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Improving prediction of secondary 

structure, local backbone angles, 

and solvent accessible surface 

area of proteins by iterative deep 

learning
Rhys Heffernan1, Kuldip Paliwal1, James Lyons1, Abdollah Dehzangi1,2, Alok Sharma2,3, 

Jihua Wang4, Abdul Sattar2,5, Yuedong Yang6 & Yaoqi Zhou4,6

Direct prediction of protein structure from sequence is a challenging problem. An effective approach 
is to break it up into independent sub-problems. These sub-problems such as prediction of protein 

secondary structure can then be solved independently. In a previous study, we found that an iterative 

use of predicted secondary structure and backbone torsion angles can further improve secondary 

structure and torsion angle prediction. In this study, we expand the iterative features to include 

solvent accessible surface area and backbone angles and dihedrals based on Cα atoms. By using a 

deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure 

prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible 
surface area, 19° and 30° for mean absolute errors of backbone ϕ and ψ angles, respectively, and 8° 

and 32° for mean absolute errors of Cα-based θ and τ angles, respectively, for an independent test 

dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but 

much higher than those of model structures from current state-of-the-art techniques. This suggests 

the potentially beneficial use of these predicted properties for model assessment and ranking.

�ree-dimensional structures for most proteins are determined by their one-dimensional sequences of 
amino acid residues. How to predict three-dimensional structures from one-dimensional sequences has 
been an unsolved problem for the last half century1. �is problem is challenging because it demands an 
e�cient technique to search in astronomically large conformational space and a highly accurate energy 
function to rank and guide the conformational search, both of which are not yet available2. As a result, 
it is necessary to divide the structure prediction problem into many smaller problems with the hope that 
solving smaller problems will ultimately lead to the solution of the big problem.

One of those smaller or sub-problems is the prediction of one-dimensional structural properties of 
proteins from their sequences. �e most commonly predicted one-dimensional structural property of a 
protein is secondary structure. Secondary structure describes each amino residue in a number of discrete 
states3 for which three state description (helix, sheet and coil) is the most common. In recent years, there 
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has been a slow but steady improvement of secondary structure prediction to above 81% when homolo-
gous sequences are not utilised for training (ab initio prediction)4,5. �e steady improvement is due to a 
combination of improved machine-learning algorithms, improved features and larger training datasets. 
Other methods have also been developed to go beyond 81% by including homologous sequences in train-
ing6–9. Secondary structure directly predicted from sequence was shown more accurate than secondary 
structure of the models predicted by protein structure prediction techniques for template-free modelling 
targets in critical assessment of structure prediction (CASP 9)4.

Secondary structure, however, is a coarse-grained description of local backbone structure because 
ideal helical and strand conformations do not exist in protein structures and the boundary between coil 
states and helical/strand states is not well de�ned10. �is leads to development of backbone torsion angle 
prediction (φ  and ψ ) in discontinuous11,12 and in real, continuous values13–15. More recently, a method 
for predicting angles based on Cα  atoms (the angle between Cα i−1− Cα i− Cα i+1 (θ ) and a dihedral 
angle rotated about the Cα i− Cα i+1 bond (τ)) was also developed16. �ese local structure descriptors are 
complementary with each other because torsion angles (φ  and ψ ), Cα − atom based angles (θ  and τ), and 
secondary structure involve amino acid residues at di�erent sequence separation: neighbouring residues 
for φ  and ψ , 3–4 residues for θ  and τ, and 4 for 310 helix, 5 for α -helix, and an unde�ned number of 
residues for sheet residues.

Another important one-dimensional structure property is solvent Accessible Surface Area (ASA). 
ASA measures the level of exposure of an amino acid residue to solvent (water) in a protein. �is is an 
important structural property as active sites of proteins are o�en located on their surfaces. Multistate 
prediction of earlier methods17–19 have been replaced by continuous real value prediction14,20–23.

