
Improving Quality Attributes of a Complex System Through  
Architectural Analysis – A Case Study 

Rikard Land 
Mälardalen University 

Department of Computer Engineering 
Box 883 

721 23 Västerås 
+46 (0)21 10 70 35 

rikard.land@mdh.se 
 

ABSTRACT 
The Software Architecture Analysis Method (SAAM) is a 
method for analyzing architectural designs, providing 
support in the design process by comparing different 
architectures and drawing attention to how a system’s 
quality attributes are affected by its architecture. We used 
SAAM to analyze the architecture of a nuclear simulation 
system, and found the method to be of great help when 
selecting the architecture alternative to use, and to draw 
attention to the importance of software architecture in 
large.  

It has been recognized that the quality properties of a 
system is to a large extent determined by its architecture; 
there are, however, other important issues to consider that 
belong to “lower” design levels. We describe how detailed 
technical knowledge affected the design of the architecture, 
and show how the development process in large, and the 
end product can benefit from taking these issues into 
consideration already during the architectural design 
phase.  
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1. INTRODUCTION 
A nuclear power plant must be safe for humans and the 
environment; it must, moreover, be economical. To 
optimize plant maintenance in these respects, a number of 
computer simulations are performed. Governmental 
regulations state how and when safety analyses are to be 
carried out, to ensure that the plant is safe [13]. 

In the nuclear business domain, there are already a number 
of simulation programs [11], many with a development 
history of decades, already validated and approved by the 
authorities. Typically, the simulation programs are installed 
on powerful Unix servers. The input data to an execution is 
edited and stored in input files. The simulation program is 
started via a command line with arguments specifying e.g. 
the input files to use and simulation time. There may be 

some means of monitoring the progress of the simulation, 
and when it is finished, the output is available in output 
files. It is common that several input files are required, and 
the simulation produces several output files representing 
different kind of output data. Both input and output files 
may be either binary or text files. 

However, this type of system is somewhat out of date. Files 
are stored in a central directory tree structure where users 
must know the naming conventions and the directory 
structure must be maintained. The users have to perform 
many tasks manually that could beneficially be done 
automatically. Since there are files, paper documents, and 
databases in different formats, one has to rely on 
methodologies to ensure that input data is consistent. The 
problem is made worse by the vast increase in size of data, 
both input and output, over the years. The user interface is 
inhomogeneous and hard to master – the users have to 
collect data from different sources, edit text files describing 
input, and analyze the results found in the output files. A 
number of tailor-suited tools, e.g. graphical plot programs, 
have been written and are used during the analysis of the 
output, but a more integrated system would improve the 
efficiency and quality of the work.  

To address these problems, Westinghouse Atom developed 
the PAM system (Plant, Analysis, Methodology). In PAM, 
data is stored in a relational database, many tasks are done 
automatically, data consistency is ensured to a much higher 
degree through program code and the use of one single 
database, and all of these features are reached from an 
integrated graphical user interface, the client, executing 
locally. The question how to handle the simulation 
programs from within PAM was, however, not easily 
solved. One straightforward solution would be to port the 
simulation programs to the client’s platform, but this is not 
practically possible for several reasons:  

• Since there are a large number of simulation programs, 
it would require a huge amount of work. 

• Many of the programs are commercial products. 



• The programs would have to be re-verified and re-
validated at very high costs. 

The design of the simulation part therefore had to deal with 
existing programs, compiled, verified, and validated for a 
specific platform. We concluded that this requirement must 
be built into the highest design level, i.e. on the 
architectural level. Our goal was to find the best solution 
using different variants of architectural solutions. With 
“best”, we intended the best tradeoff between certain 
quality properties; we wanted our system to be robust, 
maintainable, have acceptable performance and be as cheap 
as possible. We will see how these properties were included 
in the analysis and how they are affected by the 
architecture. 

The remainder of the paper is organized as follows: the 
development of different architectures is described in 
section 2, the evaluation of the four alternatives in section 
3, and section 4 contains other related observations. 

2. THE ARCHITECTURAL DESCRIPTION 
At first, we designed one architecture. We soon found it 
useful to split it into four variants and compare these with 
each other. To evaluate the architectural proposals created 
during the investigation we used the Software Architectural 
Analysis Method (SAAM) [1,7], a general method for 
evaluating quality attributes. After the evaluation, it was 
found that there were a few issues that needed more 
scrutiny. This refinement procedure was done in much the 
same way as with the methodology Bosch suggests [2]. 

