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Abstract. The current operational very short-term and short-
term quantitative precipitation forecast (QPF) at the Meteo-
rological Service of Catalonia (SMC) is made by three differ-
ent methodologies: Advection of the radar reflectivity field
(ADV), Identification, tracking and forecasting of convective
structures (CST) and numerical weather prediction (NWP)
models using observational data assimilation (radar, satellite,
etc.). These precipitation forecasts have different character-
istics, lead time and spatial resolutions. The objective of this
study is to combine these methods in order to obtain a sin-
gle and optimized QPF at each lead time. This combination
(blending) of the radar forecast (ADV and CST) and precip-
itation forecast from NWP model is carried out by means of
different methodologies according to the prediction horizon.
Firstly, in order to take advantage of the rainfall location and
intensity from radar observations, a phase correction tech-
nique is applied to the NWP output to derive an additional
corrected forecast (MCO). To select the best precipitation es-
timation in the first and second hour (t+1 h andt+2 h), the
information from radar advection (ADV) and the corrected
outputs from the model (MCO) are mixed by using different
weights, which vary dynamically, according to indexes that
quantify the quality of these predictions. This procedure has
the ability to integrate the skill of rainfall location and pat-
terns that are given by the advection of radar reflectivity field
with the capacity of generating new precipitation areas from
the NWP models. From the third hour (t+3 h), as radar-based
forecasting has generally low skills, only the quantitative pre-
cipitation forecast from model is used. This blending of dif-
ferent sources of prediction is verified for different types of
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episodes (convective, moderately convective and stratiform)
to obtain a robust methodology for implementing it in an op-
erational and dynamic way.

1 Introduction

Blending is the merging of extrapolation radar-based
schemes with NWP model predictions. The first approaches
in blending nowcasts were introduced byGolding (1998)
in Nimrod system and byPierce et al.(2001) in Gandolf.
In both systems blending is achieved in physical space and
the weight given to the extrapolation component takes the
form of a fixed exponential decay with time. Later works
(Venugopal et al., 1999; Germann and Zawadzki, 2002)
have shown that predictability of rainfall structures has a
scale-dependence based on dynamic scaling processes. In
the Short-Term Ensemble Prediction System (STEPS, see
Bowler et al., 2006) the merging of the extrapolation and
NWP component forecasts is performed in a scale-dependent
way using several levels on cascade processes. Other au-
thors (Lin et al., 2005) compared the precipitation forecast
skill of a radar-based nowcast scheme (Germann and Za-
wadzki, 2002) and that obtained from a numerical model
(Côté et al., 1998). They attempt to optimize the statisti-
cal blending of model and radar products by discovering the
best lead-time to change from one product to the other in
an operational setting. This approach is further addressed
by Ebert and Seed(2004) who note the limitations of such
methods. As a response to these limitations, there has been a
recent trend away from simple deterministic forecasts of pre-
cipitation location and quantity toward offering probabilistic
forecasts that include a measure of uncertainty.Bowler et al.
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(2006) have merged extrapolation forecasts with downscaled
NWP forecasts. They combine spatial cascades of QPF fields
generated by an extrapolation scheme, a NWP model down-
scaled precipitation cascade and a noise field to produce a
blended, probabilistic QPF. This approach accounts for not
only the uncertainty in motion that has been attempted be-
fore (e.g.Schmid et al., 2002), but also the uncertainty in the
development of the precipitation field.Pierce et al.(2005), as
well asFox et al.(2005), attempt to determine more explicit
measures of uncertainty by running multiple realizations of
their nowcast schemes.

All the NWP models used in these blending approaches
are both downscaled and applied along vast regions. How-
ever, it is known that position errors are observed frequently
in the forecast models when comparing with observation.
These errors have several causes as some researchers have
found out. For instance,Mariano (1990) shows the use of
different initial condition data and model resolution leads
to position errors due to approximations of governing equa-
tions. The objective analysis, retrieval, or assimilation sys-
tem must then remove the incorrectly forecasted disturbances
and rebuild them in the proper location. That is a difficult
task when the features are temporally or spatially intermit-
tent and an accurate estimate of the background error is lack-
ing at such scales. The scarcity and incompleteness of data at
lower meso-scales add difficulty to the analysis. For this rea-
son, meso-β and meso-γ scale processes (fromThunis and
Bornstein, 1996) such as thunderstorms, squall-lines or so
on, are generally not well positioned or reproduced. A sen-
sitivity study of precipitation data conducted byJones and
Macpherson(1997) shows that position errors lead to sig-
nificant degradation of forecasts with assimilation.Brew-
ster (2003a) argues that the presence of infrequent spatio-
temporal features with a lack of background error estimates,
and incomplete data at small scales makes this problem hard
to solve and proposes a shift-vector modification to the model
field to correct phase errors. The correction of forecast rain-
fall field by comparing with observation are carried out by
Lee et al.(2009) who shows a similar quality between phase-
corrected NWP model and radar-based nowcasting.