One interesting observation is that predicted secondary structure is o�en utilized to predict other 
one-dimensional structural properties but rarely the other way around. Several studies, however, indi-
cated that other predicted structural properties can be utilized to improve secondary structure predic-
tion such as predicted torsion angles4,13 and predicted solvent accessible surface area24. In particular, we 
have shown that the accuracy of secondary structure and torsion angle prediction can be substantially 
improved by iteratively adding improved prediction of torsion angles and secondary structure4.

Arti�cial neural networks have been widely employed in predicting structural properties of proteins 
due to the availability of large datasets25. Deep neural networks26, referring to arti�cial neural networks 
with more than two hidden layers, have been explored in prediction of local and nonlocal structural 
properties of proteins27–30. For example, Qi et al.29 developed a uni�ed multi-task, local-structure pre-
dictor of proteins using deep neural networks as a classi�er. �ey trained a single neural network using 
sequential and evolutionary features to predict a number of protein properties including protein sec-
ondary structure and solvent accessibility. Spencer et al.30 developed an iterative deep neural network 
for protein secondary structure prediction. �e method utilized one deep neural network to predict sec-
ondary structure by using physicochemical and evolutionary information in their �rst step and another 
deep neural network to predict their �nal secondary structure prediction based on predicted secondary 
structures in addition to the same input used in the �rst step. �ese methods achieved secondary struc-
ture prediction with accuracy that is slightly higher than 80%.

�e goal of this paper is to develop an iterative method that predicts four di�erent sets of structural 
properties: secondary structure, torsion angles, Cα − atom based angles and dihedral angles, and solvent 
accessible surface area. �at is, both local and nonlocal structural information were utilized in iterations. 
At each iteration, a deep-learning neural network is employed to predict a structural property based on 
structural properties predicted in the previous iteration. We showed that all structural properties can be 
improved during the iteration process. �e resulting method provides state-of-the-art, all-in-one accu-
rate prediction of local structure and solvent accessible surface area. �e method (named SPIDER2) is 
available as an on-line server at http://sparks-lab.org.

Methods
�is section describes the dataset employed and parametric details of the algorithm used as follows:

Datasets. We employed the same training and independent test datasets developed for the prediction 
of Cα  based angles (θ ) and dihedral angles (τ)16. Brie�y, a non-redundant (25% cuto�), high resolution 
(< 2.0 Å) structures of 5789 proteins were obtained from the sequence culling server PISCES31 and fol-
lowed by removing obsolete structures. We then randomly selected 4590 proteins as the training set 
(TR4590) and the remaining 1199 proteins as an independent test (TS1199). In addition, we downloaded 
the targets from critical assessment of structure prediction technique (CASP 11, 2014, http://www.pre-
dictioncenter.org/casp11/index.cgi). A�er removing the proteins with inconsistent sequences and the 
proteins with > 30% sequence identities between each other and to the training and test sets (TR4590 
and TS1199), we obtained a set of 72 proteins (CASP11) out of original 99 proteins. �is set contains 
17382 amino acid residues. A list of 72 proteins is provided in the Supplementary material.

Deep neural-network learning. Here, we employed the same deep learning neural network as we 
have employed for prediction of Cα -based θ  and τ angles prediction by SPIDER16. Brie�y, the deep 
arti�cial Neural Network (ANN) consists of three hidden layers, each with 150 nodes. Input data was 
normalized to the range of 0 to 1. Weights for each layer were initialized in a greedy layer-wise manner, 

http://sparks-lab.org
http://www.predictioncenter.org/casp11/index.cgi
http://www.predictioncenter.org/casp11/index.cgi
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using stacked sparse auto-encoders which map the layer’s inputs back to themselves32 and re�ned using 
standard backward propagation. �e learning rate for auto encoder stage was 0.05 and the number of 
epochs in auto encoder stage was 10. �e learning rates for backward propagation were 1, 0.5, 0.2, and 
0.05, respectively, with 30 epochs at each learning rate. In this study, we used the deep neural network 
MATLAB toolbox, implemented by Palm33. Linear activation function was used for the hidden layers of 
auto encoder training whereas sigmoid activation function was employed at the stage of back propaga-
tion. All these hyper parameters were obtained by a few initial studies of a single fold (90% for training 
and 10% for test), randomly selected from the training TR4590 dataset.

