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Abstract—It is widely evidenced that location has a significant influence on the actual bandwidth that can be expected from Wireless

Wide Area Networks (WWANs), e.g., 3G. Because a fast-moving vehicle continuously changes its location, vehicular mobile

computing is confronted with the possibility of significant variations in available network bandwidth. While it is difficult for providers to

eliminate bandwidth disparity over a large service area, it may be possible to map network bandwidth to the road network through

repeated measurements. In this paper, we report results of an extensive measurement campaign to demonstrate the viability of such

bandwidth maps. We show how bandwidth maps can be interfaced with adaptive multimedia servers and the emerging vehicular

communication systems that use on-board mobile routers to deliver Internet services to the passengers. Using simulation experiments

driven by our measurement data, we quantify the improvement in Quality of Service (QoS) that can be achieved by taking advantage of

the geographical knowledge of bandwidth provided by the bandwidth maps. We find that our approach reduces the frequency of

disruptions in perceived QoS for both audio and video applications in high-speed vehicular mobility by several orders of magnitude.

Index Terms—Location-dependent and sensitive, mobile computing, mobile environments, mobile communication systems.

Ç

1 INTRODUCTION

THANKS to the rapid developments and deployments of
the Wireless Wide Area Network (WWAN) technology,

e.g., 3G, HSDPA, and WiMAX, ubiquitous high-speed
mobile data services have become more available and
affordable to mobile users. It is now possible for commuters
in automobiles, buses, and trains to enjoy the entire
spectrum of online network services that were available to
residential and enterprise users.

While service providers have devoted significant effort in
improving WWAN service rate and coverage, the stability
and the uniformity of the WWAN bandwidth are not
guaranteed. Unlike wired networks, which have relatively
stable bandwidth capacity, the WWAN bandwidth experi-
enced by mobile users is largely dictated by the location-
dependent wireless signal quality and the time-varying load
dynamics in each cell. In a high-speed vehicular environ-
ment, a mobile user experiences frequent and significant
bandwidth fluctuations [1], [2], [3], as a moving vehicle
continuously changes its geographical location. It is well
known that the location-dependent radio propagation
characteristics, such as path loss, fading, and cochannel
interference, affect the signal quality received by the mobile
terminal [1]. To adapt to the varying radio quality, WWAN
technologies employ adaptive modulation and coding
schemes [4], which inherently vary the data rate of the
wireless channel. The ensuing bandwidth fluctuations
during a vehicular trip can seriously compromise the quality
of service (QoS) experienced by network applications [2]. For

example, a sudden drop in the bandwidth can cause
significant packet loss, thus distorting the quality of real-
time interactive communication such as a Skype call [5].

In this paper, we seek to alleviate the aforementioned
problem by exploiting the strong correlation between
geographic location and WWAN bandwidth [6], [7], [8].
Our idea is based on a simple intuition that the WWAN
bandwidth may hold a Past Tells More Than Present (PTMTP)
property. That is, the summary, e.g., the mean value, of the
past bandwidth observations at a particular location is a
better indicator of the actual bandwidth experienced at that
location, as compared to the bandwidth at the previous
location along the route. To confirm this intuition, we
conduct an eight-month long vehicular measurement cam-
paign to collect bandwidth data on three different WWAN
providers over two different routes in Sydney, Australia.
Our analysis of the bandwidth traces overwhelmingly
confirms the existence of the PTMTP property. This finding
implies that the past bandwidth knowledge may help
mobile applications to foresee the impending bandwidth
fluctuations during a vehicular trip and take proactive
action. We also find that the time of day influences mobile
bandwidth, but location is the most dominant factor. Hence,
we exclusively focus on the correlation between bandwidth
and location in this research.

We store past bandwidth performance data in the form
of bandwidth maps, by mapping the average value of
historical network bandwidth observations to the existing
road network. The bandwidth samples are collected by
repetitive measurements. These maps provide information
such as “if you are near the intersection of Street X and
Street Y, you can expect an average bandwidth of 1.2 Mbps
from network provider A.” Various aspects of on-board
communication systems, e.g., admission control, data
prefetching, multihoming scheduling, and applications
such as multimedia streaming and video conferencing,
may benefit from this information. In this paper, we use two
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concrete examples to explain our idea. In the first instantia-
tion, we interface the bandwidth maps with the rate
adaptation agents of adaptive video streaming applications
that are run on personal mobile devices. Our trace-driven
simulations highlight that our approach can help streaming
applications to achieve fast and smooth adaptation to the
varying bandwidth quality when the vehicle is on the move.
We find our scheme effectively improves the user perceived
QoS by up to five folds, as compared to the state-of-the-art
reactive adaptation techniques. In the second example, we
demonstrate that bandwidth maps can improve the QoS
offered by a vehicular gateway equipped with multiple
WWAN interfaces. The proposed principle enables the
network traffic schedulers of vehicular gateways to intelli-
gently use the location-specific bandwidth information in
making scheduling decisions. Using audio streaming as an
example, our simulation results show that this approach
can improve the overall QoS by up to four folds, in
comparison with current schemes.

The rest of the paper is organized as follows: we review
related work in Section 2. In Section 3, we study the PTMTP
property and its implications on mobile applications, using
the empirical bandwidth traces collected from our vehicular
measurement campaign. In Section 4, we present band-
width maps as the means to capture the location-bandwidth
dependency of WWAN networks. In Sections 5 and 6, we
demonstrate the usefulness of bandwidth maps through
two different representative vehicular network applica-
tions. Finally, Section 7 concludes the paper.

2 RELATED WORK

Our work is inspired by recent findings that highlight the
strong correlation between geographic location and net-
work performance. Global Internet maps such as [9]
illustrate that the statistical properties of wired Internet
bandwidth vary as a function of geographical region (e.g.,
country and continent). Residential broadband ISPs, e.g.,
[10], often provide coverage maps that indicate the expected
service data rate depending on the customer’s street
address. This is even more true for wireless networks.
WWAN and Wi-Fi service providers often conduct network
measurements within their service domains and release
coverage maps to indicate the expected service quality at
different regions. However, these maps only provide coarse
information of the network performance. Empirical studies
[1], [2], [7], [8] have revealed that the performance of the
last-hop wireless link can vary significantly from location to
location, even at the granularity of a few hundred meters on
the same street. Independent organizations, e.g., [11], now
provide street-level coverage maps of WWAN and Wi-Fi
networks. These maps are typically profiled from the
measurement data reported by voluntary smartphones
running specific measurement applications. The maps are
freely available online, which provide an unbiased compar-
ison of different network carriers and aid consumers in
selecting carriers. In this paper, we are interested in
personalized bandwidth maps, which store historical band-
width measurements of individual mobile users that are
relevant to their mobility patterns. We seek to capitalize on
the bandwidth information provided by such maps for

improving the QoS experienced by mobile Internet applica-
tions that are run from moving vehicles.

Several empirical studies [1], [2], [3] have investigated
the WWAN bandwidth performance in a vehicular scenar-
io. A common observation is that the WWAN bandwidth
deteriorates significantly under vehicular mobility as
compared to a stationary environment. The goal of our
measurement campaign is different from these prior
studies. We intend to investigate if past bandwidth knowl-
edge at a certain location can be a useful indicator of the
current bandwidth experienced at that location. In order to
present statistically conclusive results, we conduct a large
set of repeated measurements along two distinct routes in
Sydney. To the best of our knowledge, this is the first
empirical study to present results of WWAN network
performance from several repeated measurements.