With this case study we have followed the pragmatic 
approach that has characterized the field of software 
architecture so far; much of the architectural research has 
included case studies [1,2,3,4,5,6,9,12]. Bass et al describe 
case studies where SAAM is used [1]. The relation between 
architecture and quality attributes is emphasized by Bass et 
al [1] and Bosch [2]. The Architecture Tradeoff Analysis 
Method (ATAM) is a relative of SAAM, which refines the 
analysis by making the tradeoff choices even more explicit 
[8,9]. 

SAAM is applied early in the development cycle, and gives 
the architect the possibility to choose an architecture with 
an acceptable tradeoff between quality attributes. With this 
method, architectures are informally compared through the 
use of scenarios. In our case we had use cases like “the user 
starts a simulation” and change scenarios such as “PAM is 
extended with functionality to compare binary output files”. 
For the outcome of the analysis to be reliable it is crucial 
that the selected scenarios are indeed representative for 
actual future scenarios. How could we be sure that we used 
enough scenarios – or the “right” ones? Every type of 
stakeholder of the system (users, developers, managers) had 
representatives participating during several discussion 
meetings in the development of the scenarios. Everybody 

was instructed about SAAM and scenarios in advance. 
Thus, the chance of any major scenario being missed was 
decreased. A dozen is a fair number of scenarios to use [1]; 
we gathered 19. 

2.1 The basic features of the system 
The first design decisions were quite straightforward: there 
is a client running in the PC environment, and a central 
database. To handle requests of executions from the clients, 
it was decided that some sort of PAM-specific software was 
needed on the server computers [10]. 

The PAM system thus contains three types of nodes with 
different tasks: the local PCs where the users work, a 
database server, and the Unix servers were the actual 
simulations are executed. In the following, when referring 
to the “servers” we intend the Unix servers. The database is 
in most cases discarded from the discussion for simplicity. 

The users collect and edit input data in the client; the data is 
then stored in a central database. The functionality we focus 
on in this paper concerns what happens when this data is to 
be used in a simulation. Data from the database is supposed 
to be formatted and written to the input files, and the 
simulation program should be started. During and after 
execution, the client shall be able to present the output files 
to the user. In some cases the data should be filtered, such 
as when only one variable among many in the same file is 
plotted. 

To handle the simulation programs, we designed a basic 
architecture; all four alternatives share the basic features 
described in this section. In the following, we will use the 
word “process” with the meaning “separate thread of 
execution with a specific task”; whether we should 
implement the components as operating system processes or 
threads will be discussed in section 4.1. 

On each calculation server there is a very central process 
running, the “Service Broker” (SB). It simply provides the 
service of starting calculations to the clients. The idea with 
this process is to make the system robust: since it 
implements such a simple task, it should be possible to 
make it robust enough to always be running. 

On request from a client, the SB starts a “Calculation 
Server” (CS), which maintains one simulation. It is a 
separate process without any direct connection to either the 
SB or the starting client. Any client can monitor and control 
the progress of the simulation through the means of sending 
messages to the CS. 

One PAM-simulation consists of a user-written script, with 
loops etc., starting a number of tasks, which are the actual 
simulation program executions. The CS spawns one “Task 
Calculation Server” (TCS) process per task, not necessarily 
on the same node. 



Figure 1 shows a snapshot of some of the processes in the 
system, describing how the processes interact when a 
simulation is started in the system. (The database is omitted 
from this and the following figures. It resides on a separate 
node, and all processes connect to it during startup and 
remain connected during their whole lifetime.) The client 
process requests an execution from the SB process on one 
server, which starts a CS process (the directed lines); after 
this, there are no dependencies between these processes. 
The CS starts three TCS processes, each responsible for the 
execution of one task; the CS and TCS processes are 
dependent on each other during the whole simulation (the 
lines without arrowheads). In this particular case two tasks 
need to be run on the same node as the CS, and one on 
another (this could be due to where particular simulation 
programs are installed or to utilize the system’s resources 
better). 

The key features are that there is always exactly one SB per 
server computer, exactly one CS per executing simulation, 
exactly one TCS per executing task, and any number of 
clients on each PC. 
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:CS :TCS

:TCS

:TCS:SB

 
Figure 1. Process interaction when a simulation is 

started. 

