK] in the city of 
Ulm.”). Trained on this task, they obviously gather knowledge about real-world 
facts and relations from the training data. PLMs do surprisingly well in reproducing 
facts and relations based on unsupervised training. In Sect. 4.2 we discuss, what 
knowledge is covered by standard PLMs. It turns out, however that due to the 
still limited number of parameters only a fraction of knowledge contained in the 
training data can be remembered by a PLM. In addition, events that occurred after 
the training are missed.
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Fig. 3.12 A PLM gets an input text and collects additional knowledge from different sources. This 
knowledge may be added beforehand or can be retrieved on demand. Subsequently, an output is 
generated using the additional knowledge 

This section presents methods for extending factual knowledge in PLMs, either 
during training or on the fly during actual model usage Fig. 3.12. A  Knowledge 
Base (KB) describes knowledge about the world, e.g. by entities and their relations. 
We outline a number of different approaches with which information in KBs or 
other knowledge sources such as text collections can be incorporated into PLMs 
(Table 3.9): 

Knowledge Base Embeddings: There are techniques to represent the entities and 
relations in a KB by embeddings. A number of approaches try to combine these 
embeddings with the token embeddings created by a PLM. In this way, the 
information in the KB can be injected into the PLM and used for downstream 
tasks. 

Textual Encoding of Tables: Often additional knowledge is available in tables. 
The entries in these tables can be encoded in a special text format. A PLM can 
be trained with this text to acquire the knowledge in the rows and columns, in a 
similar way as the relation between the words of two languages can be learned. 

Textual Encoding of KB Relations: An alternative way to use KB information 
starts with identifying entities or concepts in a text. The relations available for 
these entities and concepts can be extracted from the KB and can be included in 
the training process either as text or in another appropriate form. 

Adding Retrieved Facts: When a PLM needs to answer a question or create a text, 
it can formulate a query on the topic and retrieve corresponding text content from 
a KB or the Internet. This textual information may be picked up by a transformer 
and enhance the output. In this way, the model can use comprehensive and up-
to-date information on the fly.
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Table 3.9 Models integrating additional knowledge (cf. [166, p. 10]). Benchmarks: GLUE nat-
ural language understanding Sect. 4.1.1, TACRED relation extraction Sect. 5.4.2 [199], TriviaQA 
question answering Sect. 6.2.1 [99], English all word WSD [14], Nat. Quest question answering 
[109] Sect. 6.1.2 

Model Train task Fine-tuning Extra Benchmark 

Using knowledge base embeddings in pre-trained language models 

ERNIE(THU) [255] MLM+NSP + 
masked NEs 

GLUE, etc. KB NE embeddings 
combined with 
token embeddings 

GLUE 79.6 

KnowBERT [157] MLM+NSP +EL GLUE, etc Translate token 
embeddings . ↔ KB 
NE embeddings 

KEPLER [224] MLM+KE GLUE, etc Combine token 
embeddings with 
NE embeddings; use 
TransE loss 

TACRED 
71.5 F1 

Using textual information from knowledge bases 

K-Adapter [222] MLM + rel. extr. – Add parallel adapter 
network to 
RoBERTa 

TACRED 
72.0 F1 

WKLM [234] MLM+ERD – Detect replaced NEs 
in text 

TriviaQA 
63.1 F1 

CoLAKE [202] MLM – Create graph from 
textual relation 
triples and tokens 

GLUE 86.3 

LUKE [234] MLM+ERD – Masked language 
modeling for text 
and contained 
entities 

TACRED 
72.7% F1 

EWISER [14] MLM Word sense 
classification 

Include wordnet 
supersense graph 

English all 
word WSD 
80.1% F1 

Using text passages retrieved from text collections 

FiD [91] MLM, S2S QA Encode query and 
KB by BERT; 
combine query and 
retrieved docs with 
Seq2seq 

Nat. Quest. 
51.4% acc. 

Retro [21] LM Language 
generation with 
periodical retrieval 

Nat. Quest. 
45.5% acc. 

Enhancing Logical Consistency: PLMs sometimes do not generate logically con-
sistent content. By additional fine-tuning tasks a model can be trained to respect 
logical consistency. 

Surveys of methods to incorporate domain knowledge into Deep Neural Networks 
are given by Dash et al. [45] and Yu et al. [243]. 
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3.4.1 Exploiting Knowledge Base Embeddings 

Typically, Knowledge Bases are graph structures where the nodes correspond to 
entities and the edges represent relations connecting the entities. Many large-scale 
KBs, such as WordNet [137], YAGO [200], Freebase [18], DBpedia [15], and DiffBot 
[77] have been released in recent years with millions of entities. Figure 3.13 shows 
a small subset of the WordNet hierarchy. In most cases a KB can be described by 
triples .(h, r, t), where h and t are entities in a set E, and r is a relation holding 
between these entities. To assess the semantic contents of a KB, it was proposed to 
encode its entities as well as its relations as embeddings in a low-dimensional space, 
allowing to determine the similarity of entities and relations [43]. Subsequently, 
these embeddings can be used to disambiguate entities (entity linking, Sect. 5.3.3), 
or predict new relations (Sect. 5.4). 

For the embeddings .emb(word) of words generated by Word2Vec [135] it  
turned out that relations between entities often are represented in the space of 
word embeddings as vector differences between entity embeddings (Sect. 1.5). An 
example is the relation between a country and its capital, for which we have 
approximately .emb(Germany) − emb(Berlin) ≈ emb(France) − emb(Paris) . 

The TransE model [20] is built on this pattern. TransE adapts the embeddings in 
such a way that whenever .(h, r, t) holds and .emb(h) and .emb(t) are the embeddings 
of h and t , then equation .emb(h) + emb(r) ≈ emb(t) should be approximately 
valid for some vector .emb(r), which is considered as the embedding of the relation 
r . Consequently, for all triples .(h, r, t) in the set S of correct triples the TransE-loss 

Fig. 3.13 Small part of the WordNet knowledge base describing the relations between English 
words. It contains synsets of word with approximately the same meaning, which are related by the 
hypernym (is-a) meronym (has-part) and member-of relations [137]
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Fig. 3.14 KEPLER [224] trains a conventional BERT-like model by the MLM-loss. For a 
knowledge base with text entries it generates entity embeddings using the special .<S> token 
and encodes relations by the TransE-loss. Both loss functions are added during training 

.fr(h, t) = ‖emb(h) + emb(r) − emb(t)‖22 should become 0. The TransE-model 
uses the hinge loss to approximate this goal, which modifies the embeddings in 
such a way that .fr(h, t) for correct relation triples gets lower than .fr(h̃, t̃) for 
randomly selected incorrect triples .(h̃, r, t̃). The models and embeddings are trained 
with relations from WordNet and Freebase. 

There are a number of more elaborate models to encode relations from KBs, as 
described in the surveys [43, 94]. TransH overcomes TransE’s inability to model 
complex relations, and TransD aims to reduce the parameters by proposing two 
different mapping matrices for head and tail. But these alternatives are rarely 
used for contextual embeddings. Another method for KB representation is tensor 
factorization [144, 145]. This approach, however, is not based on word embeddings 
and therefore mainly used for KB completion and not to enhance PLMs. 

In the rest of the section we describe approaches, which merge KB-embeddings 
usually computed by TransE and token embeddings generated by language models. 
A difficulty is to establish a relation between the token embeddings and the entities, 
which usually contain several tokens. 

KEPLER [224] consists of a BERT-like language model generating token 
embeddings by the MLM objective. In addition, it computes embeddings for entities 
from descriptive text in the KB using a special token “.<S>” at the beginning of 
the input text. This token is trained to produce an embedding of the named entity 
argument of the relation, e.g. for the input “.<S> Johannes Kepler” in Fig. 3.14. In  
this way, the arguments h and t of the relation are embedded. The embedding of the 
relation r is either a parameter to be trained, or it may be determined by the text 
verbalizing the relation. These embeddings are fed into the TransE loss and used as 
an extra training criterion in addition to MLM (Fig. 3.14). In a number of language 
understanding tasks the approach is able to achieve good results. On the relation 
extraction benchmark TACRED [254] the approach reaches 71.5% F1-value. 

KnowBERT [157] explicitly models entity spans in the input text and uses 
an entity linker to retrieve precomputed entity embeddings from a KB to form 
knowledge enhanced entity-span representations. The KB-embeddings are precom-
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puted with a loss function similar to TransE. Projection mappings are used to 
transform LM-embeddings to KB-embeddings and vice versa. Information from 
the best matching KB-embeddings is averaged and retransformed to enhance the 
LM-embeddings. These computations form an additional layer of BERT. Wikipedia 
and WordNet were used as KBs. To test KnowBERT’s ability to retrieve facts 
from the KB, a relation was formulated and one argument of the relation was 
masked. KnowBERT reaches a mean reciprocal rank (MRR) of 0.31, indicating 
that on average the correct entity appeared on rank 3, whereas for BERT it shows 
up on rank 9. Hence, the model generates better answers than BERT, but is only 
approximately able to reproduce the relations of the KB. However, it often leads to 
improvements in downstream tasks. 

ERNIE-THU [255] relates named entities in a KB to the named entities in a 
document in a similar way, and transforms embeddings between these two spaces. 
E-BERT [162] is similar in spirit to KnowBert, but it requires no expensive further 
pre-training of the BERT encoder. Facts as Experts [213] also links factual informa-
tion and entities using embeddings, and in this way can inject new information into 
the model. 

