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Abstract

Dropout is an Artificial Neural Network (ANN) training technique that has been shown to 
improve ANN performance across canonical machine learning (ML) datasets. Quantitative 
Structure Activity Relationship (QSAR) datasets used to relate chemical structure to biological 
activity in Ligand-Based Computer-Aided Drug Discovery (LB-CADD) pose unique challenges 
for ML techniques, such as heavily biased dataset composition, and relatively large number of 
descriptors relative to the number of actives. To test the hypothesis that dropout also improves 
QSAR ANNs, we conduct a benchmark on nine large QSAR datasets. Use of dropout improved 
both Enrichment false positive rate (FPR) and log-scaled area under the receiver-operating 
characteristic curve (logAUC) by 22–46% over conventional ANN implementations. Optimal 
dropout rates are found to be a function of the signal-to-noise ratio of the descriptor set, and 
relatively independent of the dataset. Dropout ANNs with 2D and 3D autocorrelation descriptors 
outperform conventional ANNs as well as optimized fingerprint similarity search methods.
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Background and Significance

Quantitative Structure Activity Relationship (QSAR) models are an established means of 
Ligand-Based Computer-Aided Drug Discovery (LB-CADD), i.e. finding novel compounds 
that bind to a particular protein target, given a dataset of known binders and non-binders [1]. 
Physicochemical properties are encoded using spatial and topological representations 
(descriptors) of the local atomic environments within the molecule. To model the non-linear 
relation between chemical structure and biological activity for a particular protein target, a 
machine learning method, such as an ANN, is trained to predict binding or activity at a 
particular protein target.
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Neuronal dropout [2] has been repeatedly demonstrated to improve ANN performance on 
classification tasks including speech recognition and handwritten digit classification [3,4]. 
With the dropout training technique, a fraction of neurons is effectively silenced (set to zero) 
during each training epoch. Dropout is known to improve the generalizability of ANNs by 
preventing co-adaptation of hidden-layer neurons [2]. With this training feature, each hidden 
neuron must build an independent mapping from feature space onto output space. Thereby, 
dropout in the hidden layer helps to prevent ANNs from memorizing the input data 
(overtraining). In previous QSAR ANN models, overtraining effects have been mitigated by 
model selection – selecting the ANN from those generated during training that performed 
best on a monitoring dataset, or early-termination – stopping training when overtraining is 
evident against a separate monitoring dataset [1,5–10]. Dropout is thought to produce better 
generalizing ANNs that circumvent the necessity for model selection [2].

Dropout is often employed in large ANNs with several hidden layers, known as “deep” 
ANNs. The effects of dropout have not been investigated extensively in ANNs with a single 
hidden layer, and when using heavily class-biased datasets and inhomogenous descriptor 
sets (descriptors with unrelated units) that are commonplace in QSAR modeling. Dropout 
has been used in previous QSAR modeling in the context of large multi-task QSAR setting 
that is uncommon in practice [11]. Dropout was used by the winning entry in a Merck-
sponsored QSAR competition. However, it remains unclear how much dropout contributed 
to this success, and whether the results will extend to other targets [12]. In the present work, 
using the BioChemicalLibrary (BCL) [6], we explore whether the success of dropout 
extends to single-layer, single-target, QSAR models in LB-CADD. We systematically 
optimize the fraction of neurons dropped in the hidden (Dhid) and input (Dinp) layers prior to 
each forward-propagation pass starting from typical values Dhid = 50% and Dinp = 0% [2].

Methods

Dataset Preparation

To mitigate ligand biases and other dataset-dependent effects, we employ an established 
QSAR benchmark comprised of nine diverse protein targets. The datasets each contain at 
least 100 confirmed active molecules and more than 60,000 inactive molecules [6]. The 
datasets were re-curated to eliminate a few dimers and higher-order molecular complexes 
that had previously been included in the virtual screening, and to add molecules that were 
previously excluded due to difficulties in calculating descriptors. Structural duplicates and 
duplicates created during the process of curation (e.g. due to desalting) were also re-checked 
and eliminated when present [13]. SMILES strings for all active and inactive molecules are 
available on www.meilerlab.org/qsar_benchmark_2015.

Conformations were generated with Corina version 3.49 [14], with the driver options wh to 
add hydrogens and r2d to remove molecules for which 3d structures cannot be generated.
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Three descriptor sets used to encode chemical structure

To understand whether dropout is broadly useful for ANN-based QSAR ML methods, three 
descriptor sets were used. These descriptor sets differ in size, encoding (binary vs. floating 
point), conformational dependence, as well as redundancy and orthogonality (Table 2).

