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Improving prediction accuracy of river discharge time

series using a Wavelet-NAR artificial neural network

Shouke Wei, Depeng Zuo and Jinxi Song
ABSTRACT
This study developed a wavelet transformation and nonlinear autoregressive (NAR) artificial neural

network (ANN) hybrid modeling approach to improve the prediction accuracy of river discharge time

series. Daubechies 5 discrete wavelet was employed to decompose the time series data into

subseries with low and high frequency, and these subseries were then used instead of the original

data series as the input vectors for the designed NAR network (NARN) with the Bayesian

regularization (BR) optimization algorithm. The proposed hybrid approach was applied to make

multi-step-ahead predictions of monthly river discharge series in the Weihe River in China. The

prediction results of this hybrid model were compared with those of signal NARNs and the traditional

Wavelet-Artificial Neural Network hybrid approach (WNN). The comparison results revealed that the

proposed hybrid model could significantly increase the prediction accuracy and prediction period of

the river discharge time series in the current case study.
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INTRODUCTION
River discharge prediction for any time interval (yearly,

monthly, daily or hourly) is essential for planning various

activities in the river catchment management (Wei et al.

). A variety of methods have been developed to predict

river discharge, including time series methods (Shamseldin

& O’Connor ; Porporato & Ridolfi ; Mohammadi

et al. ; Wei ), conceptual models (Nash & Sutcliffe

; Toth et al. ; Collischonn et al. ) and physical

models (Garrote & Bras ; Fukushima ; Spruill et al.

).

In the last few decades, the artificial neural network

(ANN) has been successfully employed to various different

fields including hydrological flow estimation and prediction

(Atiya et al. ; Campólo et al. ; Birikundavyi et al.

; Huang et al. ; Kişi ). ANN is a type of func-

tion approximator, which is good at forecasting nonlinear

hydrologic time series (Kisi & Cigizoglu ; Wei et al.

). The advantages of ANN models are that they do not

require information on whether the data are from a specific
statistical distribution or stationary, nor what the exact

relationships amongst the various input variables are

(Maier & Dandy ). Even though the ANN modeling

procedure does not require a detailed knowledge of hydrolo-

gical characteristics, a well-trained ANN model can easily

be applied to water resources management issues (Sriniva-

sulu & Jain ). ANN also has the advantages of self-

learning, self-organizing, and self-adapting (Ertay &

Çekyay ; Feng & Hong ). Many studies compared

the results of ANN models with those of traditional model

approach, and the comparison results displayed that ANN

models have good forecasting performance (Tsai & Lee

; Abrahart & See ; Kişi ; Sahoo et al. ;

Bahrami et al. ).

However, when river discharge time series are charac-

terized by high nonlinearity and non-stationarity with

excessive noise, ANN will be unable to capture accurately

a river discharge behavior (Wei et al. ). Later on, many

researchers integrated ANN with other modeling
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approaches to increase simulation accuracy, such as ANN

and ARIMA (Auto Regressive Integrated Moving Average)

approach (Cigizoglu ; Kişi ; Jain & Kumar ),

ANN and physical model (Demirel et al. ), phase-

space reconstruction and ANN approaches (Sivakumar

et al. ; Wu et al. b), conceptual and ANN integrated

model (Tokar & Markus ; Srinivasulu & Jain ),

ANN and non-parametric methods (Brath et al. ), and

ANN and fuzzy hybrid techniques (Chang & Chen ;

Aqil et al. ).

More recently, Wavelet and ANN (WNN) hybrid model-

ing approach (Wei et al. ) and even more complicated

combination method such as Wavelet-Bootstrap-ANN

hybrid model (Tiwari & Chatterjee , ) have attracted

increasing interest due to advantages in terms of good fitting

and prediction accuracy compared to other traditional

models. Wavelet transformation analysis is therefore becom-

ing a popular analysis technique due to its ability to reveal

simultaneously both spectral and temporal information

within one signal (Nourani et al. ). This method

advances Fourier analysis, where the basic shortcoming

was that the Fourier spectrum contained only globally aver-

age information (Wei et al. ). Wavelet transformation is

able to decompose a time series into its subseries and cap-

ture useful information at different resolution levels, and

thus it has been to analyze data and make forecasting.

Two essential contributions to this topic are Murtagh et al.

() and Adamowski (). The former employed wave-

let transformation as a mean of handling time series data

when future data are unknown. The latter developed fore-

casting models based on wavelet and cross-wavelet

constituent components, which displayed that the proposed

models can be used with great accuracy as a stand-alone

forecasting method for short-term river flood. For the

WNN hybrid model, it was first proposed by Aussem et al.

() to predict a financial time series. For river discharge

estimation, Kim & Valdés () applied dyadic wavelet

transforms and neural networks to forecast droughts in the

Conchos River Basin in Mexico, and the results displayed

that the conjunction model significantly improved the fore-

casting ability of neural networks. Wang & Ding ()

applied wavelet network model to predict daily discharge

of the Yangtze River in China, which showed that the

hybrid model could increase the forecast accuracy and
://iwaponline.com/jh/article-pdf/14/4/974/386843/974.pdf
extend the prediction time. Cannas et al. () employed

continuous and discrete wavelet transforms and data parti-

tioning to investigate the effects of data processing for

river flow forecasting using a neural network, with results

that showed that networks trained with pre-processed data

performed better than networks trained with an unrecom-

pensed signal. Kişi () applied a neuro-wavelet model

to forecast (1-month-ahead) stream flows of the Canakdere

and Goksudere Rivers in Turkey and compared the results

with those of single multi-layer perceptron (MLP), multi-

linear regression (MLR) and auto-regression (AR) models,

revealing that the combined WNN model could increase

both the forecast accuracy and performance. Partal ()

combined different artificial neural network algorithms

and wavelet transform for monthly river flow forecasting

in Turkey with comparison results revealing that wavelet

and feed-forward back-propagation model was superior to

other models. Kişi () proposed the application of a

neuro-wavelet conjunct model for forecasting daily intermit-

tent stream-flow and the comparison results revealed that

the suggested model could significantly increase the forecast

accuracy of single ANN. Some other studies on the appli-

cation of wavelet-neural network for forecasting river

discharge in recent years (e.g. Adamowski & Sun ; Pra-

manik et al. ; Adamowski & Chan ; Krishna et al.

; Tiwari & Chatterjee ; Wei et al. ) have proved

that wavelet and artificial neural network hybrid models

have better performances in river flow forecasting than

single artificial neural network models. However, the

model prediction results in those previous studies still lack

accuracy. Besides, network training with smaller data sets

have not been discussed in those literature except that Wei

et al. () discussed the topic of small data sets for net

training using one river discharge time series from the

Weihe River, China.