This work is validated with 7 case studies with differ-
ent features exposed in Sect. 2. In this section the cur-
rent operational sources of rainfall forecast are exposed too.
The new techniques developed to improve the first 6 h of
hourly accumulated rainfall forecast are described in Sect. 3.
Firstly, a modification of the shift vector technique for phase-
correcting is applied. After that, several indexes are tested
for blending both forecasts. A new procedure to construct
the blending is developed by decomposing the model into
new rainfall areas and advection ones. The results obtained
are presented in Sect. 4. Finally, the main conclusions of this
work are presented as summary of this paper.

2 Data sources and case studies

2.1 Quantitative Precipitation Estimation (QPE) from
radar data

The Meteorological Service of Catalonia owns a radar net-
work (XRAD) that covers an area of 53 000 km2 (Catalonia,
NE Spain, and surrounding area). This network is made up
of four C-band Doppler radars. The most important char-
acteristics of the composed Constant Altitude Plan Position
(CAPPI) imagery used in the present work are the spatial res-
olution (2×2 km2 each pixel), time resolution (6 min) and
vertical resolution (1 km) from 1 km to 10 km of altitude (10
levels). The maximum reflectivity value is selected at each
pixel during the composition process. The CAPPI is gener-
ated by means of the Sigmet IRIS software which is based on
linear interpolation in range to the selected heights on Spher-
ical coordinates with earth curvature correction to preserve
data quality. On the other hand, the 1-h accumulated rain-
fall field has been generated by the Hydrometeorological In-
tegrated Forecasting Tool (EHIMI) (Sánchez-Diezma et al.,
2002), a software package designed to correct radar obser-
vations in real-time. The main corrections currently imple-
mented in this system (Bech et al., 2005) can be summarized
as:

– Correction of radar rainfall measurement stability using
mountain returns (Sempere-Torres et al., 2003). This
procedure provides a general factor of correction by
comparing the distribution average and current ground
clutter echo maps.

– Interpolation of blocked azimuths.

– Orographic corrections, which involve radar pointing
errors and screening effects (Delrieu et al., 1995).
Ground clutter identification and substitution (Sánchez-
Diezma et al., 2001) by using a precipitation type based
substitution technique and Doppler information. Re-
moval of contamination due to radar secondary lobes
(Bellon and Kilambi, 1999).

– Removal of residual speckles not related to the precip-
itation (Berenguer et al., 2006). The events examined
were not affected by intense super-refraction according
to the approach proposed byBech et al.(2007).

Once these corrections have been applied, the corrected re-
flectivity CAPPI field is used to obtain hourly precipitation
accumulations using theMarshall and Palmer(1948) Z-R re-
lationship. The resulting hourly rainfall field is a Cartesian
product, which has a 1×1 km2 spatial resolution.

2.2 Rain gauge network data

The ground rain-gauge data used to select the case studies
in this article was provided by the XEMA network (Prohom
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Table 1. Rainfall amount and intensity for the seven study events
from radar data and raingauge data.

Max. daily rainfall Max. hourly rainfall
amount (mm) intensity (mm/h)

Data Raingauge Radar Raingauge Radar

3 Oct 2008 38.0 51.3 28.7 78.2
16 Apr 2009 25.4 34.7 7.6 19.6
30 May 2009 34.6 81.7 20.7 59.7
4–6 Jun 2009 60.8 54.2 24.0 41.4
19 Jun 2009 70.4 68.9 28.5 30.9
24–26 Jun 2009 58.3 106.1 37.6 65.2
14 Jul 2009 34.7 27.5 34.7 21.4

and Herrero, 2009) and it is supported by Catalan Meteo-
rological Service. It is composed of 158 rain-gauges and it
covers the whole Catalonian area (around 32 114 km2). This
network records the precipitation at different temporal inter-
vals. There are 47 stations which accumulate the precipita-
tion every 30 min and the remaining 111 stations have one-
hour temporal resolution. Merging both different time reso-
lution networks a new one is obtained with a mean density
of near 1 gauge every 200 km2 and one-hour temporal reso-
lution.

2.3 Case studies

During spring 2009 and the beginning of summer of 2009
six events were selected by recorded daily rainfall amounts
over 25 mm, at least in one point, in both precipitation esti-
mation networks (Radar and rain-gauges). Another previous
case study used in this article is the 3 October 2008 event.
The highest rainfall amounts of those cases are detailed in
Table 1. Genesis and properties of these case studies are
widely varied. There is only a stratiform case on 16 April
2009 with 34.7 mm daily rainfall recorded and rain-gauge
intensities of 8 mm/h. On the other hand, other convective
events presented intensities up to 40 mm/h in rain gauge and
near 80 mm/h in radar and rainfall amounts accumulated of
more than 100 mm in 24 h. Different type of events are used
in this study to obtain a methodology that could be applied
in both stratiform or convective rainfall events.

2.4 Quantitative precipitation forecast

The current operational very short-term and short-term QPF
at the Meteorological Service of Catalonia is made by three
different methodologies:

1. Advection of the radar reflectivity field (field-oriented
approach).

2. Identification, tracking and forecasting of convective
structures (objected-oriented approach).

Table 2. Configuration of different simulations of MM5 model: Ini-
tial conditions (IC), Lateral Boundary Conditions (LBC), and Con-
vection (CONV), Microphysics (MICRO) schemes.

