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Morrison JL, Berry MJ, Botting KJ, Darby JR, Frasch MG, Gatford KL,
Giussani DA, Gray CL, Harding R, Herrera EA, Kemp MW, Lock MC,
McMillen IC, Moss TJ, Musk GC, Oliver MH, Regnault TR, Roberts CT, Soo
JY, Tellam RL. Improving pregnancy outcomes in humans through studies in
sheep. Am J Physiol Regul Integr Comp Physiol 315: R1123–R1153, 2018. First
published October 16, 2018; doi:10.1152/ajpregu.00391.2017.—Experimental
studies that are relevant to human pregnancy rely on the selection of appropriate
animal models as an important element in experimental design. Consideration of
the strengths and weaknesses of any animal model of human disease is fundamental
to effective and meaningful translation of preclinical research. Studies in sheep
have made significant contributions to our understanding of the normal and
abnormal development of the fetus. As a model of human pregnancy, studies in
sheep have enabled scientists and clinicians to answer questions about the etiology
and treatment of poor maternal, placental, and fetal health and to provide an
evidence base for translation of interventions to the clinic. The aim of this review
is to highlight the advances in perinatal human medicine that have been achieved
following translation of research using the pregnant sheep and fetus.
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HUMAN PREGNANCY, FETAL DEVELOPMENT, AND

UTILIZATION OF APPROPRIATE ANIMAL MODELS

Development and growth of the human fetus, sequestered

within its mother, cannot be directly observed. Lack of easy

access to the human fetus limits our understanding of normal

and abnormal human fetal development. This limited under-

standing hampers development of strategies to improve human

health both before and after birth. Measurement of human fetal

physiology by fetal blood or tissue sampling is not part of

contemporary clinical practice and, because of the risks asso-

ciated with such sampling, is not feasible in healthy human

pregnancies. However, earlier studies, when human fetal blood

sampling was more routine, confirmed that blood gas and

hormone responses to intrauterine growth restriction (IUGR) in

sheep models of IUGR are similar to those in human IUGR

fetuses (110–112). Additionally, in fetal sheep models, multi-

ple longitudinal blood samples can be obtained throughout
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gestation; in humans, umbilical vein blood sampling is usually
restricted to a single time point (258). Noninvasive (e.g.,
cardiotocography) and minimally invasive (e.g., chorionic vil-
lus sampling) techniques to assess fetal physiology and devel-
opment are largely limited to high-risk human pregnancies and
used primarily to inform clinical care. These techniques do not
provide a full understanding of (ab)normal fetal growth or
physiological, endocrine, or metabolic development, which is
critical to improve the health of babies, including those born
too small (because of IUGR) or too soon (because of preterm
birth). Even “normal” fetuses may be exposed to a range of
maternal health issues (e.g., asthma, mental illness, maternal
stress, and drug use) and complications of pregnancy (e.g.,
gestational diabetes mellitus) that may require medications that
impact the developing fetus. Therefore, understanding imme-
diate and long-term effects of fetal exposure to potential
therapeutic interventions is critical to establish the safety and
efficacy of medication before widespread clinical use.

Compromised development in response to a suboptimal
perinatal environment poses considerable health and economic
burdens that can last for a lifetime, and even into the next
generation. Preterm (�37 wk of gestation) birth affects ~15
million infants globally per year (46) and accounts for 16% of
mortality in children �5 yr old worldwide (457). In Australia
and New Zealand, rates of preterm birth are 7–9% (46). Rates
are higher in North America and throughout the developing
world. IUGR affects 5–15% of babies in developed countries
and a much higher percentage in developing countries (30–
55% of infants born in South Central Asia, 15–25% in Africa,
and 10–20% in Latin America) (6, 93, 137, 246, 392). The
additional comorbidity of preterm birth affects �38% of IUGR
infants (247), thereby amplifying their risk of poor health in
later life (328, 415). Although modern perinatal care allows the
majority of preterm and IUGR infants to survive the newborn
period (194), it is now clear that there is a latent health “cost”
for their survival. Preterm infants have a greater lifetime risk of
poor cardiometabolic health, neurodevelopmental impairment,
and behavioral and/or psychiatric problems than individuals
born after an uncomplicated pregnancy (340, 402). IUGR is
associated with a 50% greater risk of cardiometabolic disease
in adult life and is also linked to increased rates of diabetes,
obesity, and other adverse health outcomes (25, 26, 120, 123).

Many pregnant women use medication throughout or during
part of their pregnancy to treat preexisting or pregnancy-
induced illness (2, 14, 138). Despite this common exposure of
pregnant women (and their unborn children) to medication, be-
cause of sex bias (toward males) of medical research subjects,
maternal and fetal effects of medications are often understudied
(239). The likelihood that maternal medications, including anti-
depressants, psychotropics, and paracetamol, have adverse effects
on development of the fetal brain and other organs is only now
starting to be appreciated (165, 172). In addition, many over-the-
counter dietary supplements are not subject to the same regulatory
procedures as prescription medications and are perceived as “nat-
ural” or “healthy” by consumers (336). The doses and timing of
maternal supplement or pharmacological medication use can have
a critical impact on offspring health. For instance, periconcep-
tional folic acid supplementation reduces rates of neural tube
defects, which led to international guidelines recommending its
use and widespread food fortification (154). However, high ma-
ternal folate supplementation in late pregnancy is associated with

increased risk of allergy in children (161). Further research is
urgently needed to avoid unanticipated consequences that may
emerge before or after birth and ensure either no harm or a net
benefit to mother and baby.

Experimental studies that are relevant to human pregnancy
rely on appropriate animal models. Consideration of the
strengths and weaknesses of any animal model of human disease
is fundamental to effective and meaningful translation of preclin-
ical research to the clinic. Sheep have been used to study the
normal and abnormal development of the fetus for almost a
century. The pioneering research of Barcroft, who likened the low
O2 concentration of the fetal environment to living at the top of
Mt. Everest (22), was performed in anesthetized ewes (23, 24).
Subsequently, Liggins used pregnant sheep to conduct research on
the control of parturition and antenatal corticosteroid therapy
before preterm birth (265) followed by clinical trials in partnership
with the pediatrician Ross Howie (267) that revolutionized peri-
natal medicine. In addition, the work of Dawes et al. using a sheep
model, which led to understanding of fundamental fetal-maternal
physiology, still forms the basis of clinical teaching in obstetrics,
neonatology, and maternal-fetal medicine (88). More recently,
research using pregnant sheep has allowed a deeper understanding
of how suboptimal embryonic or fetal environments contribute to
the emergence of poor health in later life (295). These advances
are only the beginning, with many more in our future, as evi-
denced by the recent development of a “biobag” and pumpless
oxygenator to allow growth and development of the preterm lamb
outside the womb for a month (359) and the possibilities for
advances in clinical care that are presented by this first step (41).

Use of sheep as an animal model of human pregnancy has
enabled scientists and clinicians to answer questions about the
etiology and treatment of poor maternal, placental, and fetal health
in the unanesthetized fetus since the 1970s. The utility of smaller
animals for studies of early development and genetic contributions
to development and disease has led, in some cases, to the replace-
ment of the sheep as a model of human pregnancy. We believe
that a multiplicity of appropriate experimental animal models is an
asset for any scientific field. Researchers must be able to identify
the most appropriate animal model for research that will inform
and translate to fundamental advances in the care of pregnant
women and their babies. In our experience and based on the
clinical translation of past research, a number of fundamental
physiological questions (22, 88, 265), including those requiring
direct measures of fetal physiology, are best answered by studies
in sheep models. Thus, the aim of this review is to document
the contribution and benefits of sheep in studies of fetal
development and pregnancy to better inform clinical prac-
tice in humans (Table 1).

EVIDENCE BASE FOR SELECTION OF SHEEP AS A MODEL
OF HUMAN DEVELOPMENT

Fact 1: Physiological Information Derived Directly From
Studies in Sheep Pregnancy Has Been Successfully
Translated to Standard Clinical Practice in Human
Perinatal Care

Critical advances in perinatal medicine, which have substan-
tially reduced mortality and morbidity for countless infants
throughout the world, are directly attributable to experimental
research carried out in sheep. Comprehensive physiological
research over several decades has provided a depth and breadth
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of knowledge from the preconception period through embry-
onic, fetal, and neonatal life and, finally, in offspring followed
into adult life. These studies have enabled interrogation of
normal and (mal)adaptive responses and developmental
changes in healthy pregnancies and those in which clinically
relevant pathological states have been imposed.

Antenatal corticosteroids for women at risk of preterm birth.
The remarkable ability of corticosteroids to stimulate lung
maturation, enabling viability after preterm birth, was first
shown in sheep by Graham “Mont” Liggins. From his initial
observations in a handful of preterm lambs, he progressed
immediately to conduct the first human randomized controlled
trial (RCT) in perinatal medicine, which was also among the
first RCTs performed (264, 267). Meta-analysis of the results
from this and dozens of subsequent trials shows clear life-
saving benefit of maternal antenatal corticosteroid administra-
tion for preterm human infants (385). Today, the treatment is
used in many countries as standard clinical practice and re-
mains essentially unchanged from that devised by Liggins from
his experiments in sheep �50 years ago.

Sheep continue to be used to refine and improve efficacy and
safety of antenatal corticosteroid therapy. Attempts to augment
the effectiveness of antenatal corticosteroids with other matu-
rational agents have been as unsuccessful in sheep as they have
been in humans (1, 79, 81, 82, 163, 201, 203, 206). When
concerns were raised about potential effects of antenatal cor-
ticosteroids on fetal growth, brain development, and cardio-
vascular function in human infants, these effects were deter-
mined and verified using sheep, which allowed the underlying
mechanisms to be understood (202, 332, 333). Subsequent
experimental studies using sheep showed long-term effects of
repeated antenatal corticosteroids on postnatal physiology
(405, 406), with persistent effects on brain development (321).
These studies provided the impetus for RCTs in humans (30,
78) and their follow-up from Liggins’ initial RCT (293, 294).
Antenatal corticosteroid therapy is an off-label use of agents
approved for other medical indications. Studies in sheep con-
tinue to seek to identify more effective corticosteroid prepara-
tions (218, 219, 235) and routes of administration (320) to
improve efficacy and safety. At the same time, RCTs (e.g.,
A*STEROID) continue with the same aim (80). As more data
become available from sheep experiments and the results of
ongoing clinical studies provide information about the effects
of antenatal corticosteroids in contemporary clinical practice,

integration of information from both sources will continue to
benefit individuals born preterm.