Recent works [12], [13] have proposed to profile the
performance of roadside Wi-Fi APs using historical ob-
servations. By examining the profiles of all “visible” APs at
a given location, the mobile device can intelligently select
the “best” AP to associate with, thus optimizing the handoff
decision. Our work shares the same design philosophy, i.e.,
capitalizing on the strong correlation between wireless
network performance and location. However, unlike prior
research, we seek to characterize the user-experienced
WWAN bandwidth conditions from past observations,
while driving along urban roads. Another novel aspect of
our work is that we use the a priori bandwidth information
at each location to proactively react to any impending
bandwidth fluctuations and thus improve the QoS of
mobile Internet applications.

3 WHAT’S PAST IS PROLOGUE

It is well known that history repeats itself. There are several
examples of this phenomenon, both in nature (e.g., weather)
and human influenced activities (e.g., human mobility
patterns, Internet usage). In this section, we investigate if
the downlink WWAN wireless bandwidth in a high-speed
vehicular environment exhibits a similar trend. We present
an overview of our empirical measurement campaign for
collecting wireless bandwidth traces under typical driving
conditions. We analyze the data and show that the average
value of past bandwidth observations collected from the
same location is a better indicator of the current bandwidth
experienced at that location than the bandwidth encoun-
tered at the previous location during the current trip.
Finally, we explain how this property can be used by
mobile applications to maintain QoS under the varying
bandwidth conditions experienced while driving.

We undertook a measurement campaign for profiling the
WWAN wireless bandwidth in a high-speed vehicular
environment. We developed a simple client-server mea-
surement system (see Fig. 1) using off-the-shelf hardware.
The server was housed in our lab at the University of New
South Wales (UNSW). The client (as shown in Fig. 2)
comprised of two Soekris Net4521 boards interconnected
via 10 Mbps Ethernet and configured in master/slave
mode. The boards were enclosed in a protective casing,
connected to a power generator and housed in the boot of a
car. Three PCMCIA cellular modems were housed in the
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system (two in the master board and one in the slave
board). To account for network and technology diversity,
we simultaneously conducted measurements over two
HSDPA [4] networks (A and B) offering different service
rates and a network (C) supporting a pre-WiMAX proprie-
tary standard, iBurst [14]. The advertised peak rates for A,
B, and C were 7.2, 3.6, and 1 Mbps, respectively. To enhance
the wireless signal reception, the cellular modems were
connected to external antennas mounted on the car wind-
shield. A Garmin GPS18 GPS sensor was connected to the
client for recording the vehicle location.

We developed a lightweight packet-train program to
measure the WWAN bandwidth, which achieves fast
convergence and generates minimal network traffic. We
refer readers to [7] for further details about the program and
validations. We collected one bandwidth sample for
approximately every 200 m section of the route (by
adjusting the sampling interval according to the vehicle
speed as reported by the GPS). The samples are tagged with
location coordinates and time, and stored in a repository.
On occasions, some packets in the train were lost, leading to
some missing samples. To deal with these missing samples,
we used 500 m as the smallest location granularity (note
that, no two successive samples were missing in our data).
Thus, the bandwidth for a segment is represented by the
average of all samples collected within it.

We collected bandwidth samples by driving the car
along two distinct routes in the Sydney metropolitan area.
Fig. 3 depicts the trajectory of the chosen routes. The
starting point of the inbound (7 Km) route is UNSW in the
eastern suburbs, with the final destination being Sydney
CBD. The outbound (16.5 Km) route runs from Sydney CBD
to Macquarie University (MQ) located in the northwestern
suburbs. The chosen routes are typical representations of
daily commute.

Recall that our goal is to determine if historical
bandwidth measurements can be helpful for future trips.
To draw meaningful conclusions, we need to ensure that
the samples collected are sufficient to estimate the actual
bandwidth characteristics at each location. In our measure-
ments, each trip only yields one bandwidth sample for each
location along a route. Collecting a large number of samples
requires making repeated trips along the selected routes.
However, conducting such measurements involves signifi-
cant monetary cost (fuel, mobile bandwidth), manpower,
and time. Thus, an important question is—“How many
samples (i.e., repeated trips) are sufficient?”

The issue of sample sufficiency is a well-studied problem
in measurement and survey studies [15]. The standard
strategy is that the sample size is deemed sufficient when
the margin of error E of the estimate on the statistic of
interest (e.g., the mean) is small enough [15]. Recall that, E
is equal to one half the width of the Confidence Interval
(CI), and reflects the precision of the estimate. For example,
“an E at ð1� �Þ � 100% confidence level” means that one
can be ð1� �Þ � 100% confident that the estimate will not
differ from the true value of the statistic by more than E.
Clearly, the smaller the margin of error, the more precise
the estimate. Thus, the sample size required in our
measurement campaign largely depends on how precisely
we want to estimate the WWAN bandwidth statistics. We
are interested in estimating the mean bandwidth �l at each
location l using the sample mean �bnl observed from the past
n trips. For this, we calculate the margin of error for
estimating �l. Let us denote sl as the sample standard
deviation at location l, n as the sample size, and tn�1;1��=2 as
the upper critical value for ð1� �Þ � 100% CI from the
t-distribution with n� 1 degree of freedom. Then, from the
definition of margin of error [15], we have

E ¼ tn�1;1��=2 �
sl
ffiffiffi

n
p : ð1Þ

Further, we normalize the margin of error by computing its
ratio to the sample mean �bnl , i.e.,

� ¼ E
�bnl
: ð2Þ

After completing each measurement trip (which yields
one sample at each location), we recompute � at each location
for each provider, using (2). As is common in statistical
studies, we select 95 percent as the confidence level, i.e.,
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Fig. 1. Measurement architecture.

Fig. 2. Measurement setup.

Fig. 3. Trajectory of chosen routes.
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� ¼ 0:05. Fig. 4 plots the evolution of � at one particular
location for provider B, as the sample size grows. The graph
shows that with the availability of more samples, � initially
decreases sharply. However, after about 70 samples, the
improvement in � is marginal with each additional sample.
Further, the � drops below 10 percent, which implies that �bnl
is now very close to the true mean �l. Based on similar
observations at all other locations for all providers, and
given the high costs associated with the measurements, we
decided to cease the measurement after making 75 repeated
trips. To account for the impact of different time of day on
the WWAN bandwidth, we conducted the measurements at
different times including peak and off-peak commuting
hours and different days of the week. Collectively, our
measurements spanned over the eight-month period from
August 2007 to April 2008, clocked more than 60 driving
hours, and covered over 1,600 Km.

It has been reported that WWAN bandwidth fluctuates
in both time and space [8] in a stationary environment. We
first investigate if similar observations can be confirmed in
mobile environments by analyzing our empirical band-
width traces. To begin with, we study the impact of
location on bandwidth. We compute the average band-
width at each location, assuming 500 m as the location
granularity. As a representative example, Fig. 5 plots the
average bandwidth for each location (loc. avg) along
the inbound route for provider C. Note that, we observe
similar results (omitted for brevity) for the outbound route
and other providers. It is evident from this graph that
the WWAN bandwidth is strongly influenced by location.
This can be attributed to the location-dependent character-
istics of the wireless channel such as path loss, shadowing,
cochannel interference, and fading. Another observation is
that the bandwidth conditions between consecutive loca-
tions can vary significantly (e.g., location #8 and #9). This
highlights the fact that a fast-moving vehicle can experi-
ence drastic changes in bandwidth.