2.2 The four variants of the basic architecture 
During simulation, the input and output files reside in a 
working directory, typically with as high performance as 
possible. When the simulation eventually is being 
“approved”, data is to be filtered (to decrease size) and 
moved into the database for long-term storage. However, in 
the meantime, we would like the files to be stored on an 
intermediate storage area, typically an ordinary disk with 
backup mechanisms. It can be discussed on which node the 
files should be stored during this period of time. We can 
discern two strategies: either the files are stored on the node 
where the simulation took place (the “distributed” approach 
which we will call “1”), or on one node acting as “file 
server” for PAM (the “centralized” approach, “2”). The 
former approach would probably give higher performance 
on the expense of system complexity, while the latter would 
be easier to understand but includes more overhead. 

The other issue concerns the presentation of these files in 
the client. The files are processed and filtered before they 
are presented to the user, and the question is where this 

filtering should take place – in the client or on the server 
(which implies an extra component on the server). 
Intuitively, if the files are filtered on the server, 
performance would be improved because a smaller amount 
of data is sent across the network, but the system would be 
more complex and the server more loaded. We name the 
strategies of processing files in the client or on the server 
“A” and “B”, respectively. Figure 2 shows the different 
strategies. 

PC

Unix Server Unix Server

PC PC

Process
file

Process
file

A: The files
are processed
in the client

B: The files
are processed
on a  server

1: The centralized strategy 2: The distributed strategy
 

Figure 2. The different approaches for file handling. 

What makes these issues important is that the size of the 
files described above can be very large. 10 MB for one 
simulation is not uncommon. Each of these two problem 
dimensions (where to store files and where to process files) 
has two solutions. All solutions seemed to have advantages 
and disadvantages, and it was by no means obvious which 
solution, and combination of solutions, would include the 
“best” strategy. It is an axiom in software architecture that 
after quality attributes have been assessed, a tradeoff 
decision is required [1,2,6]. Thus it was decided that all 
four combinations should be treated as separate 
architectures and compared using SAAM. Figure 3 
describes how the architectures fit into the two problem 
dimensions and how they accordingly are named – A1, A2, 
B1, and B2. 

1: Store files distributed

2: Store files centrally

A: The files
are processed
in the client

B: The files
are processed
on a  server

A1 B1

A2 B2

 
Figure 3. The processes in a small PAM system 

according to design B1 and B2. 



Figure 4 shows a snapshot of the processes in a small 
system according to alternatives A1 and A2 (the difference 
between them is not discernible in this view). There are no 
simulations executing, and the SB is idle. Files are handled 
in the client components, so there are no extra components. 
There are an arbitrary number of clients on any number of 
PCs, but only one SB per server computer. 

:PC :Client

:Server :SB

:PC :Client

 
Figure 4. The processes in a small PAM system 

according to design A1 and A2. 

In architectures B1 and B2, an extra process was 
introduced, called “Service Dispatch Server” (SDS). The 
task of the SDS is to process the input and output files 
associated with the simulations on the server before 
transferring them to the client. Figure 5 shows the processes 
graphically, according to alternatives B1 and B2 (there is 
no difference between them in this view); the system is of 
the same size and state as in Figure 4. There are an arbitrary 
number of clients, one SB per server computer, and one 
SDS per client. 

:PC :Client

:Server :SB

:PC :Client

:SDS:SDS

 
Figure 5. The processes in a small PAM system 

according to design B1 and B2. 

We can clearly see that there are more components and 
dependencies in B1 and B2 than in architectures A1 and 
A2. The question to be analyzed is whether the expense in 
complexity pays off with other advantages, such as 
increased performance. 

3. THE ANALYSIS OF THE 
ARCHITECTURES 
We will now describe how performance, system load, and 
maintainability were estimated from the architectural 
description.  

3.1 Performance analysis 
As is described above, large files are sometimes transferred 
over the network, affecting performance negatively. In the 
performance analysis, the number of large data transfers 
over the network were measured or estimated. To be able to 
do this, we used five user scenarios including network 
transfers of large pieces of data, such as “a simulation is 
executed” and “two files are compared”. 

The number of actual transfers during each scenario was 
estimated, and the result of this analysis can be seen in 
Figure 6. As an example, the figure describes that for 
scenario 1 (“a text file from a server computer is viewed in 
a client”) architectures A1 and A2 include one transfer, not 
necessarily of the whole file (depending on the 
circumstances), for alternative B1 always exactly one whole 
file, and for B2 between one and two whole transfers of a 
file. 
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Figure 6. The number of large data transfers across the 
network in five different scenarios. 

