
Improving Quality Attributes of a Complex System Through
Architectural Analysis – A Case Study

Rikard Land
Mälardalen University

Department of Computer Engineering
Box 883

721 23 Västerås
+46 (0)21 10 70 35

rikard.land@mdh.se

ABSTRACT
The Software Architecture Analysis Method (SAAM) is a
method for analyzing architectural designs, providing
support in the design process by comparing different
architectures and drawing attention to how a system’s
quality attributes are affected by its architecture. We used
SAAM to analyze the architecture of a nuclear simulation
system, and found the method to be of great help when
selecting the architecture alternative to use, and to draw
attention to the importance of software architecture in
large.

It has been recognized that the quality properties of a
system is to a large extent determined by its architecture;
there are, however, other important issues to consider that
belong to “lower” design levels. We describe how detailed
technical knowledge affected the design of the architecture,
and show how the development process in large, and the
end product can benefit from taking these issues into
consideration already during the architectural design
phase.

Keywords
Software architecture, architectural analysis, SAAM.

1. INTRODUCTION
A nuclear power plant must be safe for humans and the
environment; it must, moreover, be economical. To
optimize plant maintenance in these respects, a number of
computer simulations are performed. Governmental
regulations state how and when safety analyses are to be
carried out, to ensure that the plant is safe [13].

In the nuclear business domain, there are already a number
of simulation programs [11], many with a development
history of decades, already validated and approved by the
authorities. Typically, the simulation programs are installed
on powerful Unix servers. The input data to an execution is
edited and stored in input files. The simulation program is
started via a command line with arguments specifying e.g.
the input files to use and simulation time. There may be

some means of monitoring the progress of the simulation,
and when it is finished, the output is available in output
files. It is common that several input files are required, and
the simulation produces several output files representing
different kind of output data. Both input and output files
may be either binary or text files.

However, this type of system is somewhat out of date. Files
are stored in a central directory tree structure where users
must know the naming conventions and the directory
structure must be maintained. The users have to perform
many tasks manually that could beneficially be done
automatically. Since there are files, paper documents, and
databases in different formats, one has to rely on
methodologies to ensure that input data is consistent. The
problem is made worse by the vast increase in size of data,
both input and output, over the years. The user interface is
inhomogeneous and hard to master – the users have to
collect data from different sources, edit text files describing
input, and analyze the results found in the output files. A
number of tailor-suited tools, e.g. graphical plot programs,
have been written and are used during the analysis of the
output, but a more integrated system would improve the
efficiency and quality of the work.

To address these problems, Westinghouse Atom developed
the PAM system (Plant, Analysis, Methodology). In PAM,
data is stored in a relational database, many tasks are done
automatically, data consistency is ensured to a much higher
degree through program code and the use of one single
database, and all of these features are reached from an
integrated graphical user interface, the client, executing
locally. The question how to handle the simulation
programs from within PAM was, however, not easily
solved. One straightforward solution would be to port the
simulation programs to the client’s platform, but this is not
practically possible for several reasons:

• Since there are a large number of simulation programs,
it would require a huge amount of work.

• Many of the programs are commercial products.

• The programs would have to be re-verified and re-
validated at very high costs.

The design of the simulation part therefore had to deal with
existing programs, compiled, verified, and validated for a
specific platform. We concluded that this requirement must
be built into the highest design level, i.e. on the
architectural level. Our goal was to find the best solution
using different variants of architectural solutions. With
“best”, we intended the best tradeoff between certain
quality properties; we wanted our system to be robust,
maintainable, have acceptable performance and be as cheap
as possible. We will see how these properties were included
in the analysis and how they are affected by the
architecture.

The remainder of the paper is organized as follows: the
development of different architectures is described in
section 2, the evaluation of the four alternatives in section
3, and section 4 contains other related observations.