The benefit of antenatal corticosteroid therapy in threatened
preterm birth is unequivocal. However, there is a trend toward
its use at, or near, full term to improve newborn respiratory
function, especially after prelabor cesarean section. As fetal
maturational state at late gestation is profoundly different from
that preterm, excess systemic corticosteroid exposure late in
gestation may lead to unanticipated adverse consequences.
Studies in sheep have identified unfavorable long-term sex-
specific effects of maternal corticosteroid treatment in near-
term fetuses (42). Thus, follow-up studies of infants already
exposed to antenatal corticosteroid therapy near term are re-
quired to fully understand the cost-to-benefit ratio of this
approach.

Artificial reproductive technologies. Artificial mammalian
reproduction strategies were first developed in sheep and cattle
to facilitate selective breeding for the commercial improve-
ment of livestock. Underpinning this technology development
was the discovery in these animals of hormones playing pivotal
roles in mammalian reproduction. This technology has rapidly
been adapted to assist human reproductive success. Techniques
such as superovulation, oocyte culturing, in vitro fertilization,
and embryo maturation, transfer, and freezing originate from
studies in sheep and cattle (52, 209, 253, 278, 305, 463, 464).
The livestock industry similarly pioneered techniques for fer-
tilization of oocytes using frozen semen and sexing of sperm
(440).

Genetic mutations in sheep have also provided a more
complete understanding of the roles of specific genes in human
fertility. Genetic mutations in the sheep genes growth differ-
entiation factor 9 (GDF9) and bone morphogenetic protein 15
(BMP15) were identified and found to impact twinning rates
and fertility (140, 173). Soon after these discoveries, mutations
in the orthologous human genes were shown to be associated
with premature ovarian failure and spontaneous dizygotic twin-
ning (95, 98, 304).

Somatic cell nuclear transfer technology (61) was used to
produce the first cloned sheep in 1996 (Dolly, Scotland) and
2000 (Matilda, South Australia; http://www.abc.net.au/sci-
ence/articles/2000/05/04/123089.htm). This technology high-
lighted the technical capability to reprogram somatic cells
(mammary epithelial cells in the case of Dolly) and stimulated
expansive research into stem cell applications for use in hu-

Table 1. Facts about use of sheep as an animal model for perinatal research

Fact 1: Physiological information derived directly from studies in sheep pregnancy has been successfully translated to standard clinical practice in human
perinatal care

Fact 2: Surgical instrumentation to study fetal development over long periods of time, as needed for translating outcomes to humans, is readily achievable
in sheep

Fact 3: Each animal model of human development is costly; sheep models are a cost-effective way to understand perinatal well-being, as they permit
multiple and longitudinal output measures from the same animal

Fact 4: Study of outcomes in reproductively intact animals of both sexes is possible in a research setting
Fact 5: Development of major organ and regulatory systems occurs before and around birth in sheep, as in humans, but after birth in rodents
Fact 6: ’Omic studies in sheep are a helpful tool in understanding complex gene-environment interactions
Fact 7: Epigenetic responses in sheep to an altered perinatal environment can be usefully explored across different time periods in development
Fact 8: CRISPR technologies open new windows of opportunity for genetic manipulation studies performed in sheep
Fact 9: Sheep can be used in neurodevelopmental studies owing to similarities between stages of brain development in sheep and humans
Fact 10: Many important placental physiological characteristics are shared between sheep and humans
Fact 11: Sheep are an important model of glucose metabolism during pregnancy and the programming effects of an adverse uterine environment on glucose

metabolism in the offspring
Fact 12: Sheep are a good model to investigate causes and consequences of preterm birth
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mans that have potential to treat a range of human diseases (71,
430).

Therapeutic hypothermia for asphyxiated newborns. Hypox-
ic-ischemic encephalopathy is one of the catastrophic conse-
quences of intrapartum asphyxia and a leading cause of brain
damage in full-term newborns (212). The prognosis for af-
fected infants has traditionally been bleak, with high rates of
mortality or severe neurological impairment in survivors. Ther-
apeutic hypothermia, a reduction in core temperature (from
37°C to 33.5°C) following an asphyxial insult, has transformed
the outlook for these infants and is recognized as the first
targeted treatment to increase rates of disability-free survival.
Whole body cooling is, therefore, now the international stan-
dard of care for affected human infants (424). The experimen-
tal research underpinning this innovative treatment was con-
ducted in fetal sheep before translation to human clinical trials
(152, 168, 169). Crucially, the instrumented fetal sheep model
allows exposure of the fetal lamb to a variety of complex
environmental or pharmacological stressors. As the lamb re-
mains in utero, the mother in essence acts as a surrogate
intensive care unit, supporting its physiological stability with-
out the confounding effects of anesthesia or other clinical
interventions that would be necessary to support postnatal life.
This enables the pathophysiological effect of injury and its
consequences, as well as the response to and efficacy of
treatment, to be followed in detail over time.

Neonatal ventilation and exogenous surfactant. Beginning
with Bargellardus’s recommendation to midwives in 1472 that,
for an infant that is “warm, not black,” they should “blow into
its mouth, if it has no respiration” (19), artificial respiration and
resuscitation have gone hand-in-hand with neonatology. Re-
finements in neonatal respiratory support continue, with the
aim of identifying the optimal means to resuscitate and support
breathing in newborns. Mechanical ventilation (cyclic positive-
pressure ventilation) to support respiration of preterm infants
gained popularity in the early 1960s after publicity surrounding
the death of preterm infant Patrick Bouvier Kennedy (son of
Jacqueline and President John F. Kennedy) from hyaline mem-
brane disease [now called respiratory distress syndrome
(RDS)]. As the use of mechanical ventilators for preterm
infants increased, it became evident that, inadvertently, exces-
sive pressures and volumes delivered to the lungs of preterm
infants could cause pneumothorax and contribute to more
subtle injury, leading to chronic lung disease, or bronchopul-
monary dysplasia (BPD).

Experiments using preterm lambs showed that mechanical
ventilation with hyperoxic gas for an extended period could
cause lung pathology characteristic of BPD (364). Other ex-
periments in sheep showed that only a few high-volume
breaths at birth could cause lasting impairments in respiratory
function in preterm lambs (44). Because of such experiments,
it is now recognized that mechanical ventilation of immature
lungs initiates lung injury and inflammation (190) and that
abnormal lung structural development is common when the
developing lungs are removed from the fluid-filled intrauterine
environment and forced to become the sole site of gas ex-
change.

In attempts to reduce lung injury in preterm babies who need
respiratory support, alternative ventilation modalities have
been trialed in sheep, in parallel with their use in human
infants. Although able to provide sufficient respiratory support,

these alternatives do not appear to protect against lung inflam-
mation and BPD. Experimental studies of the use of positive
end-expiratory pressures (PEEP) during mechanical ventilation
(404), showing physiological benefit for preterm lambs, have
informed the use of PEEP in neonatal intensive care units and
delivery rooms. The use of initial sustained inflations during
aeration of the lungs showed benefit for achieving effective
ventilation and stabilizing the circulation at birth (427). Simi-
larly, the use of lower levels of inhaled O2 with PEEP,
avoiding potentially harmful effects of hyperoxia, has been
demonstrated to be effective in resuscitating neonatal lambs
(371) and is now recommended for use in human preterm
resuscitation (307).

The only ventilatory modality proven to reduce rates of BPD
in human infants, apart from avoidance of prolonged use of
hyperoxic gas, is the use of continuous positive airway pres-
sure (CPAP) to support spontaneous breathing (414). After
clinical evidence emerged showing the benefit of CPAP, stud-
ies in preterm lambs demonstrated that it protected against lung
injury and inflammation (217). Refinement of the use of CPAP
in lambs has reached the point at which a realistic preterm lamb
model of CPAP can be used to mimic contemporary clinical
management of preterm infants (217). Studies in preterm lambs
showed that, for CPAP to provide effective support, a minimal
level of pulmonary surfactant is required in the preterm lungs
(190). Sheep were among the many animal species (including
mice, rabbits, rats, and hamsters) used by Mary Ellen Avery
and others in their pioneering studies of surfactant in newborns
from the late 1950s onward (73). Those studies led to the
development of exogenous surfactant to treat RDS in preterm
infants, a therapy still in routine clinical practice.

Development of fetal surgical techniques. Significant con-
genital malformations, such as spina bifida and congenital
diaphragmatic hernia (CDH), or vascular malformations, such
as those seen in twin-twin transfusion syndrome, are uncom-
mon, yet they carry a high burden of mortality and morbidity
(290). Traditionally, the only therapeutic options consisted of
supportive care in utero followed by expedited delivery for
those at risk of imminent fetal demise and postnatal surgery.
Interventional studies in fetal sheep revolutionized the outlook
for affected babies (298). With the advent of open fetal, or
fetoscopic, surgery for babies with spina bifida or CDH and
development of noninvasive techniques for twin-twin transfu-
sion syndrome, such as high-intensity focused ultrasound vas-
cular disruption (399), mortality and morbidity rates have
fallen (290). Ongoing refinement of surgical technique (357),
exploration of new fields of intervention (113, 114), and
development of biomaterials are driven by the ability to sim-
ulate and then correct such malformations in the sheep fetus.
Advances in fetal surgery and the ability to provide extrauter-
ine support that mimics intrauterine support may allow for
correction of congenital heart defects earlier and recovery with
a fetal, not postnatal, circulation.

Fact 2: Surgical Instrumentation to Study Fetal Development
Over Long Periods of Time, as Needed for Translating
Outcomes to Humans, is Readily Achievable in Sheep

Nonhuman primates are perceived as the “gold standard”
animal model for translational studies of human development
(108). This may be true for physiological processes during
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development that are highly species-dependent, such as the
mechanisms promoting parturition. In such cases, the contri-
bution of nonhuman primate research is unquestionable (105,
296, 330, 362). However, the use of other species is merited to
study generic physiological processes that are controlled by
broadly similar mechanisms across multiple species for the
following reasons.

First, access to primate species for use in biomedical re-
search is limited due to ethical concerns of prolonged captivity,
the requirement for, and cost implications of, specialized en-
vironmental enrichment and housing, zoonotic disease risk,
and the extent to which human-experimental animal bonds may
develop. Of course, all animal research carries an ethical cost
that needs to be justified in terms of potential benefits, and
researchers and animal caregivers also develop bonds with
other large animals, including sheep, and, in particular, during
long-term studies.