Next, we investigate if the time of day influences the
WWAN bandwidth at a given location. Recall that, our
measurement trips were randomly conducted at different
time of day. We partition the bandwidth samples into
different time intervals using a granularity of 2 hours. This
results in four nonoverlapping intervals, i.e., 10:00-12:00,
12:00-14:00, 14:00-16:00, and 16:00-18:00. Next, for each time
interval, we compute the corresponding average bandwidth
at each location (assuming 500 m granularity as before) and
plot the same in Fig. 5. At some locations such as location #5,
the WWAN bandwidth does appear to vary noticeably with
time. This can be attributed to the time-varying character-
istics of the wireless channel such as fading and interference
and also the network load dynamics (e.g., number of active
users). However, for the majority of locations, the impact of
time is not as pronounced. We make similar observations
from the data from other trips and providers (not shown for
reasons of brevity).

In summary, the above analysis indicates that there is a
strong correlation between WWAN bandwidth and loca-
tion. Time of day also influences the bandwidth, but
location is the most dominant factor. Hence, in this paper,
we focus on how best we can leverage the association
between mobile bandwidth and location, since we expect
that it will achieve the most significant gains. That said, our
ideas can be readily extended to include time of day.

The strong correlation between location and bandwidth
observed above suggests that the average of past measure-
ments at a particular location can be a better indicator of
the current bandwidth at that location than the bandwidth
experienced at the previous location during the current
trip. For this, we use the bandwidth observations collected
for provider C during the first three trips along the
inbound route (see Fig. 6). Note that, the location
granularity is 500 m. As is evident, the bandwidth
fluctuates significantly during each individual trip.
Further, observe the strong correlation between bandwidth
and location. For example, there is a constant outage at
location #11. On the other hand, the bandwidth experi-
enced at location #1 is consistently close to 300 Kbps. We
focus on the third trip, just as the car is about to enter
location #7, as shown in Fig. 6. Observe that, there is large
difference between the current bandwidth (at location #7),
68 Kbps and the bandwidth experienced at the previous
location (#6), 544 Kbps. In contrast, the average of the past
two bandwidth observations at location #7, 133 Kbps, is
much closer to the current bandwidth. This example
suggests that, in a high-speed vehicular scenario, the past
tells us more than the present about WWAN bandwidth. We
formally define the above property as follows:
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the inbound route for provider B).

Fig. 5. Average bandwidth along the inbound route (provider C).

Fig. 6. Past versus Present (Provider C, inbound route).
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Definition 1 (Past Tells More Than Present). Let bnl denote
the bandwidth at location l during trip n. Let �bn�1

l denote the
mean bandwidth value based on past n� 1 observations
(during trips 1 to n� 1) for location l. The PTMTP property
holds if the difference between bnl and �bn�1

l , �past, is smaller
than the difference, between bnl and bnl�1, �present, i.e.,

�past < �present: ð3Þ

Instead of using the absolute difference as in the
illustrative example, we employ the more robust Root
Mean Square (RMS) difference in our definition. Thus,

�past ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn¼N
n¼2

�

�bn�1
l � bnl

�2

N � 1

s

: ð4Þ

Similarly,

�present ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn¼N
n¼1

�

bnl � bnl�1

�2

N

s

: ð5Þ

We use the bandwidth samples collected from our
measurements to evaluate if WWAN bandwidth exhibits
the PTMTP property. With the default 500 m granularity,
we compute �present and �past�500 m for each location along
both routes and for all three providers and compare the
corresponding values. Since, we have collected 75 samples
at each location, N ¼ 75. Table 1 illustrates the percentage
of locations, which exhibit the PTMTP property for different
providers and routes. The data clearly show that at a vast
majority of locations, WWAN bandwidth does indeed
satisfy the PTMTP property.

Next, we investigate if the location granularity has an
influence on the PTMTP property. We first explore this in
the context of the example in Fig. 6. Consider that the
bandwidth information from the first two trips is recorded
at a coarser granularity of 1,000 m (cf. 500 m as in the
original example). Location #7 and #8 are now part of the
same 1,000 m segment and hence the bandwidth samples
recorded during the individual segments are averaged to
represent the bandwidth for the entire 1,000 m segment.
Thus, the bandwidth recorded during trips 1 and 2 for this
segment would be 233.5 and 245.5 Kbps. As in the
previous case, consider that the car is about to enter
location #7 during the third trip. The average from the past
bandwidth observations at location #7 is now 239.5 Kbps,
which is still significantly closer to the current bandwidth,
68 Kbps than the bandwidth at the previous location (#6),
544 Kbps. This suggests that the PTMTP property still
holds even if the past data are maintained at a coarser
location granularity. However, the difference between the
past and present increases with an increase in the location

resolution (65 Kbps at 500 m as compared with 171.5 Kbps
at 1,000 m). This suggests that finer granularity data would
be more useful.

To quantitatively study the effect of the location
granularity at which past bandwidth information is main-
tained on the PTMTP property, we compute �past�500 m,
�past�1;000 m, and �past�2;000 m, where the past bandwidth
samples �bn�1

l are recorded at different granularities of 500,
1,000, and 2,000 m, respectively. Recall that, 500 m is the
smallest location granularity available from our measure-
ment data. From Table 1, we observe that irrespective of the
location granularity, the past bandwidth statistics are
consistently a better indicator of the current bandwidth. In
other words, the PTMTP property holds unanimously for
different location resolutions. However, �past is greater
when the location granularity is coarser. This implies that
maintaining past bandwidth statistics at finer granularity
leads to a better approximation of the current bandwidth.

However, considering the practicalities of the real-
world environment, which in the context of this research
is a fast-moving vehicle, the location granularity cannot be
arbitrarily small. For example, under typical urban driving
speeds of 60 Kph, it only takes 3 s for a vehicle to travel
50 m. As such, the location granularity should be large
enough such that changes made by mobile applications
and protocols (see examples in Sections 5 and 6) in
response to changes in location have had sufficient time to
take effect. The location granularity is also constrained by
the accuracy of the state-of-the-art localization techniques.
Current GPS receivers report location coordinates with a
typical error of about 10 m. However, the error can
increase to up to 100 m in dense built-up metropolitan
areas [16]. Hence, the location granularity must be large
enough to mask the effects of positioning errors. Based on
all of the above, we have used 500 m as the smallest
granularity in this paper.

Finally, we investigate the impact of time of day on the
PTMTP property. For this, we separate the bandwidth
samples into the four 2-hour intervals used in our earlier
analysis (see Fig. 5). Next, we compute �past�time accord-
ing to (6), where b

n�1

t;l denotes the mean bandwidth at
location l from the past n� 1 observations collected
during the time interval t and bnt;l denotes the current
bandwidth at location l during the same time interval t.

�past�time ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn¼N
n¼2

�

�bn�1
t;l � bnt;l

�2

N � 1

s

: ð6Þ

The �past�time results listed in Table 1 are averaged over all

locations (assuming 500 m granularity) from both routes.