The objectives of this study include: (1) to develop a

Wavelet nonlinear autoregressive network (WNAR) hybrid

modeling method to improve the prediction accuracy; (2)

to estimate river discharge time series of Weihe River in

China using the proposed method; (3) to investigate network

generalization improvement under small data set by means

of Bayesian regularization (BR); and (4) to compare the pre-

diction results of the hybrid models with those of the single

NAR network (NARN) model and traditional WNN.
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STUDY AREA AND MATERIALS

The Weihe River originates from the Wushu Mountain in

Weiyuan County of the Gansu province in west-central

China, and runs across the Shaanxi province and joins

the Yellow River at Tonguan in Shaanxi. The river is

818 kilometers long with a watershed area of

135,000 km2, and is the largest tributary of the Yellow

River (Figure 1). The river has played a large role in the

development of West China and the health of the ecosys-

tem of the Yellow River. However, since the 1980s, the

river has suffered many problems, including greatly

reduced annual river runoff, geologic hazards caused by

water projects, high concentrations of sediment and con-

sequential heavy flooding, as well as heavy water

pollution (Song et al. ; Wei et al. ). Since the

late 1990s, many parts of the river have lost ecosystem

functionality, which have restricted the sustainable devel-

opment of the region (Zhao ; Wang et al. ). In

this context, it is of significant interest to have an
Figure 1 | A sketch of the water system of the Weihe River Basin in China, where Huaxian ga

om http://iwaponline.com/jh/article-pdf/14/4/974/386843/974.pdf
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advanced technique to model the river’s discharge with

improved prediction accuracy.

The data sets used in this study are monthly river dis-

charge time series collected from three gages of the Weihe

River, namely Linton, Huanxian, and Xianyang. Huaxian

series and Xianyang series include 504 month (42 years)

flow data from January 1960 to December 2001, and Lin-

tong series include 492 month (41 years) data from

January 1961 to December 2001. The data sets in the last

48 months (around 10%) of the three data series are used

for network prediction test and the rest of the data for net-

work training. Data set divisions and their statistical

analysis are presented in Table 1. The analysis results dis-

played that values of mean and standard deviation in

training sets are much larger than those in testing set.

From the Skewness and Kurtosis of the available data, it

revealed that distribution of the training data sets are more

positive skewed and more peaked than that of the testing

data sets. Those indicate that it might be difficult for a

single ANN model to predict the testing data.
ge, Lintong gage and Xianyang gage are the study area.



Table 1 | Statistics of river discharge data set for WNAR and NAR networks

Gage Data set Obs. Mean Std. Skew. Kurt. Max. Min.

Huaxian Training 456 236.5 271.6 2.62 12.0 2,000 2.67

Test 48 111.0 114.7 1.76 5.63 504.0 8.59

Entire 504 224.5 263.2 2.72 12.8 2,000 2.67

Lintong Training 444 223.7 235.3 2.30 9.34 1,490 15.4

Test 48 110.7 104.9 1.66 5.15 455 14.6

Entire 492 212.6 228.3 2.39 9.97 1,490 14.6

Xianyang Training 456 135.6 153.8 2.47 10.5 974 3.65

Test 48 47.45 57.84 1.89 5.71 227 2.32

Entire 504 127.2 149.6 2.56 11.2 974 2.32
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METHODS

In this study two modeling techniques, nonlinear autoregres-

sive (NAR) artificial neural network and discrete wavelet

analysis (DWA) were used. We used MATLAB Wavelet

Toolbox™ 4 and Neural Network Toolbox™ 6 for the

analyses.
Nonlinear autoregressive (NAR) network

An artificial neural network (ANN) is defined as a structure

comprised of a number of simple interconnected operating

elements called neurons (or units, cells, or nodes), as

inspired by the biological nervous system (Beale et al.

; Wei et al. ). A neural network can perform a par-

ticular function mapping between inputs and outputs, by

adjusting the values of the connections (weights) between

neurons. The important decisions necessary to build a

neural network model include neural network type, network

structure, methods of pre- and post-processing of input/

output data, choice of training algorithms as well as training

stop criteria (Wang et al. ; Wei et al. ). The most

common network structure is Multi-layer Feed-forward

Neural Network (MLFN), which is a static network.

Dynamic neural network is the extension of static neural

network by considering time. In this study, NAR network

was used. NAR network (NARN) is one type of dynamic

neural network that is good at time series prediction,

where there is only one series involved. The future values
://iwaponline.com/jh/article-pdf/14/4/974/386843/974.pdf
of a time series Y(t) are predicted only from d past values

of that series. This form of prediction can be written as fol-

lows:

Y(t) ¼ f(Y(t� 1), Y(t� 2), . . . , Y(t� d)) (1)

Determining the numbers of hidden layers and neur-

ons (i.e. network structure) is the most important task in

building the network. The standard NARN is feed-forward

network, including three layers in its structure, i.e. input,

hidden and output layers, with a sigmoid transfer function

in the hidden layer and a linear transfer function in the

output layer (Figure 2(a)). While a trial and error pro-

cedure to determine the number of neurons is still the

most commonly used methods some alternative algor-

ithms have also been proposed (Wei et al. ). The

training of the network was performed using the error

back-propagation (BP) algorithm, the most popular one

in the water resources literature (Cigizoglu ). The

main working process of the BP network is the input

units, hidden units and output units which are completely

connected in a feed-forward way, and each error signal

can be back-propagated from the output to input layer

to adjust the weight. These processes can continue itera-

tively until the network output matches the target within

a specified level (Wei et al. ). Data normalization is

preprocessing of transforming data set into small intervals

usually [�1, 1] or [0, 1] before training a network. This

process is important to insure that all variables receive



Figure 2 | A sketch of (a) a standard nonlinear autoregressive network (NARN), (b) wavelet decomposition analysis.
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equal attention and that the efficiency of the training net-

work is improved (Dawson & Wilby ; Wei et al. ).

Various methods can be used for data normalization

(Wang et al. ).

Overfitting is one of the common problems that usually

occurs during neural network training, in which the error on

the training set is driven to a very small value, but when new

data are presented to the network the error is large (Wei

et al. ). Two methods are usually used for improving

the network generalization: early-stopping and regulariz-

ation. In Matlab, Bayesian regularization (BR) (MacKay

) was used to improve the network generalization,

because it enables the determination of the optimal regular-

ization parameters in an automated fashion (Beale et al.