Parallel multi-step iterative algorithm. Figure 1 shows the parallel, multi-step iterative algorithm 
for predicting secondary structure (SS), angles (backbone torsion angles, Cα -based angles) and ASA at 
the same time. In the �rst iteration, only seven representative physical chemical properties of amino acid 
residues34 and Position Speci�c Scoring Matrix (PSSM) from PSIBLAST35 were employed to predict SS, 
angles, and ASA, separately. �e seven physicochemical properties (PP) of the amino acids employed 
are steric parameter (graph shape index), hydrophobicity, volume, polarizability, isoelectric point, helix 
probability, and sheet probability properties of the amino acids. PSSM was obtained by three iterations of 
searching against 90% non-redundant (NR90, �p://toolkit.genzentrum.lmu.de/pub/HH-suite/databases/
nr90.tar.gz) protein data bank with a cut o� value (so called E-value) set to 0.001. PSSM represents the 
substitution probability of a given amino acid based on its position in the protein sequence with all 20 
amino acids.

In the second iteration, PSSM/PP plus predicted SS, angles, and ASA from the �rst iteration were 
employed to predict SS, angles, and ASA, separately. Additional iterations can be followed by using SS, 
angles, and ASA from the previous iteration in addition to PSSM and PP. We found three iterations are 
su�cient for achieving the best predictive power. �us, each iteration has three separate predictors. Each 
predictor utilizes one stacked auto-encoder deep neural network as described above.

Input. We employed a window size of 17 amino acids (8 amino acids at each side of the target amino 
acid). For the residues on terminal ends of a protein sequence, we simply repeat the residue type of the 
�rst (or last) residue to �ll the window. �is led to a total of 459 input features (17 ×  (20 PSSM +  7PP)) 
for a given amino acid residue in the �rst iteration. �is window size was optimized by 10-fold cross 
validation. �e dependence on window size is small. For example, the accuracy of secondary structure 
prediction for the �rst iteration is 80.4–80.5% for the window size of 13, 15, 17, 19, and 21.

Output. For output nodes, the SS predictor has three output nodes representing helix, strand, and 
coil, respectively; the ASA predictor has only one output node, and the angle predictor has eight output 
nodes representing sin(θ ), cos(θ ), sin(τ), cos(τ), sin(φ ), cos(φ ), sin(ψ ), and cos(ψ ), respectively. Sine 
and cosine were employed to remove the e�ect of angle periodicity. Predicted sine and cosine values are 
converted back to angles by using the equation α =  tan−1[sin(α)/cos(α)]. In the second iteration, the 
number of inputs for each predictor is 663 (= 17 ×  (20 PSSM +  7 PP +  3 SS +  1 ASA +  8 Angles)). Only 

Figure 1. �e general architecture of the parallel multi-step iterative algorithm. Black arrows indicate 

that position-speci�c scoring matrix (PSSM) and physical chemical properties (PP) are presented as 

input in every neural network predictor. �ere is no connection between each network.

ftp://toolkit.genzentrum.lmu.de/pub/HH-suite/databases/nr90.tar.gz
ftp://toolkit.genzentrum.lmu.de/pub/HH-suite/databases/nr90.tar.gz
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sin(θ ), cos(θ ), sin(τ), cos(τ), sin(φ ), cos(φ ), sin(ψ ), and cos(ψ ) are utilised in the input for angles. �e 
same number of inputs was employed for additional iterations.

Ten-fold cross validation and independent test. �e method was �rst examined using ten-fold 
cross validation where TR4590 was randomly divided into 10 folds. Nine folds were used in turn for 
training and the remaining one for test until all 10 folds were tested. In addition, we tested our method 
for the independent test sets TS1199 and CASP11 by using TR4590 as the training set.