Architecture B2 clearly performed worst in all scenarios, 
A1 and A2 was equal in all but one scenario, and it can be 
argued which of A1 and B1 performed absolutely best. A 
more detailed analysis would include determining an 
average size of the data and weighting the scenarios. For 
our purpose, however, this analysis was considered enough 
– we found that one architecture (B2) was worst, and the 
others comparable when considering network load due to 
large file transfers. 

3.2 System load analysis 
In the system load analysis, the number of processes in a 
running system was calculated. This was thus not a SAAM 
analysis, but rather a simple addition of processes, based on 
the number of server computers and an estimated average 
number of clients and simulations (“small”, “medium”, or 
“large” systems). As is shown in Figure 7, the number of 
processes is consistently lowest for architectures A1 and 
A2, while the number of processes may be almost doubled 
in architecture B1.  

Before performing this analysis we had no clear notion of 
what the outcome would be, but when looking at these 
results in retrospect, we found them to be very intuitive. 
The extra processes in systems according to B1 and B2 are 
due to the inclusion of the SDS component. The great 
difference between B1 and B2 are due to the strategy on 
which servers there must be SDSs, which in its turn 
depends on whether the simulation files are stored using a 
central or a distributed approach.  
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Figure 7. The number of processes in running systems 

of different sizes. 

3.3 Maintainability analysis 
The stakeholders formulated 16 change scenarios, 
containing the addition of functionality. An example of a 
change scenario is to “include functionality to compare two 
binary output data files”. The results from the execution of 
these scenarios are presented in Table 1 – it turned out that 
architectures A1 and A2 were undistinguishable, as was B1 
and B2. Architectures A1 and A2 in general score better 
than B1 and B2, which of course is because architectures 
B1 and B2 include more components (the SDS). However, 
two scenarios affect the SB in architectures A1 and A2, 
which is undesirable because of its central position and the 
robustness requirements. 

Table 1. Statistics from the scenario executions. 

 A1/A2 B1/B2 

Number of components 
affected: total (average) 

23 (1.4) 28 (1.8) 

Number of scenarios 
affecting at least 2 
components 

6 10 

Number of scenarios 
affecting the SB 

2 0 

 

Scenarios are said to interact on a component if both affect 
it [1]; if several unrelated scenarios affect the same 
component, this is an indication that the separation of 
concerns between components may be insufficient. The 
more interactions, the more complex it is to maintain the 
system. However, as always there are no absolute numbers 
on how many interactions are considered “too many”; these 
numbers should rather be used for comparing architectures 
(which is done here), or to focus attention on particular 
components with many scenario interactions. See Table 2. 

With only five or six components and 16 scenarios, this 
analysis gives a rather decent distribution, apart from the 

client. However, the client is equally unstable in all 
architectures. 

How should we interpret these results? The figures clearly 
say that architectures A1 and A2 are more maintainable 
than B1 and B2 and seem to leave no room for alternative 
interpretations. However, this result is at least partly a 
consequence of the fact that some functionality is added to 
an extra component, the SDS. If this means that 
architectures B1 and B2 are more fine-grained than A1 and 
A2 it is not fair to compare the architectural descriptions – 
they describe the system on different levels of abstraction. 
We considered this objection seriously, and among other 
things tried to estimate the size of the code in the 
components. We arrived at the conclusion that the client 
code would be slightly smaller in architecture B1 and B2 
than in A1 and A2, but that the program code of the SDS 
would be substantially larger than the decrease in client 
code size. We finally decided that the architectures were 
indeed comparable, and the figures of the analysis fair. In 
addition to this, we had gained the insight that B1 and B2 
would require more coding, which speaks to their disfavor. 

Table 2. Scenario interaction on each component. (The 
variations depend on how certain scenarios are 

implemented.) 

 A1/A2 B1/B2 
Database Affected by 4 scenarios  
SB Affected by 2 scenarios Affected by 0 scenarios 
CS Affected by 3 scenarios  
TCS Affected by 3 or 4 scenarios  
Client Affected by 10 or 11 

scenarios 
Affected by 9 to 11 
scenarios 

SDS N/A Affected by 7 or 8 
scenarios 

 

3.4 Other analyses 
Besides analyzing performance, system load, and main-
tainability, we informally evaluated testability, reusability, 
and portability. However, these analyses did not reveal any 
differences between the architectures – we therefore omit 
the details of the analyses.  