2. THE ARCHITECTURAL DESCRIPTION
At first, we designed one architecture. We soon found it
useful to split it into four variants and compare these with
each other. To evaluate the architectural proposals created
during the investigation we used the Software Architectural
Analysis Method (SAAM) [1,7], a general method for
evaluating quality attributes. After the evaluation, it was
found that there were a few issues that needed more
scrutiny. This refinement procedure was done in much the
same way as with the methodology Bosch suggests [2].

With this case study we have followed the pragmatic
approach that has characterized the field of software
architecture so far; much of the architectural research has
included case studies [1,2,3,4,5,6,9,12]. Bass et al describe
case studies where SAAM is used [1]. The relation between
architecture and quality attributes is emphasized by Bass et
al [1] and Bosch [2]. The Architecture Tradeoff Analysis
Method (ATAM) is a relative of SAAM, which refines the
analysis by making the tradeoff choices even more explicit
[8,9].

SAAM is applied early in the development cycle, and gives
the architect the possibility to choose an architecture with
an acceptable tradeoff between quality attributes. With this
method, architectures are informally compared through the
use of scenarios. In our case we had use cases like “the user
starts a simulation” and change scenarios such as “PAM is
extended with functionality to compare binary output files”.
For the outcome of the analysis to be reliable it is crucial
that the selected scenarios are indeed representative for
actual future scenarios. How could we be sure that we used
enough scenarios – or the “right” ones? Every type of
stakeholder of the system (users, developers, managers) had
representatives participating during several discussion
meetings in the development of the scenarios. Everybody

was instructed about SAAM and scenarios in advance.
Thus, the chance of any major scenario being missed was
decreased. A dozen is a fair number of scenarios to use [1];
we gathered 19.

2.1 The basic features of the system
The first design decisions were quite straightforward: there
is a client running in the PC environment, and a central
database. To handle requests of executions from the clients,
it was decided that some sort of PAM-specific software was
needed on the server computers [10].

The PAM system thus contains three types of nodes with
different tasks: the local PCs where the users work, a
database server, and the Unix servers were the actual
simulations are executed. In the following, when referring
to the “servers” we intend the Unix servers. The database is
in most cases discarded from the discussion for simplicity.

The users collect and edit input data in the client; the data is
then stored in a central database. The functionality we focus
on in this paper concerns what happens when this data is to
be used in a simulation. Data from the database is supposed
to be formatted and written to the input files, and the
simulation program should be started. During and after
execution, the client shall be able to present the output files
to the user. In some cases the data should be filtered, such
as when only one variable among many in the same file is
plotted.

To handle the simulation programs, we designed a basic
architecture; all four alternatives share the basic features
described in this section. In the following, we will use the
word “process” with the meaning “separate thread of
execution with a specific task”; whether we should
implement the components as operating system processes or
threads will be discussed in section 4.1.

On each calculation server there is a very central process
running, the “Service Broker” (SB). It simply provides the
service of starting calculations to the clients. The idea with
this process is to make the system robust: since it
implements such a simple task, it should be possible to
make it robust enough to always be running.

On request from a client, the SB starts a “Calculation
Server” (CS), which maintains one simulation. It is a
separate process without any direct connection to either the
SB or the starting client. Any client can monitor and control
the progress of the simulation through the means of sending
messages to the CS.

One PAM-simulation consists of a user-written script, with
loops etc., starting a number of tasks, which are the actual
simulation program executions. The CS spawns one “Task
Calculation Server” (TCS) process per task, not necessarily
on the same node.

Figure 1 shows a snapshot of some of the processes in the
system, describing how the processes interact when a
simulation is started in the system. (The database is omitted
from this and the following figures. It resides on a separate
node, and all processes connect to it during startup and
remain connected during their whole lifetime.) The client
process requests an execution from the SB process on one
server, which starts a CS process (the directed lines); after
this, there are no dependencies between these processes.
The CS starts three TCS processes, each responsible for the
execution of one task; the CS and TCS processes are
dependent on each other during the whole simulation (the
lines without arrowheads). In this particular case two tasks
need to be run on the same node as the CS, and one on
another (this could be due to where particular simulation
programs are installed or to utilize the system’s resources
better).