Performance measure. For secondary structure, we use the fraction of correctly predicted secondary 
structure elements for accuracy measurement (Q3)3. �e accuracy of predicted angles was measured by 
a Mean Absolute Error (MAE), the average absolute di�erence between predicted and experimentally 
determined angles. �e periodicity of an angle was taken care of by utilizing the smaller value of the 
absolute di�erence d A Ai i i

Pred Expt
(= − ) and 360 −  di for average. For ASA, we report both MAE and 

the Pearson correlation coe�cient between predicted and actual ASA.

Results
�e overall accuracy for all six structural properties (secondary structure, ASA, φ , ψ , θ , and τ) as a 
function of iterations is shown in Fig. 2. �e improvement is clear at the second iteration and converged 
at the third iteration, regardless if it is 10 fold cross validation or independent test. �us, we stopped 
the iteration at the third iteration. �ree iterations led to about 1% improvement in Q3. In Table 1, we 
monitored the accuracy of each amino acid residue for secondary structure prediction. We found that 
for 17 of 20 amino acids, the accuracy improves in all three iterations. �is con�rms the robustness of 
improvement by iterations.

In addition to improvement in secondary structure prediction, there is a 2% improvement in ASA 
correlation coe�cient, 1°, 2°, 0.5° and 2° improvement in φ ,ψ , θ , and τ, respectively. Improvement in 

Figure 2. �e accuracy of secondary structure (Q3), ASA (correlation coe�cient), φ (Mean absolute 

error, MAE), ψ (MAE), θ (MAE) and τ (MAE) at four di�erent iterations. Open and �lled bars denote 
results from 10 fold cross validation and independent test, respectively.
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angles is the most signi�cant, representing 5%–6%, relative improvement. At the third iteration, Q3 for 
the secondary structure is 81.6% for 10 fold cross validation and 81.8% for the independent test. �e 
correlation coe�cient between predicted and measured ASA is 0.751 for 10 fold cross validation and 
0.756 for independent test. �is is the correlation coe�cient for un-normalized ASA. For normalized 
ASA (rASA), the correlation coe�cient is slightly lower (0.731 for the independent test set). �e mean 
absolute error for rASA is 0.145. �e mean absolute errors of the angles for 10 fold cross validation 
(or independent test) are 19.2° (19.2°) for φ , 30.1° (29.9°) for ψ , 8.15° (8.03°) for θ , 32.4° (32.2°) for τ . 
Similar accuracy between 10 fold cross validation and independent test indicates the robustness of the 
method being developed.

It is of interest to know if this improvement in angle MAE also translates into improvement in large 
angle errors. Reducing large angle errors is essential for sampling in the correct conformational space 
when used as restraints. Because both φ   and  ψ  have two peaks in their distributions, they can be 
divided into two states associated with the two peaks. Here we de�ne [0° to 150°] and the rest angle 
range [(150° to 180°) and (− 180° to 0°)] for two states in φ , and [− 100° to 60°] and the rest angle range 
[(− 180° to − 100°) and (60° to 180°)] for two states in ψ . We found that for the independent test set, the 
two-state accuracy for φ  only increases marginally from 96.4%, 96.5% to 96.6% from the �rst to the third 
iteration. �e two-state accuracy for ψ  increases by a signi�cant 1% from 85.3% , 86.4% to 86.8%. �is 
signi�cant increase con�rms the usefulness of iterative learning. By comparison, SPINE-X36 was trained 
for two-state prediction and achieved two state accuracy of 96.4% for φ  and 85.6% for ψ .

