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Abstract

Background

Globally, preterm birth is the leading cause of neonatal death with estimated prevalence and

associated mortality highest in low- and middle-income countries (LMICs). Accurate identifi-

cation of preterm infants is important at the individual level for appropriate clinical interven-

tion as well as at the population level for informed policy decisions and resource allocation.

As early prenatal ultrasound is commonly not available in these settings, gestational age

(GA) is often estimated using newborn assessment at birth. This approach assumes last

menstrual period to be unreliable and birthweight to be unable to distinguish preterm infants

from those that are small for gestational age (SGA). We sought to leverage machine learn-

ing algorithms incorporating maternal factors associated with SGA to improve accuracy of

preterm newborn identification in LMIC settings.

Methods and findings

This study uses data from an ongoing obstetrical cohort in Lusaka, Zambia that uses early

pregnancy ultrasound to estimate GA. Our intent was to identify the best set of parameters

commonly available at delivery to correctly categorize births as either preterm (<37 weeks)

or term, compared to GA assigned by early ultrasound as the gold standard. Trained mid-

wives conducted a newborn assessment (<72 hours) and collected maternal and neonatal

data at the time of delivery or shortly thereafter. New Ballard Score (NBS), last menstrual

period (LMP), and birth weight were used individually to assign GA at delivery and catego-

rize each birth as either preterm or term. Additionally, machine learning techniques incorpo-

rated combinations of these measures with several maternal and newborn characteristics

associated with prematurity and SGA to develop GA at delivery and preterm birth prediction

models. The distribution and accuracy of all models were compared to early ultrasound dat-

ing. Within our live-born cohort to date (n = 862), the median GA at delivery by early ultra-

sound was 39.4 weeks (IQR: 38.3–40.3). Among assessed newborns with complete data

included in this analysis (n = 468), the median GA by ultrasound was 39.6 weeks (IQR:

38.4–40.3). Using machine learning, we identified a combination of six accessible
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parameters (LMP, birth weight, twin delivery, maternal height, hypertension in labor, and

HIV serostatus) that can be used by machine learning to outperform current GA prediction

methods. For preterm birth prediction, this combination of covariates correctly classified

>94% of newborns and achieved an area under the curve (AUC) of 0.9796.

Conclusions

We identified a parsimonious list of variables that can be used by machine learning

approaches to improve accuracy of preterm newborn identification. Our best-performing

model included LMP, birth weight, twin delivery, HIV serostatus, and maternal factors asso-

ciated with SGA. These variables are all easily collected at delivery, reducing the skill and

time required by the frontline health worker to assess GA.

Trial registration

ClinicalTrials.gov Identifier: NCT02738892

Introduction

Preterm birth affects more than one in ten live births worldwide.[1] It is the single largest

cause of neonatal death and the second leading cause of death in children under the age of 5

years.[2] Many babies who survive a preterm birth face life-long morbidity, including cogni-

tive disability, poor motors skills, behavioral problems, hearing loss, chronic lung disease, and

decreased economic productivity.[3–5] The greatest burden of preterm birth falls on low-and

middle-income countries (LMICs), where more than 90% of the global 15 million preterm

deliveries occur each year[6] and where preterm infants carry a 7-fold higher risk of neonatal

mortality and a 2.5-fold higher risk of post-neonatal mortality compared to their full-term

counterparts.[7] In these settings, preterm infants often go unrecognized due to inaccurate

estimation of gestational age (GA). On the individual level, this can result in missed opportuni-

ties for clinical intervention; on the population level, this can limit the ability to monitor pre-

term birth rates and make informed decisions around policy and resource allocation.

Early prenatal ultrasound, widely regarded as the gold standard for GA dating, is unavail-

able in many LMIC settings. In its absence, providers must rely on other methods, such as last

menstrual period (LMP), newborn assessment, or birthweight to classify infant GA at delivery.

Each of these approaches has limitations. Reported LMP is subject to patient recall and can be

very unreliable in settings where women present late for care.[8–11] Newborn assessment,

including the commonly used New Ballard Score (NBS),[12] suffers from poor inter-rater reli-

ability[13, 14] and tends to overestimate GA, particularly in LMICs[15] and settings with high

rates of small-for-gestational age (SGA).[16–21] Finally, birthweight, while an easily obtained

and reliable indicator, does not distinguish between an infant that is preterm and one that is

SGA.