Second, highly invasive studies in nonhuman primates, such
as those requiring fetal instrumentation, are not sustainable not
only due to the financial expense, but also the high physiolog-
ical cost to both the mother and fetus. For example, the risk of
preterm delivery resulting from poor resistance to uterine
invasive surgery in primates relative to other species is ex-
tremely high and, therefore, prohibitive. In situations where
use of nonhuman primates is not appropriate or feasible, sheep
have many advantages over most other species, including
nonhuman primates, as an ideal experimental model for human
clinical translational research. In work with animal models of
physiological dysfunction before birth, similar temporal pro-
files of the development of various systems between species
are essential to achieve translation to the human clinical situ-
ation. Unlike humans, rats and mice are altricial species, in
which maturation of several organ systems, such as the brain
and cardiovascular system, continues past birth and is not
complete until well into postnatal life (390). Rodents, pigs, and
guinea pigs give birth to litters, whereas humans and sheep
generally carry singletons; thus, differences in maternal meta-
bolic adaptations to pregnancy between litter- and singleton-
bearing species also require consideration. In contrast, sheep
and humans share similar prenatal patterns of precocial brain
and cardiovascular development (390). Furthermore, some
breeds of sheep, such as Welsh Mountain and Merino, give
birth primarily to singleton lambs similar in weight to full-term
human babies.

Third, the sheep is the only animal model that is sufficiently
resilient and large to permit surgical instrumentation of the
mother and fetus for in vivo recording of cardiovascular
variables and electrical signals and to enable blood sampling
for endocrine and metabolic measurements over long periods
of time (57, 126, 311, 368; for reviews see Refs. 148 and 308).
Although recording for several days has been reported in
chronically instrumented maternal and fetal horses (83, 149,
342, 472), pigs (131, 175), guinea pigs (309, 435), goats (84),
and llamas (109, 150, 151, 185, 275), recording over weeks to
months has been possible only in sheep. Wireless technology
has enabled continuous recording of cardiovascular and elec-
trical signals from chronically instrumented maternal and fetal
sheep (12, 49). For example, a telemetry device has been used
to record renal sympathetic nerve activity for hours to days (12,
49, 50). Simultaneous recording of multiple blood pressure and
blood flow signals from the mother and fetus in vivo in real
time over months in free-moving sheep in controlled local
environments can be achieved (12). Comparable approaches
have not been developed in another species, but as telemetric
technology improves, blood flow, as well as blood pressure,
recordings may eventually be possible also in rodents. Bioethi-
cally, such refined technology enhances the physiological qual-
ity of the cardiovascular data and improves animal welfare,
abiding by the 3Rs (replacement, reduction, refinement) prin-
ciple (426) enshrined by the ethical review groups of many
countries.

This range of technologies for continuous measurement of
physiological parameters is possible because of the ability to
perform surgery in the sheep fetus (Table 2). The size of the
pregnant ewe also means that comprehensive physiological
monitoring during anesthesia and in the postoperative period is
possible (282). Ensuring that the physiological status of the
ewe is within normal limits is important, especially during
anesthesia, to maintain a healthy fetus. Monitoring the mother
and fetuses to the same degree during surgery is impossible in
rodent models. In sheep the cardiovascular and respiratory
responses to anesthesia, pregnancy, and interventions can be
assessed continuously and reliably by electrocardiography for
heart rate and rhythm; pulse oximetry for oxyhemoglobin
saturation, peripheral perfusion, and pulse rate; and capnogra-
phy for adequacy of ventilation, blood pressure measurement,
uterine blood flow, and cardiac output. Body temperature,
blood gases, and acid-base status are also easy to monitor and

Table 2. Experimental techniques possible during pregnancy in a range of species

Sheep Pigs Goats Mice Rats Rabbits Guinea Pigs Primates

In vivo physiological measures
Of the mother

Invasively � � � � � � �
Noninvasively � � � � � � � �

Of the fetus
Invasively � � � � � � � �
Noninvasively � � � � � � � �

In vitro analysis of maternal and fetal tissues
Gene and protein studies � � � � � � � �
’Omic approaches used � � � � � � � �
Immunohistochemistry � � � � � � � �
Genetic manipulation or cloning before development of CRISPR � � � � � � � �

CRISPR � � � � � � � �
Primary culture of cells � � � � � � � �

�, Studies performed; �, no studies identified.
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manage in a pregnant ewe. The principles and practice of
clinical anesthesia of humans can, therefore, be applied to
sheep, and new approaches can be developed with involvement
of veterinary anesthetists (68).

Furthermore, with use of noninvasive clinical techniques,
such as assessment of cardiovascular function by fetal heart
rate variability, Doppler ultrasound, and functional echocardi-
ography, in parallel with chronic instrumentation during ex-
perimental physiological challenges, studies in the sheep fetus
can improve the interpretation of clinical measures of fetal
health in human obstetric practice (121, 221, 337, 351). Much
of the current understanding about behavioral states and car-
diovascular development in the human fetus has been validated
in studies using sheep.

In addition, development of several models of IUGR in
sheep is important, because each model mimics different as-
pects of this heterogeneous condition (for review see Refs. 158
and 308). IUGR can be induced in the sheep through maternal
undernutrition (101), maternal exposure to hypobaric (12, 53)
or isobaric (12, 53) hypoxia, uterine artery compression (47),
umbilical cord occlusion (35), placental embolization (74, 280,
281), maternal overnutrition in adolescence (446), early-
through-midgestation heat stress to disrupt placental develop-
ment (34, 378, 389), ligation of a single umbilical artery (299,
300), high-altitude pregnancy (147, 184, 211, 279, 361), and
surgical removal of placental attachment sites before mating
(11, 143, 310, 386). These multiple approaches provide models
of IUGR reflecting the most common causes in humans: poor
placentation and restricted oxygenation and nutrition (308).
These models result in IUGR with an onset in early or late
gestation due to their chronic nature, rather than the acute
nature of many rodent models (e.g., the last 2–6 days of
gestation) (60, 343, 467). Extensive studies in IUGR sheep
have provided direct proof that IUGR due to poor placentation
impairs fetal and postnatal cardiometabolic health (74, 144,
448). Together with other studies, this research has increased
awareness of the need for monitoring the health of humans who
were born IUGR and their particular need for surveillance if
they develop health challenges, such as obesity, hypertension,
and coronary artery disease, to which they may be particularly
susceptible.

Fact 3: Each Animal Model of Human Development Is
Costly; Sheep Models Are a Cost-Effective Way to
Understand Perinatal Well-Being, as They Permit Multiple
and Longitudinal Output Measures From the Same Animal

All animal models are “expensive,” but when a human
model is not appropriate, animal models are an alternative.
With a clear research question and sound methodology, animal
studies have an invaluable role to play in the acquisition of
evidence to support changes in clinical care or therapeutic
interventions in humans and animals. In sheep, the ability to
obtain multiple measures at different time points across gesta-
tion in the same set of animals is extremely valuable in studies
assessing developmental programming. Serial collection of
fetal physiological data can be carried out for weeks to months
(12, 75, 186, 291, 314, 319) and related to tissue analyses from
multiple organs. This longitudinal advantage of the sheep
model is in contrast to smaller species, where one animal (or an
entire litter) must be used at each time point and often for each

measure. For example, it is possible to collect muscle biopsies
over time to assess insulin-signaling responses (291) and cir-
cadian changes (438) in sheep, whereas similar studies in
rodents require separate groups of animals for tissue collection
at each time point (63, 437). Consequently, in small-animal
models, many more animals must be used over a longer period
of time, and, as a result, the real costs, including finances, time,
and animal impact, are higher than one might expect on a
relative basis. While nonhuman primates also allow for the
collection of biopsies, the cost associated with nonhuman
primate research is substantially greater than that associated
with research on sheep because of the facilities required to
perform studies that are consistent with the ethical guidelines
(96, 164, 237, 238). Furthermore, the trend toward understand-
ing complex traits through integration of multiple ‘omics data
sets with higher-order phenotypic data typically requires mul-
tiple samples from tissue or blood. This type of sampling
strategy is much more practical in larger animals, such as
sheep, than smaller animals. This issue is accentuated if mul-
tiple technical replicates, in addition to biological replicates,
are used in the ‘omics analyses.

Fact 4: Study of Outcomes in Reproductively Intact Animals
of Both Sexes Is Possible in a Research Setting

Animal husbandry practices used in commercial livestock
production should not be automatically extrapolated to the
same species used in a research context. In a commercial
setting, male sheep not required for breeding are routinely
castrated at the time of weaning to avoid development of
aggressive behaviors, prevent unwanted or unplanned off-
spring, and optimize meat quality, which may be tainted in
mature male animals by androgens. In contrast, female animals
are conventionally retained reproductively intact and are,
therefore, readily available for reproductive studies. However,
in a research system, cohorts of intact males and females can
be retained. Secure housing and separation of males and
females by dual fencing are readily achieved, while aggression
is minimal between cohoused male animals kept in a consistent
group from before puberty and does not cause welfare prob-
lems for these animals. Thus, sheep can be used for assessment
of metabolic and behavioral outcomes that are affected by
gonadal steroids, as well as those effects of prenatal environ-
ment that may differ between sexes (40, 43, 198, 213, 272,
344). Furthermore, most sheep studies of fetal development
include both male and female fetuses, and often statistical
analysis is performed to determine if there is an effect of sex
(450). In contrast, either male or female fetuses are often
selected for study in other species, although this practice is
changing as the need for studying both sexes is acknowledged
(96, 309).

Fact 5: Development of Major Organ and Regulatory
Systems Occurs Before and Around Birth in Sheep, as in
Humans, But After Birth in Rodents

Species can be classified as prenatal, perinatal (precocial), or
postnatal (altricial) developers, in that most of their organ
systems develop and are operational before, around, or after
birth, respectively. This concept was first applied to the timing
of brain development (99) and reflects the types of behaviors of
which each species must be capable shortly after birth. The
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trajectory of development is, therefore, both species- and
organ-specific. These species-specific differences can have a
substantial impact on experimental design relating to biological
questions associated with periods of development. This con-
cept applies not only to the brain, but also to most organs,
although the timing of development of each organ in relation to
birth is not homogeneous. In this section, we discuss some of
the most-studied organs, often investigated because of their
involvement in survival at birth or their importance in non-
communicable disease in adulthood, and describe the similar-
ities and differences in development between humans and
sheep.

Brain. In prenatal and perinatal brain developers, such as
humans, sheep, and guinea pigs, brain mass increases dramat-
ically before birth, and the brain is sufficiently mature to
sustain fetal behavioral states by late gestation (99, 309, 382).
In contrast, in rats, mice, dogs, and cats, the brain develops
postnatally, with brain mass increasing and sleep states devel-
oping after birth (99, 382) (Fig. 1). The prenatal timing of brain
development makes the sheep a valuable species in studies of
brain development. Timing of such studies takes into consid-
eration that the brain is more mature in fetal sheep than humans
at birth: the lamb is able to move independently at birth.
Consistent with earlier functional maturation in sheep, myeli-
nation of the brain is more complete at birth in sheep than
humans (200) (Fig. 2A). The preterm sheep fetus at ~95 days
gestation is at a structural and functional stage of brain devel-
opment similar to that of the 24- to 28-wk-old human fetus and,
at 125-130 days gestation, reaches maturity similar to a full-
term human fetus (18). Sheep have also been extensively used
to study perturbed brain development, for example, asphyxial
and inflammatory challenges, after preterm birth (107). Impor-
tantly, studies in sheep have provided valuable understanding
of processes underlying the impact of events during pregnancy
and how these and clinical treatments may affect brain devel-
opment and function (86).