Comparing with �past�500 m, we observe that considering

the time of day as additional context does lower the
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estimation error. However, the improvement is clearly

marginal. The results confirm our earlier observation that

the influence of time on mobile bandwidth is not as

pronounced as location.
Now, we discuss how the PTMTP property can be

leveraged by mobile applications. As is evident from our
sample data in Fig. 6, WWAN bandwidth can fluctuate
frequently when moving at vehicular speeds. To maintain
QoS, network applications and in particular multimedia
applications monitor the current bandwidth and react
accordingly by varying certain application settings. For
example, adaptive multimedia streaming applications [17]
reactively adjust the streaming rate in response to the
observed path conditions. These applications deploy mon-
itoring agents (at the server and/or client) for continuously
monitoring the bandwidth [18]. However, in the context of
vehicular mobility, such reactive schemes are constantly
playing catchup. This is because by the time the agent has
learned about the current state of the network, the vehicle is
likely to move to the next location, where the network
conditions may be radically different from the previous
location. The PTMTP property indicates that the average
value from the past bandwidth measurements is a fair
approximation of the present bandwidth at a location. As a
result, if this a priori information is available to the
application, then it can proactively take appropriate action
to facilitate a smoother transition to the new conditions.
Further, the monitoring agent can learn about the current
state of the network quicker than when this information is
not available. Let us again consider the example in Fig. 5.
Assume that the vehicle is about to move to location #7
during the third trip. Further, assume that the monitoring
agent has learned of the bandwidth at location #6, which is
544 Kbps. Observe that, there is a large difference in the
bandwidth at these two adjacent locations. As a result, the
monitoring agent requires significant time to learn about
the conditions at location #7. This impacts the application
QoS during this entire duration. In the worst case, the
vehicle may already move to the next location before the
learning period is over. Note that, the mean value of past
bandwidth observations at location #7 is 133 Kbps. If the
monitoring agent knows this, it can rapidly converge to the
current bandwidth (68 Kbps) and thus ensure minimal
disruption of QoS. We present two concrete examples of
this idea in Sections 5 and 6.

4 BANDWIDTH MAPS

In the previous section, we demonstrated using empirical
data that WWAN bandwidth exhibits the PTMTP property.
We showed that historical knowledge of location-specific
bandwidth can be leveraged by mobile applications to
rapidly adapt to the bandwidth fluctuations that are
inherent in a high mobility scenario. The obvious question
is: How to collect and represent location-specific bandwidth
information? We propose the creation of bandwidth maps, as
a means for representing bandwidth data, by superimpos-
ing summary statistics of past bandwidth observations on
road network maps. Mobile applications can use these
maps and learn about the expected bandwidth conditions at
future locations. In this section, we discuss methods for
creating such maps.

The bandwidth samples can be collected either using
active or passive measurement tools. Active measurements
can be conducted using a setup similar to the one employed
in our measurement campaign (Section 3). The active
measurement client can be readily deployed on the mobile
device (vehicular gateway, mobile phone, etc.). The mea-
surement server can be hosted by a volunteer organization
or the WWAN service providers. The advantage of the
active approach is the ability to control the measurement
process, e.g., the sampling frequency. One drawback of this
method is that it introduces overheads, since probe packets
are actively injected into the network. However, the
bandwidth usage of the probes can be kept to a minimum
by appropriately tuning the measurement parameters [7]. In
the passive measurement approach, a simple client can
be installed on the mobile device, which can infer the
bandwidth by monitoring the network activity over the
wireless interface [19]. Since passive techniques do not inject
any traffic, they do not incur overheads. However, the
measurement can only be conducted when there is network
activity, thus providing little control. The bandwidth
samples collected (using either approach) must be tagged
with the corresponding location coordinates and time and
stored in a repository (either at the client or server) for later
processing. When the mobile client has built-in GPS
receiver, the location coordinates required for geotagging
can be directly collected from the receiver. Alternatively,
Wi-Fi or cellular localization techniques [20] could be
employed, albeit with a coarser location granularity.

Recall that, in Section 3, we discussed the importance of
collecting a sufficient number of bandwidth samples. In our
measurement campaign, we intentionally made repeated
vehicular trips along the chosen routes with the objective of
collecting a large set of samples. While we cannot expect
ordinary citizens to do the same, the data collection process
can certainly leverage the fact that human mobility patterns
are fairly repetitive. It is well known that human beings are
creatures of habit. Analysis of empirical human mobility
traces [21] has revealed significant similarity in our day to
day movement patterns. This is quite intuitive; for example,
on weekdays, we travel to and from work along the same
route. This is even more so true of public transport vehicles
such as buses and trains, since they follow specific routes
according to fixed timetables. Thus, if the measurements
are conducted continuously whenever the mobile device is
on the move, there is a high probability of collecting
multiple samples for each location along the visited routes.
The resulting bandwidth maps would be personalized, in
the sense, that they would contain bandwidth statistics
along the routes frequented by the device carrier. As a
result, the bandwidth maps have greater relevance since
future trips are very likely to include the locations
contained in the maps. The maps could also be shared
with other users via websites as is popular with Wi-Fi
wardriving communities. Public transport providers can
maintain a large repository of maps which are collected by
all their vehicles. These maps may also be of interest to
network providers who may offer incentives (e.g., free
credits) to users for contributing their data.

The location granularity can directly impact the perfor-
mance of the applications that leverage the information
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offered by the bandwidth maps. If one employs coarse
granularity, an entire geographical region such as a suburb
would correspond to a location segment. We refer to this
representation as region level. On the other hand, one could
use an extremely fine grained representation, segment level,
wherein a small section of the road (e.g., 500 m section)
corresponds to a location segment. Between these extremes,
is the granularity of a route, i.e., a sequence of road
segments, referred to as the route-level representation. We
have compared the three in our earlier work [22] and shown
that segment-level statistics provide the best performance.
In the rest of this paper, we will assume that a location
corresponds to a 500 m road segment.

We have constructed bandwidth maps from the band-
width traces collected in Section 3. The map for each route
depicts the average bandwidth at each location for each
WWAN provider. These maps are used in the simulations in
Sections 5 and 6. Recall that, in the illustrative example in
Section 3, we used the mean of the past bandwidth samples
as the summary statistic. However, service providers are
continually upgrading their network software and hard-
ware for improving coverage and bandwidth. Thus, it is
desirable to give more emphasis to recent samples and
phase out old data. Hence, we use the exponential weighted
moving average (EWMA) of the bandwidth samples as the
summary statistic. The average bandwidth (�bnl ) at location l
is updated when a new sample for that location, bnl is
available as follows:

�bnl ¼ �� bnl þ ð1� �Þ � �bn�1
l : ð7Þ

Our experiments (excluded for reasons of brevity) have
shown that a suitable value for the smoothing factor, � is
0.125. Fig. 7 depicts a fraction of the bandwidth map of the
outbound route for provider A, assuming a granularity of
500 m. Note that, higher order stochastic models, such as
fixed/variable order-N Markovian, Lezi and PPM [21], [23]
can be used in place of the average. However, our
simulations in later sections demonstrate that even using
simple statistics such as the average bandwidth leads to
significant performance gains. We intend to investigate
higher order models in our future work.

5 ADAPTIVE STREAMING

In this section, we show how bandwidth maps can be used
with adaptive video streaming running on personal mobile

devices. We first identify the problems experienced by the
state-of-the-art in video rate adaptation techniques in a
mobile environment. Next, we explain the principle and
design of our enhancement using bandwidth maps. We
evaluate the performance of our scheme through simula-
tions, using our empirically collected bandwidth traces
(from Section 3).