Domains NX.NY.NZ IC/LBC CONV MICRO

36 km 102×94×26 ECMWF/GFS Grell Schultz
12 km 70×70×30 MM5-36 km Grell Schultz

3. Numerical weather prediction models using observa-
tional data assimilation (radar, satellite, etc.).

The advection of the radar reflectivity (ADV, hereinafter)
field is a modification of the S-PROG technique (Seed,
2003). This modification is based on the advection of the
weather radar reflectivity fields considering the motion field,
which is derived with an algorithm based on tracking radar
echoes by cross-correlation (Berenguer et al., 2005).

The identification, tracking and forecasting of convective
structures (CST, hereinafter) are based on the storm cell iden-
tification and tracking algorithm (SCIT) developed byJohn-
son et al.(1998). This SCIT algorithm is customized by
applying different reflectivity thresholds in order to identify
convective cell contours (2-D and 3-D structures) and cen-
troids including characteristics such as area extension and
echo top heights (Rigo and Llasat, 2004, 2007). The tracking
and 1-h nowcasting of the 3-D structures is made consider-
ing cross-correlation between consecutive images and also
NWP-model derived mid-level winds (700 hPa). Moreover,
the evolution stage of convective cells (initiation, maturity
and dissipation) in the 3-D product is also estimated and fore-
casted.

The NWP model selected is the MM5 model, a non-
hydrostatic primitive equation model using terrain following
coordinates (Grell et al., 1994). In this model, the atmo-
spheric conditions were forced with initial and boundary con-
ditions from the European Centre for Medium range Weather
Forecast (ECMWF). In this work two simulations are per-
formed using two domains with horizontal resolutions of 36
and 12 km. The large domain covers SW Europe (Table2);
the nested domain has a grid of 12 km and covers Catalonia
(Table2).

For warm initialization in the MM5, 4DDA grid analysis
nudging is used. The nudging is based on the simple idea of
Newtonian relaxation that consists in the addition of a term
proportional to the difference between the calculated meteo-
rological variables from the model and the observational val-
ues in the right part of dynamical equations of the model. A
3-h preforecast analysis nudging period is used. These analy-
sis are generated from the Local Analysis and Prediction Sys-
tem (LAPS). LAPS is a meteorological assimilation tool that
combines all available data sources (surface observations,
radar, satellite, sounding and aircraft) to generate a coher-
ent three-dimensional representation of atmospheric features
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Fig. 1. Correlation of all the current operational forecasts running
in the SMC.

and processes with a time interval of an hour (McGinley and
Smart, 2001; Albers et al., 1996; Schultz and Albers, 2001).

2.5 Common grid

The used methodologies have different spatial resolution and
geographical projection. The radar-based cell evolution fore-
casting methodology has a spatial resolution of 2×2 km2 in
a Mercator grid of 215×158 pixels. On the other hand, the
meteorological model has 12×12 km2 horizontal resolution
and uses an Stereographic Polar projection. The observa-
tion field previously described and the advection of reflec-
tivity field have 1× 1 km2 horizontal resolution with Uni-
versal Transverse Mercator projection. To easily compare
and blend these different rainfall fields in different grids a
common grid has been selected. The radar-based cell evolu-
tion nowcasting grid is chosen as the common grid. There-
fore, advection, model and observation data have to be trans-
formed. A mean between nearest neighbors is applied to up-
scale the observation and advection to the common grid. The
interpolation of the NWP model field to the common grid of
2×2 km2 is carried out by cubic spline interpolation. This
simple interpolation method is necessary to allow the com-
parison and blending. Even though the grid resolution of the
NWP is increased, the real resolution of the NWP rainfall
field has not changed. So, it should be noted that this inter-
polation causes a part of comparison error. Figure1 shows
the errors from comparing radar observation to the different
forecasts in the common grid.

3 Methodology

The aim of the present work is to obtain a single and opti-
mized QPF at each lead time. Two consecutive procedures
are developed to address this objective. Firstly, a model cor-
rection is applied to reduce the NWP errors due to position-
ing and shape-pattern of precipitation structures. Once this
objective is achieved by applying a shift-vector correction,

the blending technique between the model corrected fore-
cast and radar-based nowcast is developed. Two merging
methodologies are proposed. The first technique is based on
previous bibliography methodologies, but different indexes
to compute the weights are tested. The second and original
technique developed in this article introduces spatial depen-
dence of weights as distance function to rainfall structures.

3.1 Model correction

The NWP models solve the primitive equations to obtain
meteorological fields physically coherent. The introduction
of observational assimilation improves the initial conditions.
However, this fact does not ensure that rainfall output fields
from the model reproduce the reflectivity field from the radar
assimilated into the model. For this reason an ulterior correc-
tion to the rainfall field of the model is applied. The method-
ology proposed is based on a semi-lagrangian advection of
the precipitation field by a decomposed time-dependent shift-
vector. This modification is composed of five already exist-
ing techniques:

1. Scale decomposition by Discrete Cosine Transforma-
tion (DCT) (Denis et al., 2002).

2. Shift-vector search for each scale (Brewster, 2003a).

3. Future shift-vector fields are computed by temporal ex-
trapolation of three previous hour phase error fields (Lee
et al., 2009).