Despite the previously mentioned advantages of working
with sheep compared with rodents as a model of human brain
development, a limitation is that myelination occurs earlier, in

relation to birth, in the sheep than human fetus (27, 38, 292,
360). However, the overall pattern of white matter maturation
in the sheep fetus provides a clinically relevant model for the
developmental effects of physiological insults delaying matu-
ration and modifying susceptibility to injury. Importantly, the
maturational and perinatal brain regional injury patterns resem-
ble those reported in human studies. Major clinically relevant
insights have been derived from modeling effects of prenatal
insults on the corpus callosum and white matter injury (WMI)
(145, 167, 196, 287, 376, 436).

Studies on the developmental profile of the corpus callosum
and the effects of glucocorticoids administered in a clinically
relevant scenario at the onset of the third trimester demon-
strated that betamethasone administration results in a region-
specific change in the myelination of the commissural fibers of
the corpus callosum (196, 376). It has been suggested that such
maturational delay represents a morphological correlate to
behavioral and cognitive changes known to occur in humans
after prenatal glucocorticoid treatment. These studies highlight
the clinical relevance of the myelination profile of the sheep
fetus.

WMI in the sheep and human fetus preterm share important
common histopathological and brain-imaging features. Both
species share preterm vulnerability to acute and chronic WMI
(18). Similar to the human fetus, the sheep fetal brain shows
brain-regional WMI under conditions of moderate cerebral
ischemia (18). In contrast, the brain injury pattern of rodents is
not limited to WMI and includes gray matter (16, 127, 397,
434). This important species difference limits the translational
relevance of rodent hypoxia-ischemia models for the study of
myelination disturbances associated with chronic human WMI.

The sheep fetus displays brain hemodynamics similar to
humans and, as mentioned elsewhere in this review, permits
extensive instrumentation and recording (or online calculation)
of physiological data, such as blood pressure, EEG, intraven-
tricular pressure, cerebral perfusion pressure, blood oxygen-
ation, systemic or brain regional cerebral blood flow, and
protein synthesis, in the unanesthetized state. Such recordings
permit study of cerebral autoregulation, an important mecha-
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nism determining the outcome of WMI. The human (86, 103,
372, 409) and sheep fetus share a very limited range of cerebral
autoregulation under physiological and pathophysiological
conditions. Systemic hypoxia and associated hypotension re-
sult in a pressure-passive cerebral circulation (180, 192, 358,
423, 433). Infection can further exacerbate such breakdown of
autoregulation and has been modeled in fetal sheep (170, 454).

Studies in fetal sheep have shown that perturbations in
cerebral blood flow are necessary, but not sufficient, to explain
the distribution of WMI. The developmental predilection for
WMI appears to be related to both the timing of appearance
and regional distribution of the susceptible preoligodendro-
cytes (Fig. 2B). When translated to the human clinical situa-
tion, ex vivo high-field MRI studies in fetal sheep suggest that
current clinical MRI field strength may be a limiting factor to
detect diffuse, as well as microscopic, necrosis (454).

Future studies will seek to better replicate findings in neo-
natal rodents in the large preterm models (125–127). Further-
more, neurobehavioral studies of preterm fetal sheep and lambs
are needed to assess the sustained impact of WMI. The fetal
sheep and neonatal lamb model has the potential to better
mimic the neonatal care setting by including the influence of
nutritional status, stressors, exposure to pain, and recurrent
sedative and anesthetic exposure (54, 179, 192, 425).

Lungs. The sheep is an excellent model for investigations of
human lung development for several reasons. Adult lung ar-
chitecture is similar in sheep and humans, in terms of numbers
of airway generations, numbers and size of alveoli, and ultra-
structure of the blood-gas barrier (174, 370). Stages of lung
development in sheep are similar to those in humans and occur
with similar timing in relation to birth (174). Importantly,
definitive alveoli first appear before birth, with �50% of
alveoli being present at full term in sheep compared with
approximately one-third in humans; in rats and mice, alveoli
are formed only after birth. Mature type II alveolar epithelial
cells and pulmonary surfactant are present by �0.9 full term in
sheep and ~0.8 full term in humans (Figure 3) (276). In sheep,

the final number of alveoli is reached at 6–12 mo after birth,
compared with 1.5–3 yr in humans. Almost all available data
on fetal lung fluid volume, secretion, composition, and flow
dynamics have been obtained from sheep (176). Although little
information has been obtained from humans and other species,
the available data are generally consistent with data from
sheep. Importantly, data from in utero fetal sheep have allowed
a detailed understanding of the pathophysiological processes
whereby intrauterine conditions chronically alter lung expan-
sion in the human fetus (e.g., oligohydramnios, CDH, tra-
cheopathies, and impaired fetal breathing movements) and then
adversely impact lung growth and development (118, 176).

The first reliable data on fetal breathing movements were
obtained from fetal sheep in utero (87). This information
guided subsequent studies on humans, which showed that
sheep data on factors affecting fetal breathing, such as hypoxia,
hypercapnia, and hypoglycemia, could be translated to the
human fetus. Furthermore, sex differences in lung development
and in the respiratory transition at birth are seen in humans and
sheep, especially following preterm birth (431). These sex
differences in lung function at birth reflect differences in the
maturation of pulmonary surfactant composition, rather than
differences in lung architecture, in preterm infants (210, 410).

Several studies on the pulmonary fetal-neonatal transition
support the lamb as a good paradigm for cardiorespiratory
transition in newborn humans. Establishment of pulmonary
function by the newborn lamb over several hours after birth,
similar to the pattern in newborn humans, allows the study
of particular neonatal pulmonary disorders, such as BPD
and pulmonary hypertension of the neonate (8, 273, 356). In
contrast, mice are mildly hypoxic immediately after birth
and remain so for the 1st wk of life (373), mainly due to
their relatively immature lungs at birth. Thus, most rodent
models are inappropriate for studying the transition to air
breathing at birth, in particular RDS, which is highly de-
pendent on surfactant maturation. The latter mostly occurs
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permission from Springer Nature for Back et
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in the alveolar stage of development, which occurs after
birth in mice and rats (Fig. 3).

Cardiovascular system. Similarly, the temporal develop-
ment of the cardiovascular system of humans is more like that
of sheep than rodents. This is particularly true with regard to
the maturation of cardiomyocytes, the contractile units of the
heart, which begin the transition from proliferative to termi-
nally differentiated prior to birth in humans (240) and sheep
(58, 223) but after birth in mice and rats (255, 408) (Fig. 4).
Because humans (37) and sheep (222) have limited capacity to
generate new cardiomyocytes after birth, this difference may
result in lifetime retention of cardiomyocytes that have been
altered by environmental insults in utero throughout their life
(310, 447, 448, 450, 451, 453). In rats, cardiomyocyte prolif-
erative capacity is lost 7–10 days after birth (255); thus there is
a capacity to replace lost or altered cardiomyocytes in the early
postnatal period (268).

Similar temporal differences between species are observed
for the maturation of the cardiac autonomic nervous system. In
rats, cardiac sympathetic fibers are not present until after birth

(271). However, in sheep and humans, cardiac innervation
occurs in utero (252). Furthermore, an increase in regulatory
control of heart rate by the parasympathetic nervous system
occurs in the last third of gestation in humans (475) and sheep
(274, 445), evidenced by a slowing of heart rate and an
increase in heart rate variability, but this occurs postnatally in
rats (432).

The sheep has proven to be an excellent model for chronic
preparations for maternal, placental, fetal, and neonatal vascu-
lar function studies. Several authors have implanted flow
probes to determine blood flow to different vascular beds in
conditions such as hypoxia and oxidative stress (183, 186, 226,
428). Microspheres injected into the fetal bloodstream have
been used to provide a precise determination of the distribution
of combined cardiac output and its redistribution in physiolog-
ical or disease states (186, 188, 312, 368, 393), a technique that
enabled better understanding of fetal cardiovascular function.
MRI has also been employed to measure fetal cardiovascular
function, including cardiac response to infarct and blood flow
in major vessels to measure distribution of cardiac output

Fig. 3. Development of human, sheep, and rat lung during the 5 stages of lung development. [From Lock et al. (276).]

Fig. 4. Transition from cardiomyocytes that contribute to
growth of the heart by proliferation to those that contribute by
hypertrophy occurs after birth in rodents but before birth in
humans and sheep (58, 255, 408). [Adapted from Lock et al.
(277) and Morrison et al. (316).]
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(104); however, anesthesia is required. For technical reasons, a
relatively large animal, such as the sheep, is well suited to these
cardiovascular techniques, which are very challenging in small
animals, such as rodents and chickens (325). Another impor-
tant issue for investigating vascular function is access to
resistance arteries, usually after four or five branches from the
main conduit vessel. These small (�200- to 500-�m internal
diameter) arteries control the flow resistance in an organ and
are the most important determinants in impairment of the
circulatory system (352). Several ex vivo studies using wire or
pressure myography in sheep have described the developmen-
tal function of resistance arteries in vascular beds, including
mesenteric, femoral, cerebral, and pulmonary (273). The ac-
cess to different types and sizes of vessels from large animals
allows scientists to better understand vascular function and
mechanisms underlying clinical observations in humans.