5.1 Background

Adaptive streaming is a popular technique that dynami-
cally adjusts the quality of a video stream during playback,
based on changing network conditions. Fig. 8 illustrates a
typical scenario, wherein, an adaptive streaming server
encodes a video file (or live event) at multiple resolutions
and bit rates. During playback, the server can transparently
change the streaming rate to seamlessly adapt to the
changes in the available bandwidth, by switching the
stream between the pre-encoded videos with different
qualities. For example, the server can switch to a lower
rate stream when it detects that the available bandwidth
reduces, thus graceful degrading the viewing quality.

To dynamically determine the appropriate streaming bit
rate and quality, the server needs to closely track the
underlying bandwidth conditions. Several such rate adap-
tation algorithms have been proposed for streaming
applications [17], [24], [25], [26]. These algorithms are
reactive in nature, in that, they monitor the video playout
buffers or certain end-to-end network parameters (i.e.,
delay and packet loss) and adapt the streaming rate
depending on the changes in the observed values. Among
these algorithms, TCP Friendly Rate Control (TFRC) [26] is
a popular choice [27]. Thus, we use TFRC as an illustrative
example to explain our idea in the rest of this section.

TFRC maintains a similar average sending rate as TCP
running under comparable network conditions, while
providing a relatively smooth sending rate, which helps
packets to meet the real-time constraints required by
streaming media [26]. TFRC inherits the TCP slow-start
mechanism. Once the receiver reports a packet loss event,
the TFRC sender enters the congestion avoidance state. In
this state, the TFRC sender controls the sending rate based
on the following simplified TCP throughput model:

TFRCrate ¼
s

R
ffiffiffiffi

2p
3

q

þ tRTO

ffiffiffiffiffiffi

27p
8

q

pð1þ 32p2Þ
: ð8Þ

In the above, p denotes the loss event rate, which is received
as feedback from the receiver, tRTO refers to the TCP
retransmission time-out, and s is the packet size. When
used in conjunction with an adaptive streaming algorithm,
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Fig. 7. A portion of the bandwidth map (provider A, outbound route).

Fig. 8. Adaptive video streaming.
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the streaming bit rate is directly controlled by the sending
rate TFRCrate.

However, TFRC is known to be slow to react to frequent
changes in bandwidth [28], [29]. Consider a scenario where a
user in a moving vehicle is streaming a video from an
Internet server, wherein the streaming rate is adaptively
controlled with TFRC. In this case, our simulation studies in
Section 5.3 show that the slow convergence of TFRC leads to
suboptimal streaming quality. For example, consider the
case when the WWAN bandwidth increases suddenly as the
vehicle enters into a new location. Now, the TFRC sending
rate, computed using (8), is slow to increase to the actual
bandwidth at the new location. The duration when the TFRC
rate is lower than the actual bandwidth represents missed
opportunities, because the streaming server could have
possibly streamed with higher quality. A similar behavior is
expected during the initial TCP-like slow-start period, since
the TFRC rate slowly ramps up at the start of a session.When
the bandwidth drops significantly at a new location, the
TFRC sending rate is also slow in reacting to the change, thus
remaining greater than the actual WWAN bandwidth.
During this period, it leads to congestion over the WWAN
link, which potentially leads to packet loss. Lost packets in
turn lead to lost frames, which affect the streaming quality.

5.2 Enhancement with Bandwidth Maps

We refer to our enhancement for TFRC as BW-MAP-
TFRC. Note that, using the same design principle,
bandwidth maps can be readily incorporated in other
rate adaptation algorithms.

Our idea is to proactively bootstrap the TFRC sending rate
to the location-specific mean bandwidth (obtained from
bandwidth maps) when the vehicle enters into a new
location. As a consequence of the PTMTP property, it is
highly likely that this proactive operation allows the TFRC
sending rate to quickly converge to the actual bandwidth as
compared to the purely reactive strategy adopted by plain
vanilla TFRC (recall the illustrative example from Fig. 6). As
shown in Fig. 9, our idea requires minimal changes to the
video streaming infrastructure. We assume that the stream-
ing server has access to bandwidth maps. We assume that
the streaming client running on the user’s mobile device is
aware of its current location. The client updates the server
when it changes its location. The server looks up the
bandwidth map and determines the historical average
bandwidth at that location. The rate adaptation agent,
BW-MAP-TFRC sender, at the server is forced to change its
sending rate to this mean value. This is achieved by freezing
the sender state for a short period and disabling the normal
operation of TFRC. Once this rate change is effected, normal
TFRC operation resumes.

We use a state machine (Fig. 10) to explain BW-MAP-
TFRC in detail. The normal operation of TFRC is
represented by the Plain Vanilla TFRC state. In this state,
the sending rate is determined as per (8). BW-MAP-TFRC
introduces two additional states at the sender side: Location
Changed and Restoring. The receiver remains unchanged.
When the BW-MAP-TFRC receiver moves to a new
location l, the sender transitions to the Location Changed
state. The sending rate is forced to �bl, the mean bandwidth
at l as reported by the bandwidth map. The BW-MAP-
TFRC sender remains frozen in this state for a period to
ensure that the receiver starts to provide feedback based on
the new rate. Note that, in order to ensure the successful
rate enforcement, the duration of the freezing time should
be long enough to ensure reliability by filtering out the
effects of delay jitter. Our experiments (not reported for
reasons of brevity) have found that a time period of 2RTT
is sufficient for this purpose. Following this, the sender
enters the Restoring state, wherein the sending rate is still
maintained at �bl. However, unlike in the Location Changed
state, the BW-MAP-TFRC sender resumes to estimate the
TFRC_rate according to (8). Note that, even though the
average bandwidth from the bandwidth map is close to
the actual link bandwidth, it will never be exactly equal.
Hence, it is important that the sender begins to monitor the
feedback from the receiver to gage if the current sending
rate �bl is either causing excessive congestion (i.e., if
TFRC_rate decreases) or underutilization (i.e., if TFRC_rate
� �bl) of the link. In either situation, the sender transitions
to normal TFRC operation.

5.3 Simulation and Results

Simulation setup. We use the ns-2 simulator in our
experiments. Our simulation setup is illustrated in Fig. 9.
We assume that the streaming server always has knowledge
of the vehicle location. The adaptive streaming server is
connected via a high-speed wired link to the Internet. The
client from a moving vehicle streams a video from the
server via a HSDPA link (provider B from our measurement
campaign). We assume that a streaming session lasts
throughout the whole duration of a particular trip. We
split our 75-trip bandwidth traces into two groups. The first
group of 35 trips forms the training set, which are used as
historical observations to create the bandwidth maps. After
the maps are created, we assume that they are updated as
each trip progresses using the new bandwidth samples. The
second group of 40 trips constitutes the evaluation set. To
simulate mobility, we vary the bandwidth of the HSDPA
link by playing back the empirical bandwidth traces for a
particular trip from the evaluation set. Since the wired links
in the Internet have sufficiently high bandwidth and small
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delays, we abstract the Internet as a 100 Mbps wired link
with a small propagation delay (10 ms).

For implementing adaptive streaming, we use the
Evlavid-RA framework [17]. In this framework, a video is
pre-encoded at 31 different rates, denoted by 1-31, where 1
represents the highest quality [17]. Each of the encoded
video streams is then partitioned into a sequence of small
“chunks,” e.g., Group of Pictures (GoP). The streaming
server dynamically varies the streaming quality and bit
rate by switching between different quality GoPs from the
corresponding encoded streams. We use a medium motion
media sequence (“Foreman” QCIF sequence) encoded at
30 frames/second using the popular MPEG-4 codec.
According to one of the recommended approaches [17],
we conceal a lost frame by replacing it with the last
successfully received frame.