Once φ  and ψ   or θ  and τ  are known protein backbone structure can be constructed. Fragment 
structures of a length L are derived from predicted angles with a sliding window (1 to L, 2 to L +  1, 3 
to L +  2, and etc.). For L =  15, a total of 229,681 fragments are constructed. For φ /ψ  derived fragments, 
each fragment structure was built by standard bond lengths and angles and ω  =  180°. For θ /τ  derived 
fragments, each fragment structure was built by the standard Cα -Cα  distance of 3.8 Å. �e accuracy of 
a fragment structure can be measured by root-mean-squared distance (RMSD) from the corresponding 
native fragment. �e accuracy of fragment structures either from φ  and ψ  (Fig.  3A) or from θ  and τ  
(Fig.  3C) improves during iterations (from 3.37 to 3.09 Å for φ /ψ  derived fragments and from 3.22 
to 2.95 Å for θ /τ  derived fragments. Perhaps, not surprisingly, the consistency between φ /ψ   and θ /τ   

Secondary Structure 
Iteration

Amino 
acids Abundance Frequency 1 2 3 4

A 21477 8.27 82.3 83.4 83.8 83.6

C 3557 1.37 74.4 75.3 76.3 76.6

D 15271 5.88 80.8 81.9 82.4 82.1

E 17413 6.71 81.5 83.0 83.5 83.3

F 10457 4.03 78.3 79.3 79.9 80.2

G 18723 7.21 80.6 81.8 82.1 82.0

H 5942 2.29 77.3 78.1 78.1 78.8

I 14577 5.61 82.2 83.4 84.0 83.8

K 15216 5.86 79.7 81.2 81.7 81.4

L 23835 9.18 81.7 83.3 83.6 83.4

M 5615 2.16 80.2 81.5 81.8 82.1

N 11306 4.35 79.8 80.8 80.8 80.9

P 11860 4.57 81.1 82.6 83.2 82.8

Q 9927 3.82 79.7 81.7 81.0 81.3

R 13307 5.12 79.6 81.0 81.2 81.5

S 15363 5.92 77.3 78.6 79.0 78.7

T 14445 5.56 77.8 78.9 79.0 79.1

V 18270 7.04 82.0 83.4 83.6 83.5

W 3828 1.47 76.7 78.3 79.4 78.8

Y 9273 3.57 76.8 78.4 79.0 79.0

Overall 259662 100.0 80.2 81.4 81.8 81.7

Table 1.  �e accuracy of predicted secondary structure for each amino acid residues for TS1199 for 4 

iterations.
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derived fragments has the largest improvement during iterations (from to 2.54 Å to 1.92 Å). Results for 
other sizes of fragments follow similar trend. �is further con�rms the power of iterative learning.

Our method is further applied to the most recent CASP targets (CASP11, 2014). It achieves 80.8% in 
secondary structure, 0.74 for correlation coe�cient between measured and predicted ASA, 19.7° MAE 
for φ , 30.3° for ψ , 8.2° for θ , 32.6° for τ . �e prediction accuracy for most structural properties is reduced 
somewhat from the independent test set to CASP 11 set. �is type of reduction for CASP sets was 
observed previously4. �is is in part due to a smaller number of targets (72 proteins) and in part because 
CASP targets were a carefully selected set for challenging structure prediction techniques.

Tables 2 and 3 compare our method with several techniques for secondary structure (PSIPRED3.337, 
SCORPION38, SPINE-X4), ASA (SPINE-X4), backbone torsion angles (SPINE-X4) and backbone Cα  
angles and dihedral angles (SPIDER16) for TS1199 and CASP11 test datasets. We noted that TS1199 is 
not necessarily independent test set for other methods. In fact we found that the majority of TS1199 (all 
but 66 proteins) are contained in the training set for SCORPION. �e accuracy for secondary structure 
predicted by our method is more accurate than that predicted by PSIPRED and SPINE-X and is compa-
rable to SCORPION for the full TS1199 dataset. However, for the 66 proteins not trained by SCORPION, 
it achieves an accuracy of 82.4%, compared to 83.3% by our method. For ASA prediction, our technique 
continues to make an improvement over SPINE-X despite its high accuracy. �e best improvement over 
previous methods is angle prediction. For example, there is almost 4° degree improvement (> 10% in 
relative improvement) over SPINE-X in ψ  prediction. It is important to know the statistical signi�cance 
of the di�erence among di�erent methods. �e p-values for the pair t-test in secondary structure of this 
work to SCORPION, PSIPRED, and SPINE X are 0.036, 0.00006, and 0.00009, respectively. �at is, the 
improvement from this work over previous methods is statistically signi�cant (< 0.05).