The benchmark descriptor set (BM) includes scalar, topological, and conformation-
dependent molecular encodings Scalar descriptors include those described in [6], with the 
addition of number of rings, aromatic rings, and molecular girth. Topological and 
conformational descriptors include 2D and 3D-autocorrelations of atomic properties used in 
[6]. In total, the benchmark set contains 3853 descriptors, 11 of which are scalar, 770 are 
2D / topological, and 3072 are 3D (Table 2). The descriptor set differs from that used in 
Butkiewicz, Lowe et al. 2013 primarily with the introduction of an enhanced 2D and 3D-
autocorrelations descriptor that accounts for atom property signs (Sliwoski, Mendenhall et 
al., in this issue) [15], and the use of min and max to compute binned-values for 2D and 3D 
autocorrelations, in addition to the traditional use of summation. The BM descriptor set was 
used for most testing because its size and information content are most similar to 
commercially-available descriptor sets such as DRAGON [16] and CANVAS [17].

The short-range (SR) descriptor set differs from the benchmark set primarily in that the 
maximum distance considered for the 3D-autocorrelations was reduced from 12 Å to 6 Å. 
For faster training, the SR set used a smaller set of atom properties (6 vs. 14), which 
preliminary testing suggested were sufficient to reproduce the performance of the full set. In 
total, the SR descriptor set contains 1315 descriptors: 24 scalar, 235 topological (2D-
autocorrelations), and 1056 spatial (3D-autocorrelations).

A QSAR-tailored variant of the PubChem Substructure Fingerprint descriptor set [23], 
referred to here-after as the substructure (SS) descriptor set, was used to determine whether 
dropout benefits a binary, fingerprint-based descriptor set. This set contains all but a few of 
the 881 binary values in the PubChem substructure fingerprint, v1.3. The omitted bits of the 
fingerprint contain transition metals for which we lack Gasteiger atom types, which is a 
requirement for the SR and BM sets. Secondarily, when counting rings by size and type, we 
considered saturated rings of a given size distinctly from aromatic rings of the same size. 
Lastly, we added sulfonamide to the list of SMARTS queries due to their frequency in drug-
like molecules. In total, the SS set contains 922 binary-valued descriptors.

Substructure Searching with Fingerprint Descriptors

The Schrodinger Canvas software suite was used to create MolPrint2D and MACCS 
fingerprints and search for nearest matches. MolPrint2D was used with ElemRC atom types, 
consistent with the optimal settings found in a recent benchmark [17]. The closest match for 
each molecule in a dataset was identified using the Buser metric as implemented in the 
Canvas package.

ANN Training

Simple propagation [24] was used with η (learning rate) of 0.05. The learning rate η scales 
the weight adjustment computed during back propagation before applying it to the ANN 
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weights. The momentum parameter α scales the second derivative of the weight change, 
which is used to accelerate stochastic descent [24], and is tested in this study at values of 
either 0 or 0.5. In multi-layer ANNs, α ≥ 0.5 is thought to improve the sampling of ANN 
weight space [2]. Thirty-two neurons in a single-hidden layer were used throughout the 
benchmark except where otherwise noted.

Dropout was implemented as in [2] in the machine learning module of the BCL software, 
source and executables for which are available free of charge for academic use from 
www.meilerlab.org/bcl_academic_license. After training the ANN, the weights matrix for 
each layer is multiplied by 1 − di, where di is the fraction of neurons dropped in layer i, for 
scaling purposes. The dropout mask and weights were updated after every feature 
presentation (online-learning).

The output layer contained neurons with sigmoidal activation output to the range [0,1]. 
Experimental pKd or pIC50 values were scaled via min-max scaling to [0.1,0.9] to avoid 
transfer function saturation.

The benchmark was conducted on the Advanced Computing Center for Research and 
Education (ACCRE) at Vanderbilt University, consuming approximately 500,000 CPU 
hours.

ANN Performance Evaluation

ANN performance was evaluated by computing the area under the log-linear receiver 
operating characteristic curve (log AUC) [25] between false positive rates (FPR) of 0.001 
and 0.1, to f ocus on early detection of actives. The log AUC values are normalized by the 
integral of the ideal true-positive rate curve over the same FPR range, such that an optimal 
classification model obtains a log AUC of 1, while a naïve model obtains a log AUC of 

. log AUC values are averaged across each of the twenty 
models in a 5x4-fold cross-validation on its test set, and across the nine datasets in the 
benchmark.