We compare the performance of BW-MAP-TFRC with
that of plain vanilla TFRC. To implement the former, we
have modified the stock TFRC implementation in ns-2
according to Fig. 10. We quantify the objective video quality
using Peak Signal-to-Noise Ratio (PSNR). PSNR is calcu-
lated (in dB) for each frame, which represents the pixel-by-
pixel mean square error (MSE) comparison of the decoded
frame to the corresponding source frame. For example, the
MSE between the pixels Ys from the source frame and
pixels Yd from the destination frame is expressed as

MSE ¼ 1=ðm � nÞ �
X

m�1

i¼0

X

n�1

j¼0

ðYsði; jÞ � Ydði; jÞÞ2; ð9Þ

where m and n denote the number of rows and columns of
pixels in a frame, respectively. Then, PSNR of the decoded
frame is

PSNR ¼ 20 � log10ð255=
ffiffiffiffiffiffiffiffiffiffiffiffi

MSE
p

Þ: ð10Þ

However, to understand the human perceived quality,
we need subjective quality metrics, such as Mean Opinion
Score (MOS) [30]. MOS ranges from 1 to 5, where 5
represents the best rating of user experience. An approx-
imate estimate of MOS [31], [32] can be obtained from the
PSNR using the PSNR-MOSmappings in [17] (as in Table 2).

Table 2 suggests that the picture quality is good when
PSNR > 31 dB. It is reported that humans can perceive a
drop in the streaming quality, when the PSNR remains
below 31 dB consistently for 1 s or longer [33]. We refer to
such an event as a video glitch. Clearly, reducing the
occasions in which a viewer suffers from glitches directly
improves the QoS of a video streaming session. We define
the glitch duration, Tg, as the cumulative time that a user
suffers from glitches during the streaming period, Ts (e.g.,
the time to travel through a section of the road). We use the

normalized glitch duration, which is defined as Tg=Ts, as a
metric in the evaluations. We present mean results aver-
aged from 40 trips. The standard error achieved is on
average less than 5 percent of the mean value.

Results. Fig. 11 plots the instantaneous HSDPA band-
width and the sending rates of TFRC and BW-MAP-TFRC
as a function of time for a particular trip from the inbound
route. Fig. 12 shows the corresponding instantaneous PSNR
values. We are particularly interested in understanding
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TABLE 2
Mapping between PSNR and MOS

Fig. 11. Sending rate and HSDPA bandwidth dynamics for trip #19 of
inbound route.

Fig. 12. PSNR dynamics for trip #19 of inbound route.
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how these schemes behave during location transitions.
Hence, we focus on three such instances in Figs. 11b, 11c,
and 11d and Figs. 12b, 12c, and 12d. Note that, Figs. 11 and
12 are representative of the performance observed in other
trips from both routes.

Fig. 11b focuses on the start of the trip. Since TFRC
employs TCP’s slow-start algorithm, it requires considerable
time to ramp up its sending rate. Further, observe that the
exponential increase during slow start leads to packet loss
following which, the sender enters congestion avoidance.
On the contrary, BW-MAP-TFRC bypasses slow start
completely. The sending rate is bootstrapped at the past
mean bandwidth at the initial location. As a result, the
sending rate converges to the current bandwidth within 10 s.
The improved convergence achieved by BW-MAP-TFRC is
reflected in the PSNR results. Fig. 12b shows that the PSNR
of BW-MAP-TFRC quickly converges to 35 dB and remains
steady around that value. On the contrary, TFRC signifi-
cantly underutilizes the bandwidth and thus misses out the
opportunities to transmit a better quality stream. As a result,
the picture quality is poor, wherein users suffer consecutive
glitches. Fig. 13 offers a snapshot of the different viewing
experience for both schemes by displaying the decoded
frame #581, which is played at 20 s. Note that, the picture
quality with TFRC is pixelated, whereas the frame delivered
by BW-MAP-TFRC is crystal clear.

Fig. 11c captures bandwidth fluctuations due to two
consecutive changes in location, at 500 and 530 s, respec-
tively. When the bandwidth drops from 440 to 160 Kbps at
500 s, Fig. 12c shows that both schemes suffer from poor
streaming quality. This is because that the instantaneous
bandwidth is so low that good quality streaming is not
possible. At 530 s, the bandwidth recovers. Fig. 11c shows
that TFRC is conservative in increasing its rate, as it is
affected by the sudden increase in packet loss and delay
during the previous location transition. However, BW-
MAP-TFRC does not suffer from this, since it treats each
location independently and uses the past mean bandwidth
as an initial estimate for the sending rate. Fig. 12c shows that
BW-MAP-TFRC can avoid glitches by quickly restoring the
PSNR to 35 dB at 540 s, which is nearly 20 s faster than TFRC.

Fig. 11d shows that the mobile bandwidth drops sharply
from 470 to 240 Kbps at 630 s. Again, BW-MAP-TFRC is
quicker in reacting to this sharp decrease as compared to
TFRC. Fig. 12d illustrates that BW-MAP-TFRC is still able to
maintain reasonable streaming quality. On the contrary,
excessive packet loss causes TFRC to cut the rate more
aggressively, thus reducing the streaming quality. When the

bandwidth recovers at 660 s, BW-MAP-TFRC converges
twice as fast as TFRC. Further, observe that by the time
TFRC has successfully converged (680 s), the client has
already moved to the next location.

As is evident from the above example, with TFRC, the
video stream is more likely to suffer from poor quality
during the time period immediately following a change in
the vehicle’s location. This is due to the purely reactive
nature of TFRC, which requires considerable time to adapt
to the bandwidth at the new location, particularly when the
change in location results in a significant change in the
wireless bandwidth. To confirm this, we partition each
500 m location segment into 10 small sections, each of which
is 50 m long, and evaluate the performance of the two
schemes in each section. Fig. 14 plots the normalized glitch
duration for each 50 m section. (In this case, Ts is the time
required to traverse the corresponding 50 m section in each
trip.) Note that, the results presented are averaged over all
locations and 40 trips. Fig. 14 confirms our intuition that,
with TFRC, there is substantial impairment to the video
quality in the first few sections of the location. The glitches
taper off as the vehicle progresses toward the end of the
location. Further, observe that by relying on past bandwidth
statistics, BW-MAP-TFRC can significantly (by about 50 and
40 percent in inbound and outbound routes, respectively)
reduce the glitches encountered during the initial sections.

Fig. 15 plots the normalized glitch duration at different
locations along both routes. Note that, the results are
averaged over 40 trips. At the first location of both routes,
BW-MAP-TFRC effectively achieves a threefold reduction in
the normalized glitch duration. Recall that, this is because
BW-MAP-TFRC bypasses the TFRC slow-start phase at the
begin of the session. Further, by relying on the PTMTP
property, BW-MAP-TFRC achieves over 50 percent reduc-
tion in the glitch duration at several other locations in both
routes as compared to TFRC. At certain locations, e.g.,
location #3 in inbound route and location #20 and #21 in
outbound route, BW-MAP-TFRC outperforms TFRC by
more than a factor of 5. We also observe at a few locations,
e.g., location #5 in inbound route and #11 in outbound
route, both TFRC and BW-MAP-TFRC achieve similar
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Fig. 13. Picture quality comparison for frame #581 in trip #19 of
inbound route.