In summary the methods presented in this section directly infuse domain-specific 
knowledge expressed by relation embeddings into token embeddings of PLMs. 
There are, however, a number of disadvantages. The KB entity embeddings are 
separately pre-trained with some knowledge embedding models (e.g., TransE [20]) 
and fixed during training of the PLMs. Thus KB-embedding and token embeddings 
are not learned simultaneously. Moreover, the KB entity embeddings often cannot 
fully capture the rich contextual and relational information of an entity in the KB. 
Furthermore, they are static and do not depend on the context. In addition, they rely 
to a great extent on the performance of the linking algorithm and on the reliability 
of graph embeddings. This means that in general other approaches perform better, 
e.g. for relation extraction (Sect. 5.4). 

3.4.2 Pre-trained Language Models for Graph Learning 

Relations between objects and concepts can be joined in a graph and provide a 
uniform representation for the relatedness of many items. Using the structure of 
a graph many properties of nodes can be predicted. In recent years there was 
a great effort to design models which can capture the composition of a graph 
and predict its parts, e.g. node2vec [67] or  graph convolutional networks [107]. 
However, the node representations obtained by such deep models tend to be over-
smoothed and also become very vague. PLMs potentially are able to improve the 
representation by self-attention over long distances. Xia et al. [233] provide a survey 
on PLMs for graphs. Nodes and edges are characterized by different feature and 
position embeddings, and are processed with different types of PLMs. Prominent 
applications are recommender systems exploiting user-product graphs and drug 
discovery evaluating molecule structures.
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Graph-BERT [250] is trained on sample nodes taken from a large graph together 
with their context. These samples are drawn using the closeness according to the 
PageRank algorithm [24] and contain no direct link information. Nodes are char-
acterized by feature embeddings, embeddings based on the PageRank information, 
and hop-based distance embeddings. These embeddings are summarized and form 
the input of a BERT model. The model is pre-trained to reconstruct the information 
of masked nodes and to predict the relation between two nodes by evaluating 
their cosine similarity. The model is fine-tuned for node classification and graph 
clustering. Graph-BERT achieves the second-best accuracies for node classification 
on three graph benchmarks [128, p. 16].  

GPT-GNN [87] proposes an autoregressive PLM to perform an iterative recon-
struction on given graphs. The method assumes a random order on the edges and 
nodes. Given the edges and nodes up to a specific position, it predicts the properties 
of the next nodes/edges. GPT-GNN generates one masked node and its edges at 
a time and optimizes the parameterized models via maximizing the likelihood of 
the node and edges generated in the current iteration. Then, it iteratively generates 
nodes and edges until all masked nodes are generated. The model is trained on a 
graph of 178M scientific papers with their features, the venue and the authors, and 
on a graph with 83M Amazon reviews, users and products. On both benchmarks the 
model has the best accuracies. 

MPG [120] consists of a BERT model encoding node and edge features. As a 
pre-training task, the model has to learn whether two graphs divided into two halves 
actually belong together or whether the halves are a random pair. The model is 
applied to the modeling of molecules and achieves SOTA results on a range of 14 
benchmarks, especially drug discovery. 

GraphFormers [238] jointly models a graph structure together with sequences 
of words. Each node of the graph contains a text. A center node and its neighbors 
are tokenized into sequences of tokens. The model has special transformer layers for 
computing the embeddings of text tokens and for the derivation of node embeddings 
by aggregating the corresponding text embeddings. The model is pre-trained with 
the task to predict, if two nodes are linked or not. GraphFormers is tested on three 
benchmark tasks, e.g. a graph with scientific papers characterized by their titles and 
their citation graph. The model consistently outperforms all prior approaches in the 
prediction of links. 

3.4.3 Textual Encoding of Tables 

Tabular data probably makes up the majority of all business and administrative 
data today. Examples are retail transactions, official statistics, processing data from 
industrial applications, etc. A survey on the interpretation of tables on the web is 
provided by de Alwis et al. [46]. Previous work often relies on manually selected 
features, cannot handle the flexible schemas in web tables, and does not generalize 
well across tasks.



120 3 Improving Pre-trained Language Models

Fig. 3.15 Learning table relations with TURL [47]. On the left side the table caption and the 
column headers are trained. On the right side the row markers together with input entities (cells in 
a specific row) are processed 

Fig. 3.16 TaBERT [241] encodes the rows of a table as text in a special format. The “context” 
contains corresponding text. Each table cell is represented as (column header, column value type, 
value). Here the first table row is encoded by the line starting with [CLS] 

TURL [47] characterizes a relational table by the table caption C (a short 
text, may be enhanced by section title), column headers . hi (a sequence of tokens) 
describing the table scheme .H = {h1, . . . , hm} and cell values, where each cell 
may represent an entity, e.g. a person. Cells in the same row share some relation, 
and cells in the same column share another relation. This requires a structure-
aware attention mechanism implemented by a visibility matrix, which restricts the 
attention to specific columns and rows. 

TURL is pre-trained according to the masked language model loss on a large 
unstructured dataset consisting of the table captions and headers. Subsequently, the 
relation between entities in the same row or column can be learned. Entities in a 
table are masked, and the model has the task to predict them based on the table 
context and the visibility matrix. By this target TURL can learn factual relations 
from the table and encode them into entity embeddings (Fig. 3.15). 

The model is trained on 570k tables extracted from Wikipedia. All columns 
containing at least one linked cell are marked as entity columns. After fine-tuning, 
the model is able to predict the masked contents of table cells in the test set with 
precision of 54.8%, beating competing approaches. An ablation study shows that 
the visibility attention matrix is essential for achieving a high performance. 

TaBERT [241] aims to include both, natural language text and structured table 
data. TaBERT is trained on 26.6M tables and surrounding text from English 
Wikipedia and the WDC WebTable Corpus [115]. Each table cell is described 
as (column header, column value type, value). Subsequently, the table rows are 
encoded as text, as shown in Fig. 3.16. For pre-training 20% of the columns of
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a table are randomly selected and the model has to predict the masked column 
names and types. In addition, the cell values are reconstructed according to a special 
scheme. The model is fine-tuned on the WikiTableQuestions benchmark [155], 
which contains questions requiring compositional, multi-hop reasoning over a series 
of entries in the given table. To reduce effort only table rows containing query tokens 
are encoded. TaBERT is able to increase the SOTA accuracy on this benchmark 
to 51.8%. The authors show that their table cell encoding is more effective than 
alternatives. RPT [205] proposes a similar scheme for table encoding. BRIDGE 
[124] is a system for semantic parsing, which converts information from text and 
tables to an SQL query extracting information from a database. 

Tapas [81] is a variant of BERT optimized for table processing. The table is 
flattened row-by-row, tokenized and enhanced with position embeddings. Following 
embeddings are added: a row id embedding, a column id embedding, and a rank 
embedding indicating the rank in the sorted sequence, e.g. for numbers. The model 
is pre-trained on 6.2M table-text pairs from the English Wikipedia with the task to 
restore words in both table and text that have been replaced with a mask. The model 
can do this with relatively high accuracy (71.4% accuracy on a test set). 

During fine-tuning the model learns to answer questions from a table, e.g. 
“Which wrestler had the most number of reigns?” for a table with wrestling 
results. [CLS] and a query are prepended to the flattened table and both parts are 
distinguished by an additional segment embedding. The model has two output types: 
(1) a score for each table cell with the probability that this cell will be part of 
the answer and (2) a probability of the result type (none, count, sum, average) for 
[CLS] to produce the final answer. Together the result indicates which operation 
should be performed over which table cells to generate the final answer. On several 
benchmarks Tapas reaches SOTA results, e.g. improving from 55.1% to 67.2% for 
SQA benchmark [90]. The source code and pre-trained models are available at 
Hugging Face. 

The results show that the models described above are able to extract information 
from tables and answer question about the table content. This makes it possible to 
use a large source of information, since tables are ubiquitous in text documents and 
web pages. In principle, the approach can also be used by large Foundation Models 
to include table information in the text they generate. 

TableGPT [63] generate a text from a table using the GPT-2 language model. It 
enhances GPT-2 for table-to-text generation with two auxiliary tasks, table structure 
reconstruction and content matching, for improving text fidelity. 

3.4.4 Textual Encoding of Knowledge Base Relations 

A number of proposals try to verbalize KB-relations as text. In this way, KB-
relations may be directly incorporated in the training text of the language models. 

WKLM [234] randomly replaces a fraction of the entity mentions in the original 
document with names of other entities of the same type. The model is trained to
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Fig. 3.17 CoLAKE [202] identifies entities and encodes them with specific embeddings. Type 
embeddings distinguish words, entities and relations. The input embeddings are the sum of 
token/entity, position, and type embeddings. For all entities in the input text relations are extracted 
from the Knowledge Base and appended after “[SEP]”, e.g. mother(Harry  Potter, Lily Potter). A  
masking mechanism ensures that relation elements can attend only to their corresponding elements 
in the input text. During pre-training the model has to predict masked tokens and entities 

distinguish the correct entity mention from the randomly chosen ones. In addition, 
the model has to predict masked token. The types of entities are obtained from 
Wikidata [214]. In this way, the model can better capture entity information from 
natural language and yields better results for entity-related NLP tasks. WKLM is 
able to predict relation arguments much better than BERT. In question answering 
(SQuAD and open domain, Sect. 6.2) the model is also able to reach SOTA 
results. Similar approaches [191, 203, 234] propose entity and phrase masking and 
replacement schemes. 

CoLAKE [202] extracts the knowledge context of an entity from large-scale 
knowledge bases. The model links entity mentions to the underlying entities in a 
KB by an entity linker. The mention nodes are then replaced by their linked entities. 
The CoLAKE model is initialized with the RoBERTa.BASE model. It is trained on 
Wikipedia with 3million entity embeddings and 822 relation embeddings aligned 
to the Wikidata5M KB [224] on 26M training samples. The example input “[CLS] 
Harry Potter points his wand at Lord Voldemort [SEP]” is shown in Fig. 3.17. The  
type of inputs (word, entity, relation) is encoded as type embeddings and added 
to the token and position embeddings. To introduce a relation from the KB, e.g. 
“(Harry Potter, mother, Lily Potter)”, the relation node “mother” and the entity 
node “Lily Potter” are introduced with the position embeddings 2 and 3, as the first 
relation argument “Harry Potter” is located at position 1. Self attention is computed 
between text inputs. There is a masking mechanism restricting the self-attention for 
relation elements, e.g. to the pairs “(Harry Potter, mother)” as well as “(mother, Lily 
Potter)” in our example. 