We sought to develop a machine learning algorithm that can estimate GA at birth from

readily obtained indicators in a setting where early ultrasound is not available. We were partic-

ularly interested in the simple, binary classification of preterm (i.e.,<37 weeks) versus term.

We hypothesized that a model combining LMP, individual elements of the NBS, birthweight,

and key pregnancy risk factors associated with SGA, would outperform any individual

approach.

Preterm newborn identification using machine learning
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Methods

This study was conducted using data from the Zambian Preterm Birth Prevention Study

(ZAPPS; ClinicalTrials.gov identifier: NCT02738892), an ongoing prospective obstetrical

cohort at the Women and Newborn Hospital of the University Teaching Hospital (UTH) in

Lusaka, Zambia. The rationale for our study, its procedures, and cohort characteristics have

been described elsewhere.[22] Briefly, women are enrolled in early pregnancy and followed

through delivery and the postpartum period. Written informed consent is obtained from all

participants prior to study enrollment for collection of maternal and newborn data. GA is

established by ultrasound (Sonosite M-Turbo; Fuji Sonosite, Inc, Bothell, WA) at study screen-

ing using the fetal crown rump length (if<14 weeks gestation)[23] or head circumference and

femur length (if�14 weeks).[24] All fetal biometry measurements are measured twice and

then averaged for gestational age calculations.

The study employs midwives who attend to participants admitted to the labor ward or post-

partum unit at UTH. Their duties include ensuring that relevant clinical information is cap-

tured in the study record, that babies are weighed at birth or shortly thereafter, and that the

NBS is performed within 72 hours of delivery.

Newborns were included in this analysis if they were live-born and they had a complete set

of characteristics and metrics assessed in this study. We defined preterm birth as birth prior to

37 weeks of gestation and SGA as a birthweight less than the 10th percentile for its correspond-

ing GA.[25] The NBS sums assessments of 5 domains of neuromuscular maturity and 7

domains of physical maturity into a composite score that is used to assign GA at delivery.[12]

We evaluated both the composite score and its 12 individual components in this study.

In our analyses, we assessed eight models: three single parameter GA dating methods and

five multiple parameter novel machine learning GA dating models (Table 1). We were primar-

ily interested in classifying preterm birth as a binary outcome (i.e.,<37 weeks or not) to iden-

tify newborns at highest risk of complications from preterm delivery, but we also wished to

Table 1. Components of gestational age dating models.

GA Dating
Model

GA at delivery
(composite NBS�)

GA at
delivery
(LMP)

GA at delivery
(birth weight 50%

ile)^

NBS (individual
components)†

Birth
weight

Maternal
height

HTN in
labor

Maternal HIV
infection

Twin
gestation

NBS •

LMP •

Birth weight •

Optimized
NBS§

•

NBS(-)LMP
(-)§

• • • • •

NBS(-)LMP
(+)§

• • • • • •

NBS(+)LMP
(-)§

• • • • • •

NBS(+)LMP
(+)§

• • • • • • •

GA: gestational age; NBS: New Ballard Score; LMP: last menstrual period; HTN: hypertension
�Composite NBS: Sum of neuromuscular and physical maturity domains

^Birth weight 50%ile: Intergrowth 50th birthweight-for-age centiles used to convert birthweights to GA

†Individual NBS components: 5 Neuromuscular maturity domains and 7 physical maturity domains

§Machine learning models

https://doi.org/10.1371/journal.pone.0198919.t001
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assess how the models might estimate GA as a continuous outcome. We restricted our models

to maternal and newborn characteristics that are accessible to health workers in resource-lim-

ited settings at the time of delivery, either through direct assessment or review of the medical

record.

The single parameter GA dating methods assessed include 1) LMP, 2) NBS, and 3) birth

weight. GA dating by NBS was calculated from the composite NBS using the formula for GA

conversion, as described by Ballard et al.[12] GA dating by birth weight was calculated under

the naïve assumption that all infants are born at the 50th birthweight-for-age centile and used

INTERGROWTH standards[26] to convert these birthweights to GA.

