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Abstract
Machine learning techniques such as classification and regression trees (CART) have been
suggested as promising alternatives to logistic regression for the estimation of propensity scores.
The authors examined the performance of various CART-based propensity score models using
simulated data. Hypothetical studies of varying sample sizes (n=500, 1000, 2000) with a binary
exposure, continuous outcome, and ten covariates were simulated under seven scenarios differing
by degree of non-linear and non-additive associations between covariates and the exposure.
Propensity score weights were estimated using logistic regression (all main effects), CART,
pruned CART, and the ensemble methods of bagged CART, random forests, and boosted CART.
Performance metrics included covariate balance, standard error, percent absolute bias, and 95%
confidence interval coverage. All methods displayed generally acceptable performance under
conditions of either non-linearity or non-additivity alone. However, under conditions of both
moderate non-additivity and moderate non-linearity, logistic regression had subpar performance,
while ensemble methods provided substantially better bias reduction and more consistent 95% CI
coverage. The results suggest that ensemble methods, especially boosted CART, may be useful for
propensity score weighting.
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INTRODUCTION
The propensity score is the probability of receiving a treatment conditional on a set of
observed covariates [1]. At each value of the propensity score, the distribution of observed
covariates is the same across treatment groups. Thus, by conditioning on the propensity
score, one can estimate treatment effects free from confounding due to the covariates that
determined the propensity score. Conditioning on the propensity score typically is done by
matching on the propensity score, subclassification into strata within which propensity
scores are similar, regression adjustment on the propensity score, or weighting by the
propensity score [2,3]. Matching and subclassification approaches rely only on selecting
subjects with similar propensity score values, relying less on the precise numerical
propensity score values. In contrast, regression adjustment and weighting are especially
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sensitive to misspecification of the propensity score model due to the incorporation of the
actual propensity scores or functions in the outcome model [4–6].

The literature has few guidelines for estimating propensity scores for any of these propensity
score techniques. Propensity scores are generally estimated using logistic regression.
However, parametric models require assumptions regarding variable selection, the
functional form and distributions of variables, and specification of interactions. If any of
these assumptions are incorrect, covariate balance may not be achieved by conditioning on
the propensity score, which may result in a biased effect estimate [7]. In this paper we
examine the use of machine learning methods as one alternative to logistic regression.

Machine learning is a general term for a diverse number of classification and prediction
algorithms and has applications ranging from detection of credit card fraud to computerized
facial recognition [8,9]. Contrary to statistical approaches to modeling that assume a data
model with parameters estimated from the data, machine learning tries to extract the
relationship between an outcome and predictor through a learning algorithm without an a
priori data model [10]. The suggestion to use such algorithms for propensity score model
construction is not new [2,11–16]. However, these methods have not been widely applied in
the propensity score literature, perhaps because of the “black box” nature of some of the
algorithms and difficulty in etiologic interpretations of results [17]. Because decision trees
are common in medical research for diagnostic and prognostic purposes [18] and are
intuitive to visualize and understand, they are a natural starting point for a discussion of
machine learning algorithms.

Decision trees partition a dataset into regions such that within each region, observations are
as homogeneous as possible [19]. Decision trees are referred to as classification trees if the
predicted outcome is a class or regression trees if the outcome is numerical; we refer to these
methods collectively as Classification and Regression Trees (CART). Within each node of
the tree, observations will have similar probabilities for class membership. CART has
advantageous properties for estimating propensity scores, including the ability to handle
categorical, ordinal, continuous, and missing data. It is insensitive to outliers and monotonic
transformations of variables. Additionally, interactions and non-linearities are modeled
naturally as a result of the splits. However, CART can have difficulty in modeling smooth
functions and main effects, and is sensitive to overfitting [20].