4. Semi-lagrangian advection of precipitation structures
(Staniforth and Ĉoté, 1991).

5. Use of Gaussian spreading with a radius of influence
proportional to the length of the displacement vector
(Germann and Zawadzki, 2002).

The shift-vector is a displacement vector that modifies the
rainfall field from the model to reduce differences between
model predictions and observations. To obtain this vector
Brewster(2003b) divided the whole domain into several dif-
ferent size test areas. In the present work, a similar proce-
dure is applied but a scale-decomposition is previously car-
ried out. The four scales or test-areas’ sizes are presented
in Table3. The larger test areas are related to the errors in
the location of the rainfall structures (Fig.2a) whereas the
smaller ones are more connected with the shape errors of the
rainfall structures (Fig.2b). These vectors are computed by
the minimization of the following cost function (Eq.1):

J =
s(|δx|,l−1)

Nα

·

N∑
i=1

{H [F̄(xi +δx)]−Oi}
2

σ 2
i

(1)

whereOi is the rainfall observed and̄F(xi +δx) is the rain-
fall output of NWP model at the locationxi . The displace-
ment vector is represented byδx. The forecast field (̄F) is
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(a) 61 pixels test area size (b) 10 pixels test area size

Fig. 2. Two examples of minimization vector computation for the largest test area(a) and smallest test area(b). The shaded area is the NWP
rainfall field and the black contour is the observed rainfall field from the radar. Different shapes are observed in these images due to DCT
low-pass filter. The red box is the model test area whereas the green box is the observation test area which minimizes the cost function.
Consequently, the displayed vector is shift-vector for this test area.

modified by (H ) a Discrete Cosine Transformation (DCT)
to a representative scale of the test-volume. This procedure
is selected (instead of a Fourier Transformation) because it
ensures the capacity of dealing with asymmetry in the field,
a common property in rainfall fields. Moreover, a smooth
function is applied as cut-off function to avoid the gener-
ation of spurious Gibbs waves (Sardeshmukh and Hoskins,
1984). And σ 2

i is the expected observation variance. So, it
could be concluded that the right term of Eq. (1) is similar to
a root mean square error function for the total number of ob-
servations in the region considered or test-volume (N ). This
function is normalized by the factorNα (Eq.2):

Nα =

N∑
i=0

·αi (2)

whereα is a variable that computes the usefulness of these
observations following the approach ofBrewster(2003a).

The multiplier on the right-hand side of Eq. (1), s, is a
distance-dependent function that serves as a penalty for sim-
ilar but distant precipitation structures, i.e. to avoid associat-
ing similar structures but that are too distant one from each
other. The function used here, fromThiebaux et al.(1990), is
the inverse of the second-order autoregressive (SOAR) func-
tion (Eq.3):

s(|δx|,l−1) =
exp(|δx| · l−1)

1+|δx| · l−1
(3)

wherel is a length-scale parameter defined as (Eq.4):

l = 0.5
√

L2
x +L2

y . (4)

Then, shift-vectors for each test-area are determined by
minimizing the previous cost-function. However, nothing
ensures coherent shift-vectors between neighbor test-areas.
To ensure the continuity of this vector field, some pixels of
a test-area overlap another test-area (called overlap pixels in

Table 3. Properties of the four test areas used in the computation of
the shift-vectors.

Test area Cut-off scale Test area Overlap pixels
number (km2) size (pixels) (pixels)

1 120 61 31
2 70 35 18
3 30 16 5
4 20 10 5

Table3) and the shift-vector in these overlap pixels is cal-
culated by averaging the value of each test-area belonged to
this overlap area. Once the four scale shift-vector fields are
calculated by this methodology, a final modification vector is
computed by weighting the four previous ones by means of
the cost function value. Therefore, this procedure allows cor-
recting the forecast fields by comparing with observations.
However, future shift-vectors fields have to be computed to
correct the next hours rainfall forecasts.

To determine these future shift-vectors fields a temporal
extrapolation has been used. The extrapolation is carried out
by fitting, with a linear regression as a function of time, the
three previous hours shift-vectors fields. Minimum coher-
ence between vectors is required. This is set by a minimum
threshold of 0.5 of the correlation coefficient. If a vector
does not fulfill this requirement, the vector is removed and re-
construct from neighbor vectors. Once the future shift-vector
is determined, it is applied by a semi-lagrangian scheme (5).
This procedure allows the rotation displacement of the rain-
fall, and avoids extra dispersion between initial neighbor pix-
els.

pm = δt ·U(xi −pm,tn) (5)

whereU is the shift-vector at the positionxi . This scheme
is divided up intoN steps of lengthδt with N · δt = tn and
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tn is the model’s time resolution. For each time step,pm is
iteratively determined (starting withpm = 0) by Eq. (5) and
represents the final displacement vector.

Nevertheless, not all dispersion is avoided. For this reason
we use a Gaussian spreading with a radius of influence that
is proportional to the length of the displacement vector.