The multiple parameter machine learning models assessed include 1) Optimized NBS, 2)

NBS(-)LMP(-), 3) NBS(-)LMP(+), 4) NBS(+)LMP(-), and 5) NBS(+)LMP(+). In all machine

learning models incorporating NBS, including Optimized NBS, all 12 individual NBS compo-

nents were included. With the exclusion of Optimized NBS, all machine learning models

included an additional five maternal and newborn parameters with various combinations of

NBS and LMP. Maternal and newborn parameters were identified by stepwise regression and

included birth weight in addition to parameters with an a priori association with preterm birth

(twin delivery, maternal HIV serostatus) and SGA (maternal height, maternal hypertension).

We used hypertension in labor as a surrogate marker for maternal hypertension because,

although imperfect, it is a readily accessible metric at delivery in the maternal delivery case file.

Hypertension in labor was defined as systolic blood pressure�140 and/or diastolic blood pres-

sure�90 recorded in the maternal delivery case file. For twin deliveries, we included only

baby A (the first baby to be delivered) in our dataset. This approach to twin deliveries reduced

bias toward artificially increased model accuracy by including two newborns with closely

matched characteristics. HIV serostatus was determined by rapid ELISA performed according

to local protocol at first antenatal care visit.[27]

We used super learner[28] to generate five GA and prematurity prediction models (compo-

nents described above). In brief, super learner is a machine learning approach for combining

the strengths of multiple predictive models or learners. Super learner finds the weighted, con-

vex combination of these algorithms that minimizes the cross-validated mean squared error of

predictions of GA and preterm birth. To reduce concerns about over-fitting the data, we uti-

lized k-fold cross validation (with 10 folds) to select the combination of learners. K-fold cross

validation ensures that the learner is not fit (trained) to the same data that are used to make

predictions and judge performance. We used super learner computational macro (arXiv:1805.

08058 [stat.ML]) developed in SAS version 9.4 (Cary, North Carolina) along with the SAS pro-

cedures HPFOREST,[29] GENMOD,[30] and GAM?[31] to perform random forest algo-

rithms, generalized linear and logistic modeling, and generalized additive modeling,

respectively. For each algorithm included in our Super Learner library, the hyper-parameters

were the defaults given by the SAS macro,[32] which were based off defaults from the R super

learner package.[28] For our continuous GA prediction modeling of super learner models, we

combined linear regression, random forest regression, and generalized additive models. For

binary preterm birth classification modeling, we combined logistic regression, random forest

classification, and generalized additive model.

Kernel density plots and Pearson’s correlation coefficients were generated to compare the

predicted GAs from each continuous outcome model to GAs by early ultrasound. For our pri-

mary analysis, we based accuracy of each predictive model on the model fit to the data in

which we had complete data (n = 468). In a subset of births without NBS that were not used to

train predictive models, we subsequently estimated predictive accuracy. We note that, while

super learner utilizes cross-validation to reduce over-fit, the super learner predictions do not,

themselves, estimate cross-validated accuracy; thus, this latter step is necessary to produce fair

Preterm newborn identification using machine learning
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estimates of the out-of-sample accuracy of our approach. Receiver operating curves (ROCs)

were generated and area under the curve (AUC) calculated for the diagnostic accuracy of pre-

term birth for each binary classification model. We also calculated the positive predictive

value, negative predictive value, and percent correct classification for the identification of pre-

term infants using the best cutoff point for each model, as determined using the Youden

method.[33] The Youden method determines a cutoff point by optimizing the differentiating

ability of a test or model when equal weight is given to sensitivity and specificity. A subsequent

sensitivity analysis including women enrolled in the first trimester (<14 weeks gestation) was

conducted on our best-performing model to further assess stability and validity in women

with the most accurate gestational age dating. All super learner modeling was performed in

SAS as described above; all other analyses were performed using STATA release 14 (College

Station, TX). This study was approved by the University of Zambia Biomedical Research Ethics

Committee and the University of North Carolina Institutional Review Board.