Glucose metabolism. One of the important differences be-
tween adult humans and sheep is their source of energy. In
humans, energy is directly derived from glucose, primarily
supplied by ingested starch or from the intracellular breakdown
of stored fatty acids and glycogen (3, 171, 470). Ruminants,
such as sheep, obtain energy primarily from short-chain vola-
tile fatty acids, such as acetate, propionate, and butyrate,
absorbed from the gut. These fatty acids are produced in the
rumen by the action of rumen microorganisms, which anaero-
bically metabolize the complex polysaccharides of ingested
pasture (15, 171, 270, 341). The precursors for fatty acid
synthesis in humans and ruminants are glucose and acetate,
respectively (15). In humans, fatty acid synthesis primarily
occurs in the liver; in ruminants, it occurs in adipose tissue (15,
171), as well as in mammary tissue of lactating animals (15).
Despite these metabolic differences, there are substantial sim-
ilarities of the regulatory systems within human and ruminant
tissues that govern energy homeostasis. Furthermore, before
birth and microbial colonization of the rumen, the main energy
source for the sheep fetus is glucose supplied across the
placenta (28), as it is for the human fetus. Transition to free
fatty acids as the main energy source in sheep occurs after birth
with establishment of the rumen. Importantly, for studies of
neonatal nutrition, the neonatal lamb remains functionally
monogastric, rather than being a ruminant. Closure of the
esophageal groove occurs as part of suckling behaviors exhib-
ited when young lambs drink milk from a teat or from the ewe
(456). This process is mediated by vagus nerve activity and
allows milk to bypass the reticulum and rumen and directly
enter the abomasum (331, 456). Bacterial colonization of the
rumen begins within the first 2 days after birth in lambs reared
with their dams, and cellulolytic bacteria appear within the 1st
wk or so of life, even before the lambs begin to consume solid
feed (128). Bacterial numbers in the rumen continue to in-
crease and the proportions of bacterial types continue to change
throughout the first few months of life (128). Concentrations of
volatile fatty acids in rumen contents, derived from bacterial
digestion in the rumen, are minimal at 3 days of age and
increase gradually until ~8 wk of age, indicating a gradual
transition in energy source and metabolism from nonruminant
to ruminant over this period (366).

Similarities between sheep and human metabolism are fur-
ther evidenced from metabolic pathway reconstruction using
genes encoding metabolic enzymes based on a draft bovine
genome sequence (�98% homology of the ovine with the

bovine genome sequence) (398). Although the analysis was
impacted by the draft nature of the bovine genome sequence,
�86% of all mammalian biochemical pathways were identified
in the cow (i.e., the percentage of potential pathway “holes”
was 14%). In particular, ruminants and nonruminants have
similar regulatory and enzymatic components for lipogenesis,
lipolysis, and adipogenesis (100, 329, 398). For example, the
leptin signaling pathway and its tissue-specific functions or-
chestrating satiety appear to be very similar in humans and
ruminants (45, 65, 69, 70). Similarly, the key transcription
factors controlling the expression of a cascade of genes in
white and brown adipose tissue (WAT and BAT, respectively)
are generally highly conserved between humans and sheep
[96% peroxisome proliferator-activating receptor-� (PPARG),
87% PR domain-containing protein 16 (PRDM16), and 97%
signal transducer and activator of transcription 5A (STAT5A)
amino acid conservation (unpublished data)]. Therefore, it is
likely that differences in energy regulation between mamma-
lian species are primarily mediated by changes in input signal
timing and intensity and the magnitude and range of tissue
responsiveness, rather than major architectural modifications in
biochemical and signaling pathways.

The timing of development and functional maturation of
insulin-secreting 	-cells in the pancreas occurs predominantly
before birth in sheep, as in humans, but extends into the
suckling period in the rat. Insulin-producing cells can first be
detected histologically at ~25% of full term in humans and
sheep, but these cells do not appear until ~60% of full term in
the rat (377). Functional maturation, including development of
glucose-responsive insulin secretion and increasing insulin
abundance, occurs before birth in sheep (129, 465) and humans
(227, 348, 365), but remodeling and maturation of the pancreas
occur postnatally, at 1–2 wk of age, in the rat (394).

Hepatic drug metabolism. In humans, the fetal liver has a
limited capacity to metabolize drugs compared with the adult;
for example, there is lower mRNA expression of the cyto-
chromes P-450 CYP2C9, CYP2C19, and CYP3A4 (191). With
increasing gestational and postnatal age, expression of these
cytochrome P-450 enzymes increases (191). The same is true
in the sheep. Cytochrome P-450 enzyme expression is lower in
fetal and newborn than adult sheep (369). mRNA expression of
CYP2C19, CYP2D6, and CYP2A6 is lower in fetal than adult
sheep (369), and cytochrome P-450 protein expression is lower
in lambs than adult sheep (141). Microsomes extracted from
frozen liver tissue have been used to show lower capacity to
metabolize rosiglitazone, a CYP2C9 substrate, in the fetal than
adult sheep liver (33). This similar ontogeny of drug-metabo-
lizing enzymes in sheep and humans enables use of the sheep
as a model to determine the timing of development of specific
drug-metabolizing systems. In addition, by using the chronic
catheterized sheep, drug concentrations can be measured in the
maternal and fetal blood and amniotic fluid over a prolonged
period of time (32, 314), which is an advantage over small-
animal models or human studies. Additionally, the sheep
model has been used to study maternal drug use and its effect
on the fetus (314, 315).

Fat phenotype. In mammals, there are typically three types
of adipose tissue: WAT, BAT, and beige adipose tissue. These
tissues are functionally, morphologically, and developmentally
distinguishable. WAT has primary responsibility for storage of
energy in the form of triglycerides, while BAT and beige
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adipose tissue have thermogenic capabilities, as well as roles in
energy homeostasis (9, 418). Beige adipocytes are typically
induced within WAT depots. BAT is present as discrete depots
in hibernating mammals and the young of most mammals
(excluding pig), protecting them from hypothermia by gener-
ating nonshivering thermogenesis. Mammalian species show
remarkable differences in the developmental timing of BAT
(418–420). Altricial mammals, such as mice and rats, develop
BAT postnatally, in parallel with development of the hypotha-
lamic-pituitary-adrenal (HPA) axis, and maintain BAT
throughout life. In contrast, humans and sheep, which produce
precocial young, develop BAT in the last third of gestation,
again, in parallel with development of the HPA axis, and this
BAT is metabolically activated by cold- and birth-related
hormones in the immediate postnatal environment. Within a
relatively short period after birth, activity of the HPA axis in
humans and sheep declines and, correspondingly, most BAT
depots disappear, with some replaced by WAT (367). Thus, in
contrast to adult rats and mice, adult humans and sheep have
little BAT. It should also be noted that percent body fat at birth
is higher in humans (16%) than sheep (2%), partly due to
greater placental transport of fatty acids (297).

HPA axis. In all mammalian species studied to date, with the
exception of rats and mice (76), circulating glucocorticoid
concentrations increase in plasma of fetuses approaching full
term (124, 132, 285) (Fig. 5). The magnitude and timing of this
preparturient surge in fetal plasma glucocorticoid vary between
species and may be a result of activation of the fetal HPA axis
(67) and/or reductions in levels of plasma corticosteroid-bind-
ing proteins (66, 472) and/or an increased transplacental flux of
glucocorticoids from the maternal to the fetal circulation (250).
The preparturient surge in fetal plasma glucocorticoid concen-
tration is important for regulation of structural and functional
maturation of a number of fetal organs, promoting a switch
from tissue accretion and cellular proliferation to tissue differ-
entiation (130, 132). This prepares fetal tissues, homeostatic
mechanisms, and physiological systems for the successful
transition to neonatal life and independent survival ex utero
(132, 266, 412).

Importantly, the timing of the fetal plasma glucocorticoid
surge is very similar between sheep and humans (Fig. 5). In
contrast, in precocial species, such as the rat and mouse, the
plasma glucocorticoid surge occurs postnatally (286). Conse-
quently, rodent species are born with a high degree of prema-
turity, and the postnatal rat is an established model of human
prematurity, inasmuch as postnatal development of physiology
in this species compares with prenatal milestones in the human
(303, 403, 455). In marked contrast, the sheep provides an
excellent model for investigation of glucocorticoid-induced
maturation of several key fetal organs and systems before birth
in humans.

Thus, there is clear evidence that the timing, in relation to
birth, of the maturation of major organ systems is more similar
between humans and sheep than between humans and rodents.

Fact 6: ‘Omic Studies in Sheep Are a Helpful Tool in
Understanding Complex Gene-Environment Interactions

Use of high-resolution genetic maps [https://www.hgsc.bcm.
edu/other-mammals/sheep-genome-project (216)] to sequence
and assemble the sheep genome onto chromosomes has al-
lowed much faster development of methodologies for studies
of ovine gene expression in recent years. In addition to real-
time PCR, RNA sequencing (RNA-Seq) and microarrays have
been utilized to measure gene expression in sheep tissues (146,
243, 375, 381, 443). In addition to coding genes, RNA-Seq and
custom-designed microarrays have also been used to measure
microRNA expression in sheep (260–262, 316). The ability to
perform fetal surgery to monitor and manipulate the fetus and
then collect tissue for primary cultures and RNA-Seq, partic-
ularly the ability to relate these in vivo physiological measures
and analysis of blood samples in the same animals, is unique to
the use of sheep as an animal model (Fig. 6) (62, 75).

Extant mammalian species have evolved different numbers
of chromosomes, different relative positions of centromeres,
and large-scale intra- and interchromosomal rearrangements
and translocations (117, 480). The mouse and rat large-scale
genomic organizations are more dissimilar to the human ge-
nome than are most other mammalian genomes (117, 216,
241). The evolution of mammals can be traced through the
mapping of conserved syntenic blocks, i.e., conserved genomic
regions containing a contiguous order of genes on a chromo-
some, reflecting a common ancestral origin (Fig. 7). Because of
their relatively recent evolution from a common ancestor, the
sheep and cow genomes show a high level of chromosomal
structural conservation (i.e., large syntenic blocks), although
there are some species-specific differences (117, 216). Com-
parisons of ruminant and human genomes show substantial
numbers of chromosomal rearrangements, although these pairs
retain large syntenic blocks (117, 216). The rat and mouse
genomes, however, have undergone substantially more chro-
mosomal, particularly interchromosomal, rearrangements than
the human (or ruminant) genome (117). The evolutionary
distance between species can be quantified by measurement of
reversal distance for these chromosomal rearrangements, i.e.,
the minimum number of reversals of major syntenic blocks that
transforms one genome into the other (401). Use of a coarse
chromosomal resolution shows the reversal distance between
recently diverged species, such as chimpanzee and human, to
be relatively low (11 units). The cow-human comparison has a

Fig. 5. Mean fetal concentrations of plasma cortisol with respect to time (days
before birth) from delivery in sheep (�), pig (Œ), human (Œ), guinea pig (□),
and horse (o). [From Fowden et al. (132) and reproduced with permission.]
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much larger reversal distance (185 units), but this is, neverthe-
less, significantly less than the mouse-human and rat-human
comparisons (262 and 261 units, respectively). Thus, mouse
and rat comparisons with humans are more divergent than cow
(and, likely, sheep) comparisons with humans. Because chro-
mosomal rearrangements during evolution may disrupt long-
range genomic connectivity between distal regulatory elements
and genes, these rearrangements have the capacity to alter
coordinated regulation of multiple genes within these genomic
domains (327). Indeed, these chromosomal structural changes
are likely to be important features of speciation. The human
ENCODE project used chromosomal conformation and chro-
matin modification analyses to map many types of multigene
chromosomal domains that show coordinate regulation of gene
expression (119, 229). Coordinated gene regulation is impor-
tant in developmental programs, tissue-specific patterning, and
responses of genes to environmental influences. The greater
extents and types of chromosomal rearrangements in rat and
mouse than other mammals indicate that they are poorer model
organisms for understanding coordinated multigene regulation
within large chromosomal domains in humans. The extent of
nucleotide conservation of ruminant genes with single-copy
human orthologous genes is also greater than that of mouse and
rat genes (117). The short generation times of rats and mice are
postulated to cause higher rates of mutation in these species,
which may underlie the higher levels of gene sequence diver-
sity and chromosomal structural alterations of rats and mice
than other mammals (256).