). In the hydrological literature, Wei et al. () firstly

employed this method to compare the modeling results of

a WNN model without generalization and with BR. This

regularization method is usually expressed by:

msereg ¼ γmseþ (1� γ)msw (2)

msw ¼ 1
n

Xn
i¼1

w2
j (3)

where msereg means the regularization mse, γ is the per-

formance ratio, w, msw are the weights of network mse,

and their average, respectively.
Discrete wavelet analysis

Wavelet analysis (WA) is a promising time-frequency tech-

nique for signal analysis, and has several advantages over
om http://iwaponline.com/jh/article-pdf/14/4/974/386843/974.pdf
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the traditional Fourier analysis (FA) and the adapted

‘short-time Fourier transform’. WA is an improved version

of the ‘short-time Fourier transform’ which can elucidate

time characteristics in data (Daubechies ). WA is a win-

dowing technique with variable-sized regions, which allows

the use of long time intervals for low-frequency information,

and shorter regions for high-frequency information. In this

sense, it is usually characterized as a mathematical micro-

scope. There are two main types of wavelet transformation

methods: continuous wavelet transformation (CWT) and

discrete wavelet transformation (DWT). CWT is usually

defined by the following equation in the literature (e.g. Kişi

; Partal ):

Wf(a, τ) ¼
ðþ∞

�∞
f(t)ψa,τ�(t) dt with ψa,τ�(t)

¼ aj j�1=2ψ� t� τ

a

� �
, a ∈ R, τ ∈ R, a ≠ 0 (4)

where Wf (a,τ) are the wavelet coefficients, t is time inter-

val, f (t) presents the input signal, ψ(t) is a base wavelet

function also called the mother wavelet, * corresponds

to the complex conjugate of ψ(t), a is a scaling factor

stretching or compressing the mother wavelet to the fre-

quency of the signal, and τ is a translating factor shifting

the mother wavelet to the time domain of the signal.

Equation (4) presents that the wavelet transformation is

the decomposition of f (t) under different resolution

levels (scales).

However, continuous wavelet transformation calculates

wavelet coefficients at every possible scale, which is a time

consuming process producing excessive (often redundant)

amounts of data. Thus DWT is usually used in practice. It
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can be expressed by:

Let a ¼ aj0, τ ¼ kaj0τ0, a0 > 0, τ0 ∈ R, ∀j, k

¼ 0, 1, 2, 3, . . . , m ∈ Z (5)

where (ψa,τ(t)) can be written as:

ψ j,k(t) ¼ a�j=2
0 ψ[a�j

0 (t� kaj0τ0)] ¼ a�j=2
0 ψ(a�j

0 t� kτ0) (6)

Therefore, the discrete wavelet transformation can cor-

respondingly be expressed by:

Wf(j, k) ¼ a�j=2
0

ðþ∞

�∞
f(t)ψ�(a�j

0 t� kτ0) dt (7)

The simplest and most efficient practice is that scales

and position are selected based on the powers of two logar-

ithms, called dyadic scales and positions (Mallat ). That

is, let a0¼ 2, τ0¼ 1, then the discrete wavelet transformation

becomes a binary one:

Wf(j, k) ¼ 2�j=2
ðþ∞

�∞
f(t)ψ�(2�jt� k) dt (8)

Wf (a, τ) and Wf ( j, k) can reflect the characters of the ori-

ginal time series in frequency (a or j) and time domains (τ

or k). When a or j is small, the frequency resolution is

very low, but the time domain is very high. When a or j

become large, the frequency resolution is high, but the

time domain is low.

As a discrete time series f (t), in which f (t) occurs at dis-

crete integer time steps t, the dyadic discrete wavelet

transformation can be written as:

Wf(j, k) ¼
X
j,k∈z

f(t)2�j=2ψ(2�jt� k) (9)

The input signal can be reconstructed using the

equation:

f(t) ¼
X
j,k∈z

Wf(j, k)ψ i,k(t) (10)

In this equation, wavelet coefficientsWf ( j,k) are divided

into an approximation (or low frequency) coefficient (cAn)
://iwaponline.com/jh/article-pdf/14/4/974/386843/974.pdf
at level n through a low pass filter l(ψi,k(t)), and detail

(or high frequency) coefficients (cD1, cD2, cD3,…, cDn)

at different levels 1, 2,…, n through a high pass filter

h(ψi,k(t)) (Figure 2(b)). cAn provides background infor-

mation on the original signal, while cD1, cD2, cD3,…,cDn

contains the detail information on the original signal such

as period and break, jump. Then the original signal can be

expressed as:

f(t) ¼ cAnl(ψ i,k(t))þ
X
n¼1

cDnh(ψ i,k(t)) (11)

or simplified to the form:

f(t) ¼ An tð Þ þ
X

Dn tð Þ (12)

where An(t) is the approximation of the original signal at

level n, and Dn(t) is the details of the original signal at

levels n¼ 1, 2, 3,…,m.
RESULTS AND DISCUSSIONS

The two modeling techniques, discrete wavelet analysis

(DWA) and NAR artificial neural network, were integrated

to produce a Wavelet-NAR network (WNAR) hybrid

model. This hybrid modeling approach integrates the advan-

tages of wavelet transformation and artificial neural

network models, and this process included two steps: (1)

The river discharge time series, i.e. a signal, was decom-

posed with DWT into an approximation (An) with low

frequency, and details (D1, D2,…, Dn) with high

frequency; and (2) these subseries were collectively used

as the input for the NAR network, with the original series

as the target. We used these subseries collectively so that

all the information of the original is maintained.

We compared Wavelet-NAR hybrid modeling results

with those from the single NAR network in two steps. Firstly,

we compared them under the same network structure. Sec-

ondly, we compared the results of Wavelet-NAR with those

of the improved NAR network. The correlation coefficient

(R), root mean squared error (RMSE), mean absolute error

(MAE), and mean absolute relative error (MARE) were

used to evaluate the model accuracy in general. In addition,
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extreme error indices (Wei et al. ), maximum absolute

relative error (AREmx) and minimum absolute relative error

(AREmn) were used to measure the model performances to

predict river discharge at certain time points. Absolute rela-

tive errors of maximum discharge (AREmxd) and minimum

discharge (AREmnd) are employed to assess the model accu-

racy to predict the highest and lowest discharges. These

evaluation indices are defined by Equations (13)–(18).