3.2 Blending technique

The blending methodology merges the advection technique
forecast of the reflectivity field (ADV) with the rainfall field
from the numerical weather prediction model. To carry
out this procedure, both sources of rainfall forecasts must
have the same properties. For this reason, ten reflectivity
(10× 6 m=1 h) fields are aggregated after applying a Z-R
transformation, in such a way that both fields have the same
temporal resolution and correspond to the same time pe-
riod. Moreover, the different spatial resolution and projec-
tion is previously matched (see Sect.2.5). Subsequently, the
blending could be carried out by directly merging both fields.
However, two techniques are developed in this article. The
first one tests the best index and threshold to compute the
weights that adjusts the merger. The second one introduces
spatial dependence in the weights computation in order to
take advantage of the new rainfall structures generated by
the model.

3.2.1 Classical blending

The different blending techniques developed have used dif-
ferent indexes to compute weights fromGolding (1998) to
Bowler et al.(2006), all the way toLi and Lai (2004). So, it
is needed to test several indexes and thresholds before setting
the best blending procedure over the region of analysis. In
order to assess this in a suitable way, a standard index (ν) is
defined. The tested indexes, which are CSI, POD, FAR, bias,
TSS, RMSE, # Pixels and correlation for the thresholds 0.1,
0.2, 1, 2.5, 5 and 10 mm, are converted into an a-dimensional
index that varies between zero for the perfect forecast and in-
finity for totally mismatching forecasts. The definition of all
these indexes and their transformation equation are detailed
in Appendix A. Once the standard index is computed, it is
introduced into the formulae (6) to obtain the weights for the
model (Wm) and the advection forecast (Wa):

Wm =
νa

νa+νm
−→ Wa= 1−Wm. (6)

From these weights, the blending rainfall field is computed
as follows:

Rb(xi,tn) = Wm ·Rm(xi,tn)+Wa·Ra(xi −1x,t0). (7)

3.2.2 Spatial blending

The Eq. (7) computes the rainfall forecast field weighting di-
rectly advection and NWP model rainfall field. However, the

NWP field has to be evaluated in more depth. It can be de-
composed as follows:

Rm(xi,tn) = Rm(xi −1x,t0)+SR(xi)+

+1t ·
dRm

dt
+

1t2

dt
·
d2Rm

dt2
+ ... (8)

where the first term is related to the advection of previous
rainfall field. The terms in the second line are related to the
temporal evolution of existing precipitation structures. Fi-
nally, the termSR(xi) represents the new precipitation areas.

Looking into the general formulation given by Eq. (7), it
has been realized that the source term is weighted by the
same index as the advection one. Due to this multiplication,
a portion of the new rainfall areas is reduced. To avoid los-
ing information an object-oriented technique is introduced
to subtract a spatial-dependent weight. The idea is to split
up the advection and evolution term from the source term.
For this reason, distance dependent weights to previous exis-
tent precipitation structures are computed. The forecast area
could be divided into three regions. A first region where pre-
cipitation is recorded, a second area called weight variation
area and, finally, a third region where only the source term is
taken into account. The first region covers the precipitation
area existing in the previous time step, the precipitation ar-
eas from the advection forecast and 20 km around these two
areas. The weight assigned to this area is computed by the
same procedure as the classical scheme. The only source
term area is the rest of the domain that is not covered by
first and second areas. This area is not weighted, it is only
corrected by an intensity bias index. The intensity correc-
tion is carried out by comparing previous model forecasting
with the final observed rainfall. The weight variation area
is defined to ensure the continuity of the rainfall field. The
total thickness of this area is 32 km and the weight fluctu-
ates between the value in the first area (advection area) and
the weight in the third area (source-term area). Finally, these
weights can be formulated as Eq. (9) as a function of the dis-
tance to precipitation structures (dp[x,y]):

Wm(dp[x,y]) =


W1

m dp < 20 km

W2
m 20≤ dp ≤ 52 km

W3
m dp > 52 km

(9)

W1
m =

νa

νa+νm
inside the advection area (10)

W2
m = W1

m ·

[
52−dp

32

]
+W3

m ·

[
1−

52−dp

32

]
(11)

W3
m =

∑
·Oi∑
·Fi

in the whole domain (12)

Equation (10) is the same as Eq. (6), but it is only com-
puted in the new defined advection area. This fact causes
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an increase in the first hour advection weight. The inten-
sity correction is computed by Eq. (12) which is similar to
bias index. To take into account a part of the model a min-
imum value of 0.05 is set to this intensity correction index.
This kind of bias is computed over the entire domain due
to likely no observation in the source-term area. Moreover,
the main objective of this correction is modulating the NWP
forecast output. Other techniques are developed with this
same objective such as inCasati et al.(2004), Lawson and
Hansen(2005) or Casati et al.(2008). Nevertheless, these
approaches have to be applied in the model correction to en-
sure coherency between second and third hour of forecast.
So, only an index related to bias is applied to account for the
possible error in the new precipitation areas from the model.
Finally, Eq. (11) modifies smoothly the weight betweenW1

m
andW3

m along the variation area. In conclusion, the blending
Eq. (7) could be written down as Eq. (13) where the spatial
dependence of the weights is introduced:

Rb(xi,tn) = Wa·Ra(xi −1x,t0)+

+ W1
m ·

(
Rm(xi −1x,t0)+1t

dRm

dt
+ ...