Figure 3. �e improvement of fragment structures of 15 residues for the TS1199 dataset : (A) RMSD 
between the native fragments and the fragments generated from predicted φ  and ψ  for three iterations I1, 
I2, and I3 and the result from SPINE X (in grey bar). (B)  RMSD between the native fragments and the 
fragments generated from predicted θ  and τ for three iterations I1, I2, and I3. (C) �e consistency between 
fragments from predicted φ  and ψ  and fragments from predicted θ  and τ  for three iterations I1, I2, and I3.

Method PSIPRED SPINE-X SCORPION SPIDER �is Work

SS (Q3) 79.7%(80.8%a) 81.0%(80.6%a) 82.0%(82.4%a) 81.8%(83.3%a)

ASA (CC) – 0.74 – – 0.76

MAE: φ (°) – 20.2 – – 19.2

MAE: ψ (°) – 33.7 – – 29.9

MAE: θ (°) – – – 8.6 8.0

MAE: τ (°) – – – 33.6 32.2

Table 2.  Accuracy comparison between our technique and several techniques for secondary structure, 

ASA and angle prediction for the independent test set (TS1199). a66 proteins of TS1199 that are not in 
the training set for SCORPION.
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In Fig. 4A we compare the accuracy of secondary structure prediction for helix, coil and sheet given 
by four methods for the CASP11 dataset (PSIPRED, SPINE X, SCORPION and present study). Our 
method provides the highest accuracy for sheet (76.4%) but lower accuracy in helical prediction (83.7%) 
than SPINE X (85.5%) and lower accuracy in coil prediction (80.8%) than PSIPRED (85.4%). PSIPRED 
is signi�cantly more accurate in coil prediction because it over-predicts coil residues4.

Figure 4B further compares misclassi�cation errors associated with di�erent methods. �is con�rms 
that our method gives lower error in misclassi�cation between helix and sheet. It gives a comparable 
error to SCORPION between sheet and coil and to SPINE X between helix and coil.

It is of interest to know how the predicted values are compared to those of models in CASP 11. 
Methods compared are Zhang-server39, BAKER-ROSETTA40, FFAS41, myprotein-me (http://mypro-
tein.me), nns42, 3D-Jigsaw43, RaptorX44, Quark45, TASSER46, and Fusion/MULTICOM47. Figures  5A,B 
shows that the MAE of predicted ψ  and τ  angles are 14% and 10% smaller than the lowest MAEs from 
BAKER-ROSETTA40 and Zhang Server39, respectively. Figure  5C further shows that predicted relative 
ASA values are also 12% better than those of model structures.

�e signi�cant improvement in fragment structures revealed in Fig.  3 leads to an interesting ques-
tion: can predicted angles be directly employed in building accurate protein structures? �e direct 
answer to this question is no because accumulation of errors in angles can lead to large deviation in 
three-dimensional structures. On the other hand, there is a small chance for cancellation of errors. �e 
test dataset (1199 proteins) has 183924 40-mer fragments. �e percentages of 40-mer fragments with a 
RMSD below 2.5Å by φ /ψ  and θ /τ  are 1.4% and 1.6%, respectively. In Fig.  6A, a 40-residue fragment 
of a three helical bundle constructed based on predicted φ /ψ  angles (Residues 174 to 213 from PDB 
1l3l chain A) is only 2.2Å RMSD from the native structure. Figure  6B shows an example of a mixed 
helix/strand fragment of 40 residues (Residues 77 to 116 from PDB 1jq5 chain A). �e RMSD between 

Method PSIPRED SPINE-X SCORPION SPIDER �is Work

SS (Q3) 78.8% 78.8% 79.9% 80.8%

ASA (CC) – 0.72 – – 0.74

MAE: φ (°) – 20.7 – – 19.7

MAE: ψ (°) – 34.6 – – 30.3

MAE: θ (°) – – – 8.7 8.2

MAE: τ (°) – – – 34.1 32.6

Table 3.  Accuracy comparison between our technique and several techniques for secondary structure, 

ASA and angle prediction for the independent CASP11 set.