There is considerable interest in complex genetic traits in
humans. Genetic predisposition to complex traits often inter-

acts with strong environmental factors, which together define
the overall probability of trait occurrence. For most cases, how
this interaction occurs is unclear. Complex genetic traits in all
species are polygenic, with only a small contribution from each
gene. The genetics of complex traits are analyzed using ge-
nome-wide association studies, which typically require high-
density single-nucleotide polymorphism (SNP) chips
(~800,000 SNPs) and very large phenotyped populations (typ-
ically tens to hundreds of thousands of outbred individuals) to
obtain sufficient statistical power and genome resolution (471).
High-density SNP chips and very large phenotyped popula-
tions are available from the cattle and sheep industries, which
have facilitated extensive genome-wide association analyses to
identify ovine and bovine genomic regions and genes contrib-
uting to a variety of production traits. This approach has
identified several genes contributing to complex traits, such as
body size in ruminants, that also contribute to similar complex
traits in humans (7). Thus, ruminant genetics may help inform
the human genetics contributing to complex traits and also aid
in understanding how interactions between genetics and envi-
ronment underpin these traits. The lack of availability of very
large outbred populations of rats and mice limits similar studies
in these model species.

Fact 7: Epigenetic Responses in Sheep to an Altered
Perinatal Environment Can Be Usefully Explored Across
Different Time Periods in Development

In contrast to genetic mutations, epigenetic changes occur in
the absence of alterations in the underlying DNA sequence,

Fig. 6. Studies can be performed in the sheep fetus in utero, and then tissue [e.g., brain (astrocytes and microglia) (75), pancreas (isolated islets), or heart
(cardiomyocytes)] can be collected for molecular analyses (316), in vitro primary cell culture (449), ex vivo functional studies, or structural studies (51). BP,
blood pressure; HR, heart rate; EEG, electroencephalogram; rt PCR, real-time polymerase chain reaction; ChIP, chromatin immunoprecipitation; miR,
microRNA; COBRA, combined bisulfite restriction assay.
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and an increase or a decrease gene expression can be revers-
ible. Epigenetic changes are primarily due to methylation of
DNA, microRNAs, and chemical modifications of DNA-asso-
ciated proteins called histones. The Encyclopedia of DNA
Elements (ENCODE) project has mapped a wide range of
epigenetic modifications at nucleotide resolution in a broad
spectrum of human and mouse tissues and cells (119). The
project identified many novel and overarching epigenetic struc-
tural and functional modifications that are conserved in other
mammalian tissues. This data-rich information resource is
continually updated, and a significant amount of the human and
mouse epigenetic information has been successfully transposed
onto the genomes of cattle and sheep (334). This transposed
information agrees well with a small selection of epigenetic
data independently generated using sheep and cattle tissues.
There is, however, inevitable information loss in this process,

caused by limitations in the ability of the sequences used to be
mapped, to define epigenetic modifications across the mamma-
lian species and species-specific modifications. The recent
Functional Annotation of Animal Genomes (FAANG) initia-
tive has begun to generate high-resolution epigenetic maps for
a number of mammalian production species and tissues, espe-
cially sheep and cattle (13), and will provide additional de-
tailed species-specific information. Genome-wide mapping of
specific chromatin modifications and DNA methylation in a
limited tissue range from sheep and cattle has also been
undertaken (59, 441, 444).

Confirmation of the functional importance of these epige-
netic changes for sheep, as shown in rodents and humans, has
also been provided through a number of smaller-scale studies
demonstrating regulation of specific genes through DNA meth-
ylation and histone modifications in fetal sheep tissue (450,

Fig. 7. Conserved syntenic blocks for all chromosomes
identified at coarse resolution by pair-wise species com-
parisons of chimpanzee, cow, sheep, mouse, and rat ge-
nomes with the human genome. Cow and sheep compar-
isons with the human genome generally show larger syn-
tenic blocks than mouse and rat comparisons with the
human genome. Pair-wise matrices were constructed using
Genomicus (283).
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452, 476, 477). This approach has also been taken to determine
if these mechanisms are involved in programmed effects on the
fetus that persist after birth. DNA methylation has been shown
as a programming mechanism for blood pressure and glucose
tolerance in such sheep studies. For example, 21-day-old low-
birth-weight lambs have higher expression of insulin-like
growth factor 2 (IGF2) receptor (IGF2R) due to increased
acetylation of histone H3K9 at the IGF2R promoter (452)
without changes in DNA methylation (453). In contrast, un-
dernutrition in the periconceptional period decreased IGF2
gene expression in the adrenal gland of lambs 4 mo after birth
due to decreased DNA methylation in the proximal CTCF-
binding site in the differentially methylated region of the
IGF2/H19 genes (477). Furthermore, DNA methylation
changes were also observed in fetal liver exposed to pericon-
ceptional methyl donor-deficient diets. Sinclair et al. demon-
strated that clinically relevant deficiency of vitamin B12, folate,
and methionine at the time of mating in sheep caused epige-
netic modifications to genes associated with blood pressure,
insulin resistance, obesity, and immune function (400). This
study also showed sexually dimorphic effects, with males
displaying increased DNA methylation and more adverse adult
phenotype. These studies demonstrated the importance and
potential of the sheep to study the reversibility of epigenetic
modifications by nutritional therapeutics or interventions dur-
ing pregnancy. Like humans, sheep are a large outbred species
with similar timings of pre- and postnatal development. Studies
in humans continue to further our understanding of epigenetics.
However, because of the practical and ethical limitations of
using humans, sheep offer both a wider scope for sampling
during pregnancy and greater potential for controlled studies at
different time points in gestation.

Genetic imprinting is a special case of epigenetic control of
gene expression where one copy of a gene is imprinted (si-
lenced) and the other is expressed in a parent-of-origin-specific
fashion. Genes that promote fetal growth tend to be expressed
from the paternal allele, while those that inhibit fetal growth
are expressed from the maternal allele. Thus, imprinted gene
expression in offspring is said to reflect genetic conflict be-
tween paternal and maternal genomes. Examples of these are
IGF2 and its specific receptor IGF2R (462). IGF2 is expressed
from the paternal allele and promotes placental and fetal
growth in all mammalian species studied, while IGF2R, which
inhibits fetal growth, is imprinted in most species, but not in
human placenta (56). Because the complete complement of
imprinted genes in sheep has not been defined, comparisons
with other species are difficult.

Fact 8: CRISPR Technologies Open New Windows of
Opportunity for Genetic Manipulation Studies Performed in
Sheep

Genetic studies in multiple mammalian species, including
humans, have shown associations between species-specific
genetic variants and a wide range of simple and complex traits.
In particular, hundreds of health-related human genetic asso-
ciations have been discovered (442). However, there is a major
limitation in proving that these human genetic variants are
causal, and there is generally very poor understanding of how
causal genetic variants affect gene function and phenotype,
especially when the variants are located in presumed regulatory

elements positioned outside protein-encoding exon sequences.

This limitation can only be resolved by genetic manipulations

in animal models.

Conventional genetic engineering technology and various

mRNA suppression technologies used over the last 20 years

have been successfully applied to several large-animal models,

including sheep (Table 2). For example, mRNA knockdown

using a lentiviral-mediated short-hairpin RNA was used to

demonstrate that suppression of chorionic somatomammotro-

pin hormone in sheep caused IUGR, impacting placental and

fetal liver development (20). Related studies using similar

technologies demonstrated that proline-rich 15 (PRR15)

mRNA in the ovine trophectoderm is essential for embryo

viability (142, 374). However, the majority of studies have

been confined to the mouse and rat because of their greater

technological compatibility, shorter generational times, and

lower costs. The recent development of CRISPR and related

genome-editing technologies enables rapid and precise genetic

modification of the genome (4). CRISPR technology is more

versatile than conventional genetic engineering, as it can add,

subtract, or substitute DNA with precision in the genome of

any animal. This ability enables easier and faster engineering

of a genetically modified animal for investigation of gene

function and regulation. The impact of the technology is

evidenced by 11 publications using CRISPR technology in

sheep in 2017 compared with none in 2016 and widespread

application of the technology in most large domestic animal

species (249).

One application of CRISPR technology is introduction of a

genetic variant associated with human disease into the approx-

imate homologous region in the genome of a large-animal

model for investigation of the variant’s gene regulatory func-

tion and associated phenotype, thereby informing human

health. Another application is the engineering of sheep as

models for investigation of human neurodegenerative diseases

(318). Moreover, traditional selective breeding of animals by

humans over the last 10,000 years of domestication radically

altered the form and function of these animals and generated a

highly informative genetic resource for understanding the ge-

nome-phenotype relationship. This human-directed evolution-

ary process selected for advantageous natural allelic variants in

the population, but this is limited by the extent of genetic

variation available for selection in the founding population and

the slow pace of generational changes. CRISPR technology

can be used to more rapidly introgress favorable natural alleles

or de novo genetic variants into large populations of livestock

animals, thereby boosting their value. One example is produc-

tion of sheep with an inactivating mutation in the myostatin

gene that results in skeletal muscle hypertrophy (77); other

examples include genetic alterations to a range of genes im-

pacting reproductive performance (55, 479), adipose tissue

deposition (55, 339), and wool color and length (195, 257,

478). Moreover, genetic variants associated with, for example,

growth, metabolic, and reproductive traits in large-animal spe-

cies may highlight human genes and genetic variants that

impact similar functions. Thus there has been a rapid update of

gene-editing technology for multiple purposes in sheep, some

of which will make the sheep a very useful model of human

disease.
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Fact 9: Sheep Can Be Used in Neurodevelopmental Studies
Owing to Similarities Between Stages of Brain Development
in Sheep and Humans

Current research in sheep models is informing clinical prac-
tice by developing an understanding of how clinical interven-
tions may interact with other exposures such as hypoxia to
affect neurodevelopmental outcomes (251). As discussed
above, the capacity to instrument and then directly study the
nonanesthetized fetal sheep, including continuous measures of
fetal neurophysiological responses to in utero events, hypoxia,
and maternal drug administration, is a particular advantage of
the sheep for such studies (311, 313). Preclinical sheep models
also allow initial testing of interventions to improve neurode-
velopmental outcomes, such as melatonin administration,
which has been evaluated in studies aiming to reduce brain
damage after birth hypoxia (474), chronic neonatal hypoxia
(183), and IUGR (301). Positive findings in the preclinical
model of IUGR led to evaluation of melatonin in pilot human
clinical trials (301), again demonstrating the potential for
translation from sheep to human pregnancy.