The key features are that there is always exactly one SB per
server computer, exactly one CS per executing simulation,
exactly one TCS per executing task, and any number of
clients on each PC.

:PC :Client

:Server

:Server

:SB

:CS :TCS

:TCS

:TCS:SB

Figure 1. Process interaction when a simulation is

started.

2.2 The four variants of the basic architecture
During simulation, the input and output files reside in a
working directory, typically with as high performance as
possible. When the simulation eventually is being
“approved”, data is to be filtered (to decrease size) and
moved into the database for long-term storage. However, in
the meantime, we would like the files to be stored on an
intermediate storage area, typically an ordinary disk with
backup mechanisms. It can be discussed on which node the
files should be stored during this period of time. We can
discern two strategies: either the files are stored on the node
where the simulation took place (the “distributed” approach
which we will call “1”), or on one node acting as “file
server” for PAM (the “centralized” approach, “2”). The
former approach would probably give higher performance
on the expense of system complexity, while the latter would
be easier to understand but includes more overhead.

The other issue concerns the presentation of these files in
the client. The files are processed and filtered before they
are presented to the user, and the question is where this

filtering should take place – in the client or on the server
(which implies an extra component on the server).
Intuitively, if the files are filtered on the server,
performance would be improved because a smaller amount
of data is sent across the network, but the system would be
more complex and the server more loaded. We name the
strategies of processing files in the client or on the server
“A” and “B”, respectively. Figure 2 shows the different
strategies.

PC

Unix Server Unix Server

PC PC

Process
file

Process
file

A: The files
are processed
in the client

B: The files
are processed
on a server

1: The centralized strategy 2: The distributed strategy

Figure 2. The different approaches for file handling.

What makes these issues important is that the size of the
files described above can be very large. 10 MB for one
simulation is not uncommon. Each of these two problem
dimensions (where to store files and where to process files)
has two solutions. All solutions seemed to have advantages
and disadvantages, and it was by no means obvious which
solution, and combination of solutions, would include the
“best” strategy. It is an axiom in software architecture that
after quality attributes have been assessed, a tradeoff
decision is required [1,2,6]. Thus it was decided that all
four combinations should be treated as separate
architectures and compared using SAAM. Figure 3
describes how the architectures fit into the two problem
dimensions and how they accordingly are named – A1, A2,
B1, and B2.

1: Store files distributed

2: Store files centrally

A: The files
are processed
in the client

B: The files
are processed
on a server

A1 B1

A2 B2

Figure 3. The processes in a small PAM system

according to design B1 and B2.

Figure 4 shows a snapshot of the processes in a small
system according to alternatives A1 and A2 (the difference
between them is not discernible in this view). There are no
simulations executing, and the SB is idle. Files are handled
in the client components, so there are no extra components.
There are an arbitrary number of clients on any number of
PCs, but only one SB per server computer.

:PC :Client

:Server :SB

:PC :Client

Figure 4. The processes in a small PAM system

according to design A1 and A2.

In architectures B1 and B2, an extra process was
introduced, called “Service Dispatch Server” (SDS). The
task of the SDS is to process the input and output files
associated with the simulations on the server before
transferring them to the client. Figure 5 shows the processes
graphically, according to alternatives B1 and B2 (there is
no difference between them in this view); the system is of
the same size and state as in Figure 4. There are an arbitrary
number of clients, one SB per server computer, and one
SDS per client.

:PC :Client

:Server :SB

:PC :Client

:SDS:SDS

Figure 5. The processes in a small PAM system

according to design B1 and B2.

We can clearly see that there are more components and
dependencies in B1 and B2 than in architectures A1 and
A2. The question to be analyzed is whether the expense in
complexity pays off with other advantages, such as
increased performance.

3. THE ANALYSIS OF THE
ARCHITECTURES
We will now describe how performance, system load, and
maintainability were estimated from the architectural
description.