R ¼
Pn

t¼1 (Yt � �Yt)(Ŷt � �̂Yt)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1 (Yt � �Yt)

2 Pn
t¼1 (Ŷt � �̂Yt)

2
q (13)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

XT
t¼1

(Ŷt � Yt)
2

vuut (14)

MAE ¼ 1
n

Xn
t¼1

Ŷt � Yt

��� ��� (15)

MARE ¼ 1
n

Xn
t¼1

Ŷt � Yt

Yt

�����
����� (16)

AREmx¼ max
Ŷt � Yt

Yt

�����
����� and AREmn ¼ min

Ŷt � Yt

Yt

�����
����� (17)

AREmx d ¼ Ŷmax � Ymax

Ymax

�����
����� and AREmn d ¼ Ŷmin � Ymin

Ymin

�����
�����

(18)

where t is time unit, Ŷt is simulated river discharge, Yt is

observed discharge, �Yt and �̂Yt are the mean ones, Ymax and

Ymin are the maximum and minimum observed discharges,

Ŷmax and Ŷmin are the predicted values of the maximum

and minimum observed discharges.
Wavelet decomposition

Two important issues in wavelet analysis are to choose the

wavelet type and the appropriate scale numbers in wavelet

multi-resolution decomposition. There are hundreds of

mother wavelets available. There is no common principle
om http://iwaponline.com/jh/article-pdf/14/4/974/386843/974.pdf
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for the selection of mother wavelet. As Goring ()

stated, which mother wavelet to use is one of the questions

that perplexes beginners, but with experience you find it

makes little difference. Goring () preferred to use Daube-

chies Wavelet 5 (db5) for almost everything. We employed

db5 as the mother wavelet to decompose the series because:

(1) Daubechies wavelet is one of a widely used wavelet

family, which was formulated by the Belgian mathematician

Ingrid Daubechies in 1988 (Mohamed&Atta ; Wei et al.

); (2) our data set is monthly river discharge data sets,

which are comparably smooth; and (3) db5 is one of the com-

monly used wavelets in db wavelet family (Wei et al. ),

which is suitable to decompose comparably smooth data

set. The rule for the appropriate scales of wavelet numbers

is thought that the largest scales should be shorter than the

size of testing data (predictions) (Wu et al. a). Wu et al.

(a) have not given any explanation about this rule, but

this concept is clear. For example, suppose that we have a

new data set containing only 40 numbers used to test a

WNNmodel prediction ability. According to discretewavelet

decomposition method – the powers of two logarithms, or

dyadic, 40 data number can only be decomposed using the

largest scale 5 (21-22-23-24-25). If scale 6 is used, 26 is 64,

which means that the data set has not enough data for this

decomposition. In our case, the testing sizes of three flow

series are 48 months (4 years), and thus the largest scales

are chosen as 5 for the three data series. Therefore, the flow

data sets are decomposed into various details (Ds) and an

approximation (A5) at five resolution levels (21-22-23-24-25)

using db5DWT. The newdecomposed subseries present vari-

ations of the original times series on different periods. As an

example, Figure 3 illustrates the decomposition of the orig-

inal river discharge series in the Xianyang gage. The six

wavelet components (five details and one approximation)

of the wavelet decomposition displayed 2-month mode

(D1), 4-month mode (D2), 8-month mode (D3), 16-month

mode (D4), 32-month mode (D5), and the approximation

mode (A5) of the flow time series.

The basic algorithm for the DWT is based on a simple

scheme: convolution and downsampling, which is not limited

to dyadic length. Border distortions usually arise when a con-

volution is performed on finite-length signals (Beale et al.

). Cui and Song () further stated that orthonormal

dbNwavelet functions are all asymmetric exceptHaarwavelet



Figure 3 | Wavelet decomposition of the original river discharge, taking Xianyang discharge series for example, with level5 using Daubechies Wavelet No. 5 (db5).
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basis (i.e. db1), and a comparatively great distortion and error,

especially in theborderwill occur if suchasymmetricalwavelet

basis is selected. Many methods are used to solve such bound-

ary effects, including zero-padding, smooth padding, periodic

extension, and boundary value replication (symmetrization).

Symmetrization is the default mode of the wavelet transform

in theMatlabWaveletToolbox.Thismethodworkswell ingen-

eral for images though it has the disadvantage of artificially

creating discontinuities of the first derivative at the border

(Beale et al. ). We also synthesized the signal by recon-

structing it from the wavelet coefficients to test if the

decomposition is valid without boundary effects. The maxi-

mum absolute errors of the synthesis are 6.8494× 10�9,

4.7148× 10�9 and 2.9681 × 10�9 for Huaxian series, Lintong

series and Xiangyang series, and such small errors revealed

that the decomposition is very valid.

Network training processes

We used a three layer network structure (p, d, m, n) for train-

ing both WNAR and NAR network models, in which p is the

input vectors, d is the feedback delay, m is the neurons in the

hidden layers and n is the output vectors. While two methods,

early stopping and regularization, could be used to solve the

overfitting problem as both these methods can ensure net-

work generalization when applied properly; for a small data

set, however, Bayesian regularization provides a much

better generalization performance than early stopping (Wei
://iwaponline.com/jh/article-pdf/14/4/974/386843/974.pdf
et al. ). This is because Bayesian regularization does not

need a validation data set separated from the training data

set, and consequently can utilize all available data. BR was

implemented in the training function trainbr, via the Matlab

Neural Network Toolbox User’s Guide (Beale et al. ).

Before network training, the data series of river discharge

(Qt) was normalized into the range [�1, 1] using Matlab func-

tion mapminmax because that BR algorithm generally works

best when the network inputs and targets are scaled approxi-

mately in the range [�1, 1] (Beale et al. ; Wei et al. ).

NAR network is a dynamic network, where the output is fed

back to the input of the feedforward network (closeloop)

(Figure 2), while a static backpropagation network (open

loop) for training is more accurate. This is because the true

output is available during the training, and thus the true

output can be used instead of feeding back the estimated

output (Beale et al. ). The training process started with

1 neuron (m¼ 1) and feedback delay from 1 (d¼ 1), and

the neuron numbers and feedback delay ranges were

increased progressively if the network performance could

not be improved after 50 time training. The process was con-

tinued until the best performance was met in terms of

significance of time delay, R, RMSE, MAE and MARE.

Significance of time delay

The adequacy of the model was evaluated by checking if

time delay in the model is significant in terms of error



982 S. Wei et al. | Improving prediction accuracy of river discharge Journal of Hydroinformatics | 14.4 | 2012

Downloaded fr
by guest
on 21 August 2
autocorrelation function (EACF) and input-error cross-cor-

relation function (IECF). EACF describes how the

simulation errors are related in time, and IECF displays

how the errors are correlated with the input sequences.

For a perfect prediction model, there should be only one

nonzero value of the autocorrelation function, and all of

the input-error cross-correlations should be zero.