Another emerging application for fetal sheep models in the
study of the programming of neurodevelopment is the evalu-
ation of the impact of maternal stress during pregnancy, which
is achieved by intermittent and unpredictable maternal isola-
tion in the last trimester (102). Isolation is also used as a
stimulus in progeny tests characterizing effects of the maternal
environment (e.g., periconceptional undernutrition) on later
postnatal HPA axis development in juvenile and adult sheep
(182). The sheep has also proved a useful model for studies of
postnatal learning and the functional impacts of altered neuro-
development (74). Complex learning requiring executive func-
tion, including learning to associate specific shapes and colors
with rewards and reversal learning requiring animals to learn
changes in these cues, has been demonstrated in sheep (74,
317). Appropriate habituation to handling and test conditions is
required, and prior experience needs to be consistent between
animals, since sheep remember maze-learning tasks (181, 199),
as well as faces (236), for at least several months.

Fact 10: Many Important Placental Physiological
Characteristics Are Shared Between the Sheep and Human

The mammalian placenta is best known for its critical role in
maternofetal gas, nutrient, and waste exchange. It also orches-
trates maternal physiological adaptations to pregnancy essen-
tial to pregnancy success by secreting abundant steroid and
peptide hormones and promoting immune tolerance of the
conceptus. For the purpose of brevity, this section focuses on
comparisons between sheep and humans as they relate to gas
(O2) and selected nutrient (glucose, amino acids, and fatty
acids) exchange and metabolism. One of the unique advantages
of the sheep is its large size, which allows placement of
catheters to facilitate collection of serial blood samples from
both maternal and fetal sides of the placental barrier in an
unanesthetized state. This facilitates the in vivo unstressed
study of placental metabolism (459), which at times is at odds
with ex vivo preparations (395). Utilization of these in vivo
preparations has permitted unique insight into real-time in vivo
placental gas and nutrient consumption and transport and has
highlighted a number of important physiological similarities

between sheep and human placenta (1, 353), despite obvious
structural differences.

Placentas are classified based on their gross anatomic ap-
pearance (shape), as well as the type of exchange interface and
interdigitation of fetal chorionic villi with the endometrium.
The latter is a histological classification based on the maternal
tissue layer in contact with the fetal chorionic epithelium
(trophoblast). The differences between sheep and human gross
and histological types have often been thought to limit the
potential translation and relevance of studies on sheep pla-
centa. However, a number of important gas and nutrient ex-
change parameters highlight similar function and metabolism
between the sheep and human, rendering the sheep a useful
model in terms of placental function.

The placenta is defined as the apposition or fusion of the
fetal trophoblast with the maternal endometrium (228). The
chorionic villi form the interface between the maternal and
fetal circulations. In humans and some primates, rodents, and
rabbits, the placenta is classified as discoid (a single disk-
shaped exchange organ) and hemochorial. In the hemochorial
placenta, originally described by Grosser (136, 228), the fetal
chorionic epithelium (trophoblast) is bathed in maternal blood,
as the fetal chorionic villi have extensively eroded through the
maternal uterine luminal epithelium, endometrial connective
tissue, and endothelium, exposing them to maternal blood.
However, there are variations in the number of intervening
trophoblast layers. In humans, the placenta is hemomono-
chorial, while in the mouse, a species often used for placental
studies, the placenta is hemotrichorial, with three intervening
trophoblast layers. In addition, the mouse placenta is labyrin-
thine, in contrast to the villous structure of the human placenta.

Other mammalian species have placentas with different
gross and histological structure. Ruminants, such as sheep,
have a cotyledonary (multiple, discrete areas of attachment for
exchange) placenta that is synepitheliochorial in nature (473).
In sheep, chorionic villi (fetal tissues) become highly interdig-
itated with the maternal endometrium, and fetal trophoblast
binucleate cells cross from the fetal epithelium and fuse with
maternal luminal epithelial cells to form a fetomaternal syncy-
tium. However, these cells never cross the maternal epithelial
basement membrane. In early pregnancy, the developing cho-
rionic villi, which together constitute the fetal cotyledons,
associate with specialized sites within the uterus, termed car-
uncles, which are well-vascularized regions of nonglandular
endometrium (380). Together, the cotyledon and the caruncle
are termed a placentome.

Independent of differences in shape and interhemal mem-
brane interaction, one of the major structural similarities be-
tween human and sheep placenta is the architecture and func-
tion of the villous tree surrounded by the trophoblast. The
villous tree is the core of the functionally relevant microarchi-
tecture of the placenta. In both species, the villous tree is
divided into stem, intermediate, and terminal villi, all of which
contain appropriate fetal stem arteries and veins, intermediate
arterioles and venules, and terminal capillaries. In the sheep,
the epitheliochorial surface folds to form these villi, and on the
fetal side, each villus has a central arteriole, which gives rise to
a number of branches. Studies examining the pattern of pla-
cental perfusion highlight that both the sheep and human
placenta display properties of a venous equilibrator, i.e., ma-
ternal and fetal blood flow in a parallel (concurrent) direction
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(122), giving rise to the near equalization of the venous streams
of maternal and fetal circulation (29, 458). However, equili-
bration cannot occur, because the transplacental diffusion of
O2 is across a placenta (trophoblast) that consumes O2 (29). In
a human study examining uterine-umbilical saturation and
venous PO2 differences, uterine and umbilical venous blood
was sampled during cesarean section (135), and the normal
uterine-umbilical PO2 difference near term was determined to
be ~10 Torr, which is comparable to the ~14-Torr uterine-
umbilical venous PO2 difference in sheep (461). This concur-
rent perfusion pattern is in contrast to horse, rabbit, and guinea
pig placentas, which display countercurrent exchange, where
fetal and maternal blood flow in opposite directions and effi-
ciencies in exchange are encountered as the venous output
equilibrates with or exceeds the arterial input of the other
stream (458).

Adequate nutrient delivery to the fetoplacental unit relies on
adequate placental perfusion. During pregnancy, both sheep
and human placenta display progressive increases in weight (as
well as an increasing fetal-to-placental weight ratio). Uterine
blood flow increases to a similar extent in humans (2.5-fold)
and sheep (3-fold) over gestation (29). O2 crosses the placenta
by simple diffusion and is limited by blood flow (460). The
transplacental PO2 gradient (the driving force for O2 diffusion)
in these two species is relatively similar near term: indwelling
catheter data collected from sheep pregnancies (378, 458)
mirror cordocentesis data collected from human pregnancies
(29, 353). Furthermore, O2 consumption of the human placenta
is similar to that of the sheep placenta near term (37 and 34
ml·min
1·kg fetal wt
1, respectively) (48, 297), and O2 con-
sumption by both human and the sheep placenta is ~40% of
total uterine O2 uptake (64). This high placental O2 consump-
tion facilitates fetal O2 supply across the basal membrane of
the trophoblast and, importantly, placental oxidative phosphor-
ylation of glucose, yielding ATP, and promotes placental
transporters and hormonal synthetic properties (395). Indeed,
the fractional protein synthesis rate of the sheep placenta has
been determined in vivo to be ~60%/day (64) compared with
30%/day in human ex vivo studies (64).

In addition to O2, glucose is a key nutrient for placenta
metabolism, and its transport and metabolism share similarities
between the sheep and human placenta. Glucose is the primary
substrate for fetal development, and a reliable placental supply
is necessary, given that human and sheep fetuses normally
have no detectable capacity to produce glucose, while in both
species supply is driven by a maternal-fetal gradient (97, 178).
Placentas of both species express similar facilitative glucose
transporters (SLC2A1, SLC2A3, and SLC2A8) (269, 284,
411). A number of other members of this family of glucose
transporters (SLC2A4, SLC2A8, SLC2A9, and SLC2A12)
have been identified in the human placenta (411), and further
investigations of their presence in the sheep placenta are
warranted. These transporters facilitate glucose movement
down a concentration gradient through the maternal-facing
membrane of the microvillous membrane, through the tropho-
blast and fetal endothelium, into the fetal circulation by mov-
ing through the basal membrane trophoblast layer facing the
fetus. As in the case of O2, the placenta of both sheep and
humans consumes large amounts of glucose (~60–80% of
uteroplacental uptake) (97). In common with the human pla-
centa, the sheep placenta converts large amounts of glucose to

lactate to further accentuate the transplacental gradient and also
lock carbohydrate into the fetal/placental compartment (28,
346).

In fetal life, concentrations of fructose relative to glucose are
significantly higher in sheep than human fetuses, although at
birth fructose concentrations fall rapidly to trace levels. It is
plausible that this reflects the more developmentally mature
state of newborn lambs than humans and, therefore, a greater
need for fetal energy substrate (166, 242, 421). To achieve high
fetal fructose concentrations, the sheep placenta converts ma-
ternal glucose to fructose, which crosses into the fetal circula-
tion. The fetal liver and other tissues then convert fructose to
glucose-1 phosphate and glucose 6-phosphate, which provide
energy substrate through the glycolytic pathway and citric acid
cycle. In addition, fructose may further promote fetal growth
via activation of the mammalian target of rapamycin signaling
pathway (242). Fetal fructose does not cycle back to the
maternal circulation, and thus the sheep fetus acquires and
retains energy from its mother to expedite growth and matu-
ration. Although fructose concentrations are lower in the hu-
man than sheep fetus, the polyol pathway that synthesizes
fructose is highly active in early human pregnancy, leading to
higher polyol and fructose concentrations in fetal coelomic and
amniotic cavities than in maternal serum, and may be an
adaptation to the low-O2 environment (215). Additionally, in
both sheep and human placentas the aldose reductase pathways
(the first step in fructose and polyol synthesis) are highly
active. Thus, in human and sheep gestation, fetal fructose
concentrations are higher than maternal fructose concentra-
tions.