3.1 Performance analysis
As is described above, large files are sometimes transferred
over the network, affecting performance negatively. In the
performance analysis, the number of large data transfers
over the network were measured or estimated. To be able to
do this, we used five user scenarios including network
transfers of large pieces of data, such as “a simulation is
executed” and “two files are compared”.

The number of actual transfers during each scenario was
estimated, and the result of this analysis can be seen in
Figure 6. As an example, the figure describes that for
scenario 1 (“a text file from a server computer is viewed in
a client”) architectures A1 and A2 include one transfer, not
necessarily of the whole file (depending on the
circumstances), for alternative B1 always exactly one whole
file, and for B2 between one and two whole transfers of a
file.

B2B1B1

B1

A1 A2A2A1

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

2

1

A1

A1

A1

A2

A2 A2

B1 B1

B2 B2 B2 B2

N
um

ber of data transfers (files)

Figure 6. The number of large data transfers across the
network in five different scenarios.

Architecture B2 clearly performed worst in all scenarios,
A1 and A2 was equal in all but one scenario, and it can be
argued which of A1 and B1 performed absolutely best. A
more detailed analysis would include determining an
average size of the data and weighting the scenarios. For
our purpose, however, this analysis was considered enough
– we found that one architecture (B2) was worst, and the
others comparable when considering network load due to
large file transfers.

3.2 System load analysis
In the system load analysis, the number of processes in a
running system was calculated. This was thus not a SAAM
analysis, but rather a simple addition of processes, based on
the number of server computers and an estimated average
number of clients and simulations (“small”, “medium”, or
“large” systems). As is shown in Figure 7, the number of
processes is consistently lowest for architectures A1 and
A2, while the number of processes may be almost doubled
in architecture B1.

Before performing this analysis we had no clear notion of
what the outcome would be, but when looking at these
results in retrospect, we found them to be very intuitive.
The extra processes in systems according to B1 and B2 are
due to the inclusion of the SDS component. The great
difference between B1 and B2 are due to the strategy on
which servers there must be SDSs, which in its turn
depends on whether the simulation files are stored using a
central or a distributed approach.

0

100

200

300

400

500

600

700

Small Medium Large

System size

N
um

be
r

of
 p

ro
ce

ss
es

A1

A2

B1

B2

Figure 7. The number of processes in running systems

of different sizes.

3.3 Maintainability analysis
The stakeholders formulated 16 change scenarios,
containing the addition of functionality. An example of a
change scenario is to “include functionality to compare two
binary output data files”. The results from the execution of
these scenarios are presented in Table 1 – it turned out that
architectures A1 and A2 were undistinguishable, as was B1
and B2. Architectures A1 and A2 in general score better
than B1 and B2, which of course is because architectures
B1 and B2 include more components (the SDS). However,
two scenarios affect the SB in architectures A1 and A2,
which is undesirable because of its central position and the
robustness requirements.

Table 1. Statistics from the scenario executions.

 A1/A2 B1/B2

Number of components
affected: total (average)

23 (1.4) 28 (1.8)

Number of scenarios
affecting at least 2
components

6 10

Number of scenarios
affecting the SB

2 0

Scenarios are said to interact on a component if both affect
it [1]; if several unrelated scenarios affect the same
component, this is an indication that the separation of
concerns between components may be insufficient. The
more interactions, the more complex it is to maintain the
system. However, as always there are no absolute numbers
on how many interactions are considered “too many”; these
numbers should rather be used for comparing architectures
(which is done here), or to focus attention on particular
components with many scenario interactions. See Table 2.

With only five or six components and 16 scenarios, this
analysis gives a rather decent distribution, apart from the

client. However, the client is equally unstable in all
architectures.

How should we interpret these results? The figures clearly
say that architectures A1 and A2 are more maintainable
than B1 and B2 and seem to leave no room for alternative
interpretations. However, this result is at least partly a
consequence of the fact that some functionality is added to
an extra component, the SDS. If this means that
architectures B1 and B2 are more fine-grained than A1 and
A2 it is not fair to compare the architectural descriptions –
they describe the system on different levels of abstraction.
We considered this objection seriously, and among other
things tried to estimate the size of the code in the
components. We arrived at the conclusion that the client
code would be slightly smaller in architecture B1 and B2
than in A1 and A2, but that the program code of the SDS
would be substantially larger than the decrease in client
code size. We finally decided that the architectures were
indeed comparable, and the figures of the analysis fair. In
addition to this, we had gained the insight that B1 and B2
would require more coding, which speaks to their disfavor.