During pre-training about 15% of the input elements (words, entities, relations) 
are masked and have to be predicted by the model. As entity nodes simultaneously 
appear in the input text and the knowledge base this helps to align the representations
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of language and relations. Masking relation nodes helps CoLAKE to learn contex-
tualized representation for relations. On the language understanding tasks of GLUE 
the CoLAKE model achieves a similar average of 86.3 as RoBERTa. An alternative 
task consist of the completion of relation triplets .(h, r, t) using a sentence describing 
the relation. It turns out that CoLAKE is much better than its competitors, e.g. the 
correct relation is inferred from two entities in 72.1% of the cases. 

LUKE [237] treats words and entities in a given text as independent tokens, 
and outputs contextualized representations of both. The model is based on BERT 
and trained to predict randomly masked words and entities in a large entity-
annotated corpus derived from Wikipedia. It contains an entity-aware self-attention 
mechanism that is an extension of BERT’s self-attention. It takes into account 
embeddings indicating if a token represents text or an entity. LUKE yields SOTA 
results in relation classification, entity typing and NER. K-adapter [222] is a related  
approach using RoBERTa (Sect. 3.1.1) as fixed background model and building 
several independent “Adapters” to include knowledge from different KBs. 

EWISER [14] similarly targets word sense disambiguation (WSD). Starting with 
BERT embeddings, it computes scores for WordNet synsets (sets of words with 
similar meaning). Exploiting the interdependence of the synset graph the approach 
computes final scores that a word belongs to a synset. It achieves a new SOTA on a 
number of WSD benchmarks (Sect. 5.2). 

PET (Pattern-Exploiting Training) [184] as an alternative constructs an addi-
tional training set using only a few labeled examples. Consider a 5-star scale rating 
for a restaurant in the Yelp dataset [185]. The authors add text to the reviews to 
express the ratings, e.g. “All in all it was great”. Using this approach the authors 
convert the Yelp dataset to a task for predicting masked words, e.g. “All in all it was 
[MASK]”. However, they provide the verbalized labels only for a small number of 
examples. Subsequently, they predict the best class for the non-labeled examples 
and train the model with the predicted classes as well as the language modeling loss 
to avoid catastrophic forgetting. This can be done in several iterations. Although 
only a few labels have been used, the model performs better on Yelp than standard 
supervised approaches. The SuperGLUE benchmark data covers eight challenging 
NLP tasks. With just 32 labeled examples the PET approach trained according to the 
above schema yields a better average (75.4%) than GPT-3 (71.8%) with the same 
number of few-shot examples. This shows that good results can be achieved with 
a small model (223M) and only few labeled examples. Note that the fine-trained 
SOTA for SuperGLUE is 90.4% using T5 and Meena. 

TeKGen [1] is a data-to-text sequence-to-sequence model to verbalize a com-
plete KB. It is applied to the English Wikidata knowledge base [214] with . ≈ 6M 
entities and about 1500 relations. The model starts with a large training corpus 
of heuristically aligned Wikipedia text and Wikidata triples. Relations sharing a 
common entity subject are converted to the input subject relation. 1 object. 1,  . . . ,  
relation. n object. n for the T5 transformer (Sect. 3.1.3). As an example “To kill a 
Mockingbird, author: Harper Lee, publication date: 11 July 1960” is translated to 
“To Kill a Mockingbird is a novel by Harper Lee published in 1960.” The T5 model 
is fine-tuned and subjected to an addition check to generate good verbalizations.
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The resulting dataset of verbalized triples was used in a question answering task. 
It was able to increase the accuracy in the Natural QuestionsNatural Questions 
(NQ) benchmark [109] (Sect. 6.1.2) from 38.8% to 41.5%. KGPT [30] in a similar 
way converts structural knowledge into the serialized text and lets model learn 
knowledge-text alignments. 

In summary these methods transform KB relations into text, e.g. as complete 
sentences expressing relations or as concatenated triples (e.g., [head text, relation 
text, tail text]) into LMs for training or fine-tuning. This text is transformed into 
contextual embeddings and the model is trained to detect the underlying relation. 
The drawback is that focusing on knowledge base completion tends to over-adapt 
the models to this specific task, which comes at the cost of generalization. 

3.4.5 Enhancing Pre-trained Language Models by Retrieved 
Texts 

An open domain question answering system has the task of answering questions 
not restricted to a specific domain [27]. Consider the following example from the 
TriviaQA benchmark [99]. “Question: The Dodecanese Campaign of WWII that 
was an attempt by the Allied forces to capture islands in the Aegean Sea was the 
inspiration for which acclaimed 1961 commando film?” “Answer: The Guns of 
Navarone”. It is not plausible that the model can reproduce such a specific response 
from the knowledge stored in its parameters, even if it was present in the data 
before training. Therefore, it would be desirable for the system to be able to gather 
additional evidence by a retriever collecting relevant documents from a large text 
repository. Subsequently, it has to align the retrieved information with the question 
and generate an answer by another PLM, a reader. New web search techniques 
can be used for this approach. They are based on comparing embeddings for 
words or passages consisting of several sentences. There are numerous applications 
such as question answering, summarization, and dialog systems. In Sect. 6.1 this is 
discussed in more detail. Recent surveys are provided by Zhu et al. [259] and Yu et 
al. [244]. 

DPR (Dense Passage Retriever) [103] employs a PLM to encode KB-passages 
. di , e.g. from Wikipedia, as embeddings .emb(di). This can be achieved by fine-
tuning a BERT model to encode passages by the embedding of the token [CLS]. 
These embeddings can be stored in an index for fast access. Then the DPR retriever 
processes the query sequence x by another BERT model and generates the query 
embedding .emb(x). A number of .k = 100 passages . dj with maximal inner product 
.emb(x)ᵀemb(dj ) is retrieved by a nearest-neighbor search. Both BERT encoders 
can be trained together to generate appropriate embeddings using weak supervision 
in the form of question-answer pairs (cf. Sect. 6.1.5). If, for instance, the query is 
“Who is the bad guy in lord of the rings”, the algorithm can retrieve “Sala Baker 
is best known for portraying the villain Sauron in the Lord of the Rings trilogy”,
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because “bad guy” and “villain” have similar embeddings. Therefore, DPR can 
find passages with similar meaning, expressed with different words. Karpukhin et 
al. [103], for instance, show that already with 1000 training examples the dense 
retriever is better than the classical keyword search. For 40k training examples the 
top-20 retrieved passages contain the correct answer in about 79% of the time, while 
this value is only 59% for the classical retrieval. An in-depth discussion is given in 
Sect. 6.1.5. 

The DPR reader is another BERT model. Similar to BERT’s text pair classi-
fication, it is fine-tuned to predict a probability for each retrieved passage that 
this passage contains the correct answer. In addition, it selects a span of tokens 
by span prediction, which probably provides the answer. In the example it selects 
“Sala Baker” as the answer. Together both components form a retriever-reader 
architecture, which recently became popular. The approach can be easily applied to 
KBs with billions of passages [103, 201]. On the Natural Questions [109] it yields 
a test set accuracy of 41.5%. 

DensePhrases is a different system creating embeddings for phrases of up 
to 20 words in the KB, which are computed without knowing the query [114]. 
The processing of the retrieved phrases directly yields the answer without much 
computational effort. Using careful workflow optimization the authors achieve near-
SOTA results with a much lower processing time than dense passage retrieval 
systems, e.g. a test set accuracy of 40.9% on Natural Questions. 

FiD (Fusion in Decoder) [91] employs DPR as retriever. In the reader step it 
uses the special tokens “question:”, “title:”, and “context:”. These tokens mark 
the question, the retrieved passage title and the passage text and are concatenated 
forming the input. Subsequently, these k retrieved triples are fed one-by-one into 
a transformer encoder like T5 [170] (770M parameters), which independently 
processes each triples by the encoder. Only in the decoder the passages are handled 
jointly and the text of the answer is generated. This approach drastically reduces the 
computational effort. The transformer is fine-tuned on a QA-task. The architecture 
of the model is shown in Fig. 3.18. Raffel et al.  [170] provided evidence that 
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Fig. 3.18 A retrieval enhanced language model [91] encodes the query and the KB passages as 
embeddings and uses a pre-trained retriever to find passages corresponding to the query. The reader 
is a Seq2seq model (T5) combining the query and the passages to generate the answer. This model 
setup is fine-tuned with different benchmark datasets
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generative models like T5 are even competitive for QA-tasks such as SQuAD [173], 
where answers are spans in a given document. 

The system achieves a test set exact match accuracy of 51.4% on the Natural 
Questions benchmark compared to 41.5% for DPR. The TriviaQA benchmark [99] 
contains a set of trivia questions with answers that were originally scraped from the 
Web. On this benchmark the model yields SOTA results with 80.1% exact match 
accuracy [211]. This is better than the accuracy of other much larger models, 
like GPT3 with 175B parameters (71.2% EM), or T5 without retrieval and 11B 
parameters (60.5% EM). It turns out that increasing the number of retrieved passages 
strongly enhances the answer quality. 

There are a number of new approaches to augment PLMs with text from an 
external KB. In Sect. 6.1 we describe different PLMs for retrieval that can be used by 
web search engines. In Sect. 6.2 we investigate systems for question answering that 
often employ a PLM-based retrieval mechanism and an additional PLM to generate 
the answer text. It combines the query, the knowledge acquired during training, as 
well as the information in the retrieved documents. 