Results

Between August 2015 and September 2017, 1450 pregnant women were consented and

enrolled into the ZAPPS cohort. To date, 862 (59.4%) participants have had live births with

deliveries captured by a study midwife. A total of 468 (53.1%) of these live births had newborns

assessed at<72 hours of life by a trained nurse midwife and had complete data available to be

included in subsequent preterm birth predictive modeling (Table 2). Among assessed live

births, median ultrasound-based GA was 39.6 weeks (IQR: 38.4–40.3), with preterm birth

prevalence 6.8%. The median birth weight was 3100g (IQR: 2855–3400). The prevalence of

SGA in this population was 14.1%. NBS assessment was the most common missing parameter,

causing study exclusion (n = 300; 76.1% of live births not assessed).

Kernel density plots, with accompanying Pearson correlation coefficients, comparing the

continuous GA distributions of the 8 models evaluated in this study to those calculated by

ultrasound are shown in Fig 1. The models generated by the super learner program for GA as

a continuous outcome clustered estimated GAs around the mean, resulting in a loss of outliers

and less accurate estimation of GA as a continuous outcome (Fig 1D–1H). Despite clustering

Table 2. Maternal and newborn parameters included in gestational age modeling.

Parameter All Live Births
Median (IQR) or

n (%)

Live Births Assessed
Median (IQR) or

n (%)

Live Births Not Assessed
Median (IQR) or

n (%)

p-value�

n (%) 862 468 (54.3) 394 (45.7) -

GA at delivery (by ultrasound) 39.4 (38.3–40.3) 39.6 (38.4–40.3) 39.4 (38.1–40.1) 0.055

Preterm Birth (<37 weeks) 95 (11.0) 32 (6.8) 63 (16.0) <0.001

Small for Gestational Age (<10%ile) 129 (15.0) 66 (14.1) 63 (16.0) 0.439

Maternal Height (m) 1.60 (1.56–1.64) 1.60 (1.56–1.64) 1.60 (1.56–1.64) 0.916

Hypertension labor^ 171 (22.9) 69 (24.8) 97 (21.7) 0.476

GA at delivery (LMP) 39.1 (37.3–40.1) 39.3 (37.4–40.4) 38.9 (37.1–40.0) 0.019

HIV-infected 217 (25.2) 123 (26.3) 94 (23.9) 0.426

Newborn Twin delivery 25 (3.0) 10 (2.1) 15 (4.1) 0.102

Birth weight (g) 3063 (2800–3390) 3100 (2855–3400) 3000 (2700–3300) 0.015

GA at delivery (composite NBS†) 39.2 (37.6–40.8) 39.2 (38.0–40.8) 39.2 (37.6–41.2) 0.762

�p-values calculated by Mann-Whitney test for continuous variables or chi-square test for dichotomous categorical variables

^Hypertension in labor was defined as systolic blood pressure�140 and/or diastolic blood pressure�90 recorded in the maternal delivery case file

https://doi.org/10.1371/journal.pone.0198919.t002
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around the mean, the NBS(-)LMP(+) and NBS(+)LMP(+) machine learning models (Fig 1F

and 1H) were found to best approximate the distribution of GA at delivery as compared to

ultrasound dating (Pearson correlation coefficients 0.73 and 0.77, respectively).

Fig 1. Distribution of gestational age at birth by all continuous models. r = Pearson’s correlation coefficient.

https://doi.org/10.1371/journal.pone.0198919.g001

Preterm newborn identification using machine learning

PLOSONE | https://doi.org/10.1371/journal.pone.0198919 February 27, 2019 6 / 12

https://doi.org/10.1371/journal.pone.0198919.g001
https://doi.org/10.1371/journal.pone.0198919


The accuracy of preterm birth classification by each GA dating method was assessed using

ROCs and associated AUCs (Fig 2). The AUC for Optimized NBS using super learner (0.8684)

was improved compared to the single parameter NBS model (0.7645). The NBS(-)LMP(-)

super learner model incorporating maternal and newborn parameters without LMP and NBS

had an AUC of 0.8664, outperforming the NBS model and performing similarly to Optimized

NBS. Adding LMP to this model, NBS(-)LMP(+), improved the AUC (0.9796) more than add-

ing NBS or both NBS and LMP (0.9242 and 0.9784, respectively).