Fig. 14. Normalized glitch duration in different sections of a location.
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performance. We attribute this to the fact that the
bandwidth experienced at these particular locations is
highly variable (i.e., the bandwidth varies significantly
from one trip to another, which can be confirmed from our
empirical data). As a result, the mean estimated from the
past observations is not necessarily a good approximation
of the current bandwidth.

6 MULTIHOMING TRAFFIC SCHEDULING

In this section, we present a second application of
bandwidth maps, which enhances the QoS offered by an
on-board communication network connected to the Internet
via multiple WWAN links. We propose to interface
bandwidth maps with the traffic scheduler of an on-board
network. This allows the scheduler to use the average
bandwidth from past observations at different locations in
making load balancing decisions. We demonstrate the
effectiveness of our technique for audio streaming using
trace-driven simulations.

6.1 Background

A typical on-board communication network is illustrated
in Fig. 16. Multiple user devices inside the vehicle are
plugged into an on-board LAN (wireless/wired). A
Mobile Router (MR) seamlessly connects the on-board
LAN to the Internet using (typically) multiple WWAN
services for enhanced capacity and reliability. The MR and
the Home Agent (HA) transparently manage the mobility
of the on-board network using the NEMO basic protocol
[34]. In recent years, several such commercial systems
have been deployed for providing Internet services in
public transport vehicles (e.g., iComera1) as well as
personal automobiles (Autonet Mobile2).

According to the NEMO basic protocol, all traffic in the
downlink direction is routed through the HA as illustrated
in Fig. 16. Thus, the HA is responsible for scheduling all
inbound individual traffic flows (user sessions) to the
WWAN links. Similarly, MR schedules all uplink traffic

flows. A scheduling decision that does not adapt to the
underlying bandwidth conditions of WWAN links may
lead to assigning too much traffic on some of the links
while leaving the other links underutilized. In the former
case, the excessive traffic can lead to congestion, thus
increasing the delay and causing packet loss. In the latter,
the link capacity is not used optimally. Therefore, the
scheduling decisions made by traffic schedulers are crucial
to the QoS offered by the on-board networks. However,
since the available bandwidth of WWAN links may vary
significantly from one road segment to another during the
trip (confirmed by our empirical measurements presented
in Section 3), it is challenging to dynamically optimize the
flow allocation.

6.2 Enhancement with Bandwidth Maps

We demonstrate our idea in the context of downlink traffic,
given that it makes up the bulk of the traffic in a typical on-
board network. The principles described here can be readily
incorporated into the uplink scheduler, housed at the MR.

As an example, we have chosen to use the Proportional
Fair (PF) scheduling discipline [35] to demonstrate our idea.
However, the same design philosophy can be used in
conjunction with any other scheduling algorithm. We use
flow-based scheduling, wherein the unit of scheduling is a
flow. Thus, in the context of an on-board network, the
number of traffic flows assigned to each link is in
proportion to the bandwidth of the corresponding end-to-
end path between the HA and MR. Since the last-hop
WWAN link is known to be the bottleneck along this path,
the bandwidth on the WWAN link dictates the end-to-end
bandwidth. Assuming that the total number of active traffic
flows in the system is �, the number of flows �i assigned to
link i by the PF scheduler is given by

�i ¼
b̂i

P

i b̂i
� �; ð11Þ

where b̂i represents the estimated bandwidth of link i. Thus,
the rescheduling is triggered in the event that 1) the
bandwidth of WWAN link changes, 2) a new flow enters
the system, or 3) an existing flow departs.

Fig. 16 summarizes our idea. We use the location-
specific bandwidth mean as reported by the bandwidth
maps in conjunction with the downlink scheduler. When
the vehicle reports a change in its location, the HA looks
up the bandwidth maps for the mean bandwidth values
�bi;l at the new location l for each WWAN link i. The
scheduler then reschedules the traffic flows using the new
bandwidth estimates. As a result, the total traffic allocated
to link i is given by
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Fig. 15. Normalized glitch duration at each location.

Fig. 16. Interfacing bandwidth maps with a multihomed scheduler.

1. http://www.iComera.com.
2. http://www.autonetmobile.com.
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�i ¼
�bi;l

P

i
�bi;l

� �: ð12Þ

The above principle can be readily incorporated in both
closed-loop and open-loop schedulers:

Closed-loop scheduling. A closed-loop scheduler relies on a
feedback mechanism that adapts to fluctuations in the link
bandwidths. For each WWAN link, the MR passively
monitors the link conditions and continually reports to the
HA. From these updates, the HA estimates the link
bandwidth and adjusts the traffic load assigned on the
links. For example, the scheduler can detect a link is
overloaded, when the estimated bandwidth of a link is less
than the assigned traffic load onto it. A rescheduling event
is triggered when any of the links is overloaded. Commer-
cial on-board network providers are known to employ such
schedulers [18], though the exact details are proprietary and
not freely available. Despite their ability to learn about the
current network conditions, such schedulers may be slow to
react to the frequent WWAN bandwidth variations between
successive locations in a fast-moving vehicular scenario.

Due to the PTMTP property, the information from the
bandwidth maps can alleviate the above problem. When
the vehicle moves to a new location, the scheduler
retrieves the mean bandwidth values at the current
location from the bandwidth maps for all WWAN links.
Then, the scheduler intelligently initiates a rescheduling
action using (12). Following this, the scheduler continues
with its reactive closed-loop adaptation and makes further
changes to fine-tune the flow allocation as required.

Open-loop scheduling. An open-loop scheduler does not
monitor the network conditions in real time and is hence
unable to adapt to changes in the link bandwidth. As an
example, the scheduler may naively estimate the typical
bandwidth of each link using provider advertised band-
width statistics, e.g., the average values of the advertised
bandwidth ranges from providers. Note that, these a priori
estimates are location invariant. As a result, the scheduler
always performs flow allocation according to these fixed
bandwidth estimates at different locations. An open-loop
scheduler that incorporates bandwidth maps uses the mean
bandwidth values at each location from the maps in
rescheduling traffic flows as per (12). As a result, it is able
to adjust to the bandwidth variations and thus achieve
better performance. For brevity, in this paper, we only focus
on closed-loop schedulers. We refer the reader to [22] for
further details about open-loop schedulers and evaluations.

6.3 Simulation and Results

Simulation setup. We conduct simulations in ns-2. We
simulated an on-board NEMO network as illustrated in
Fig. 16. The MR maintains three parallel WWAN connec-
tions, which correspond to providers A, B, and C from our
empirical measurements in Section 3. We refer readers to
Fig. 16 for the network parameters used in the simulation.
As in Section 5, we simulate the vehicle mobility by playing
back the corresponding bandwidth trace files from the three
providers for a particular trip. We consider a scenario,
wherein, several on-board users are streaming audio (e.g.,
radio talk shows and webminars) from different Internet
servers, which are denoted as Corresponding Nodes (CN).

We simulate G711-encoded 64 Kbps constant bit rate (CBR)
flows [36]. Flow arrival follows Poisson distribution with
mean � ¼ 10 flows/minute. We assume the session dura-
tion is exponentially distributed with mean � ¼ 180 s. Note
that, these traffic load settings represent a scenario when
the system load is close to saturation.