In summary, combining language models with retrieval is currently the most 
efficient way to incorporate additional information into PLMs. The new information 
is focused on the current query and thus very informative. The retrieval model 
can access semantically related passages within fractions of a second using new 
approximate open-source nearest neighbor index structures. By relying on embed-
dings, synonyms and paraphrases can be found and the meaning of words can be 
disambiguated. In addition, the underlying knowledge bases can be updated on the 
fly to keep the information current. 

3.4.6 Summary 

The knowledge covered by the textual training data can be leveraged in various 
ways to improve the performance of PLMs. Entities and relations from a knowledge 
base can be represented by embeddings, e.g. by TransE. However, the utilization 
of these embeddings for PLMs is not very efficient and error-prone. A more 
promising alternative is the direct use of table content or knowledge base relations 
by specialized PLMs, which capture relationships between entities and table cells 
by specific self-attention patterns. Similar to Graph-CNNs PLMs have been directly 
used to acquire the relationship between the nodes of a graph by encoding the 
features of links by embeddings in a BERT-like model. Along this line a promising 
way to transfer relational knowledge from a graph to a language model is proposed 
by GraphFormers. 

A very simple and efficient approach of incorporating tables and knowledge 
bases in PLMs is the creation of text that expresses the information content. This can 
be used by the PLM either as conditioning text or during training. However, the most 
promising way to include knowledge is retrieval, since most information is stored 
in the form of unstructured text on the Web or databases. Here, the retriever-reader
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architecture emerged as an effective way to collect relevant passages. Subsequently, 
the PLM generates new text by combining the internal knowledge, the start text, and 
the retrieved passages. 

Much effort was devoted to the extension of the length of input sequences 
(Sect. 3.2). This was mainly achieved by sparse attention patterns reducing the 
increase in computational effort from quadratic to linear with S4 as a leading 
approach. Nevertheless, larger input sequences still have limited range of context 
both within the same sample and outside of it. 

In contrast, retrieval can cover an indefinite context within the same sample by 
gathering appropriate passages, even if there is no simultaneous attention over the 
whole context. In addition, retrieval can access relevant information in huge docu-
ment collections. Either the highly developed traditional keyword search engines 
may be used. Alternatively dense retrieval may be employed which compares 
embeddings of the query and passages using approximate nearest neighbor search 
over an index. It turns out that relatively small retrieval-based models outperform 
large Foundation Models like GPT-3. FiD, for example, achieves an exact match 
accuracy of 51.4% on the Natural Questions benchmark compared to 29.9% for 
GPT-3. Retrieval is extensively used by recent models such as WebGPT and Retro. 

3.5 Changing Model Size 

The size of a model, especially its number of parameters, has a marked influence 
on the performance of the model, its memory requirements and the computational 
resources required for training. In the first section we discuss that models with 
more parameters potentially have a better performance. This, however, requires a 
larger computational effort during training and model utilization. An alternative 
are mixture-of-experts models, which define a number of parallel model structures 
which selectively compute a solution. This is described in the second section. 

As initial versions of successful models often are extremely large, a variety of 
model compression and acceleration techniques have been developed. They reduce 
memory requirements and training time without noticeable degradation of accuracy, 
and allow the models to be deployed on low resource computing devices, such as cell 
phones. There are three main techniques for model size reduction [65]—parameter 
compression and reduction, low-rank factorization, and knowledge distillation— 
which are outlined in the subsequent sections. 

3.5.1 Larger Models Usually Have a better Performance 

As a rule for machine learning, the number of parameters of a model should be 
limited to avoid overfitting, i.e. adapting to random fluctuations in the data. It turned 
out that this does not hold for PLMs if the amount of training data and the number of
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model parameters are increased simultaneously. Larger PLMs have been shown to 
have better performance on NLP tasks, which is underscored by theoretical work on 
PLMs [19, p. 117]. The benefits of increasing the number of parameters come from 
two factors: additional computations at training and inference time, and increased 
memorization of the training data. Kaplan et al. [102] empirically investigated 
in detail the dependency between the number of model parameters R (excluding 
embeddings), the size N of the training data, and the amount of computing effort C 
used for training. They evaluated a large number of models and draw the following 
conclusions: 

• The performance of the models depends largely on the size quantities .R,N,C. 
Other architectural features such as width or depth have only a weak influence. 

• The performance follows a smooth power-law dependency with each of .R,N,C, 
if the other quantities are not too small. As an example the loss is approximately 
.L ≈ (N/(5.4 ∗ 1013))−0.095. 

• If R and N are increased at the same rate, the model accuracy grows reliably. If 
one of these factors is held constant the improvement gets lower. To get the best 
performance, the model size R should grow with the factor 8, if the data N is 
increased 5 times. 

• Training loss has a predictable dependency on computing effort and can be 
extrapolated. 

• The performance of fine-tuning of a pre-trained model on a different training task 
depends strongly on the loss for the pre-training validation set. Therefore, transfer 
to a different distribution induces a constant penalty, but roughly improves with 
the performance on the pre-training set. 

• Large models are better able to extract information from data than small models. 
They reach the same level of accuracy with fewer optimization steps and using 
fewer data points. If there is only a fixed amount of computation time, but no 
restrictions on size or data, one should use very large models and stop before 
convergence (Fig. 3.19). The optimal batch size depends on the gradient noise, 
which is easy to measure during training [132] and is larger than assumed before. 

These findings show that the success of larger PLMs is a systematic feature. A 
larger number of model parameters is much more sample efficient than thought 
before, when overfitting was a major problem for smaller training tasks. This also 
explains the success of large models like T5, BigBird, or GPT-3. Hernandez et 
al. [80] investigate empirical scaling laws for the transfer from pre-training to fine-
tuning. Figure 3.20 plots the training efforts of some Deep Learning models during 
the last two decades.
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Fig. 3.19 A series of language model training runs with varying model sizes [102]. The left 
graph shows that larger models require fewer samples to reach a fixed test loss. The right graph 
demonstrates that the model size should grow with compute budget. Image reprinted with kind 
permission of the authors [102, p. 4]  

Fig. 3.20 Number of parameters for Deep Learning Models since 2017 [188]. Note that the 
parameter scale is logarithmic. The number of parameters roughly increased from 100M up to 
1000B 

3.5.2 Mixture-of-Experts Models 

As discussed above a model with more parameters usually can achieve a better 
performance. A simple way to increase the number of parameters without a higher 
training effort is a mixture-of-experts architecture. It was already proposed in the 
nineties by Nowlan et al. [147] and has a strong resemblance to decision tree models
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[152]. It consists of a single gating module and a number of expert modules with 
identical architecture but different parameters. Each expert specializes in only a 
subset of the data, and the gating module assigns each input to the appropriate 
experts. Specifically, the gating network computes a probability distribution over 
the experts indicating how well each expert is able to process the incoming input. A 
reduction in computational effort can be achieved, if only a few expert modules 
are actually used. The model is trained by stochastic gradient descent, which 
can compute the parameter gradient despite the discontinuities if some expert is 
exchanged. Increasing the number of experts keeps the computational cost constant 
because the model always selects the same small number of experts for each input, 
regardless of the total number of experts. The architecture enables massive models 
and is particularly efficient for distributed systems where the experts are spread 
across different computational devices. 

Clark et al. [38] analyze the theoretical properties of such routing networks, 
where each input is processed only by subnetworks with a fraction of the network’s 
parameters.The authors analyze three different architectures and get the following 
results. 

• Routing improves the performance of PLMs in all investigated sizes and variants. 
• Improvement follows a power-law in the number of experts E that diminishes 

with model size N , and can be further generalized across routing architectures. 

The analysis is based on the evaluation of several magnitudes of size, including 
models with hundreds of experts and hundreds of billions of parameters. 

GLaM [51] is an autoregressive mixture-of-experts (MoE) model with up to 
1200B parameters. It replaces the fully connected layer of every second encoder 
block (Sect. 2.1.1) with 64 copies having different parameters. For each embedding, 
a gating module selects two of these 64 fully connected layer for processing. The 
architecture is shown in Fig. 3.21. The model was trained on a huge collection of 
1.6T tokens documents and quality-checked web pages. It has approximately 7 times 
more parameters than GPT-3 but requires only 1/3 of its training effort. In this way, 
the model has many more parameters increasing its representational capacity. As 
for a given input token, only two expert models are used, the computational effort 
for training and application is lower. The zero-shot and one-shot performance is 
better than for GPT-3 on 29 NLP tasks. Some results are compared to those of other 
models in Tables 3.3 and 3.4. GLaM is remarkable as it requires only 1/3 of the 
training effort of GPT-3 but it achieves a similar or better performance than GPT-3 
on NLP tasks. 

WuDao-2.0 [175, 178, 257] is a recent giant autoregressive language model with 
1750B parameters, ten times larger than GPT-3. It has mixture-of-experts layers, 
where a gating network selects a submodule for processing based on the input. 
WuDao-2.0 uses the FastMoE library [74] and employs the GLM 2.0 architecture 
(Sect. 3.1.3) combining the different learning paradigms of BERT, GPT and the 
encoder-decoder transformer [175]. 

The training data consist of 1.2TB Chinese text, 2.5TB Chinese graphic data and 
1.2TB English text data from the Pile corpus [61]. The Cogview model is used for
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Fig. 3.21 Architecture of GLaM [51]. For each input token, e.g., “likes”, the gating module 
dynamically selects two most relevant experts out of 64 available experts. This is indicated by 
the blue grid. The weighted average of the outputs from these two experts’ feedforward models 
is then passed to the next encoder block. For the other inputs different experts are selected. A 
mixture-of-experts layer is used in every second encoder block 

the joint processing of images Sect. 7.2. In addition, WuDao-2.0 can learn on the fly, 
draw pictures and compose poetry. These capabilities are a significant difference to 
GPT-3. 