)
+

+ W2
m ·(Rm(xi,tn))+

+ W3
m ·SR(xi) (13)

whereWa is now computed asWa= 1−W1
m.

4 Results and discussion

Taking into account that the main objective is to merge the
radar-based nowcasting with the NWP model, the best radar-
based nowcasting in the case studies has to be selected. Fig-
ure1 shows three different nowcasting techniques. Both ad-
vection and cell evolution forecast are detailed in Sect.2.4.
The third nowcast is made by using the cell evolution infor-
mation to distinguish between stratiform and convective ar-
eas in the advected reflectivity field. However, the results for
hourly rainfall accumulations of advection (ADV) are bet-
ter than either cell evolution (CST) or the merge of them
(ADV+CST). The cell evolution technique would describe
in a proper way the growth and decay of the storm and, con-
sequently, it would reproduce the variation of rainfall intensi-
ties better than only the advection. Nonetheless, the original
storm shape simplification to an ellipse shape is more pe-
nalized than intensity mismatch for an hourly accumulation.
Advection plus cell evolution rainfall field has a slightly in-
crease of quality, but it has not bet the advection rainfall field.
For this reason, advection technique is the selected to blend-
ing with the NWP model.

The NWP model has been interpolated by cubic spline to
a common grid. This procedure only reduces the grid res-
olution, but it maintains the real resolution reproduced and
simulated by the model. As a result, the comparison between
model outputs and radar observations shows a low quality

(a) Observation

(b) Original model

(c) Model corrected

Fig. 3. Example of the model correction procedure for the period
13:00–14:00 UTC (t+1 h) of 3 October 2008 case.

in both the rainfall position and pattern. Obviously, these er-
rors are not only related with bad positioning or reproduction
of the real atmospheric situation, but also with the compar-
ison of rainfall at different scales. For this reason, the per-
sistence bets to the NWP model for the first and second hour
(Fig.4). Because of that, model correction is a necessary pre-
vious step to the proposed blending technique and this fact
could be observed in Fig.7 too. Figure3 shows that this ap-
proach reduces the error due to rainfall positioning, but the
most noticeable improvement is the shape correction in the
main precipitant structure. This structure is correctly posi-
tioned in the NWP forecast, but the shape of the observed
storm is not well-reproduced. The shift-vector modification
corrects this problem and it also conduct to a better simula-
tion of the pattern of the observed storm. Regarding the mod-
ification as function of forecast length, Fig.4 shows that this
model correction’s methodology improves during the whole
forecast period up to 25% and beats the persistence even at
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Table 4. Correlation between the blending and observation rainfall field in the first hour (upper) and second hour (lower), where the blending
is constructed by the index given in the first row and the threshold written in the second column. Best result for each lead time is marked in
bold type.

Lead time Threshold[mm] Npix RMS COR POD FAR CSI BIAS TSS

+1h

0.1 0.50 0.51 0.45 0.43 0.47 0.49 0.51 0.44
0.2 0.51 0.51 0.46 0.43 0.47 0.49 0.51 0.44
1.0 0.53 0.52 0.49 0.46 0.46 0.52 0.53 0.46
2.5 0.53 0.52 0.51 0.48 0.48 0.54 0.55 0.48
5.0 0.53 0.53 0.50 0.47 0.49 0.54 0.54 0.49
10.0 0.57 0.56 0.52 0.48 0.53 0.55 0.58 0.50

+2h

0.1 0.30 0.32 0.36 0.36 0.36 0.36 0.30 0.37
0.2 0.30 0.32 0.35 0.35 0.35 0.36 0.30 0.36
1.0 0.30 0.32 0.40 0.39 0.36 0.41 0.32 0.41
2.5 0.29 0.32 0.39 0.38 0.38 0.41 0.31 0.41
5.0 0.29 0.32 0.45 0.43 0.38 0.46 0.31 0.47
10.0 0.31 0.33 0.51 0.52 0.38 0.50 0.32 0.49

Fig. 4. Correlation of observation with the persistence (red), model
(blue) and model corrected (black) as a function of forecast time.
The shaded areas represent the range of results whereas the solid
line is the mean of the seven case studies.

the first hour. So this ameliorator let us blending the model
with the advection forecast in a suitable way.

Once the model has been corrected, the blending technique
can be applied. The first step is determining the best thresh-
old and index to compute the weights. For this reason differ-
ent indexes and thresholds are tested. By analyzing the re-
sults for all the case studies (Table4), it could be concluded
that CSI, which is the index selected inGolding (1998), is
suitable to compute the blending weights. Nevertheless, the
best one for the first hour is the bias, whereas POD is the cho-
sen one for the second hour. However, the most remarkable
results are that the higher the precipitation threshold consid-

Table 5. Several Verification indexes for different thresholds for the
first hour blending forecast (BLE), Model correction (MCO) and
advection of reflectivity field (ADV) plotted in Fig.5. Best results
are marked in bold.