ANN performance was further assessed by computing enrichment at 1% FPR (Enr1), 
averaged across all 20 models in a given cross-validation.

To obtain confidence intervals and standard deviations for each metric, each test set was 
bootstrap sampled (with replacement) 200 times. log AUCs and enrichments were computed 
for each sample, and across all samples the average and standard deviations was computed. 
The standard deviation of mean metric values across the benchmark datasets was computed 

using the equation: , where  is the variance of the metric on the i-th dataset 
[26]. T-tests of paired results on the benchmark sets was performed with normalization by 
the maximum log AUC obtained for a given dataset [27]. Performance metrics and 
confidence intervals were computed using BCL v3.4, model:ComputeStatistics application. 
Paired t-tests were performed with scipy, version 0.16.0.
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Cross-Validation

Five-fold cross-validation was used throughout the present investigation. Specifically, by 
splitting the dataset into fifths, training on four of the parts (e.g. the training set), and 
making predictions on the test set. Each of the five parts was a test set for one set of four 
models. The log AUCs and enrichments for each model in a cross-validation on its test set 
were averaged.

For conventional ANNs, model selection required a second partitioning of the training 
dataset to compose a monitoring dataset. To reduce bias from an arbitrary choice of the 
monitoring dataset, four models were trained per test set using a disparate chunk of the 
training data instead as a monitoring set. When not using a monitoring dataset, the full 
training set was used to train four ANNs with different starting random seeds.

Optimization of Training Parameters for Dropout and Conventional ANNs

For evaluation of the dropout method, we tested 24 combinations of ANN training and 
regularization features and parameters for each of the nine datasets in the presence and 
absence of dropout. The options tested included input scaling method, shuffling [28], 
active:inactive presentation ratio (A:Iratio), and model selection. The options were tested at 
selected combinations of input dropout rate (Dinp: 0.0 and 0.25) and hidden dropout rate 
(Dhid: 0.0, 0.25, 0.5, 0.75). An unbiased evaluation of the improvements offered by dropout 
required testing each type of ANNs under optimal training conditions.

QSAR datasets conventionally suffer from class imbalance (active/inactive) due to the 
selectivity of the protein targets themselves. Often less than 0.1% of the compounds in the 
primary screen exhibit significant activity. Class imbalance beyond a roughly 10:1 ratio 
between the majority and minority class are known to decrease AUC metrics [29]. Previous 
QSAR modeling techniques have upsampled actives when training ANNs such that every 
presentation of an inactive molecule to the ANN was followed by the presentation of an 
active molecule (A:Iratio=1:1), with each active molecule being presented thousands of times 
for each inactive [6,7,30]. We here considered whether a lower A:Iratio would better preserve 
ANN generalization for either dropout or conventional ANNs.

Overtraining is often mitigated by tracking performance of each ANN during training on a 
monitoring dataset, which is distinct from both the training and test sets. Training is halted 
when no improvement is seen after a specified number of iterations, or a specified maximum 
number of iterations is reached, and the best performing model on the monitoring dataset is 
selected as the final model (model-selection). Dropout ANNs used in image-processing and 
related applications appear immune to overtraining and so a monitoring dataset is ordinarily 
unnecessary when training them. We test whether model-selection is beneficial for dropout 
ANNs used for QSAR datasets. The influence of scaling was investigated by rescaling to 

[−1,1] using min-max scaling ( ) of inputs [6], or Z-score scaling ( ) 
[28].

Utility of each ANN setting F was measured by Δlog AUC = max(log AUC) − max (log 

AUC(F)), where log AUC(F) is the set of models trained with setting F, and similarly 
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ΔENR1 for enrichment at 1% FPR. Δlog AUC and ΔENR1 account for the interdependency 
of optimal options by taking the difference between the best log AUC for any options set and 
the best log AUC observed for an options set with a particular option. Significance was 
assessed by performing a paired t-test between max(log AUC) and max(log AUC(F)) on all 
models trained with a given setting.