The published performance claims are impressive. On the LAMA benchmark for 
measuring world knowledge [158] it scores higher than AutoPrompt [192]. For the 
SuperGLUE few-shot natural language understanding task [219] it achieves SOTA 
and surpasses GPT-3. For the Lambada benchmark (Sect. 4.1.3), where the last word 
of a paragraph has to be predicted, it yields better results than Microsoft Turing 
NLG. In addition, it increases SOTA for a number of text-graphics tasks (Sect. 7.2.8). 

Switch [56] is a variant of the transformer encoder-decoder T5 (Sect. 3.1.3). It 
has a mixture-of-experts architecture, which replaces the fully connected layer of 
each encoder block with .k = 128 copies having different parameters. There is a 
simple linear gating network, which selects one of the 128 single fully connected 
layers (the experts) per token. Hence, the number of parameters is drastically 
increased with approximately constant computational effort. For this architecture 
a gradient can be computed and the model may be optimized using a number 
of specific strategies and a special TensorFlow version. It turns out that Switch 
achieves the same loss level compared to the standard T5 version with 1/7 of the 
computing time. On a number of fine-tuning tasks the large Switch model with 
1600B parameters and 2048 experts yields better results than T5-large (Sect. 3.1.3) 
with 13B parameters requiring a quarter of the computational training effort. 

As an alternative to the gating network in the mixtures-of-experts architecture, 
it is possible to use hash values to activate different parts of the network. Token 
Switch [177] computes a hash value for each input token and routes the generated 
embeddings of each token to different feedforward networks based on the hash
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values. The authors show that their approach compares favorable to Switch and 
works well on comprehensive language modeling tasks. 

ST-MoE-32B [261] is a mixture-of-experts model with 269B parameters and a 
comparable training cost of a 32B dense model. The authors modify the routing 
algorithm which dispatches token embeddings to one or two experts, and resolve 
instability issues. The model is similar to a T5-Large encoder-decoder [170]. The 
ST-MoE-32B has 32 experts with an expert layer frequency of 1/4, such that every 
fourth feedforward layer of T5 is replaced by an MoE layer. The authors use the 
GEGLU activation function, which contains multiplicative elements [142] 

.FFNGEGLU(x,W, V, b, c) = GELU(xW + b) � (xV + c). (3.2) 

The authors compare a large number of variants and hyperparameters to improve 
training. 

The model achieves SOTA in many transfer learning benchmarks, e.g. for 
SuperGLUE with an average accuracy of 93.2% beating the PaLM LM with 540B 
parameters. Other SOTA results were reached for summarization (XSum [143] with 
27.1 ROUGE-2, CNN/Daily Mail [78] with 21.7 ROUGE-2), closed book question 
answering (WebQA [13] 47.4% exact match, Natural Questions [109] 41.9% 
exact match), and adversarially constructed tasks for common sense reasoning 
(Winogrande [182] 96.6%, ANLI R3 [146] 74.4%). 

3.5.3 Parameter Compression and Reduction 

Model quantization is a parameter reduction technique, where parameters are stored 
in low precision and therefore the computations in PLMs are also less precise. 
Conventional models normally use parameters of 32 bits or 16 bits, while parameters 
after quantization can have 8 bits or even 1 or 2 bits. Q-BERT [190], for example, 
quantizes Transformer models to ultra-low precision. This reduces the model size 
13-fold while only loosing 2.3% performance. The authors avoid the naive approach 
of simply reducing weight precision, but use additional training steps to adjust the 
quantized weights and allow higher precision for more “sensitive” parameters. Other 
authors propose to delete parameters with small values [64]. ALBERT [113] uses  
the same weights across all layers and achieves a significant parameter reduction. 
Nevertheless, ALBERT has the same or better performance compared to BERT. 

Another approach aims to reduce the number of parameters, e.g. by removing 
attention heads. It was shown that most attention heads focus only on nearly 
identical positional relations and can be replaced with fixed attention patterns [172]. 
It turned out that high performance is possible with only 1–2 attention heads per 
encoder unit instead of the 16 attention heads of the original model. A detailed 
overview on parameter compression techniques is provided by Ganesh et al. [60] .  

Another method to reduce model parameters is model pruning, which cuts off 
irrelevant parts in PLMs to achieve a smaller memory footprint and faster execution
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without compromising performance. It could be shown, for example that some 
attention heads of the transformer may be removed with little impact on the accuracy 
[256]. Other researchers prune the weights of attention layers and linear layers to 
reduce the number of parameters without reducing the accuracy [29, 64]. Note that 
model pruning does not always lead to speedups, as sparse computations may be 
hard to parallelize on GPUs. 

3.5.4 Low-Rank Factorization 

This technique employs matrix and tensor decomposition to reduce the number 
of parameters of full rank parameter matrices and already has been discussed 
in Sect. 3.2.2 for the extension of the input sequence length. Examples are the 
Performer [34] and the Linear Transformer [105] (Sect. 3.2.2). As an alternative, 
ALBERT (Sect. 3.1.1) approximates the embedding matrix as a product of two 
smaller matrices. 

3.5.5 Knowledge Distillation 

In machine learning the knowledge distillation approach [82] transfers knowledge 
from a large teacher model to a smaller student model. The large model can 
often be trained successfully to approximate a functional relation without using 
its full representational capacity. To reduce the high computational and memory 
requirements during application, a smaller model is trained to imitate the large 
model without sacrificing accuracy. 

The advantage of this approach is that the student model may be trained to 
approximate internal activations of the teacher model. Often the target probabilities 
generated by the teacher model are used to train the student network . Typically the 
outputs of the teacher model for an input . x is .z(x), which can be translated to a 
probability by a scaled softmax 

.y(x|τ) = [exp(z1(x)/τ), . . . , exp(zk(x))/τ ]
exp(z1(x)/τ) + · · · + exp(zk(x)/τ)

, (3.3) 

where .y(x|τ) is a probability vector and . τ is a parameter called temperature, which 
for a standard softmax is normally set to 1.0. The student model is trained to imitate 
the probabilities .ŷ(x|τ) generated by the teacher model by minimizing cross entropy 

.E(y|τ) = −
k∑

j=1

ŷj (x|τ) log yj (x|τ), (3.4)



134 3 Improving Pre-trained Language Models

where .y(x|τ) is the output probability vector of the student model. If observed 
values are available the probabilities of the teacher model .yj (x|τ) may be replaced 
by 1.0 for the observed class and 0.0 otherwise. During training the temperature 
may be varied. A high temperature avoids extreme probability values and reduces 
the gradients. This may lead to a faster convergence in the beginning of the 
optimization. 

DistilBERT [183] uses MLM cross-entropy loss to predict token probabilities 
and in addition the cosine similarity between the embedding matrices of the teacher 
and student networks to train a smaller BERT model. It utilizes knowledge distilla-
tion during pre-training to reduce the size of BERT by 40% while retaining 99% of 
its original capabilities and making the inference 60% faster. MobileBERT [204] is  
based on a specific large BERT model and transfers information about multi-head-
attention as well as the resulting embeddings. Experiments show that MobileBERT 
is 4.3. × smaller and 5.5. × faster than BERT while achieving competitive results on 
well-known benchmarks. 

TinyBERT [97] proposes distillation of a BERT model during pre-training 
and fine-tuning. The model is adapted to: (1) the output of the embedding of 
selected layers; (2) the hidden states and attention matrices derived from selected 
Transformer layers; (3) the logit outputs of the prediction layer. As distillation 
is also performed during fine-tuning the model can be better adapted to the fine-
tuned BERT. On a number of benchmarks TinyBERT is on par with BERT.BASE and 
outperforms DistilBERT. 

Note that the knowledge distillation methods discussed above require the data 
used for pre-training the teacher model, which is often not released because of data 
copyright. It has not yet been evaluated whether distillation is also feasible with new 
data. The training time for knowledge distillation is high, because the teacher model 
needs to perform a forward prediction over the entire pre-training data to generate 
activation values or intermediate representations. 

Rogers et al. [176] list a large number of size reduction studies for BERT 
and report parameter size and computing time reduction as well as the resulting 
performance. For a number of approaches there is a marked reduction in memory 
and computing effort with nearly identical performance. 

3.5.6 Summary 

The number of model parameters, the size of the training data and the amount of 
computation effort for training are the determining factors for the performance of a 
model. Kaplan et al. [102] show by experiments that increasing parameter count and 
training set size reliably lead to a better performance and provide a detailed formula 
for the dependency. If a fixed compute budget is available, one should use a very 
large model and much data. 

Mixtures-of-experts follow this approach by increasing the number of parameters 
without requiring more computational effort. By routing inputs to specific subnet-
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works they are able to increase performance compared to monolithic networks. 
Examples are GLaM, WuDao-2.0, and Switch. However, these networks have 
hundreds of billions of parameters and require a specific parallel computational 
infrastructure. 

Often the trained networks are too large and have to be reduced to fit to smaller 
computing devices. A viable approach is low-precision computation, which reduces 
memory requirements for parameter storing. Low-Rank factorization of matrices 
also has a lower memory footprint as a side effect. Finally, knowledge distillation 
may be employed to create a student model which imitates the inner working of 
a large trained teacher network. DistilBERT, for example, was able to reduce the 
memory size by 40%, kept 99% of the original performance and was 60% faster. 
There are a number of other size reduction approaches with similar results. 