Several approaches have been proposed to remedy these limitations. To address overfitting,
cost-complexity pruning can be implemented where the number of tree splits is reduced or
“pruned” with the idea that a simpler tree will be less sensitive to noise and generalize better
to new data [19]. While the single tree implementation of CART and pruned CART can
perform poorly as a classifier, the predictive capabilities of a weak classifier can be
strengthened when working together with other weak classifiers. Ensemble methods, which
are somewhat related to iterative and bootstrap procedures, utilize multiple samplings and
passes through data (i.e., multiple trees) to enhance the performance of prediction algorithms
and reduce overfitting [8]. Because these methods are complex, we provide only a brief
description of ensemble methods with application to CART and provide references for the
interested reader. Bootstrap aggregated (bagged) CART involves fitting a CART to a
bootstrap sample with replacement and of the original sample size, repeated many times. For
each observation, the number of times it is classified into a category by the set of trees is
counted, with the final assignment of class membership, or probability thereof, based on an
average or majority vote over all the trees [21]. Random forests are similar to bagging but
utilize a random subsample of predictors in the construction of each CART [22]. Like
bagged CART and random forests, boosted CART goes through multiple iterations of tree
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fitting on random subsets of the data. However, with each iteration, a new tree gives greater
priority to the data points that were incorrectly classified with the previous tree [15,23].

Because in the real world the true treatment effects within any observational dataset are
unknown, simulation-based research is needed to evaluate the performance of machine
learning propensity score methods. Using simulated data, Setoguchi et al. compared neural
networks, CART, pruned CART, and logistic regression in the context of propensity score
matching and found that neural networks produced the least biased estimates in many
scenarios [16]. However, they do not consider ensemble methods which perform extremely
well in classification and prediction tasks while having desirable statistical properties [8].
Furthermore, it is important to determine whether the performance of machine learning
methods in propensity score estimation varies based on how those propensity scores are
applied. Finally, Setoguchi et al. do not assess covariate balance. In the present analysis, we
evaluate the performance of several decision tree-based algorithms, including ensemble
methods, in the context of propensity score weighting.

METHODS
Simulation setup

We followed the simulation structure described by Setoguchi and colleagues with slight
modifications [16]. For each simulated dataset, ten covariates (four confounders associated
with both exposure and outcome, three exposure predictors, and three outcome predictors)
Wi were generated as standard normal random variables with zero mean and unit variance.
Correlations were induced between several of the variables (Figure 1). The binary exposure
A has Pr(A=1|Wi) = 1/(1+exp(−β · f(Wi))). The average exposure probability (in other words,
the exposure probability at the average of covariates) was ≈ 0.5 and was modeled from Wi
according to the scenarios below, using the formulae provided by Setoguchi et al. The
continuous outcome Y was generated from a linear combination of A and Wi such that Y =
αiWi + γA where the effect of exposure, γ, = −0.4.

We evaluated the performance of CART-based methods in seven scenarios that differed in
degrees of linearity and additivity in the true propensity score model, specified with
quadratic terms and interactions. The scenarios were designed such that the true propensity
score model had the following properties [16]:

• A: additivity and linearity (main effects only);

• B: mild non-linearity (one quadratic term);

• C: moderate non-linearity (three quadratic terms);

• D: mild non-additivity (three two-way interaction terms);

• E: mild non-additivity and non-linearity (three two-way interaction terms and one
quadratic term);

• F: moderate non-additivity (ten two-way interaction terms);

• G: moderate non-additivity and non-linearity (ten two-way interaction terms and
three quadratic terms).

To assess the performance of machine learning methods in small, medium, and large-sized
datasets, data were simulated for cohort studies of size n=500, n=1000, and n=2000. One
thousand datasets of each study size were generated for each of the seven scenarios.
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Propensity score estimation methods
We used R version 2.6.1 [24] to estimate propensity scores using the following methods:

• Logistic regression: standard logistic regression with a main effect for each
covariate.

• CART: recursive partitioning using the rpart package with default parameters [25].

• Pruned CART: recursive partitioning as described above but with a cost-
complexity parameter that controls tree growth. The cost-complexity parameter is
automatically chosen to minimize the cross-validated error estimated from a
complexity parameter table generated by the plotcp function.

• Bagged CART: bootstrap aggregated CART is implemented using the ipred
package [26]. We used 100 bootstrap replicates based on empirical evidence
suggesting that with more replicates, misclassification rates improve and test errors
are more stable [20].

• Random forests: random forests are implemented using the randomForest package
with the default parameters [27].

• Boosted CART: boosted regression trees are implemented using the twang package
[28]. We used the parameters recommended by McCaffrey et al., with 20,000
iterations and a shrinkage parameter of 0.0005 [15], with an iteration stopping point
that minimizes the mean of the Kolmogorov-Smirnov test statistics.