As an example, Figure 4 illustrates the plots of EACF and

IECF of the river discharge series of the Xianyang gage. After

feedback delay 3 (d¼ 3) and the 10 neurons (m¼ 10) were

used in the hidden layer, error autocorrelations were
Figure 4 | Plots of the significance of feedback time delay of the models, taking Xianyang disc

input-error cross-correlation function (IECF) of WNAR model, (c) EACF of a single NAR

(f) IECF of NARN2.

om http://iwaponline.com/jh/article-pdf/14/4/974/386843/974.pdf
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approximately in the 95% confidence limits around zero

besides for the one at zero lag (Figure 4(a)) and all of the

input-error cross-correlations fell within the confidence

bounds around zero (Figure 4(b)), thus WNAR model is ade-

quate. For the single NARN1 model under the same

structure (d¼ 3, m¼ 10, n¼ 1), on the contrary, the time

delay is not significant since there are error autocorrelations

at lags ±12 (Figure 4(c)) and significant input-error corre-

lations (Figure 4(d)) at lags ±10, ±11 and ±12. In this

sense, the NARN model should be improved, and improve-

ment is usually done by increasing the number of delay or/
harge series for an instance: (a) error autocorrelation function (EACF) of WNAR model, (b)

N model (NARN1), (d) IECF of NARN1, (e) EACF of the improved NARN model (NARN2), and
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andnumbers of neurons in hidden layer. All the error autocor-

relations and the input-error cross-correlations of the

improved NARNmodel (NARN2) fall within the confidence

bounds around zero (Figure 4(e), 4(f)) when 13 neurons were

used in the hidden layer and feedbackdelay reached the range

from 1 to 12. However, 13 neurons are high, which might

result in an unstable ANN.

Training results evaluation

The results of model performances of training are presented in

Table 2. In terms of largest correlation coefficients, theWNAR

hybrid models displayed much stronger correlation between

observed values and fitting value than those of NARN1 and

NARN2 models. For instance, the stronger correlation of the

WNAR hybrid model and its comparison to two single

NARNmodels for Lintong gage are illustratedusing regression

plots (Figure 5), in which the network outputs are plotted with

respect to targets. For a perfect fit, the data should fall along a

45 degree line, where the network outputs are equal to the tar-

gets. R value of 0.99 in training indicated that the goodness-of-

fit of WNAR was best (Figure 5(a)), though the fit of NARN2

was reasonably good due to R value of 0.87 (Figure 5(e)).

In addition, WNAR model reached the best fitting per-

formances in terms of evaluation indices, for example,
Table 2 | Evaluation results of the WNAR and NAR network training performances

Gage Mode Model structurea

Huaxian WNARf (6,1:3,10,1)

NARN1g (1,1:3,10,1)

NARN2h (1,1:12,13,1)

Lintong WNARf (6,1:3,10,1)

NARN1g (1,1:3,10,1)

NARN2h (1,1:12,13,1)

Xianyang WNARf (6,1:3,10,1)

NARN1g (1,1:3,10,1)

NARN2h (1,1:12,13,1)

aStructure (m, d, n, p): the first number (m), the second one (d ), the third one (n) and the fourt

respectively.
bCorrelation coefficient.
cRoot mean squared error.
dMean absolute error.
eMean absolute relative error.
fWavelet-NAR network hybrid model.
gA single NAR network model.
hThe improved NAR network model.

://iwaponline.com/jh/article-pdf/14/4/974/386843/974.pdf
RMSE (0.045), MAE (0.034) and MARE (0.079) under the

network structure (d¼ 3, m¼ 10, n¼ 1) in the Lintong

gage (Table 2). In contrast, the single NAR1 has poor per-

formance to fit river discharge under the same structure

due to bigger error indices (RMSE¼ 0.257, MAE¼ 0.167

and MARE¼ 2.453). While the improved single NARN

model (NARN2) could significantly increase the simulation

performances in terms of the evaluation indices (RMSE¼
0.180, MAE¼ 0.118 and MARE¼ 2.115), NARN was still

less precise to fit historical data comparing with hybrid

model WNAR.

Model testing evaluation

Open loop network architecture is useful for network train-

ing, but closed loop architecture is more useful for multi-

step-ahead predictions. Function closeloop was used to con-

vert open loop to close loop in Matlab. The general testing

evaluation results for model prediction ability of WNAR,

NARN1 and NARN2 using the observed discharge data

from the last 48 months are summarized in Table 3. The test-

ing results were very similar with those of training. In Lintong

gage, for instance, regression plots comparing the degrees of

correlations between observed values and predicted values

of the WNAR hybrid model and the two single NARN
Rb RMSEc MAEd MAREe

0.990 0.038 0.029 0.054

0.610 0.216 0.134 0.435

0.844 0.147 0.092 0.299

0.990 0.045 0.034 0.079

0.596 0.257 0.167 2.453

0.866 0.180 0.118 2.115

0.989 0.047 0.035 0.079

0.590 0.256 0.160 0.745

0.927 0.120 0.081 0.241

h one (p) signify input vectors, feedback delay, neurons hidden layer, and output vectors,



Figure 5 | Regression plots displaying the network outputs with respect to targets, taking Xianyang discharge series for an instance: (a) training performance of model WNAR, (b) testing

result of model WNAR, (c) training performance of model NARN1, (d) testing results of model NARN1, (e) training performance of model NARN2, and (f) testing results of model

NARN2.
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models are illustrated in (Figure 5). For WNAR, R value of

0.929 in testing indicated that the goodness-of-fit was very

good (Figure 5(b)). In contrast, NARN1 and NARN2 exhib-

ited a less precise performance for river discharge

prediction in terms of lowerR values (0.215 and 0.567) in test-

ing (Figure 5(d), 5(f)) even though the higherR value of 0.866

in training indicated that NARN2 was also able to fit
om http://iwaponline.com/jh/article-pdf/14/4/974/386843/974.pdf
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historical data well (Figure 5(e)). In addition, the WNAR

model significantly improved the general prediction perform-

ance of intermediate and moderate discharge in terms of

lowest evaluation indices (RMSE¼ 0.053, MAE¼ 0.040

and MARE¼ 0.050) (Table 3). For further comparison of

extreme error indices, it indicated that the lowest AREmx

(0.211), AREmn (0.001), and AREmxd (0.122) and AREmnd



Table 3 | Evaluation results of the WNAR and NAR network prediction performance testing

Gage Mode Model structurea Rb RMSEc MAEd MAREe

Huaxian WNARf (6,1:3,10,1) 0.912 0.047 0.034 0.042

NARN1g (1,1:3,10,1) 0.117 0.233 0.220 0.241

NARN2h (1,1:12,13,1) 0.417 0.200 0.156 0.176

Lintong WNARf (6,1:3,10,1) 0.929 0.053 0.040 0.050

NARN1g (1,1:3,10,1) 0.215 0.262 0.245 0.277

NARN2h (1,1:12,13,1) 0.567 0.313 0.245 0.279

Xianyang WNARf (6,1:3,10,1) 0.919 0.050 0.038 0.045

NARN1g (1,1:3,10,1) 0.128 0.331 0.311 0.329

NARN2h (1,1:12,13,1) 0.321 3.067 2.375 2.619

aStructure (m, d, n, p): the first number (m), the second one (d ), the third one (n) and the fourth one (p) signify input vectors, feedback delay, neurons hidden layer, and output vectors,

respectively.
bCorrelation coefficient.
cRoot mean squared error.
dMean absolute error.
eMean absolute relative error.
fWavelet-NAR network hybrid model.
gA single NAR network model.
hThe improved NAR network model.
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(0.061) also proved that the WNAR hybrid model had

much stronger prediction ability than single NARN

models, especially for the highest and lowest discharge

events, even though the NARN2 model also increased the

prediction ability of the highest and lowest discharge

(Table 4).
Table 4 | Extreme error indices for WNAR and NAR network prediction performance testing