3.6 Fine-Tuning for Specific Applications 

Self-supervised pre-training of language models on large text collections and subse-
quent fine-tuning them to solve specific tasks has become the standard paradigm in 
natural language processing and understanding. It has been shown that pre-trained 
language models such as BERT are excellent for generalization and can easily be 
fine-tuned to multiple tasks. However, sometimes simple fine-tuning to a domain-
specific task is not sufficient, and other transfer learning approaches have to be used 
to better adapt models to domain-shift in the data [166]. There are a number of 
surveys covering transfer learning in depth [230, 252, 260] 

Fine-tuning updates all the model layers, including the embedding layer, but there 
are larger changes in the higher layers [133]. First, we discuss whether fine-tuning 
can destroy the knowledge gained during pre-training. Standard fine-tuning adapts 
a large pre-trained PLM with many parameters to a relatively small fine-tuning 
training data set with little computational effort. We investigate whether overfitting 
occurs during this phase. Subsequent sections introduce different approaches for 
fine-tuning: 

• Intermediate Fine-Tuning performs an in-between fine-tuning step with a larger 
training set before a final target fine-tuning takes place. 

• Multitask fine-tuning enhances the model capabilities by simultaneously fine-
tuning on a number of tasks. 

• Fine-tuning a frozen model adapts a small additional layer to the fine-tuning task 
instead of changing all weights of the large pre-trained model. 

• Creating Prompts for Few-Shot Instructions aims to generate inputs for a large 
autoregressive PLM like GPT-3 to solve a task in a zero or few-shot approach.
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3.6.1 Properties of Fine-Tuning 

Fine-tuning of PLMs is commonly employed to adapt a pre-trained model to a 
specific task by supervised training. This adaption of the model from a source task to 
a related target task is also called transfer learning. Transfer learning is especially 
rewarding if we have abundant training data for self-supervised learning—as it is 
typical for non-annotated text—and only little annotated data for the target task. A 
survey of transfer learning is provided by Zhuang et al. [260]. Fine-tuning has a 
number of advantages: 

• The model acquires detailed knowledge about the language, its syntax and 
semantics by exploiting the content provided in the pre-training data. 

• Pre-trained models can easily be adapted to new tasks, e.g. by an additional layer 
with a simple classifier. The language representations of the pre-trained model 
support fine-tuning and are only slightly changed during this process. 

• Fine-tuning even with a small data set yields a much better performance than 
direct training of a classifier on the limited data. 

Autoencoder models like BERT are typically fine-tuned for classification tasks, 
where the logistic classifiers for masked language modeling and next sentence 
prediction have to be removed. Using the [CLS] token or other tokens as input, 
new logistic classifier models as well as all model parameters are trained end-to-end 
with the new task for a few epochs (Sect. 2.1.3). Compared to pre-training, fine-
tuning is relatively inexpensive. Usually, only a small fraction of the pre-training 
effort is required to achieve good results. 

Tripuraneni et al. [210] have theoretically proven that transfer learning requires 
far less data than learn tasks in isolation. They prove that transfer learning improves 
if the task diversity is enhanced. Bansal et al. [7] investigate the theoretical 
properties of fine-tuning a classifier using pre-trained embeddings. The authors 
prove that these classifiers have a smaller generalization gap between their train 
and test accuracy, than standard classifiers. 

Catastrophic Forgetting 

The question is whether fine-tuning can destroy the original capabilities of the 
model. This means, after fine-tuning a pre-trained model for a few epochs, it could 
lose predictive performance available after pre-training. A possible reason can be 
catastrophic forgetting, where all parameters are adapted to a new learning task 
while forgetting learned content. 

Merchant et al. [133] fine-tune BERT.BASE with three different tasks: (1) MNLI 
sentence pair classification task [229] measuring if the first sentence entails the 
second; (2) SQuAD question answering [173], where the answer to a question has to 
be marked in a text; (3) Dependency Parsing [50] to capture the syntactic structure of 
sentences. Then they investigate the performance of a number of probing classifiers
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before and after fine-tuning. The results demonstrate that the fine-tuned models only 
show a small decrease in the accuracy to detect linguistic concepts. The reduction 
cause by the MNLI task in most cases is less than 1%, while higher differences (less 
than 3%) are observed for SQuAD and dependency parsing. Therefore, catastrophic 
forgetting cannot be observed. The authors state that fine-tuning primarily changes 
the top layers of BERT, with dependency parsing also affecting deeper layers. More 
detailed results are provided by Wallat et al. [216]. 

Fine-tuning only benefits from the pre-training, if there are similarities between 
the two tasks. Hence, pre-training should have a loss function which enforces the 
learning of semantics at word, phrase and document level. In addition, its training 
documents should originate from a domain close to the fine-tuning task. Otherwise 
the vocabulary may not include many domain-specific words. As a result, domain-
specific words are split into a number of tokens which hinders model learning and 
degrades its performance in downstream tasks. In the next sections we will discuss 
alternative training regimes which improve BERT’s capabilities. 

Fine-Tuning and Overfitting 

During pre-training BERT’s parameters are adapted to the pre-training data, acquir-
ing universal language representations. As pre-training provides a good initializa-
tion, it avoids overfitting on the small fine-tuning datasets, if the fine-tuning error is 
not minimized too much. 

Since PLMs have a very large number of parameters, there is the risk of 
overfitting on the fine-tuning data. As a result, generalization from unseen data 
can be poor and counterstrategies may be required. D’Amour [42] present a 
comprehensive discussion of this underspecification phenomenon. Jiang et al. [95] 
introduces a form of regularization, which makes the model invariant to small 
perturbations of the input, inducing smoothness in the local neighborhood. They 
develop a class of Bregman proximal point optimization methods, which penalize 
large updates of the model at each iteration. Aghajanyan et al. [2] introduce the 
notion of representational collapse, stating that fine-tuned models lose their ability 
to generalize. They propose fine-tuning optimization based on trust-region theory, 
which alleviates representational collapse at a fraction of the cost of other recently 
proposed fine-tuning methods and, for instance, improves the best known results on 
fine-tuning RoBERTa on GLUE. 

Fine-tuning the same model with multiple random seeds can lead to large 
variance in task performance. Most papers argue that this effect is caused by 
catastrophic forgetting and the small size of the fine-tuning datasets. However, 
Mosbach et al. [140] show that often fine-tuning has an optimization problem due to 
vanishing gradients. In addition, it can often occur that a model does not generalize 
well, although it has the same fine-tuning loss as a successful model. This is an 
indication for the underspecification mention above. The authors recommend to 
use small learning rates with bias correction to avoid vanishing gradients early 
in training. In addition, they propose to use more iterations for fine-tuning. More 
recipes to improve fine-tuning are provided by Rogers et al. [176].
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3.6.2 Fine-Tuning Variants 

Fine-Tuning in Two Stages 

The intermediate training set should be closer to the final task. Although this 
approach can increase performance in some cases, an experimental evaluation 
demonstrates a decrease in performance in 44% of the cases [163]. An intermediate 
training with a task requiring high-level inference and reasoning abilities tend to 
work best, as was shown in a large experiment [165]. However, the authors also 
observe catastrophic forgetting of the pre-trained abilities. Gururangan et al. [71] 
have shown that a second phase of pre-training, using domain-specific data, leads to 
significant performance gains, both in high- and low-resource settings. In addition, 
pre-training on tasks-specific unlabeled data improves performance on various tasks 
and domains. 

Fine-Tuning for Multiple Tasks 

For each task, a task-specific layer is added to the underlying pre-trained model. 
Then the model is simultaneously trained with all tasks. However, it sometimes 
happens that performance does not increase compared to standard fine-tuning [141], 
perhaps because of contradicting requirements of tasks. As an alternative, a subset 
of fine-tuning tasks from the available datasets may be selected based on similarity 
measures [131]. 

HyperGrid [208] is a multitask learning approach evaluated on the T5 model. 
It learns grid-wise projections that help to specialize regions in weight matrices 
for different tasks. As an example, a single model is simultaneously adapted to all 
GLUE and SuperGLUE tasks at once. In spite of the multitude of tasks, the model 
has a slightly better performance on SuperGLUE than the single models. 

Meta-Learning to Accelerate Fine-Tuning 

During fine-tuning a pre-trained PLM is adapted to a new NLP task. It is usually 
trained for two or three epochs on a labeled fine-tuning dataset. Although this is 
much faster than pre-training the model on a large training corpus it still requires a 
lot of effort. To reduce this effort researchers tried to prepare the pre-trained model 
to fine-tuning by meta-learning. A survey of meta-learning is provided by Yin [242]. 

Usually, there is a set . T of related fine-tuning tasks . Ti . During meta-training 
a task  . Ti is sampled from a distribution .p(T). Then the model is trained with K 
training samples from .T train

i and then tested on the validation set of .T val
i . The
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validation error of . Ti is utilized as the training error of the meta-learning framework 
for the current iteration. The MAML algorithm [58] follows this pattern: 

• Copy .w[i] of the initial model parameters . w. 
• Train the model on the training set .T train

i with a K gradient updates: . ŵ[i] ←
w[i] − γ ∂Li(w

[i], T train
i )/∂w

• Apply the model with the updated parameters .ŵ
[i] on the validation set .T val

i . 
• Update the initial model parameters . w using the loss on the validation set . w ←

w − β∂Li(ŵ
[i]

, T val
i )/∂w

This scheme was applied to BERT [6]. The authors generate a large, rich, meta-
learning task distribution from unlabeled text by gathering tokens-to-be masked 
from a few vocabulary terms. On 17 NLP tasks, they show that this type of meta-
training leads to better few-shot generalization than language-model pre-training 
followed by fine-tuning. Chen et al. [28] provide data-dependent generalization 
bounds for these approaches. 

Fine-Tuning a Frozen Model by Adapters 

A downside of fine-tuning for task-adoption is that new model parameters are 
needed for every task. Task adapters [84] aim to mitigate this problem. The authors 
introduce adapter layers, which are inserted in a encoder block after the multi-head 
attention and the feedforward layer (2.7). Now, to fine-tune transformer models to 
new tasks, instead of relearning all parameters, all weights of the network are frozen 
except for the adapter layers and the normalization layers. On tasks like GLUE this 
yields a significant reduction of parameters that need to be trained while preserving 
model quality. 