Table 2. Scenario interaction on each component. (The
variations depend on how certain scenarios are

implemented.)

 A1/A2 B1/B2
Database Affected by 4 scenarios
SB Affected by 2 scenarios Affected by 0 scenarios
CS Affected by 3 scenarios
TCS Affected by 3 or 4 scenarios
Client Affected by 10 or 11

scenarios
Affected by 9 to 11
scenarios

SDS N/A Affected by 7 or 8
scenarios

3.4 Other analyses
Besides analyzing performance, system load, and main-
tainability, we informally evaluated testability, reusability,
and portability. However, these analyses did not reveal any
differences between the architectures – we therefore omit
the details of the analyses.

However, the conclusion that several architectures are
indistinguishable is also a valuable result, from which it is
possible to draw conclusions. Firstly, since these properties
are not affected by the choice of architecture, any of the
alternatives can be chosen (as far as these properties are
concerned). Secondly, if these properties were considered
crucial for the system’s success, we might have devised
more alternatives, to explore whether these properties could
be improved at the architectural level. SAAM can only
compare different alternatives, not give absolute measures
of the quality properties, so the outcome could mean “they
are equally good” as well as “they are equally bad”. We did
not pursue this track further because we were confident that
our understanding of how these properties were affected

ensured that these properties would not pose any major
problem. So, thirdly, through the analysis process itself, we
had gained insight enough into the problem to make the
decision that further analyses were not needed.

At this stage, we summarized the analysis and found
performance, system load, and maintainability to be the
properties distinguishing the alternatives.

3.5 Discussion
It was not easy to without aid predict which architecture
would be the most fit for our requirements. The analyses
clearly helped serving as a basis for a choice. We found that
architecture B2 was inferior with respect to the number of
large data transfers, while B1 was inferior with respect to
the number of processes in the system. So far, if
performance is important, either architecture A1 or A2
should be chosen; A1 was estimated to have slightly better
performance than A2.

When evaluating maintainability, we see that A1 and A2 are
superior, the only problem being that two change scenarios
affect the SB, whereas in B1 and B2 the SB is unaffected
by all scenarios. In other analyses the architectures were
found to be equal.

It is quite clear, then, that architecture A1 or A2 should be
chosen.

4. GENERAL OBSERVATIONS AND
LESSONS LEARNED
4.1 Processes or threads
So far, we have described the runtime components as
“processes”, but the architectural description does not
require the CS and TCS components to be implemented as
separate operating system processes. They could very well
be implemented as threads executing in a designated “CS
and TCS host” process, or why not in the SB. The choice
between processes and threads can be considered a lower-
level design issue. This does not mean that the choice does
not affect the properties of the system, but rather that this
tradeoff does not need to be solved on the architectural
level. There might indeed be a tradeoff between system
load and robustness – processes load the system more,
while a failure in one thread is likely to affect other threads.
In the actual implementation of PAM, it was decided that
the system would be more robust if processes are used in
the case of a component failure, and that a threaded solution
would be considered if there were any system load
problems.

We can draw the general conclusion that an architectural
description does not need to distinguish between processes
and threads, but can simply describe the runtime
components as “separate threads of execution”. The choice
of whether these are implemented as processes, operating

system threads, or language-level threads can be postponed
to later design stages.