Estimation of the treatment effect using propensity score weighting
Propensity score weighting is similar to the use of sampling weights in survey data analysis
to account for unequal probabilities of inclusion in a study sample. A number of propensity
score weighting schemes have been applied in the literature [3,13,29,30]. For example, with
inverse probability of treatment weighting, treated persons receive a weight of 1/pi and
untreated persons receive a weight of 1/(1−pi), where pi is individual i’s estimated
propensity score. In essence, this weights both the treated and untreated groups to look like
the combined sample in order to estimate the average treatment effect in the combined
sample.

An alternative estimand of interest is the average treatment effect on the treated -- the
average treatment effect in a population with a distribution of risk factors similar to that of
the treated group. Because this estimand is often of interest in observational studies, we
elected to use a weighting scheme with this estimand in mind. We assigned treated persons a
weight of 1 while untreated persons are assigned a weight of pi/(1−pi) [12,13,15,29]. Thus,
persons in the comparison group who are more similar to those in the treatment group are
given greater weight and those more dissimilar are downweighted. If the propensity scores
are properly estimated, then the weighted covariate distributions between treatment groups
should be similar and the average treatment effect can be estimated as the difference of
weighted means. Although it is a good idea in practice to perform “doubly robust” linear
regression adjustment for covariates after weighting is applied [4,31], we did not do so in
order to better isolate and compare the performance of the various methods with regards to
propensity score weighting.

Performance metrics
We evaluated the performance of the various propensity score fitting methods through
several measures.
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• ASAM: average standardized absolute mean difference, a measure of covariate
balance. After weights were applied, the absolute value of the standardized
difference of means (standardized by the standard deviation of the particular
covariate in the treatment group) between treatment and comparison groups was
calculated for each covariate and the average taken across all the covariates. A
lower ASAM indicates that the treatment and comparison groups are more similar
with respect to the given covariates. We refer to the average value of the 1000
ASAMs in a simulation scenario as the mean ASAM.

• Bias: the percentage difference from the true treatment effect of −0.4. Both
absolute bias and bias (either positive or negative) are considered.

• SE: the standard error of the effect estimate. To calculate the standard error of
estimates using the weights we used the survey sampling analysis methods
implemented by the survey package [32].

• 95% CI coverage: the percentage of the 1000 datasets in which the estimated 95%
confidence interval included the true treatment effect.

• Weights: The performance of weighting methods can be adversely affected if
weights are extreme, as a result of estimated propensity scores that are close to 0 or
to 1. We therefore examined the distribution of weights for the untreated
observations.

RESULTS
Simulations of N=1000

Covariate balance—One rule of thumb for assessing the covariate balance between
treatment groups is that an absolute standardized difference in means of 0.2 or greater may
be of concern [15,33]. The average covariate balancing performance of logistic regression
propensity score models was acceptable, with low mean ASAMs in all scenarios (range:
0.041, 0.094) (Table 1). However, although the mean ASAMs for logistic regression were
relatively and absolutely low, if not the lowest, for each scenario, the ASAMs were skewed
with a number of high outliers (Figure 2).

CART and pruned CART propensity score models produced higher mean ASAMs than
other methods, with respective ranges of 0.143 to 0.171 and 0.148 to 0.182 across the 7
scenarios. However, CART and pruned CART propensity score models did not provide
consistent covariate balance within all datasets, as indicated by the high dispersion of mean
ASAMs as well as the large number of high outliers (Figure 2). In contrast, the ensemble
methods of bagged CART, random forests, and boosted CARTs produced low mean
ASAMs in all scenarios (ranges: bagged CART: 0.112, 0.144; random forests: 0.075, 0.089;
boosted CART: 0.065, 0.073) and the ASAMs were much less dispersed than those from the
other methods. For example, boosted CART produced no ASAMs > 0.2 in any of the
scenarios.