We refer to the plain reactive closed-loop scheduling
scheme as React. In our implementation, the MR imple-
ments a monitoring agent that passively estimates the
throughput for each WWAN link over each 2-second
interval and reports it to the HA. Note that, the reported
throughput may not accurately represent the actual link
bandwidth. For example, when a link is underutilized, the
estimate computed by the MR reflects the actual traffic load
assigned to the link rather than the link bandwidth. To infer
the actual bandwidth, we use a simple Multiplicative
Increase Multiplicative Decrease (MIMD) algorithm. When
the reported throughput of a WWAN link is lower than the
assigned traffic load, the HA assumes that the link is
overloaded. In this case, the HA estimates the bandwidth as
half of the assigned traffic load on the link. Otherwise,
when the measured bandwidth of the link equals the
assigned load, the link is deemed as underutilized. In this
case, the bandwidth is estimated as 1.1�assigned traffic
load. The parameters for the MIMD algorithm have been
chosen based on our experiments (excluded for reasons of
brevity). Based on the bandwidth estimates, the HA uses
(11) to schedule flows. Rescheduling is also triggered with
the traffic load in the on-board network changes due to a
new flow starting or an existing flow ending.

We refer to our bandwidth map supplemented closed-
loop scheme as BW-MAP. We assume that the HA is always
aware of the current vehicle’s location. (The MR is equipped
with a GPS and sends periodic location updates to the HA.)
Recall that, as described in Section 6.2, the key difference
between BW-MAP and React is that, when the vehicle
enters into a new location, BW-MAP uses the location-
specific mean bandwidth values of all WWAN links to
reschedule the flows using (12).

As in Section 5.3, we use the first 35 trips to create the
initial bandwidth maps for each WWAN link. The band-
width maps are updated as the simulation progresses. The
remaining 40 trips are used in the trace-driven simulations
for evaluating the performance of different schemes. We
present averaged results from the 40 trips. The standard
error achieved is on average less than 5 percent of the mean
value that is reported.

We use MOS to evaluate the human perceived audio
quality. To calculate MOS, we first calculate the R factor
using the ITU E-Model [37]:

R ¼ Ro � Is � Id � Ie�eff ; ð13Þ

where Ro is the basic signal-to-noise ratio, Is represents
impairments to the source signal, Id is the impairment due
to delay and echo effects, and Ie�eff represents impairments
due to packet losses. For G711 codec, Ro is defined as 93.2
[38]. We assume no impairments to the source signal, i.e.,
Is ¼ 0. We assume that clients have sufficiently large
playout buffers, which filter out the effects of delay jitter,
and thus Id ¼ 0. For each active flow, we measure the
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instantaneous packet loss rate (Ppl) and mean number of
packets lost in a burst of lost packet (BurstR) at each
second. Ie�eff is calculated as

Ie�eff ¼ Ie þ ð95� IeÞ �
Ppl

Ppl=BurstRþBpl
; ð14Þ

where Ie is the impairment due to the codec used and Bpl is
the robustness factor to random packet loss. Ie ¼ 0 for the
G711 codec and Bpl ¼ 25:1 for the G711 codec with Packet
Loss Concealment (PLC) [38]. The R factor can be converted
into MOS using the following [37]:

MOS ¼
1; for R < 0;
1þ 0:035 �RþR � ðR� 60Þ

�ð100�RÞ � 7 � 10�6; for R 2 ½0; 100�;
4:5; for R > 100:

8

>

>

<

>

>

:

ð15Þ

We evaluate the instantaneous MOS for each active flow
every second. When the MOS drops below 3, the audio
quality is perceived as annoying [30]. As in Section 5.3, we
refer to such an event as a glitch. Since there are multiple
flows in the system at all time, we define mean glitch
duration, �Tg, as the average value of the glitch duration Tg

experienced by all active flows during a given streaming
period Ts. Thus, the normalized mean glitch duration is
defined as �Tg=Ts. Note that, the smaller this metric, the
better the QoS.

Results. Fig. 17 plots a snapshot of the instantaneous
WWAN bandwidth and the aggregate traffic load assigned
to each WWAN link for one particular trip along the
inbound route. Fig. 18 plots the corresponding values of the
instantaneous packet loss rate and MOS, averaged over all
active flows in the system. Fig. 17 shows that, in reaction to

the change in the bandwidth as the vehicle moves from
location #12 to #13, both React and BW-MAP reduce the
traffic load on providers A and B and reassign it to provider
C. Further, observe that BW-MAP is quick to react to these
changes as compared to React, which is more gradual.
Fig. 18a shows that BW-MAP results in up to 70 percent
lower packet loss as compared to React. This is because BW-
MAP is more agile in reacting to the changes and thus
avoids overloading the WWAN links. As a result, the
average MOS with BW-MAP is consistently above the
threshold of 3. In contrast, with React, the MOS dips below
3 after the location transition and only recovers after 997 s.

As in Section 5.3, we investigate the performance of the
two schemes as the vehicle travels along different sections
within the same location. Fig. 19 compares the results of
normalized mean glitch duration of all active flows in each
50 m section within a location. Note that, the results are
averaged over all locations from all 40 trips. As expected,
the glitches are much higher in the first 50 m and reduce
gradually as the vehicles progress further. However,
observe that BW-MAP reduces the glitches encountered
by nearly 40 percent as compared to React in the first 50 m
section. The difference between the two becomes smaller as
the vehicle approaches the end of the location, since React
gradually learns and adapts to the present bandwidth. In
the following discussion, we present results from the first
50 m segment of a location, as the effect of using bandwidth
maps is most pronounced in this short instance after a
change in the vehicle’s location.

Fig. 20 plots the normalized mean glitch duration for the
first 50 m of the locations, averaged over 40 trips. It is
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Fig. 17. A snapshot of WWAN bandwidth and aggregate network traffic load during trip #67 inbound route.

Fig. 18. Average packet loss rate and MOS as a function of time from
trip #67 inbound route. Fig. 19. Normalized glitch duration in different sections of a location.
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obvious that the use of bandwidth maps consistently

reduces the effect of glitches at all location. At certain

locations, e.g., at location #6 and #24 in outbound route,

BW-MAP reduces the glitches by up to four folds as

compared to React. On occasion, e.g., location #10 and #11

along the inbound route, React can perform as well as

BW-MAP. This is because the WWAN link bandwidths are

fairly stable in that particular region (confirmed by our

empirical data), which aids the purely reactive mechanisms

used in React. The above results show results averaged

across all flows. We are also interested to investigate how

many flows are affected, since this would reflect the

number of unsatisfied users in the on-board network.

Fig. 21 plots the fraction of active flows that suffer glitches

as a function of location and shows that BW-MAP reduces

the number of flows that suffer from glitches across the

board. At many locations, e.g., from location #19-#33 in the

outbound route, the improvement is more than 50 percent.

7 CONCLUSION

The emerging WWANs do not guarantee bandwidth

uniformity over the geographical coverage. More precisely,

at any given time, it is possible to receive significantly

different bandwidth from the same network provider at

different locations of the same street. We have found that

the past bandwidth information is a good indicator of the

actual bandwidth experienced at a given location. While

time of day also influences the mobile bandwidth, our

analysis of empirical traces has shown that location appears

to have a far greater influence than time. We have shown

that it is not difficult for vehicular users to capture the past

bandwidth knowledge in the form of geographical band-

width maps for part of the road network frequently

traveled. We have further demonstrated the usefulness of

these maps with two representative case studies, adaptive

multimedia and mobile router-based vehicular Internet.

Our work has shown that the use of past location-specific

bandwidth knowledge can significantly improve the QoS of

multimedia streaming applications in high-speed mobility.
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