4.2 Detailed knowledge useful
One possible source of instability in the system would be
that the system is spammed with CS and TCS components
having lost contact with each other. However, instead of
being a potential source of instability, the communications
channel is used to increase robustness. Sockets proved to
fulfill our expectations well. Indeed, the knowledge of the
socket mechanism was an important input to the creation of
the architecture. Let us view the connection between a CS
and one of its TCSs. Both sides will be noticed whenever
the socket is unexpectedly closed, and immediately
terminate themselves. The socket could be closed due to
several reasons – the network might be lost, or the other
component can have failed or terminated unexpectedly (due
to e.g. a bug). The components show a consistent behavior
in all such cases, provided that the sockets mechanism is
reliable enough to always notice these cases (which we
believe it is). Thus, the architecture builds robustness partly
on the sockets mechanism.

Since we wanted to reuse legacy code written in the Tcl
programming language [14], we knew in advance that Tcl
was a strong candidate of implementation language. Our
experience of the socket functionality being very robust and
easy to use in Tcl strongly influenced the development of
the architecture as described above. We also knew that the
use of Tcl would support portability since there are Tcl
interpreters available on the platforms of interest; as a
consequence we found it superfluous to support portability
in our architectural description.

The general conclusion to be drawn is that detailed
technical knowledge is an important input to the
architectural design process.

4.3 Simplicity implies robustness
Our next observation concerns another way the system is
made robust. In earlier prototypes of the system, there were
problems with robustness. There were many scenarios
where a failure in one process made other processes fail
too. Attempts were made to handle every possible faulty
state, but this proved to rather introduce new errors and
make the code incomprehensible. One of the governing
ideas behind the new architectures has been to make the
runtime components as independent of each other as
possible, in the sense that the system as a whole is in a
sound state even if many individual components and
communication channels fail. It should be noted that this
feature is not implemented through any advanced fault-
tolerance techniques, but rather by creating a relatively
simple architecture. Of course, the robustness, as well as
any quality attribute supported by the architectural

description, is ultimately dependent on how well the system
is actually implemented.

Our experience supports the idea that one should build
important properties directly into a system’s architecture,
rather than try to add them afterwards [1].

4.4 An unexpected solution of a tradeoff
When discussing the outcome of the evaluation, there were
a few minor issues that needed more consideration, of
which we will describe one. As we saw, the results of the
analysis indicate that we should choose between A1 (with a
distributed file structure) and A2 (with a central file
structure). On the one hand, the project group intuitively
felt uncomfortable with the idea of having files distributed
over a large number of computers when tracking errors,
while on the other hand this implies slightly higher
performance. When considering this problem, it seemed as
we had to decide on a tradeoff. This proved to be both true
and false. We found that the choice of strategy where to
store files did not need to be decided upon until installing a
PAM system, thus making a system administrator
responsible for solving this tradeoff (for it is indeed a
tradeoff). We decided that viewed this way, the resulting
architecture could be described as a synthesis of A1 and
A2, or in other words that there was no difference between
A1 and A2.

In the general case, instead of making tradeoff decisions
during the design phase, it might be possible to give the
system manager the freedom to choose the tradeoff
considered optimal in his particular situation. We believe
that one should consider whether a tradeoff can be
postponed to the configuration and maintenance phases.
However, we are aware that such an approach may
introduce new tradeoffs: a highly configurable system may
be harder to understand and maintain, and harder to test,
than a less configurable system.

5. CONCLUSION
We devised one architecture, but created four variants of it
and compared these at the architectural level to be able to
assess the quality attributes of the final system. SAAM
provided a useful way of evaluating our four suggestions,
revealing drawbacks not obvious at first sight. The analysis
provided a basis for taking conscious decisions on which
architecture to choose, given an estimate on what quality
attributes the four variants would have. The use of SAAM
proved to bring more benefits: the stakeholders of the
system became more conscious of quality attributes and the
architecture’s impact on these; moreover, a fruitful
interaction between analysis and design took place thanks
to SAAM.