Results & Discussion

Dropout prevents overtraining in QSAR ANNs Independent of Backpropagation Method

A set of ANNs for each of the benchmark datasets for 1000 iterations was trained using 
either dropout (Dhid: 0.5, Dinp: 0.25) or no dropout, with the SR descriptor set (Fig. 1), to 
test for convergence and overtraining. Dropout successfully prevented overtraining even out 
to 1000 epochs, which is far beyond the maximum of 36 epochs required to achieve 
convergence on any of the benchmark datasets. The ability of dropout to prevent 
overtraining is consistent with results from literature on well-balanced datasets [2,4].

Use of momentum (α=0.5) led to a small increase in overtraining in conventional ANNs 
used for QSAR. Likewise, α was set to 0 for a conservative estimate of the benefit of 
dropout for all parameter optimizations.

Batch update - updating weights after computing the gradient across the whole dataset - with 
simple back-propagation learning has been suggested to be more powerful than online 
learning (where weights are updated every iteration), based on theoretical considerations 

[31]. We tested batch update on this QSAR benchmark with learning rate set to . At 

rates above , ANNs often failed to train beyond the first epoch. This sensitivity to 
the learning rate has been noted previously as a weaknesses of batch update [32]. 
Convergence required approximately 900 epochs, despite using α of 0.9 to improve 
convergence rate. ANNs trained with batch update were not significantly better than ANNs 
trained online, and their slow rate of convergence made them unsuitable for benchmarking 
the extensive ANN features tested in this benchmark. Previous work has found that batch 
update is usually inferior to online learning in convergence rate across a host of applications 
[32,33]. While the optimal independent log AUC were ~2% larger for conventional batch 
ANNs than conventional online-learning ANNs, this difference is neither significant nor 
does it persist when model selection is used.

Resilient propagation (RProp) is an alternative to simple propagation that utilizes second 
order derivative information in an attempt to accelerate convergence [34]. We found that 
under dropout conditions, RProp gave equivalent results to simple propagation, yet required 
over 1000 iterations to converge. When using RProp, the dropout mask was updated after 
every feature presentation, while the weights were updated only after each epoch.

Optimized Training Conditions for Dropout and Conventional ANNs

A grid search was conducted over 192 combinations of ANN training and regularization 
features and parameters for each of the nine datasets. The options tested included input 
scaling method, shuffling, active:inactive presentation ratio (A:Iratio), and model selection. 
The options were tested at selected combinations of input dropout rate (Dinp: 0.0 and 0.25) 
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and hidden dropout rate (Dhid: 0.0, 0.25, 0.5, 0.75). The optimal options differed 
significantly for the set of ANNs trained without dropout (Dinp= Dhid=0) vs. those trained 
with any dropout, but did not differ within the set of ANNs trained with different dropout 
rates (p > 0.1).

The BM descriptor set was used throughout the options grid search.

Z-score scaling proved critical for dropout ANN performance. The importance of scaling 
may be related to the definition of dropout. When a neuron is “dropped,” its output value is 
set to0. If 0 is an unusual value due to a skewed descriptor distribution, as can occur with 
MinMax scaling, the ANN may have difficulty making use of the descriptor. For example, if 
a descriptor x satisfies x ∈ [0,1]; µx = 0.9; µx,actives = 0.5, σx,actives = 0.1, then when the 
descriptor is presented to the ANN (rescaled to the range [−1,1]), a dropped input will be 
equivalent to an active input, and the ANN will be unable tell whether the descriptor was 

dropped or came from an active compound. Z-score scaling ( ) is thought to mitigate 
the influence of outliers in the data [28], though our results indicated no significant 
improvement in results for conventional ANNs.

A:Iratio of 1:1 consistently yielded inferior results in this benchmark for both dropout and 
conventional ANNs. For conventional ANNs, a 1:100 ratio provided a small benefit (~2–
3%) over a 1:1 or 1:10 ratio. Dropout ANNs showed a similar improvement with a 1:10 
ratio. A lower ratio also reduces training time significantly (1.9x faster for a 1:10 ratio).

Our results indicated a significant improvement in both logAUC and Enr1 for individual 
dropout ANNs lacking model selection. As expected, conventional ANNs showed a small 
improvement using model selection. ANNs employing either hidden dropout or input-layer 
dropout were significantly better than equivalent ANNs trained without dropout (p < 0.001).

logAUC is more Robust than Enrichment to Bootstrap Resampling

Based on bootstrapping of independent results, reported logAUC is subject to a standard 
deviation of +/− 2.2% – 3.3% (M: 2.5%, SD: 0.2%) of the base value. Enr1 was subject to a 
significantly larger bootstrap error of +/− 2.6% – 5.2% (M: 3.1%, SD: 0.4%) (p < 0.01). 
This verifies that logAUC is more robust to minor changes in dataset composition and 
model ranking. Limitations of enrichment as an objective function have been noted 
elsewhere [35], but it remains useful for comparison with other methods. When reporting 
percentage improvements, logAUC is used except where otherwise noted.