Estimate of effect and standard error—The performance of logistic regression was
generally acceptable in the scenario of additivity and linearity (scenario A) with a mean
absolute bias of 7.6% and 95% CI coverage of 98.0% (Table 1). However, with increasing
non-additivity and non-linearity, logistic regression performed poorly; with moderate non-
additivity and nonlinearity (scenario G), logistic regression had a mean absolute bias of
29.6% and 95% CI coverage of 32.5%. Logistic regression propensity score models
overestimated the true effect with increasing frequency as non-additivity and non-linearity
increased (Figure 3). Both CART and pruned CART had high absolute biases with
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respective averages of 18.9% and 21.5% across all scenarios as well as low 95% CI
coverage (respective averages of 67.8% and 61.2%). In contrast, the ensemble methods
displayed low absolute biases as well as high 95% CI coverage. Across all scenarios, bagged
CART, random forests, and boosted CART averaged mean absolute biases of 10.3%, 7.7%,
and 6.8%, respectively. Boosted CART displayed the best 95% CI coverage with ≥ 98.6%
coverage in all scenarios.

The superior CI coverage of boosted CART did not come at the expense of relatively large
standard errors. The different methods did not yield substantially different SE estimates
although logistic regression tended to produce the largest standard errors compared with the
other methods (Table 1). For example, logistic regression produced standard errors that
ranged on average from 1.06 times (scenario C) to 1.29 times (scenario E) larger than the
errors produced by boosted CART, even though both methods had similar performance in
terms of coverage rates.

Weights—The average weight did not differ greatly by estimation method (Figure 4). For
example, the mean weight assigned to a comparison group observation in Scenario E (mild
non-additivity and non-linearity) by method was: logistic regression: 0.90, CART: 0.88,
pruned CART: 0.88, bagged CART: 0.67, random forests: 0.92, boosted CART: 0.60.
However, in all scenarios, logistic regression and random forests tended to produce a
relatively large number of extreme high weights while bagged CART had the fewest number
of extreme high weights. For example, in Scenario E, the proportion of comparison group
weights greater than ten by method was: logistic regression: 3.5%, CART: 0.9%, pruned
CART: 0.7%, bagged CART: 0.0%, random forests: 3.1%, boosted CART 0.7%. This may
partially explain the relatively large standard errors produced by the logistic regression
approach.

Simulations of N=500, N=2000 sample sizes
The comparative results of the differently sized studies did not qualitatively differ from the
N=1000 studies (Tables 2 and 3). For all methods, covariate balance increased as the sample
size increased. This resulted in less biased effect estimates for all methods. However,
because larger sample sizes produced smaller errors and thus attributed greater precision to
estimates, the methods that had higher bias (logistic regression, CART, and pruned CART)
had notably poor 95% CI coverage in the N=2000 studies: for example, with moderate non-
additivity and non-linearity (Scenario G), the 95% CI produced by logistic regression
included the true effect size only 2.9% of the time, in contrast with coverage of 99.1% for
boosted CART (Table 3).

DISCUSSION
The primary objective of propensity score adjustment is to achieve covariate balance
between comparison groups so that valid estimates of the treatment effect can be obtained.
Logistic regression propensity score models with only main effect terms generally provided
adequate covariate balance. However, the bias reducing capabilities of logistic regression
propensity score models substantially degraded when the models did not account for
interactions and non-linearities. In contrast, regardless of sample size or the extent of non-
additivity or nonlinearity, the ensemble methods of bagged CART, random forests, and
boosted CART propensity score models provided excellent performance in terms of
covariate balance and effect estimation. The consistently superior performance of boosted
CART and random forests leads us to recommend these two machine learning techniques for
future consideration in propensity score estimation.
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In this study we used only the basic, off-the-shelf versions of each of the methods, since that
is likely what most applied researchers would do. It is likely that any method may perform
better when implemented by a highly skilled user. For example, logistic regressions with
carefully chosen interactions may perform better than the simple main effects-only model
used here. Similarly, while random forests sometimes produced large propensity score
weights, the estimation algorithm could be calibrated to reduce the likelihood of extreme
weights.

In our simulations, the outcome Y is fully determined by the observed covariates Wi and the
treatment A, which is not what we normally expect to see in practice but is a common
strategy for assessing bias in propensity score settings [34,35]. However, this fact should
have no effect on the performance of the propensity score estimation techniques. To check
this supposition we performed a sensitivity analysis on a subset of the data where we added
random error to Y such that Y = αiWi + γA + ε, ε~N(0,σ). We performed analyses for σ = 0.1
and σ = 0.2, equivalent to 25% and 50%, respectively, of the effect of exposure (γ = −0.4).
As expected, this sensitivity analysis showed no changes in the relative performance of the
methods considered (results not shown).