However, the conclusion that several architectures are 
indistinguishable is also a valuable result, from which it is 
possible to draw conclusions. Firstly, since these properties 
are not affected by the choice of architecture, any of the 
alternatives can be chosen (as far as these properties are 
concerned). Secondly, if these properties were considered 
crucial for the system’s success, we might have devised 
more alternatives, to explore whether these properties could 
be improved at the architectural level. SAAM can only 
compare different alternatives, not give absolute measures 
of the quality properties, so the outcome could mean “they 
are equally good” as well as “they are equally bad”. We did 
not pursue this track further because we were confident that 
our understanding of how these properties were affected 



ensured that these properties would not pose any major 
problem. So, thirdly, through the analysis process itself, we 
had gained insight enough into the problem to make the 
decision that further analyses were not needed. 

At this stage, we summarized the analysis and found 
performance, system load, and maintainability to be the 
properties distinguishing the alternatives.  

3.5 Discussion 
It was not easy to without aid predict which architecture 
would be the most fit for our requirements. The analyses 
clearly helped serving as a basis for a choice. We found that 
architecture B2 was inferior with respect to the number of 
large data transfers, while B1 was inferior with respect to 
the number of processes in the system. So far, if 
performance is important, either architecture A1 or A2 
should be chosen; A1 was estimated to have slightly better 
performance than A2. 

When evaluating maintainability, we see that A1 and A2 are 
superior, the only problem being that two change scenarios 
affect the SB, whereas in B1 and B2 the SB is unaffected 
by all scenarios. In other analyses the architectures were 
found to be equal.  

It is quite clear, then, that architecture A1 or A2 should be 
chosen. 

4. GENERAL OBSERVATIONS AND 
LESSONS LEARNED 
4.1 Processes or threads 
So far, we have described the runtime components as 
“processes”, but the architectural description does not 
require the CS and TCS components to be implemented as 
separate operating system processes. They could very well 
be implemented as threads executing in a designated “CS 
and TCS host” process, or why not in the SB. The choice 
between processes and threads can be considered a lower-
level design issue. This does not mean that the choice does 
not affect the properties of the system, but rather that this 
tradeoff does not need to be solved on the architectural 
level. There might indeed be a tradeoff between system 
load and robustness – processes load the system more, 
while a failure in one thread is likely to affect other threads. 
In the actual implementation of PAM, it was decided that 
the system would be more robust if processes are used in 
the case of a component failure, and that a threaded solution 
would be considered if there were any system load 
problems. 

We can draw the general conclusion that an architectural 
description does not need to distinguish between processes 
and threads, but can simply describe the runtime 
components as “separate threads of execution”. The choice 
of whether these are implemented as processes, operating 

system threads, or language-level threads can be postponed 
to later design stages.  

4.2 Detailed knowledge useful 
One possible source of instability in the system would be 
that the system is spammed with CS and TCS components 
having lost contact with each other. However, instead of 
being a potential source of instability, the communications 
channel is used to increase robustness. Sockets proved to 
fulfill our expectations well. Indeed, the knowledge of the 
socket mechanism was an important input to the creation of 
the architecture. Let us view the connection between a CS 
and one of its TCSs. Both sides will be noticed whenever 
the socket is unexpectedly closed, and immediately 
terminate themselves. The socket could be closed due to 
several reasons – the network might be lost, or the other 
component can have failed or terminated unexpectedly (due 
to e.g. a bug). The components show a consistent behavior 
in all such cases, provided that the sockets mechanism is 
reliable enough to always notice these cases (which we 
believe it is). Thus, the architecture builds robustness partly 
on the sockets mechanism. 

Since we wanted to reuse legacy code written in the Tcl 
programming language [14], we knew in advance that Tcl 
was a strong candidate of implementation language. Our 
experience of the socket functionality being very robust and 
easy to use in Tcl strongly influenced the development of 
the architecture as described above. We also knew that the 
use of Tcl would support portability since there are Tcl 
interpreters available on the platforms of interest; as a 
consequence we found it superfluous to support portability 
in our architectural description. 

The general conclusion to be drawn is that detailed 
technical knowledge is an important input to the 
architectural design process. 