Threshold

Source Score 0.1 0.5 1.0 5.0

MCO

COR 0.43 0.41 0.39 0.12
TSS 0.74 0.71 0.66 0.26
CSI 0.35 0.31 0.26 0.07

BIAS 2.54 2.46 2.57 3.38
RMSE 1.48 1.49 1.50 1.38

ADV

COR 0.67 0.66 0.63 0.19
TSS 0.74 0.72 0.72 0.29
CSI 0.66 0.63 0.59 0.11

BIAS 0.89 0.89 0.97 2.13
RMSE 0.79 0.80 0.82 0.96

BLE

COR 0.69 0.68 0.66 0.20
TSS 0.81 0.76 0.76 0.29
CSI 0.46 0.43 0.43 0.13

BIAS 1.97 1.74 1.58 1.59
RMSE 0.72 0.73 0.74 0.78

ered, the better weight for blending is obtained. This result
could be explained by the fact that high thresholds only take
into account the most intense storms, rejecting the low in-
tensity rainfall. Low amounts of precipitation in the model
could be related to spurious or residual rainfall. So, neglect-
ing these areas by using high thresholds provides an accurate
value to the weights. Another conclusion of this preliminary
study of classical blending is that weights vary dynamically
with the previous error index giving more representation to
advection in the first hour and more importance to NWP
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(a) Model corrected (b) Reflectivity advection

(c) Blending (d) Observation

Fig. 5. An example of 22:00 UTC blending forecast for the next hour (23:00 UTC) of the 14 July 2009 event.

forecasts in the second hour. This fact could be observed
in Fig. 7 by comparing both blending techniques, one with
the model corrected and another with the model uncorrected.
The difference between blending with model corrected and
model uncorrected in the first hour is smaller than in the sec-
ond hour. This is because a heavier weight is given to advec-
tion in the first hour but to the model in the second one.

To identify the strong and weak points of this methodology
an example is analysed. The example fields plotted (Fig.5
and 6) shows that introducing information from the model
has positive and negative influences. For instance, in the first
hour blending rainfall field (Fig.5c) new areas of rainfall ap-
pear where no new rainfall is observed (Fig.5d). But the
rainfall structure is extended to the east side where rainfall is
observed too. For the second hour, the blending procedure
weakened the rainfall field (Fig.6c) which really happened
as can be observed in the real rainfall field (Fig.6d). The
different statistical indexes (Table5) show an improvement
in correlation and True Skill Score for the blending together
with the root mean square error. However, CSI and bias
are better in the advection forecasting, but for the threshold
higher than 5 mm, the blending beats the advection forecast-

ing again. For the second hour a similar behavior is reported
(Table6). The blending gets the best index for correlation
and True Skill Score again (and CSI for threshold higher than
1 mm). The minimum RMSE is obtained by the model, but
with quite similar values than with the blending technique
results.

Finally, a comparison of both techniques, spatial and clas-
sical blending, and the best result of previous existent fore-
casting methodologies is presented (Fig.7) as function of
forecast length. The introduction of spatial dependence of
weights as function of distance of rainfall cells improves no-
ticeably the first hour blended forecast field (it increases the
correlation up to 25%). The main objective of this proce-
dure is to reduce the loss of information where no rainfall is
extrapolated due to the inexistence of previous radar rainfall
observations. There is only rainfall from model in this area,
for this reason, the model is modulated in these areas by a
quality index. But, where there is rainfall from the advection
procedure, both extrapolation and NWP forecast are blended.
This approach gives more representation to advection in the
first hour than in the classical blending. Furthermore, the new
rainfall areas generated by the model are corrected but not
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(a) Model corrected (b) Reflectivity advection

(c) Blending (d) Observation

Fig. 6. An example of 22:00 UTC blending forecast for the second hour (00:00 UTC) of the 14 July 2009 event.

Fig. 7. Correlation of all the methodologies developed in the present
work and the best previous one as function of forecast length.

weighted. Because of that, this procedure has the ability to
better integrate the skill of rainfall location and patterns that
are given by the extrapolation of rainfall field with the capac-
ity of generating new precipitation areas from NWP models.
Then, the first hour spatial blending field is better than that
from classical blending. For the second hour, spatial blend-
ing is the best one again. Nevertheless, the correlations for
both blending techniques are quite similar. From the third
up to the sixth hour, only the model correction is still ap-
plied. It is selected because correlation results obtained with
this methodology beat those obtained without correction or
persistence.

5 Conclusions

A blending approach to improve QPF for the first six hours
is described in this paper. The work is divided into a pre-
vious model correction and the merging of corrected NWP
and extrapolation forecasts. So, different conclusions could
be extracted from these techniques.

The model used in this paper was simply interpolated by
a cubic spline interpolation. This procedure only reduces the
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Table 6. Several Verification indexes for different thresholds for the
second hour blending forecast (BLE), Model correction (MCO) and
advection of reflectivity field (ADV) plotted in Fig.6. Best results
are marked in bold.