Our results suggest that approximately unbiased estimates of the population average
treatment effect for the treated can be obtained from machine learning propensity score
methods in a variety of scenarios differing by additivity and linearity. These results support
the findings presented by Setoguchi et al. in a comparison of logistic regression, neural nets,
CART, and pruned CART in propensity score model building [16]. Setoguchi et al. used the
propensity score to select matched samples while we use the propensity score to weight the
comparison subjects to appear similar to the treated subjects. For both uses of the propensity
scores the machine learning methods performed well in a variety of scenarios, indicating the
broad applicability of these results. Furthermore, our results indicate that even while
machine learning methods are traditionally applied to larger datasets, machine learning
methods can also be applied to smaller datasets as well (e.g., N=500).

One interesting observation is that logistic regression often yielded the lowest ASAM but
also produced large biases in the estimated treatment effect; conversely, boosted CART
often did not have the lowest ASAM but frequently produced better bias reduction. This
may have important implications for diagnostic methods to assess propensity score methods:
is good covariate balance not enough for ensuring low bias, or is it perhaps that the ASAM
is not an adequate measure of balance? For example, in the studies of N=1000, the
correlations of ASAM with absolute bias ranged from 0.38 to 0.66 across scenarios. In
contrast, the average standardized mean distance calculated using all possible two-way
interaction terms (10 choose 2 = 45), not just the covariates themselves, was correlated more
strongly with absolute bias in all scenarios, with a range of correlations from 0.56 to 0.72.
While further investigation of this issue is needed, these results suggest that covariate
balance in interactions may be important to account for in propensity score models and
balance checks, particularly when the true outcome models themselves have interaction
terms. Although some researchers have recommended checking balance on interactions
[36,37], it is unfortunately rarely done in practice. This may also indicate why logistic
regression, with no interaction terms, did not perform well in these simulations.

Boosted CART provided consistently excellent performance in propensity score model
building. The efficiency of boosting as a general algorithm to improve estimates is well-
known in the machine learning world [20]. What has been less known was whether those
benefits would carry over to the world of propensity score estimation and use. As discussed
by McCaffrey and colleagues [5,15], the boosting algorithm we used has a number of
features that improves propensity score estimation performance. Boosted CART estimates
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the propensity score using a piecewise linear combination of multiple CARTs. To reduce
prediction error, each successive CART is estimated from a random subsample of the data.
In addition, the application of a shrinkage coefficient to downweight each additional CART
helps to prevent overfitting. Finally, the use of the piecewise constants has the effect of
flattening the estimated propensity scores at the extreme values of the predictors. This
minimizes the chance of obtaining predicted probabilities near 0 or 1, thus preventing the
high variability in weights that can be problematic for propensity score weighting.

One criticism of machine learning is that the “black box” nature of the algorithms obscures
the relationships between predictors and outcome. However, etiologic inference is not a
necessary component of propensity score estimation [2]. Therefore, machine learning
techniques may be well-suited to the task of creating propensity scores from high-
dimensional data where improper parametric specification of relationships may lead to
biased estimates. We also note that the available software can offer insight into the
relationships among variables. For example, the boosting package twang can analyze the
relative contributions of variables to improvements in the model log-likelihood [28] and
Elith et al. describe and provide code for visualizing partial dependences and interactions in
a boosted regression tree model [23].

In conclusion, our simulation results complement previous work by Setoguchi et al. to show
that using machine learning techniques to estimate propensity scores can greatly reduce bias
across a range of sample sizes, scenarios, and propensity score application methods. These
techniques offer a number of advantages over logistic regression in propensity score
estimation and may be implemented using freely available software packages.
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Figure 1.
Variable Relationships and Form in Simulation Data Structure
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Figure 2.
Distribution of the Average Standardized Absolute Mean Difference by Propensity Score
Estimation Method for 1000 Datasets in each of 7 Scenarios (N=1000)
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Figure 3.
Distribution of the Percent Bias by Propensity Score Estimation Method for 1000 Datasets
in each of 7 Scenarios (N=1000)
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Figure 4.
Distribution of Propensity Score Weights for the Comparison Group for Ten Random
Datasets of (N=1000)
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