Figure 4. (A) �e accuracy of helical, sheet and coil residues predicted by PSIPRED, SPINE X, SCORPION 
and the present study for the CASP 11 dataset. (B) �e misclassi�cation errors between helix and coil, 
between sheet and coil and between helix and sheet for the four methods as labelled for the CASP11 dataset.

http://myprotein.me
http://myprotein.me


www.nature.com/scientificreports/

8Scientific RepoRts | 5:11476 | DOi: 10.1038/srep11476

predicted and native structure is 2.4 Å. �e two constructed structures show that helical structures are 
more accurately reproduced than strands. What is most encouraging in Fig. 6A,B is well reproduced loop 
and turn regions that permitted accurate reproduction of fragments.

Discussion
�is paper developed an integrated sequence-based prediction of one-dimensional structural properties 
of proteins by iterative learning in a parallel scheme. �e structural properties include local backbone 
structures represented by secondary structure, backbone torsion angle, and backbone Cα  angles and 
dihedral angles. �ese three backbone representations are complementary to each other: backbone tor-
sion angles are single residue properties, backbone Cα  angles and dihedral angles involve three and four 
residues, respectively, and secondary structures involve three or more residues in sequence-position sep-
aration. In addition, the method predicts a non-local property: solvent accessibility. We have shown that 
the input of these predicted structural properties can improve the accuracy of these structural properties 
iteratively (within three iterations).

�e method provides current state-of-the-art prediction accuracy for various structural properties. 
For secondary structure prediction, its accuracy reaches nearly 82% for the large test set of 1199 proteins. 
For solvent accessible surface area, the correlation coe�cient between predicted and actual ASA values is 
0.76. For angles, MAEs for φ , ψ , θ , and τ  are 19.2, 29.9, 8.0 and 32.2 degrees, respectively. Application to 
a small but more challenging dataset of CASP 11 targets leads to only slightly lower accuracy. All these 
accuracies above are the best reported accuracies for test sets. Such an integrated collection of various 
predicted structural properties in one server makes it convenient for their use for other applications.

One interesting question is that whether or not improvement from iterations is due to addition of 
predicted secondary structures or other predicted structural information. Spencer et al.30 showed that 

Figure 5. (A) �e mean absolute error (MAE) of predicted ψ  for the CASP 11 dataset compared to best 
MAEs of ψ  angles in the models from eight most accurate methods in CASP 11. (B) as in (A) but for the 
MAE of Cα  based τ  angles. (C) as in (A) but for the MAE of relative assessable surface area (rASA).
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adding predicted secondary structures alone is su�cient to further improve secondary structure pre-
diction. We performed independent tests by removing other non-secondary-structural features and 
achieved Q3 =  81.2% in the second iteration and Q3 =  81.2% in the third iteration, compared to 81.4% at 
the second iteration and 81.8% at the third iteration with non-secondary-structural features. �is indi-
cates that adding predicted secondary structures alone contributes a large portion of the improvement 
whereas other features lead to additional improvement.

One obvious application is protein structure prediction. Previously, we have shown that predicted 
secondary structures are more accurate than the models predicted by various current state-of-the-art 
techniques4. Here we demonstrate that the same is true for backbone angles and solvent accessibility 
(Fig.  5). Indeed, employing predicted torsion angles as restraints doubled the success rate in ab initio 
structure prediction, compared to using predicted secondary structures36. �is success was because con-
tinuous angles can capture not only non-ideal conformations of helical/strand residues but also essential 
structural information of coil residues. Such structural information is essential for correct folding of a 
three-dimensional structure as demonstrated in Fig.  6. Predicted angles and solvent accessibility were 
also found useful in template-based structure prediction48.
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