Dropout Optimization

A grid search for optimal Dinp and Dhid values was conducted for the benchmark datasets. 
ANNs were trained with dropout rates (Dhid & Dinp) sampled between 0 and 0.5 (for Dhid) 
or 0.95 (for Dinp) at a step size of 0.05. The upper limit of 0.5 was chosen for Dhid based on 
the options-based grid-search, wherein we noted that Dhid of 0.25 usually provided modestly 
better results than 0.5, and significantly better than Dhid of 0.75 (p < 0.05).

The optimization of Dinp and Dhid across the benchmark datasets is shown in
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Fig. 2. The global optimum is at 60% Dinp and 25% Dhid, though the results are generally 
robust to Dinp between 0.4 – 0.7 and Dhid between 0.1 – 0.5.

Fig. 3 illustrates the dependence of logAUC on Dinp and Dhid for each dataset. The numbers 
next to each dataset ID indicate the value of logAUC at Dinp=Dhid=0, followed by the 
maximal logAUC value. The logAUC at the dataset-specific optima of Dinp and Dhid 

averages 2.5% higher than that obtained using the overall optimal parameters (Dinp=0.6, 
Dhid=0.25), however, the differences in optimal dropout values are not significantly different 
across the datasets, relative to uncertainty in the logAUC value itself (p > 0.1). Importantly, 
this suggests that the dropout optimization need not be repeated for novel QSAR targets 
using this descriptor set.

In the input layer (where the descriptors are fed in), dropout hinders the ability of the ANN 
to describe complex functions. The descriptor sets employed here incorporated several 
hundred descriptors with substantial redundancy. In such a setting, dropout in the input layer 
prevents the ANN from relying on any two particular descriptors being present at the same 
time. We anticipated that it would be useful when training with dropout to include several 
representations of each molecular property. For example, atomic charge could be 
represented using either VCharge [21] or σ/π-charge computed by partial equalization of 
orbital electronegativity [20]. Thereby, the omission of any particular representation of a 
given property was not detrimental to the description of the molecule.

Importance of Descriptor Set to Optimal Dropout Fractions & Comparison with Fingerprint 
Methods

Dinp was assessed for the BM, SR, and SS descriptor sets, while keeping Dhid fixed to the 
optimal value of 0.25.

The performance of ANNs trained without dropout for each descriptor set was analyzed both 
with and without model selection. Both the SS and SR descriptor sets were relatively 
insensitive to Dinp between 0.05 ≤ Dinp ≤ 0.6, while the BM set showed a strong dependence 
on Dinp with a maximum at 0.6. Figure 3 shows the results. The SR descriptor set, with 
optimized dropout parameters, was 4.8% better compared to the BM descriptor set overall, 
while the SS set averaged 11.3% worse. At Dinp > 0.6, the performance of the SR and SS 
sets declined rapidly.

The impact of the descriptor set on the optimal ANN Dinp motivated a similar test for Dhid, 
with Dinp fixed at 0.05. Figure 4 depicts the results. The curves for Dhid are substantially 
similar (R2 > 0.8 for all pairs), suggesting that Dhid can be optimized for ANN architecture 
independently of the dataset. In all three datasets, the region 0.2 < Dhid < 0.6 is optimal.

While the SR descriptor set was best used in conjunction with a very low input dropout rate 
(Dinp,optimal=0.05), the BM set required a high rate of input dropout (Dinp,optimal=0.60). 
Moreover, the relatively small SR set outperformed the BM set. The sets differ in spatial 
boundaries for 3DA calculation as well as atom properties, raising the question of which of 
these changes is responsible for the increase in Dinp,optimal. Using the BM set’s atom 
properties with the SRs 3DA extent, logAUC decreased insignificantly (~1.5%, p > 0.1) 
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relative to results on the SR set. The different atom properties between the BM and SR sets 
was, likewise, not a significant factor in altering the sensitivity of the descriptor set 
performance to Dinp.