Threshold

Source Score 0.1 0.5 1.0 5.0

MCO

COR 0.60 0.56 0.47 0.00
TSS 0.63 0.47 0.37 0.00
CSI 0.30 0.33 0.23 0.00

BIAS 2.51 1.01 1.07 0.00
RMSE 0.48 0.49 0.51 0.27

ADV

COR 0.66 0.64 0.56 0.00
TSS 0.68 0.64 0.74 0.00
CSI 0.61 0.55 0.43 0.00

BIAS 0.82 0.85 1.52 0.00
RMSE 0.87 0.88 0.93 0.91

BLE

COR 0.74 0.71 0.62 0.00
TSS 0.78 0.68 0.75 0.00
CSI 0.47 0.54 0.44 0.00

BIAS 1.73 0.97 1.53 0.00
RMSE 0.51 0.53 0.57 0.34

grid resolution, but maintains the real resolution simulated by
the model. The proposed shift-vector model correction has
shown the ability to improve the rainfall position as well as
precipitation pattern structures. This fact ensures the model
could be properly used in a grid of 2×2 km2.

Once position errors of the model were corrected (from
model simulation) and shape errors (from real scale solved)
two blending techniques have been applied. Both of them are
suitable approaches to improve QPF in the first hours. The
first approach, called classical blending, is based on exist-
ing techniques. It is used not only to test the best index and
threshold, but also to quantify the real improvement intro-
duced by the second technique (spatial blending).

From the index and threshold test it could be concluded
that CSI, which is the index used in similar studies, is suit-
able to compute the blending weights. The best scores are
obtained by bias in the first hour and POD for the second
hour. However, compared to CSI, POD produces worse re-
sults for the first hour and bias for the second. Regarding
the thresholds, the most remarkable result is that the higher
the precipitation threshold, the better weight is obtained for
blending.

Regarding the spatial blending, it has been observed that
the introduction weights as distance function previous rain-
fall structures improve mainly the first hour because of main-
taining the new precipitation areas coming from the model.

To sum up, this work has shown the blending technique
(especially the spatial one) as a suitable approach to improve
the QPF in the first hours. But a correct positioning of rainfall
from the model is required. For this reason, an appropriate

Table A1. Matrix showing the frequencies of predicted and/or ob-
served events determined by threshold (T ). This matix is called
contingency table.

Predicted

rain< T rain> T

Observed
rain< T zeros (Z) false alarms (FA)
rain> T misses (M) hits (H)

and sound procedure to correct the phase errors of the model
(both position and shape error) has been developed too by
means of combining several existing techniques. Combining
spatial blending and model correction, a proper approach is
obtained to improve remarkably the QPF from the first up to
the sixth hour.

Appendix A

In this appendix section all the categorical, or conditional,
statistics and qualitative indexes used in this article are for-
mulated in the first subsection. The second one shows the
transformation of these indexes into their standard form.

A1 General indexes

– CSI=
H

H +FA+M
∈ [0,1] (A1)

– POD=
H

H +M
∈ [0,1] (A2)

– FAR=
FA

H +FA
∈ [0,1] (A3)

– TSS=
Z ·H −FA ·M

(Z+FA) ·(M +H)
∈ [−1,1] (A4)

– bias=
H +FA

H +M
∈ [0,∞] (A5)

– RMSE=

√∑n
i=0(Fi −Oi)2

n
∈ [0,∞] (A6)

– # Pixels= FA+H ∈ [0,33970] (A7)

– correlation=

∑n
i=0(Fi ·Oi)
√

F2 ·O2
∈ [0,1] (A8)

The variablesH , FA, M andZ are defined in the contin-
gency table (TableA1), whereasFi is the forecast field at
positioni andOi is the observation at the same position. Fi-
nally,n represents the total number of observations and fore-
casts over the thresholdT , son = M +H +FA.
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A2 Transformation formulation

The RMSE and # pixels are not modified due to their range.
The bias has the same range, however the best forecast is
the value 1. For this reason a logarithmic transformation is
applied to the bias. The final transformation (Eq.A9) is:

ν = |logbias| (A9)

All the other indexes are transformed by the following equa-
tion (Eq.A10):

ν =
1− index

index
(A10)

Only the TSS and FAR need a previous change. One is added
to TSS and then is divided by 2. TSSm

= (TSS+1)/2. FAR
is inverted as FARm = |FAR−1|.

Acknowledgements.This research is supported by the NOWCAST-
ING project (Department of the Environment and Housing of the
Generalitat of Catalonia), the Seventh Framework Programme
European Commission IMPRINTS project (no. 226555), the
European Project FLASH, FP6-2005-Global-4 (no. 036852)
and the COST-731 concerted Action (Rossa et al., 2010). The
authors want to thank Manel Ceperuelo for all the previous work
carried out during the first two years of the NOWCASTING project.

Edited by: A. Mugnai
Reviewed by: G. Boni and two other anonymous referees

References

Albers, S., McGinley, J., Birkenheuer, D., and Smart, J.: The Lo-
cal Analysis and Prediction System (LAPS): Analyses of clouds,
precipitation, and temperature, Weather and Forecasting, 11,
273–287, 1996.

Bech, J., Rigo, T., Pineda, N., Segalà, S., Vilaclara, E., Śanchez-
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