Gage Model Model structurea

Huaxian WNARf (6,1:3,10,1)

NARN1g (1,1:3,10,1)

NARN2h (1,1:12,13,1)

Lintong WNARf (6,1:3,10,1)

NARN1f (1,1:3,10,1)

NARN2h (1,1:12,13,1)

Xianyang WNANRf (6,1:3,10,1)

NARN1g (1,1:3,10,1)

NARN2h (1,1:12,13,1)

aStructure (m, d, n, p): the first number (m), the second one (d ), the third one (n) and the fourt

respectively.
bMaximum absolute relative error.
cMinimun absolute relative error.
dAbsolute relative error of maximum river discharge.
eAbsolute relative error of minimum river discharge.
fWNAR¼Wavelet-NAR network hybrid model.
gA single NAR network model.
hThe improved NAR network model.

://iwaponline.com/jh/article-pdf/14/4/974/386843/974.pdf
Prediction of river discharge

The visualized comparison results of the 48 months (i.e.

4-year period) ahead predictions of the WNAR hybrid

model and observations are illustrated in Figure 6. The

detailed comparison of the predicted results of the
AREmx
b AREmn

c AREmxd
d AREmnd

e

0.208 0.001 0.185 0.098

0.376 0.052 0.132 0.086

0.477 0.010 0.154 0.022

0.211 0.001 0.122 0.061

0.574 0.003 0.173 0.207

0.825 0.001 0.133 0.239

0.001 0.126 0.110 0.052

0.414 0.024 0.240 0.234

10.06 0.063 3.712 1.134

h one (p) signify input vectors, feedback delay, neurons hidden layer, and output vectors,



Figure 6 | Plots of the comparison results between the predictions of WNAR model and observations: (a) Xianyang gage, (b) Lintong gage, and (c) Huaxian gage.

986 S. Wei et al. | Improving prediction accuracy of river discharge Journal of Hydroinformatics | 14.4 | 2012

Downloaded fr
by guest
on 21 August 2
WNAR and two NARN models and their evaluations are

displayed in Table 5. In general, these results further

revealed that the 48 month ahead predictions of WNAR

were much more accurate than those of the single NARN

models based on both maximum, minimum and mean

absolute relative errors (AREmx, MARE and AREmn), and

the AREs of highest and lowest discharge (AREmxd and

AREmnd). In addition, comparing the prediction results of

WNAR hybrid model for the three gages, it displayed that

WNAR has the best performance to accurately predict Lin-

tong discharge due to the lowest evaluation indices,

AREmx¼ 1.48, AREmn¼ 0.00, MARE¼ 0.40, AREmxd¼
0.00 and AREmnd¼ 0.20. In contrast, WNAR has a

comparatively weaker performance to accurately predict
om http://iwaponline.com/jh/article-pdf/14/4/974/386843/974.pdf
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Xianyang discharge due to the negative prediction values

in some years.

A comparison between WNAR and WNN

Multi-layer Feed-forward Neural Network (MLFN) is used

in the traditional WNN model. MLFN is a static network,

but NARN is one type of dynamic neural network, the exten-

sion of static neural network by considering time. Therefore,

the WNARmodel should have better performance in theory.

In the previous studies of WNN hydrid modeling

approaches, Wei et al. () proposed a WNN method com-

bining db5 wavelet and a feed-forward multi-layer

perceptron ANN with back-propagation algorithm and



Table 5 | Comparison results of WNAR model and single NAR network (NARN) models (×m3 s�1)

Huaxian gage Lintong gage Xianyang gage

WNARb NARN1c NARN2d WNARb NARN1c NARN2d WNARb NARN1c NARN2d

Time/ month Oa Se AREf Se AREf Se AREf Oa Se AREf Se AREf Se AREf Oa Se AREf Se AREf Se AREf

1 23.6 28.6 0.2 136.0 4.76 131.0 4.55 16.2 9.9 0.39 96.5 4.95 44.4 1.74 2.7 (9.3) 4.38 74.9 26.3 (15) 6.48

2 9.3 11.1 0.20 154.0 15.65 240.0 24.95 17.3 25.8 0.49 147.3 7.52 80.6 3.66 2.3 (12.4) 6.32 82.4 34.52 (75) 33.29

3 35.5 0.2 1.00 223.2 5.29 51.1 0.44 44.3 27.7 0.37 203.3 3.59 157.0 2.54 3.5 (4.6) 2.34 122.9 34.51 (87) 26.03

4 82.5 41.9 0.49 263.0 2.19 27.7 0.66 77.9 46.6 0.40 239.6 2.08 203.5 1.61 20.6 17.3 0.16 140.8 5.83 (136) 7.60

5 252.0 187.2 0.26 298.3 0.18 37.4 0.85 266.0 200.2 0.25 267.2 0.00 168.8 0.37 116.0 96.8 0.17 165.3 0.43 (211) 2.82

6 72.6 144.5 0.99 315.4 3.34 91.4 0.26 75.7 152.7 1.02 281.4 2.72 191.3 1.53 28.3 81.1 1.87 178.4 5.30 (227) 9.02

7 350.0 442.4 0.26 323.6 0.08 126.0 0.64 349.0 460.8 0.32 288.9 0.17 214.3 0.39 210.0 251.2 0.20 190.4 0.09 (377) 2.79

8 414.0 291.7 0.30 324.7 0.22 87.0 0.79 385.0 347.6 0.10 290.7 0.25 195.5 0.49 163.0 179.3 0.10 196.6 0.21 (565) 4.47

9 139.0 111.8 0.20 323.1 1.32 12.3 0.91 125.0 128.6 0.03 290.2 1.32 159.1 0.27 60.4 47.0 0.22 200.9 2.33 (819) 14.57

10 97.9 91.9 0.06 320.7 2.28 45.0 0.54 106.0 104.3 0.02 288.5 1.72 105.1 0.01 37.1 11.8 0.68 202.8 4.47 (241) 7.49