Rather than having multiple adapters for different tasks, Stickland et al. [197] 
propose training a multitasking version of BERT that can be used for several tasks 
simultaneously. They add low-dimensional projected attention layers as bypass 
to BERT encoder blocks, which connect the input to layer-norm layers and the 
subsequent layer-norm layers. They sample data from the different tasks during 
training proportionally to the sizes of the respective training sets and use an 
annealing mechanism to converge towards equally distributed training samples by 
the end of the training. Their results surpass the results of a BERT.BASE model. 

MAD-X [160] is a framework to adapt multilingual models to arbitrary lan-
guages and tasks. The authors introduce language- and task-specific adapters, which 
consist of a linear down-projection to a small vector, a ReLU activation and a linear 
up-projection. The language specific adapters are trained with an MLM objective, 
while the rest of the model is frozen. The task-specific adapters are trained with 
the task-specific data, fixing the rest of the parameters. Finally, invertible adapters 
are added after the input embedding layer and before the output embedding layer 
to mitigate differences between the multilingual vocabulary and the target language
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vocabulary. MAD-X achieves SOTA for NER and common sense reasoning for a set 
of different languages. 

LoRA [85] freezes the weights of the pre-trained model and adds trainable 
bypasses to the model, which consist of trainable matrix transformations to a 
short vector and to the full rank. This drastically reduces the number of trainable 
parameters (1/30 for GPT-3 and 1/100 for GPT-2) while achieving better results than 
with traditional fine-tuning on many NLP tasks. AdapterHub [161] is a repository 
for adapters that as of writing contains around 380 adapters. AdapterHub is built 
on the Hugging Face transformer library for compatibility with existing transformer 
models. 

Fine-Tuning GPT-3 

GPT-3 is an extremely powerful Foundation Model, but it is not publicly available 
(Sect. 3.1.2). By using the API for fine-tuning GPT-3 with user-specific data [123], 
the model can be adapted to specific domain languages and particular tasks. 
This typically yields a higher quality than few-shot examples and prompt design 
described below. To fine-tune the 175B parameter model on a 1M token file for four 
epochs OpenAI charges about $120. The fine-tuning can be used in a number of 
ways [123]: 

• Completion: Generate a completion for a prompt. 
• Search: Given a search query and a set of documents or labels, the model ranks 

each document with a score based on its semantic similarity to the query. 
• Classification: Input is a query and a set of labeled examples, e.g., [“I am feeling 

awesome”, “Positive”]. Then GPT-3 will predict the most probable label for the 
query. This can be used similar to BERT for any type of classification task. 

• Answer: Input is a question, a set of documents with background information, and 
some examples. Based on the information in the documents and the examples, an 
answer is generated. This is similar to the reading comprehension task of question 
answering (Sect. 6.2). 

• Fine-tune: Adapts GPT-3 to a specific domain text. 
• Embeddings: Get a vector of contextual embeddings for an input text for further 

processing or exploration. 

It can be assumed that GPT-3 and other Foundation Models like PaLM fine-tuned in 
this way will increase SOTA in many areas due to their comprehensive knowledge 
about language. 

3.6.3 Creating Few-Shot Prompts 

For zero-shot learning the model just gets a task description or prompt, e.g.  
“Translate English to French: cheese =. >”, and directly generates the answer
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Fig. 3.22 The accuracy of few-shot learning of GPT-3 is increased by extending the model size 
as well as the number of presented examples [25]. The task is to remove random symbols from a 
word. A natural language description of the task can support the model especially in the one-shot 
regime. Image reprinted with kind permission of the authors [25, p. 4]  

“fromage”. For  one-shot or few-shot learning the model receives a task description 
as well as one or more examples, e.g. “Translate English to French: sea otter =. >

loutre de mer; cheese =. >”, which helps the model to find the answer “fromage”. 
This happens without training, the parameters of the model are not changed, and the 
model creates the answer based on the knowledge acquired during pre-training. 

In this way, GPT-3 can be instructed by natural language prompts to generate 
short stories, songs, answers to questions, press releases, technical manuals, and 
more [181]. It can adapt its output texts to specific styles, personalities or ideologies. 
Here are some of the recommended prompts used for few-shot learning [150]: 

• Summarization: the model receives a long story and the prompt “tl;dr:”. 
• Grammar correction “Original: She no went to the market. Standard American 

English:” 
• Translation: “English: I do not speak French. French: Je ne parle pas français. 

English: Where is the restroom?” French: 
• Generate an outline for an essay: “Create an outline for an essay about Walt 

Disney and his contributions to animation: 
I: Introduction” 

Figure 3.22 shows the accuracy of “few-shot learning” for different GPT-3 model 
sizes and different numbers of given examples. 

In a comprehensive survey Liu et al. [125] compile approaches to prompt design 
to create prompts for language models that reliably generate the desired response. 
For example, when we want to recognize the sentiment of the text “I missed the
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bus today.”, we may insert the prompt “I felt so ”, and use the language model to 
replace the blank. There are two types of prompts: cloze prompts [159], which fill in 
the blanks of a textual string by an autoencoder model similar to BERT, and prefix 
prompts [117], which continue a text by an autoregressive language model. 

For prompt mining [96], for instance, a large number of sentences with phrases x 
and y are collected. Subsequently, prompts are generated using the words between 
x and y, or on the dependency path generated by parser. Another approach is 
based on paraphrasing existing prompts, for instance by translation to another 
language and back-translation. The probability of desired answers may be increased 
by gradient-based search [192] as demonstrated with the AutoPrompt model. 
Alternative approaches are described in [62, 245]. It should be noted, however, that 
the output of a model instructed with few-shot prompts can be easily altered if an 
adversary adds some new prompts [79]. 

Instead of improving prompt tokens, which generate a desired output by the 
language model, one can optimize the input embeddings of some “virtual” tokens, 
such that the desired answer is created. The embeddings of this “continuous” prompt 
can be optimized by gradient descent while keeping the parameters of the language 
model fixed [121]. Lester et al. [117] apply this approach with a continuous prompt 
sequence of 100 tokens to the T5 transformer. On the SuperGLUE benchmark they 
achieve the same performance of 90.5% as for fine-tuning T5. This demonstrates 
that prompt tuning becomes competitive with fine-tuning and is much better than 
few-shot instructions. Note that the effort for prompt tuning is much lower than for 
fine-tuning, as the number of parameters is much smaller. It would be interesting to 
see this technique applied to recent autoregressive models like GPT-3 or PaLM. 

3.6.4 Thought Chains for Few-Shot Learning of Reasoning 

To improve the reasoning capabilities of language models, prompts can contain a 
chain of thought, a sequence of short sentences that imitate the reasoning process 
a person might have when answering a question [226]. Two examples are shown 
in Fig. 2.21. The idea is that a chain of thought allows language models to split a 
multistep problem into intermediate steps that are solved one at a time, rather than 
solving an entire multistep problem in a single pass. 

The approach has a number of advantages. First, the chain-of-thought approach 
enables a model to decompose complex reasoning tasks into simpler intermediate 
steps, which can be solved by the model. To solve an entire class of problems, only 
a few chains of thought need to be provided. Second, when a model performs the 
intermediate steps, it is easier to check where the model has introduced an error. This 
may give a clue how to improve the chain of thought. Chain of thought reasoning 
can be applied to symbolic manipulation, common sense reasoning and math tasks, 
and is potentially applicable to any task that humans can solve via language. 

Prompts also do not need to be restricted to input-output pairs or explanations 
and can cover many arguments, including things to avoid, rules of thumb, reasoning
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chains, positive or negative examples. Mishra et al. [138] consider instructions 
for crowdworkers, which contain very detailed prescriptions how to solve a task. 
They compile a dataset of tasks, instructions and generated input-output pairs. 
Subsequently, they investigate how well models are able to generalize to similar 
tasks. The results show that PLMs benefit from instructions when evaluated in terms 
of generalization to unseen tasks (19% improvement). However, there is much room 
for improvement. 

Du et al. [52] investigate few-shot learning theoretically. They investigate the 
case that a model is pre-trained on a number of tasks with a large training set and 
subsequently fine-tuned on a related task. They theoretically derive bounds on the 
required sample size for the fine-tuning task, which can be reduced when there is a 
good common representation. 

3.6.5 Fine-Tuning Models to Execute Instructions 

Instead of querying autoregressive PLMs by few-shot instructions it is possible to 
fine-tune these models to execute instructions without additional examples. 

InstructGPT [151] is a new version of GPT-3. It is optimized to follow 
instructions instead of predicting the probable next words. Instead of needing a 
series of examples, GPT-3 now directly executes an instruction, e.g. “Write a short 
story about the moon and the stars:”, and the model generates a plausible story. In 
a first trial a dataset of 13k pairs of instructions and completions was collected 
to adapt GPT-3. GPT-3 was fine-tuned using this data. However, the model did 
not adequately match the intended human preferences. Therefore, the model was 
modified using a different training approach. 

To adjust GPT-3 a reinforcement learning approach with human feedback was 
used. The proximal policy optimization (PPO) [186] follows the policy gradient 
pattern. It approximates the conditional distribution .π(at |st ;w) of actions . at ∈ A
at step t conditional to the current observation .st ∈ S about the state of the 
environment and a vector . w of parameters. In usual reinforcement learning, the 
environment generates a reward and the algorithm tries to maximize the weighted 
sum of rewards. The gradient for this optimization (policy gradient) can be easily 
computed from the model. PPO computes an update at each step that minimizes 
the cost function while ensuring the deviation from the previous policy is relatively 
small [186]. 