Positive predictive value (PPV), negative predictive value (NPV), and correct classification

of all models predicting prematurity are shown in Table 3. In concordance with our ROC anal-

ysis, the NBS(-)LMP(+) super learner model incorporating LMP without NBS had the highest

percent correct classification (94.0%). Additionally, this model had a NPV of 98.9%, similar to

other models, and a PPV of 53.6%, substantially out-performing all other GA dating methods.

In a sensitivity analysis, we tested NBS(-)LMP(+), our best-performing model, on the subset

of women who were enrolled in the first trimester (<14 weeks; n = 204), as their ultrasound

dating is expected to be most accurate. We found a PPV of 73.3%, NPV of 98.8%, correct clas-

sification of 94.6%, and AUC of 0.9679. Additionally, because our best-performing model

excluded NBS–the variable most likely to cause study exclusion due to missingness–we were

Fig 2. Diagnostic accuracy of binary models to identify preterm newborns. AUC: Area Under Curve.

https://doi.org/10.1371/journal.pone.0198919.g002
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able to test our model in this population. In 245 newborns not included in our initial analysis,

we found a PPV of 71.9%, NPV of 95.7%, correct classification of 90.2%, and AUC of 0.8776.

Discussion

In our urban Zambian cohort with early pregnancy ultrasound dating, we used machine learn-

ing to identify a parsimonious set of maternal and newborn variables associated with prematu-

rity and small for gestational age that can improve discrimination between preterm and term

newborns as compared to common gestational age dating methods (New Ballard Score, last

menstrual period, and birth weight). This exploratory study demonstrates the promising utility

of machine learning techniques to optimize algorithms for the identification of preterm birth

and other adverse birth outcomes in low-resource settings.

Although a positive correlation between the number of parameters and accuracy of GA

assessment has been established,[15] increasing parameter collection has negative feasibility of

use, particularly in LMIC settings. In sub-Saharan Africa, up to one-half of all deliveries occur

outside of the hospital and have no skilled birth attendant,[34, 35] limiting the utility of GA

dating methods requiring numerous maternal and newborn metrics and characteristics. A sig-

nificant strength of our best-performing model is that it incorporates only six maternal and

newborn characteristics and metrics available at delivery: LMP, birth weight, twin gestation,

maternal HIV serostatus, hypertension at delivery, and maternal height.

An interesting finding of our analysis was the strength of LMP as a predictor of GA and

preterm birth. Limitations of LMP as a dating method are well-documented.[9] Women with

lower educational attainment[9, 36] and later presentation to care[8, 37] tend to have less accu-

rate recall of LMP, and the measure is subject to number preference (e.g. rounding to zero or

five, or preference for 1st or 10th of month) and recall bias.[9, 10] Consequently, GA estimates

by LMP alone suffer imprecision, with some estimates differing by weeks when compared to

ultrasound.[38–41] Indeed, data from the Zambia Perinatal Record System, an electronic sys-

tem that captured more than 250,000 births over a 6 year period in Lusaka, suggests an impos-

sibly high preterm birth rate of 35% when LMP is used to determine GA.[11, 42, 43] Despite

these limitations, we demonstrate that LMP is a useful predictor of prematurity and GA at

delivery when incorporated into a model that allows obviously implausible estimates to be

overridden by other parameters.

Further, our best-performing prematurity prediction model excluded NBS. In fact, the

addition of NBS components to our best-performing list of covariates decreased the PPV, per-

cent correct classification, and AUC of the model. LMP outperformed NBS in prematurity

prediction, both when assessed individually and in combination with other parameters. This

Table 3. Prediction of preterm birth by binary models.

GA Dating Method Positive Predictive Value Negative Predictive Value Correct Classification

NBS 28.6% 96.3% 88.0%

LMP 32.3% 99.7% 85.9%

Birth Weight 24.0% 98.4% 82.1%

Optimized NBS 28.9% 98.4% 85.0%

NBS(-)LMP(-) 26.8% 98.4% 83.6%

NBS(-)LMP(+) 53.6% 99.5% 94.0%

NBS(+)LMP(-) 32.6% 98.9% 86.8%

NBS(+)LMP(+) 37.3% 99.7% 88.7%

Best cutoff point for calculations by each GA Dating Method determined using the Youden method

https://doi.org/10.1371/journal.pone.0198919.t003
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finding supports a recent systematic review indicating that NBS has lower agreement with

ultrasound dating than LMP.[15] The exclusion of NBS from our best-performing model has

the benefit of omitting lengthy and technical neonatal assessment procedures. Despite only

including one newborn measurement, our model achieves an excellent AUC and correctly

classifies more than 94% of newborns as preterm and term in our well-dated Zambian cohort.