4.3 Simplicity implies robustness 
Our next observation concerns another way the system is 
made robust. In earlier prototypes of the system, there were 
problems with robustness. There were many scenarios 
where a failure in one process made other processes fail 
too. Attempts were made to handle every possible faulty 
state, but this proved to rather introduce new errors and 
make the code incomprehensible. One of the governing 
ideas behind the new architectures has been to make the 
runtime components as independent of each other as 
possible, in the sense that the system as a whole is in a 
sound state even if many individual components and 
communication channels fail. It should be noted that this 
feature is not implemented through any advanced fault-
tolerance techniques, but rather by creating a relatively 
simple architecture. Of course, the robustness, as well as 
any quality attribute supported by the architectural 



description, is ultimately dependent on how well the system 
is actually implemented. 

Our experience supports the idea that one should build 
important properties directly into a system’s architecture, 
rather than try to add them afterwards [1]. 

4.4 An unexpected solution of a tradeoff 
When discussing the outcome of the evaluation, there were 
a few minor issues that needed more consideration, of 
which we will describe one. As we saw, the results of the 
analysis indicate that we should choose between A1 (with a 
distributed file structure) and A2 (with a central file 
structure). On the one hand, the project group intuitively 
felt uncomfortable with the idea of having files distributed 
over a large number of computers when tracking errors, 
while on the other hand this implies slightly higher 
performance. When considering this problem, it seemed as 
we had to decide on a tradeoff. This proved to be both true 
and false. We found that the choice of strategy where to 
store files did not need to be decided upon until installing a 
PAM system, thus making a system administrator 
responsible for solving this tradeoff (for it is indeed a 
tradeoff). We decided that viewed this way, the resulting 
architecture could be described as a synthesis of A1 and 
A2, or in other words that there was no difference between 
A1 and A2. 

In the general case, instead of making tradeoff decisions 
during the design phase, it might be possible to give the 
system manager the freedom to choose the tradeoff 
considered optimal in his particular situation. We believe 
that one should consider whether a tradeoff can be 
postponed to the configuration and maintenance phases. 
However, we are aware that such an approach may 
introduce new tradeoffs: a highly configurable system may 
be harder to understand and maintain, and harder to test, 
than a less configurable system. 

5. CONCLUSION 
We devised one architecture, but created four variants of it 
and compared these at the architectural level to be able to 
assess the quality attributes of the final system. SAAM 
provided a useful way of evaluating our four suggestions, 
revealing drawbacks not obvious at first sight. The analysis 
provided a basis for taking conscious decisions on which 
architecture to choose, given an estimate on what quality 
attributes the four variants would have. The use of SAAM 
proved to bring more benefits: the stakeholders of the 
system became more conscious of quality attributes and the 
architecture’s impact on these; moreover, a fruitful 
interaction between analysis and design took place thanks 
to SAAM. 

Besides supporting the usefulness of SAAM, we were able 
to draw a number of general conclusions. We learned that 
the creation of an architecture cannot be performed in an 

“ideal” world, rather the knowledge about the availability of 
implementation issues are both necessary and 
advantageous. In our case, the architecture was colored by 
the knowledge of specific Tcl and sockets features, and this 
knowledge was taken advantage of to create a robust 
architecture. We achieved a certain degree of robustness 
due to inherent features of the architecture, which is 
preferable to writing error-handling code. During the design 
process, we found it useful to discuss the runtime 
components in terms of “processes”, although it was not 
decided whether these should actually be implemented as 
processes or threads. We have also described that it was 
possible and useful to postpone one tradeoff decision to the 
system configuration and maintenance phases. With further 
research we hope that these issues will mature from mere 
observations to more formal models incorporated into the 
theory and tools of software architecture. 

During the analysis, the important question was raised 
whether the architectural descriptions, containing different 
numbers of components, actually were comparable. We 
were able to give what we believe to be a satisfactory 
answer by estimating the size of each component. With 
further research it might be possible to more formally 
decide when architectural descriptions differ too much and 
when they indeed are comparable – a prerequisite for any 
analysis. 

Finally – what is our study worth for the stakeholders of 
PAM? Are our estimates of performance, system load and 
maintainability accurate? Is the system robust and portable 
enough? We will not be able to answer these questions until 
PAM has been in production use for some time. We hope 
that we will then be able to gather measures of the quality 
attributes of interest and compare it to our analysis. This 
will provide useful feedback to our research. 
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