Besides supporting the usefulness of SAAM, we were able
to draw a number of general conclusions. We learned that
the creation of an architecture cannot be performed in an

“ideal” world, rather the knowledge about the availability of
implementation issues are both necessary and
advantageous. In our case, the architecture was colored by
the knowledge of specific Tcl and sockets features, and this
knowledge was taken advantage of to create a robust
architecture. We achieved a certain degree of robustness
due to inherent features of the architecture, which is
preferable to writing error-handling code. During the design
process, we found it useful to discuss the runtime
components in terms of “processes”, although it was not
decided whether these should actually be implemented as
processes or threads. We have also described that it was
possible and useful to postpone one tradeoff decision to the
system configuration and maintenance phases. With further
research we hope that these issues will mature from mere
observations to more formal models incorporated into the
theory and tools of software architecture.

During the analysis, the important question was raised
whether the architectural descriptions, containing different
numbers of components, actually were comparable. We
were able to give what we believe to be a satisfactory
answer by estimating the size of each component. With
further research it might be possible to more formally
decide when architectural descriptions differ too much and
when they indeed are comparable – a prerequisite for any
analysis.

Finally – what is our study worth for the stakeholders of
PAM? Are our estimates of performance, system load and
maintainability accurate? Is the system robust and portable
enough? We will not be able to answer these questions until
PAM has been in production use for some time. We hope
that we will then be able to gather measures of the quality
attributes of interest and compare it to our analysis. This
will provide useful feedback to our research.

REFERENCES
[1] Len Bass, Paul Clements, Rick Kazman, Software

architecture in practice, ISBN 0201199300, Addison-
Wesley, Reading, Massachusetts 1998

[2] Jan Bosch, Design & Use of Software Architectures,
ISBN 0-201-67494-7, Addison-Wesley, Edinburgh
2000

[3] Ivan T Bowman, Richard C Holt, Neil V Brewster,
Linux as a Case Study: Its Extracted Software
Architecture, Proceedings 21st International
Conference on Software Engineering (ICSE), 1999

[4] Frank Buschmann, Regine Meunier, Hans Rohnert,
Peter Sommerlad, Michael Stal, Pattern-oriented
Software Architecture – A System of Patterns, ISBN 0
471 95869 7, John Wiley & Sons, Chichester, West
Sussex 1996

[5] Henrik Hermansson, Mattias Johansson, Lars
Lundberg, A Distributed Component Architecture for a

Large Telecommunication Application, Proceedings of
the Asia-Pacific Software Engineering Conference
(APSEC), Singapore, December 2000, 188-195

[6] Christine Hofmeister, Robert Nord, Dilip Soni, Applied
Software Architecture, ISBN 0-201-32571-3, Addison-
Wesley, Reading Massachusetts 2000

[7] Rick Kazman, Len Bass, Gregory Abowd, Mike Webb,
SAAM: A Method for Analyzing the Properties of
Software Architectures, Proceedings of the 16th
International Conference on Software Engineering,
1994

[8] Rick Kazman, Mark Klein, Mario Barbacci, Tom
Longstaff, Howard Lipson, Jeromy Carriere, The
Architecture Tradeoff Analysis Method, Proceedings of
the Fourth IEEE International Conference on
Engineering of Complex Computer Systems
(ICECCS), (Monterey, CA), August 1998, 68-78

[9] Rick Kazman, Mario Barbacci, Mark Klein, S. Jeromy
Carrière, Experience with Performing Architecture
Tradeoff Analysis Method, Proceedings of the
International Conference on Software Engineering,
New York, 1999, 54-63.

[10] Rikard Land, Architectural Solutions in PAM, M.Sc.
Thesis, Department of Computer Engineering,
Mälardalen University, 2001

[11] Frank Schliephacke, Computer Codes Description,
Westinghouse Atom Report BTU 01-049, 2001

[12] Mary Shaw, David Garlan, Software architecture –
Perspectives on an emerging discipline, ISBN 0-13-
182957-2, Prentice Hall, Upper Saddle River, New
Jersey 1996

[13] SKIFS 1998:1, Statens kärnkraftinspektions författ-
ningssamling - Swedish Nuclear Power Inspectorate
Regulatory Code, ISSN 1400-1187, 1998

[14] Tcl Developer Site, http://www.scriptics.com