Additionally, when excluding NBS, we were able to apply our model to a cohort of an addi-

tional 245 births with a 20% preterm birth rate, demonstrating the broader applicability of

methods excluding NBS. Implementation of this model using six accessible maternal and new-

born characteristics may increase the accuracy and rapidity of preterm newborn identification

in LMIC settings as well as decrease the time and level of training required by frontline health

workers to assess preterm birth.

The calculated PPVs for all models demonstrate the limitations of our currently utilized,

single parameter methods to correctly identify preterm newborns. Only 32.3% and 28.6% of

newborns predicted to be preterm by LMP and NBS, respectively, were also classified as pre-

term by early pregnancy ultrasound dating. Many of our multiple parameter, machine learning

models performed similarly, with comparable PPVs. Only our best-performing model, NBS(-)

LMP(+), had a PPV greater than 50%. All GA dating models demonstrated a propensity for

overestimating preterm birth rates and misclassifying term newborns as preterm; however,

our best-performing model had a decreased tendency to misidentify preterm newborns in this

way. Additionally, this model correctly classified 94% of newborns, including 30 out of 32 pre-

term newborns. Further, in both our sensitivity analysis of newborns with ultrasound dating

<14 weeks gestation (the most accurate GA dating) and in our external validation cohort of

newborns without NBS, our best-performing model had a PPV>70%. Although far from per-

fect as a preterm newborn algorithm, our parsimonious model significantly improves upon

currently available identification methods, allowing clinicians to better direct care and

resources to newborns in need, especially in low-resource, LMIC settings.

A significant limitation of this current study is survival bias of assessed newborns, as dem-

onstrated by the significant differences between our assessed and not assessed populations

(Table 2). Preterm, especially early preterm, newborns were sometimes not assessed by study

midwives because they were deemed too ill for the assessment or because of parental or neona-

tal provider objection to the exam. These early preterm newborns would likely have been iden-

tified as preterm by models included in this analysis. Thus, our estimates likely underestimate

the performance of preterm birth identification in all models. Even with continuous staffing of

the labor ward by midwives trained on NBS performance, many newborns were not evaluated

within 72 hours. As many early preterm and critically ill newborns are never assessed, new-

born assessments may not be the most effective measure of GA for these babies. In our cohort,

we would be able to assess significantly more newborns in our model (81% vs. 54%) if we

included newborns on whom NBS was not collected, indicating that GA dating methods

excluding newborn assessment may be more efficacious in LMIC settings.

A further limitation of our current model is that it was developed to optimize the accuracy

the average GA for a given set of covariates, which was then used to infer term (�37 weeks)

versus preterm (<37 weeks) births. This model results in limited accuracy in the prediction of

the complete distribution of GA. Utilizing super learner capabilities to better model the distri-

bution of GA, rather than just the mean, as a continuous outcome may be a helpful next step

for neonatal providers desiring to better estimate accurate GA. Additionally, our current

model requires all characteristics and measurements to assess preterm birth status be present

for study inclusion. Consequently, if a woman does not know her LMP, her newborn is omit-

ted from this model. Future work to assess novel GA and preterm newborn prediction models

using machine learning techniques should include methods to impute missing data. Further,
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as validation of our model was limited to internal k-fold cross validation, preventing over-fit-

ting the data, in addition to a small model validation cohort of newborns missing NBS, exter-

nal validation in a larger dataset should be pursued in future work.

Conclusion

In summary, by leveraging the capacity of cutting-edge machine learning algorithms and

maternal parameters associated with prematurity and SGA newborns, we identified a parsimo-

nious list of covariates that improves accuracy of preterm newborn identification. Our model

incorporates six accessible maternal and newborn characteristics and metrics, reducing the

skill and time required to assess gestational age. This exploratory study supports the need for

further research into the use of machine learning techniques to improve the accuracy of gesta-

tional age assessment in low resource settings and to assist frontline health workers in identify-

ing newborns who may require special care.
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