11 39.9 93.8 1.35 318.6 6.98 87.9 1.20 59.3 108.0 0.82 286.9 3.84 68.9 0.16 16.1 58.8 2.65 203.8 11.66 1080 66.08

12 19.0 26.3 0.39 317.1 15.69 55.0 1.89 28.6 53.1 0.86 285.5 8.98 36.0 0.26 8.7 16.8 0.94 203.9 22.57 1702 195.78

13 26.9 32.0 0.19 316.3 10.76 40.2 0.49 22.7 15.8 0.31 284.6 11.54 31.6 0.39 6.8 (0.5) 1.07 203.9 29.16 1738 256.09

14 28.8 27.6 0.04 315.9 9.97 9.9 0.66 29.9 26.5 0.11 284.1 8.50 40.1 0.34 6.9 (6.7) 1.97 203.7 28.44 (1622) 235.43

15 14.0 9.7 0.31 315.9 21.56 18.4 0.31 14.6 17.6 0.20 283.9 18.45 62.9 3.30 7.1 (8.2) 2.15 203.6 27.55 (1506) 212.27

16 45.5 53.5 0.18 316.0 5.94 23.6 0.48 46.4 59.4 0.28 283.9 5.12 111.4 1.40 19.9 24.8 0.24 203.4 9.22 (1103) 56.41

17 198.0 164.8 0.17 316.1 0.60 9.3 0.95 195.0 144.4 0.26 283.9 0.46 153.7 0.21 88.9 90.3 0.02 203.3 1.29 3865 42.48

18 160.0 209.4 0.31 316.2 0.98 35.5 0.78 162.0 161.7 0.00 284.0 0.75 229.4 0.42 84.9 95.1 0.12 203.3 1.39 2485 28.26

19 504.0 495.6 0.02 316.2 0.37 82.5 0.84 455.0 452.9 0.00 284.0 0.38 308.6 0.32 227.0 200.1 0.12 203.2 0.10 9 0.96

20 63.9 114.5 0.79 316.3 3.95 252.0 2.94 61.6 152.9 1.48 284.1 3.61 346.8 4.63 29.3 77.8 1.66 203.2 5.94 316 9.78

21 90.2 66.3 0.26 316.3 2.51 72.6 0.20 79.2 118.5 0.50 284.1 2.59 314.6 2.97 36.0 41.9 0.16 203.2 4.65 (79) 3.19

22 212.0 66.1 0.69 316.3 0.49 350.0 0.65 186.0 109.5 0.41 284.1 0.53 245.9 0.32 113.0 71.8 0.36 203.2 0.80 1201 9.62

23 77.3 106.6 0.38 316.3 3.09 414.0 4.36 80.6 124.6 0.55 284.1 2.53 162.1 1.01 33.9 46.2 0.36 203.2 5.00 (758) 23.35

24 30.0 63.2 1.11 316.3 9.54 139.0 3.63 41.4 84.1 1.03 284.1 5.86 103.9 1.51 21.8 28.4 0.30 203.2 8.32 (1811) 84.09

25 30.9 35.3 0.14 316.3 9.24 97.9 2.17 25.8 35.7 0.38 284.1 10.01 72.7 1.82 15.9 27.4 0.73 203.2 11.78 1304 81.04

26 37.2 49.8 0.34 316.3 7.50 39.9 0.07 34.3 42.4 0.24 284.1 7.28 89.5 1.61 15.7 23.9 0.52 203.2 11.95 (539) 35.36

27 30.2 43.8 0.45 316.3 9.47 19.0 0.37 33.1 38.4 0.16 284.1 7.58 122.0 2.69 13.6 8.2 0.40 203.2 13.94 (2357) 174.31

28 43.5 50.7 0.16 316.3 6.27 26.9 0.38 44.9 51.8 0.15 284.1 5.33 141.7 2.16 20.6 11.8 0.43 203.2 8.87 645 30.29

29 10.7 29.5 1.75 316.3 28.56 28.8 1.69 18.2 36.5 1.00 284.1 14.61 120.6 5.63 9.8 11.9 0.21 203.2 19.72 (334) 35.06

30 132.0 83.9 0.36 316.3 1.40 14.0 0.89 126.0 75.3 0.40 284.1 1.25 136.1 0.08 44.1 21.5 0.51 203.2 3.61 1182 25.79

31 138.0 128.4 0.07 316.3 1.29 45.5 0.67 130.0 109.5 0.16 284.1 1.19 217.5 0.67 36.1 28.8 0.20 203.2 4.63 2110 57.44

32 177.0 181.7 0.03 316.3 0.79 198.0 0.12 172.0 163.9 0.05 284.1 0.65 290.2 0.69 64.5 69.6 0.08 203.2 2.15 (207) 4.21
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Table 5 | continued

Huaxian gage Lintong gage Xianyang gage

WNARb NARN1c NARN2d WNARb NARN1c NARN2d WNARb NARN1c NARN2d

Time/ month Oa Se AREf Se AREf Se AREf Oa Se AREf Se AREf Se AREf Oa Se AREf Se AREf Se AREf

33 123.0 169.0 0.37 316.3 1.57 160.0 0.30 107.0 134.5 0.26 284.1 1.66 285.4 1.67 43.3 109.0 1.52 203.2 3.69 1966 44.40

34 403.0 362.1 0.10 316.3 0.22 504.0 0.25 359.0 285.1 0.21 284.1 0.21 215.1 0.40 219.0 194.6 0.11 203.2 0.07 1895 7.65

35 156.0 65.1 0.58 316.3 1.03 63.9 0.59 141.0 108.8 0.23 284.1 1.01 146.6 0.04 54.2 21.8 0.60 203.2 2.75 (1233) 23.76

36 63.8 156.2 1.45 316.3 3.96 90.2 0.41 73.9 144.2 0.95 284.1 2.84 105.7 0.43 20.3 38.1 0.88 203.2 9.01 (2802) 139.01

37 53.8 72.0 0.34 316.3 4.88 212.0 2.94 62.3 92.3 0.48 284.1 3.56 77.3 0.24 21.2 76.1 2.59 203.2 8.59 928 42.75

38 58.8 23.5 0.60 316.3 4.38 77.3 0.31 65.7 63.5 0.03 284.1 3.32 57.9 0.12 24.5 33.6 0.37 203.2 7.30 345 13.10

39 30.5 37.3 0.22 316.3 9.37 30.0 0.02 49.3 56.3 0.14 284.1 4.76 57.7 0.17 11.5 11.9 0.03 203.2 16.67 (3448) 300.81

40 62.7 39.2 0.37 316.3 4.04 30.9 0.51 67.4 57.3 0.15 284.1 3.22 72.5 0.08 10.2 (2.0) 1.20 203.2 18.93 1532 149.16