The algorithm needs a numeric score to measure the quality of each generated 
sequence. To reduce the data necessary for optimization, a human can express 
preferences [198] between trajectories .τ = (y, x) for pairs of instructions . x and 
generated text . y. Informally, the goal is to produce trajectories which are preferred 
by the human, while querying the human as little as possible. To achieve this 
goal, a reward function .r(y, x) ∈ R is postulated [36] with the property that 
.(y[1], x[1]) is preferred to .(y[2], x[2]) if .r(y[1], x[1]) > r(y[2], x[2]). The original 
policy .π(at |st ;w) induces a conditional distribution .π(y|x;w). To construct this,
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Fig. 3.23 InstructGPT is trained in three steps [151, p. 3]. First GPT-3 is fine-tuned on instructions 
and the corresponding completions. Then a reward model is generated by optimizing the selection 
of a completion for an instruction. Finally, a policy is trained to generate token by token of the 
answer with maximal reward. Credits for image parts in Table A.1 

the reward function .r(y, x) is approximated by a deep neural network . ̂r(y, x;u)

with parameter . u. The network is trained by three alternating steps (Fig. 3.23): 

1. The policy .π(y|x;w) is used to generate set of trajectories .{τ 1, . . . , τ i}. The  
parameter . w is updated by reinforcement learning in order to maximize the 
reward .r̂(y, x;u). 

2. Pairs of trajectories .(σ [1], σ [2]) from the .{τ 1, . . . , τ i} are selected and submitted 
to a human for comparison. 

3. The parameters . u of the reward function .r̂(y, x;u) are optimized to correspond 
to the comparisons collected from the human up to now. 

For a set of 33k instructions, a reward model .r̂(y, x;u) was built with 6B 
parameters, where . x is the instruction and . y a completion [198]. It selects the best 
completion from a small set of proposed completions. Proximal policy optimization 
(PPO) was used as reinforcement model [151, p. 41]. To avoid catastrophic 
forgetting (Sect. 3.6.1), pre-training samples were mixed into fine-tuning. 

The reward model was then applied to create a final model by another reinforce-
ment learning step. During this process, InstructGPT generates a completion for 
an instruction. The reward model calculates a reward and the policy is updated to 
approximate the preferences encoded in the reward model. By mimicking human 
utterances, the model implicitly learns human intentions and preferences. This 
process is called alignment to human preferences and is extensively discussed by 
Askell et al. [5].
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InstructGPT Results 

The GPT-3 model with 175B parameters fined-tuned in a supervised way to the 13k 
instruction-completion examples was taken as the base model called SFT. The final 
completions were again scored by human raters [151]. The InstructGPT completions 
were preferred to the standard GPT-3 output in 85% of cases and to few-shot-GPT-3 
in 71% of cases. 

Specifically, raters found that InstructGPT attempts to follow the correct instruc-
tion in 92% of cases, compared to 85% for SFT and 75% for few-shot GPT-3 
[151, p. 53]. In addition, InstructGPT follows explicit constraints in 50% of the 
cases, compared to 43% for SFT and 34% for SFT and 28% for few-shot GPT-
3. Hallucinations were observed for 20% of the cases for InstructGPT compared 
to 16% for SFT and 50% for few-shot GPT-3. Finally, the raters found that the 
language use is appropriate for a customer assistant in 92% of the cases for 
InstructGPT, about 90% for SFT and about 85% for GPT-3 few-shot. InstructGPT 
was also evaluated on a few natural language benchmarks where it achieved very 
similar results to GPT-3 [151, p. 56].  

It turned out that InstructGPT is able to generalize to unseen labeler preferences. 
Thus, InstructGPT does not simply adapt to the preferences of a few training label-
ers. In addition, InstructGPT produces slightly less toxic language than standard 
GPT-3. However, InstructGPT still makes simple mistakes, e.g., given an instruction 
with a false premise, the model sometimes incorrectly assumes the premise is true. 
Note that the results depend on the subjective preferences of the labelers. 

Comparisons between alternatives are not necessarily the most effective 
approach to generate an improvement signal. For example, one could ask labelers to 
edit model responses to make them better, or generate critiques of model responses 
in natural language. There is also a vast space of options for designing interfaces 
for labelers to provide feedback to language models; this is an interesting human-
computer interaction problem. The authors note that the cost of aligning GPT-3 to 
human preferences described above is just 1.6% of the cost spent to train GPT-3. 
Therefore, it seems to make sense to put more effort into alignment than into the 
mere enlargement of the models. 

The results show that the InstructGPT techniques potentially make language 
models more helpful, truthful, and harmless. In a way InstructGPT works like an 
intelligent assistant for speech generation and information provision. However, the 
model is currently not fit for use in safety-critical applications, because failures 
cannot be ruled out. What is still missing is a comprehensive evaluation similar to 
Gopher or PaLM (Sect. 3.1.2) that shows the real utility of this approach. It can be 
expected that the combination of this approach with retrieval techniques as used 
for WebGPT (Sect. 6.2.3) and Retro (Sect. 6.2.3) will increase the performance, 
reliability, and correctness of InstructGPT.
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Fig. 3.24 FLAN instruction tuning fine-tunes a pre-trained language models on a set of tasks with 
instructions of ten different templates (left). The trained model can be applied to unseen tasks by 
formulating prompts according to these templates (right). Image adapted from [227, p. 1] with kind 
permission of the authors 

Instruction Tuning with FLAN 

FLAN [227] uses instruction tuning to improve the ability of the language model 
to respond to natural language prompts. The language model has to learn through 
supervision to perform tasks described by prompts, and to follow instructions, 
even for unfamiliar tasks (Fig. 3.24). The authors group 62 publicly available NLP 
datasets into twelve task clusters, e.g. “sentiment” “natural language inference”, 
“summarization”, etc. For each of the datasets they compose ten templates describ-
ing the task in natural language. Then an existing language model is fine-tuned to 
provide better answers to the prompts. 

The approach was applied to a LaMDA-PT language model with 137B param-
eters using retrieval and filters (Sect. 6.6.3). For 18 NLI tasks the FLAN model 
was compared to LaMDA-PT 137B, GPT-3 175B, and GLaM 64B. In 14 of 18 
cases FLAN substantially improved the performance of its unmodified counterpart 
and achieved better results than the competitors, while in 4 cases it was surpassed 
by GLaM [227]. FLAN even outperforms few-shot GPT-3 by a large margin on a 
number of tasks. 

3.6.6 Generating Labeled Data by Foundation Models 

The performance of GPT-3 and other Foundation Models in few-shot learning 
enables the generation of new high-quality training data for other models. By 
Unsupervised Data Generation (UDG) the creation of fine-tuning data for models 
of downstream tasks is possible that would otherwise be produced by manual human 
annotation. This approach is similar to Sect. 4.2.3.
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Fig. 3.25 New data can be generated by GPT-3 and other Foundation Models using the few-shot 
UDG strategy. Here the prompts for two examples, Amazon reviews and Copa common sense 
reasoning, and the generated answers are shown [225] 

The idea for data generation is to utilize the language model to learn the input-
label relation based on the task description and a few sample input-label pairs [225]. 
Instead of generating and predicting a label for a classification task the language 
model has to create the input text using the output class and a task description as 
input. For a classification task like product reviews on Amazon, the approach is able 
to produce 10k new examples for each class, covering a much larger spectrum as 
the currently available labeled data. It turns out that up to 32 few-shot examples still 
increase the quality of the generated training data. Examples are shown in Fig. 3.25. 
The authors use an additional module to filter out noisy examples. In this approach, 
a given training example is removed if the trained classifier does not match its label 
with high probability. 

The T5-XXL encoder-decoder model fine-tuned on SuperGLUE data enhanced 
with UDG data is able to improve the overall accuracy on the SuperGLUE task for 
natural language understanding to 90.4% and is even able to beat DeBERTa with 
90.3%. Moreover, the approach achieves very high performance scores on a list of 
text classification and sentiment analysis tasks [225]. 

3.6.7 Summary 

When pre-training Foundation Models on a big text collection and subsequent 
supervised fine-tuning on a small labeled dataset, PLMs achieved unprecedented 
performance on many NLP tasks. Fine-tuning has been shown to change model 
parameters only slightly and, in general, no catastrophic forgetting occurs. Usually, 
no overfitting is observed if fine-tuning is stopped after a few epochs. If necessary, 
there are some approaches to avoid overfitting. 

Fine-tuning can be performed in different ways. It has been suggested to use an 
intermediate fine-tuning with a more related dataset before the final fine-tuning on
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the small dataset takes place. The results of such approaches have been mixed. Also, 
simultaneous fine-tuning to several tasks is possible. In some cases, it could improve 
performance. As an alternative, there are strategies to accelerate fine-tuning by 
meta-learning. To avoid that the full model is changed adapter layers can be defined, 
and only their parameters are adapted. This can drastically reduce the number of 
trainable parameters and nevertheless lead to good performance on the fine-tuning 
tasks. Finally, fine-tuning APIs have been recently provided for proprietary models 
like GPT-3. 

Foundation Models like GPT-3 and PaLM can be instructed by prompts to 
solve specific tasks without training. A large number of different prompts has been 
collected to order the model to complete a task. InstructGPT is a new version of 
GPT-3 that directly takes instructions and provides the answers for a large spectrum 
of tasks. The model was customized to carry out the instructions by adapting to user 
judgments through reinforcement learning. Instruction tuning is a variant, where a 
Foundation Model is fine-tuned to provide improved answers to instructions for a 
number of tasks. It turns out that afterwards the model generates better answers even 
for unseen tasks. 

Finally, big language models may be employed to generate high-quality training 
data for fine-tuning. Again, the few-shot learning technique is used to generate input 
texts for specific learning tasks. In this way, the scarce training data can be expanded 
and better fine-tuning results can be achieved. 
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