Sheep and human placentas share similarities in amino acid
transport and in the substantial metabolism of several amino
acids (72, 193, 355, 379, 429). Stable isotope methods have
been used to investigate transplacental flux of essential amino
acids in pregnant ewes (354) and in humans (139), and in both
species there is net fetal uptake of essential and nonessential
amino acids (193, 354). In addition, these studies have high-
lighted that amino acid uptake appears able to occur against
concentration gradients, with higher fetal than maternal con-
centrations for several amino acids, including in IUGR preg-
nancies of both species (379). The fetoplacental unit of sheep
and humans also metabolizes and produces specific amino
acids such as glycine and glutamine, which are released into
the maternal circulation, and metabolites such as ketoisocap-
roic acid (193, 306). In humans, uptake of amino acids from
the maternal circulation into the placenta involves many trans-
port systems; the best studied of these are the Na-dependent
neutral amino acid transporter system (system A) and the
Na-independent neutral amino acid transporter system (system
L), the latter of which is critical for essential amino acid
uptake. Transport from the trophoblast to the fetus is less well
studied, but it is understood to be predominantly via molecules
such as system A in conjunction with system L transporters
(439). The expression patterns of specific transport systems
have not been as clearly defined in the sheep as in the human
placenta, although various transporter system types have been
investigated using nonmetabolizable amino acids with different
affinities for different amino acid transport systems. Results of
these studies in sheep suggest that, consistent with the human,
neutral amino acids are taken up into the placenta from the
uterine circulation by transporters displaying characteristics
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similar to system A and essential amino acid uptake is via
transporters displaying properties to similar to system L (94,
224).

Transfer of fatty acids across the human placenta is com-
plex. In human placenta, lipases on the maternal-facing syn-
cytiotrophoblast membrane release nonesterified fatty acids
(NEFAs) from lipoproteins to allow their uptake down a
concentration gradient into the syncytiotrophoblast by multiple
fatty acid transporters. NEFAs are bound to intracellular fatty
acid-binding proteins (FABPs) within the syncytiotrophoblast
and then transferred to the fetal circulation via fatty acid
transporters expressed on the fetal-facing syncytiotrophoblast
membranes (248). The fatty acid transporter family members
SLC27A1–4 and 6 are expressed in the human placenta, and
the SCL27A1 protein has been localized to both maternal- and
fetal-facing membranes. The human placenta also expresses
placenta-specific membrane-bound FABP (FABPpm) on the
maternal-facing membrane only, which is likely important for
transport of long-chain polyunsaturated fatty acids into the
placenta and fatty acid translocase (CD36). Potentially, NEFAs
may also cross the placenta by simple diffusion, although the
contribution of this process is unclear. The ovine placenta also
expresses lipoprotein lipase, as well as the fatty acid transport-
ers SCL27A1, SCL27A4, CD36, and FABPpm (284, 481).
Consistent with the localization pattern in the human placenta,
SLC27A1 is localized to both maternal- and fetal-facing mem-
branes of ovine trophoblasts (481). Fetal uptake of fatty acids
is thought to be much lower in sheep than humans, given the
lack of difference between umbilical arterial and venous con-
centrations of free fatty acids in normal ovine pregnancies
(297). Somewhat in contradiction to this hypothesis, however,
maternal human obesity upregulates placental SCL27A1,
SCL27A4, and CD36 expression and increases fetal circulating
NEFA concentrations (481). Placental expression of lipopro-
tein lipase, transporters (SCL27A4 and CD36), and FABPpm
also increases in undernourished ewes, suggesting that fatty
acid transport to the fetus is physiologically important (284).

In summary, the sheep and the human placenta display
similar concurrent perfusion properties and transplacental O2

and glucose characteristics, consumption, and metabolism,
although full characterization and species differences in as-
pects of amino acid and fatty acid transport and metabolism
require deeper investigations. All these features are critical to
facilitation of normal fetal development and growth. However,
these demonstrated similarities between the two species high-
light the importance and utility of the sheep placenta as a
model for aspects of human placental function and metabolism.

Fact 11: Sheep Are an Important Model of Glucose
Metabolism During Pregnancy and the Programming Effects
of an Adverse Uterine Environment on Glucose Metabolism
in the Offspring

The fact that adult sheep have a metabolism largely fueled
by short-chain fatty acids is often used as an argument for
limitations in the use of this species as a model for human
pregnancy. What is not well understood is that, under normal
circumstances, only very small amounts of fatty acids cross the
ovine placenta (116). Like the human conceptus, the sheep
fetus and placenta depend on glucose as the main substrate,
along with amino acids, for growth (28). After the first few

days of postnatal life, nearly all the glucose that enters the
reticulorumen (via ingestion of maternal milk) is metabolized
quickly by the microbial flora. Pregnancy in the sheep, there-
fore, requires maternal glucose production by gluconeogenesis
and effective transport across the placenta. One of the main
products of rumen microbial fermentation, propionate, is the
preferential substrate for gluconeogenesis, but ewes are also
well equipped to produce glucose from glycerol, ketones, and
amino acids (329). During pregnancy, ewes develop pregnan-
cy-related insulin resistance (214, 363), which also occurs in
humans and rodents (254, 363). This generates a concentration
gradient of glucose that favors transplacental glucose transport
by facilitated diffusion and placental glucose transporters that
are common to sheep and humans (31, 115, 177, 207, 411).
One difference between sheep and human fetuses relates to the
higher level of circulating fructose in the former, which may be
due to a specific metabolic adaptation of the ruminant placenta
(197).

The fetal sheep pancreas is increasingly glucose-sensitive as
pregnancy proceeds (10, 129, 345), and the elegant fetal
pancreatectomy experiments of Fowden et al. (133) demon-
strated the clear importance of the glucose-insulin axis in ovine
fetal growth. The importance of glucose metabolism in sheep
during pregnancy (and lactation) strongly supports the argu-
ment that this species provides a more-than-useful paradigm
for the study of metabolism during human pregnancy.

Studies have been performed in sheep to test glucose toler-
ance via a glucose clamp and to determine the expression of
genes and molecules involved in insulin signaling in fat,
muscle, and liver samples in both the mother and fetus (259,
263, 350). Furthermore, the placental transfer capacity of
glucose can be studied in vivo, and the expression of glucose
transporters can be determined in the placenta. For example,
compared with control fetuses, the placentally restricted fetus
has lower placental glucose turnover (349), lower plasma
glucose concentration (324), and decreased GLUT4 expression
in skeletal muscle (324), associated with impaired insulin
secretion, but normal whole body insulin sensitivity (350). By
1 mo postnatal age, the low-birth-weight lamb exhibits whole
body insulin resistance, with gene expression changes suggest-
ing that skeletal muscle, but not liver, is a major site of insulin
resistance (89). Impaired insulin secretion relative to insulin
sensitivity occurs from early postnatal life to adulthood, par-
ticularly in males (143). These studies reinforce the utility of
the sheep in postnatal metabolic studies, particularly studies of
developmental programming, where the similar developmental
timing in sheep and humans means that events during preg-
nancy impact similar developmental stages in the fetus.

Fact 12: Sheep Are a Good Model to Investigate the Causes
and Consequences of Preterm Birth

There is clear evidence from clinical studies that a complex
interaction of socioeconomic, genetic, lifestyle, environmental,
and disease factors underpin a woman’s risk of preterm deliv-
ery. Accordingly, any discussion of a particular model’s rele-
vance to the study of preterm labor must be framed with
reference to preterm labor as a complex syndrome.

With regard to the sheep model of pregnancy, much of its
utility in advancing our understanding of prematurity relates to
studies focused on those preterm deliveries associated with
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abnormal intrauterine inflammation, which is commonly iden-
tified in association with infection of the fetus and gestational
tissues (5, 153, 387). Accordingly, the sheep model of preg-
nancy has been put to excellent use by a number of groups in
the development of interventions aimed at either preventing
preterm birth or alleviating the impact of prematurity on
gestational tissues and the neonate (106, 162, 204, 230, 322,
323).

In contrast to rodent (125, 384) and nonhuman primate (159,
160, 391) model systems, the introduction of florid intrauterine
infection and inflammation in the pregnant sheep does not
initiate preterm labor as long as the fetus remains viable (288,
413). This is clearly a departure from clinical observations in
humans of increased risk of preterm labor associated with
elevation of amniotic fluid and/or cord blood plasma cytokines
or the presence of chorioamnionitis/funisitis (155–157, 388).
Rather than being a hindrance to studying preterm birth, a
number of groups have put this unique feature of the sheep
pregnancy to excellent use in studying the impact of both acute
(234, 338) and chronic (244, 245) inflammation on the fetus,
changes in microbial populations in utero (85), and the ability
of experimental therapies to resolve infection (21, 232, 302)
and inflammation (208). Given its ability to tolerate surgical
instrumentation, the sheep fetus has proven to be a useful
model on which to perform compartmental analyses on the
origins and progression of intrauterine inflammation and fetal
inflammation deriving from the microbial agonist in the uterine
environment (231, 244, 468, 469). From a mechanistic per-
spective, experiments conducted with pregnant sheep have also
proven useful in understanding the role of key inflammatory
agents, including interleukin-1, interleukin-8, and tumor necro-
sis factor-�, in the initiation and propagation of fetal inflam-
mation and tissue injury (39, 204, 225, 326, 466). Lastly, in
keeping with the increased appreciation for the importance of
microbial diversity in influencing pregnancy outcomes (220), a
number of investigators have used the sheep model of preg-
nancy to investigate changes induced by microorganisms, no-
tably Ureaplasma parvum (189, 230) and Candida albicans

(288, 347), in fetal lung maturation and tissue inflammation.
Despite profound resistance to entering preterm labor in

response to intrauterine inflammation and/or infection, the
sheep model of pregnancy is clearly an important tool for
understanding the pathophysiology of infection-associated pre-
term birth. Moreover, the sheep model of pregnancy offers an
excellent model system for the design and testing of novel
antimicrobial and anti-inflammatory interventions. Also, be-
cause lambs can be reared for long-term studies, they are a
useful system to assess both the acute (i.e., perinatal) and
long-term outcomes of preterm birth, antenatal infection, and
treatments.

Sheep have recently been used to study the effects of
preterm birth on offspring development. Vaginal delivery can
be induced prematurely using drugs (such as epostane) that
inhibit progesterone synthesis, together with clinically relevant
doses of corticosteroids to stimulate lung maturation (90). With
use of such methods, lambs can be delivered vaginally as early
as 0.8 full term and raised to adulthood (335). Few other
laboratory species can survive preterm birth and be raised to
maturity. Studies on the effects of preterm birth in sheep have
been aimed at understanding the effects of early birth per se on

lung (92, 407), kidney (417), and heart and major artery (36,
91) development.

CONCLUSIONS

The aim of this review was to highlight the advances in
perinatal human medicine following translation of research
using the pregnant sheep, its fetus, and offspring. Despite
differences between the species, the similarities in the timing
of critical organ development in relation to birth between
humans and sheep are particularly valuable for translation.
Many questions around fetal development and the risk-to-
benefit ratio of pregnancy interventions aimed at improving
outcomes throughout life for mothers and their babies remain
to be answered, and sheep models of pregnancy complications
are better suited than commonly used laboratory species to
undertake these investigations.
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