41 47.5 49.0 0.03 316.3 5.66 37.2 0.22 50.8 44.7 0.12 284.1 4.59 77.8 0.53 7.0 5.4 0.23 203.2 28.03 (1286) 184.66

42 8.6 47.3 4.50 316.3 35.82 30.2 2.52 25.3 47.4 0.87 284.1 10.23 93.1 2.68 4.4 10.9 1.46 203.2 44.98 (733) 166.76

43 44.1 11.5 0.74 316.3 6.17 43.5 0.01 68.7 24.7 0.64 284.1 3.14 152.2 1.22 20.5 (5.9) 1.29 203.2 8.91 (1644) 81.22

44 92.1 72.6 0.21 316.3 2.43 10.7 0.88 108.0 61.2 0.43 284.1 1.63 264.5 1.45 13.1 17.5 0.34 203.2 14.51 3319 252.33

45 237.0 311.5 0.31 316.3 0.33 132.0 0.44 241.0 256.4 0.06 284.1 0.18 336.8 0.40 138.0 171.4 0.24 203.2 0.47 1022 6.40

46 226.0 246.2 0.09 316.3 0.40 138.0 0.39 225.0 211.8 0.06 284.1 0.26 310.9 0.38 84.0 128.9 0.54 203.2 1.42 245 1.92

47 98.2 52.1 0.47 316.3 2.22 177.0 0.80 107.0 100.7 0.06 284.1 1.66 257.3 1.40 30.1 10.2 0.66 203.2 5.75 (415) 14.78

48 39.0 58.6 0.50 316.3 7.11 123.0 2.15 54.1 94.3 0.74 284.1 4.25 208.7 2.86 12.1 21.0 0.73 203.2 15.80 (2135) 177.46

Maxg 504.0 495.6 4.50 324.7 35.82 504.0 24.95 455.0 460.8 1.48 290.7 18.45 346.8 5.63 227.0 251.2 6.32 203.9 44.98 3865 300.81

Min11 8.6 0.2 0.02 154.0 0.08 9.3 0.01 14.6 15.8 0.00 147.3 0.00 31.6 0.01 2.3 (12.4) 0.02 82.4 0.07 (3448) 0.96

Mean 123.4 121.6 0.61 313.5 6.32 104.3 1.46 122.0 125.4 0.40 281.7 4.21 167.4 1.27 53.2 57.7 0.85 198.5 11.02 129.3 77.64

Mxdi 504.0 495.6 0.02 316.2 0.37 82.5 0.84 455.0 452.9 0.00 284.0 0.38 308.6 0.32 227.0 200.1 0.12 203.2 0.10 9.1 0.96

Mndj 8.6 47.3 4.50 316.3 35.78 30.2 2.51 14.6 17.6 0.20 283.9 18.45 62.9 3.30 2.3 (12.4) 6.32 82.4 34.52 (75) 33.29

()signifies that the predicted values are negative.
aObserved river discharge.
bWavelet-NAR network hybrid model.
cSingle NAR network model.
dImproved NAR network model.
ePredicted river discharge.
fAbsolute relative error (ARE).
gMaximum value.
hMinimum value.
iMaximum river discharge and related ARE indices.
jMinimum river discharge and related ARE indices.
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Bayesian regularization optimization algorithm to model a

river discharge time series of Weijiabao gage, located on

the upper stream of Xianyang gage in Weihe River, China.

This previous study revealed that the proposed WNN

hybrid approach has a very good performance in training

and prediction. In order to compare the results of WNAR

with traditional WNN, we employed the WNN approach

proposed in Wei et al. () to make the modeling and

analysis of the three gages in this study. A comparison of

the training and prediction performance results of WNAR

and WNN are displayed in Table 6. The results suggest

that WNAR has much better prediction performance than

that of WNN in terms of larger R, smaller RMSE, MAE

and MARE though the training results of WNN are also

very good.
CONCLUSIONS

A variety of linear and nonlinear methods have been

employed to model and predict river discharge time series,

such as ARIMA, NAR, ANN, NAR, conceptual model

(CM), physical model (PM) and hybrid models. More

recently, many studies have proved that wavelet-artificial

neural network hybrid modeling approach (WNN) is able

to well improve the prediction performance of the models.

This study developed a wavelet–nonlinear autoregressive

artificial neural network (WNAR) hybrid model approach

to improve the model prediction performance of river
Table 6 | Comparison results of WNAR and WNN performance evaluation

Training
Gage Mode Ra RMSEb MAEc

Huaxian WNARe 0.990 0.038 0.029

WNNf 0.969 0.034 0.024

Lintong WNARe 0.990 0.045 0.034

WNNf 0.984 0.029 0.021

Xianyang WNARe 0.989 0.047 0.035

WNNf 0.987 0.026 0.019

aCorrelation coefficient.
bRoot mean squared error.
cMean absolute error.
dMean absolute relative error.
eWavelet-Nonlinear Autoregressive Network (WNAR) hybrid model.
fWavelet-BP Artificial Neural Network (WNN) hybrid model.
gThe improved NAR network model.

://iwaponline.com/jh/article-pdf/14/4/974/386843/974.pdf
discharge time series. The WNAR models were successfully

applied to three hydrological gages in the Weihe River,

China to predict 48-month ahead river discharge time series.

The results from WNAR hybrid model were compared

with those from the single NAR network (NARN) models

and a traditional WNN hybrid model. Comparison of the

results between WNAR and NARN displayed that while

NARN model could fit the historical data well provided suf-

ficient neurons in the hidden layers and significant feedback

delays in the training process. In general, single NARN

models failed to accurately predict the highest and lowest

river discharges. In contrast, WNAR hybrid model displayed

much better performance both in the training and testing

periods than the single NARN models. Comparison of the

WNAR hybrid models with the single NARN models, via

model evaluation indices, suggested that the WNAR

models also significantly improved the general estimation

of intermediate and moderate discharges, while comparison

of extreme error indices indicated that the WNAR model

was also able to accurately forecast the highest and lowest

river discharges. A comparison of the training and predic-

tion performance results of WNAR and WNN revealed

that WNAR has much better prediction performance than

WNN though the WNN has also very good training results.

However, since three time series data set in only one river

site were used for the simulation and prediction analysis of

WNAR artificial neural network, studies on more rivers

are required to conclusively prove the advantages of the pro-

posed Wavelet-NAR network modeling approach.
Forecasting
MAREd Ra RMSEb MAEc MAREd

0.054 0.912 0.047 0.034 0.042

1.005 0.696 0.066 0.045 2.181

0.079 0.929 0.053 0.040 0.050

0.692 0.640 0.088 0.052 1.939

0.079 0.919 0.050 0.038 0.045

0.670 0.662 0.045 0.032 3.388
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