We propose that the optimal Dinp is indicative of the signal to noise ratio in the descriptors. 
Sensitivity to Dinp was much greater in the BM set (0.5 < Dinp,optimal < 0.75, +9.1% 
improvement in logAUC from optimizing Dinp>0) than the SS or SR sets (0.0 < Dinp,optimal 

< 0.65, 2.4% improvement in logAUC from optimizing Dinp>0). The descriptors in the BM 
set that are not in the SS set are heavily dependent on the specific molecular conformation 
that was used, in particular due to the 3DA bins beyond 6Å (only present in the BM set). For 
a molecule with typical flexibility, a pair of atoms at 10Å in the average conformation may 
be anywhere between 8Å–12Å depending on the rotamer, so there is substantial uncertainty 
involved when assigning these atom pairs to one of the 0.25 Å bins of a 3DA. The SS set is 
purely fragment-based and thus none of the descriptors has significant uncertainty, and so 
the optimal Dinp is < 0.25.

The influence of the dataset on the optimal dropout parameters has further implications for 
the design of novel descriptors. In particular, benchmarking novel descriptors may require 
optimizing Dinp for each descriptor set on a benchmark dataset, to enable fair comparison 
across descriptor sets with differing levels of uncertainty. For large QSAR datasets (> 60K 
compounds) with 800 – 3800 descriptors, as used in this study, Dinp of 0.5 and Dhid of 0.25 
appear to be good starting points. Dinp > 0.6 may be appropriate for descriptors sets with 
more than 4k values and for descriptors associated with high degrees of uncertainty, such as 
long distance 3DAs.

Our benchmark suggests the utility of optimizing dropout parameters for well-established 
benchmark descriptor sets for QSAR such as WHIM, CPSA, and 3D-Morse [36].

ANN training may benefit from setting input dropout probabilities for each descriptor 
column according to the uncertainty in their value. This should be less important for 
canonical machine learning problems such as number recognition, where every descriptor 
has the same units (e.g. pixel intensity) and levels of uncertainty. Nevertheless, there is 
evidence that variable levels of dropout can improve ANN regularization even on traditional 
MNIST-style benchmarks [37]. For 3D-conformational descriptors, it may be fruitful to use 
the conformational ensemble for each ligand to derive the probability that each 3D-
descriptor column is substantially different from its nominal value as an input-specific 
dropout probability.

Probing the Role of Input Dropout on AID435034

For further analysis of the role of input dropout, AID435034 was chosen as a representative 
dataset based on the similarity of its’ Dinp, Dhid heatmap and the benchmark average.

The SR descriptor set was padded with as many Gaussian-noise descriptor columns as it has 
true descriptors to form the SR+Noise set. We optimized Dinp for the SR+Noise set, with 
Dhid fixed at 0.25. Figure 5 shows that with Dinp=0, less than half the original performance 
of the original SR set is recovered (0.13 versus 0.29). The optimized value of Dinp shifts 
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from 0.05 for the SR descriptor set to 0.85 in the SR+Noise set. The added noise also leads 
to a significantly greater dependence of logAUC on Dinp, with only a 3.1% gain in logAUC 

in the base SR set from optimizing Dinp vs. leaving it at 0, while with the added noise 
columns a 67% increase in logAUC. The SR+Noise set performed 34% worse after 
optimization of Dinp than the SR set. We posit that the addition of noise columns is 
particularly detrimental to QSAR datasets due to the small number of actives and the 
probability that, given a large enough number of noise columns, one of them by chance has 
a significant correlation with activity for a few actives in a given dataset.

The effect of redundant descriptors on the optimal Dinp was investigated by duplicating 
every descriptor in the SR descriptor set (SRx2). Optimizing Dinp yielded a curve with the 
same peak logAUC as in the SR set on AID435034, but with the overall curve shifted by 
+5% (Figure 5). The same magnitude of shift was also observed when optimizing the 
duplicated BM descriptor set on AID435034 (data not shown).

Lastly, the effects of zero-padding the SR descriptor set were considered by doubling the SR 
descriptor set size by padding it with zeros (Figure 5: SR + 0s). The resulting curve is 
qualitatively indistinguishable from the results on the unperturbed SR set. The lack of effect 
of zero-padding columns on the optimal input dropout rates additionally supports the notion 
that Dinp,optimal is primarily a function of the signal-to-noise ratio in the dataset.

Comparison with Fingerprint Methods

Dropout ANNs trained on MACCS keys improved logAUC by 38% relative to simple 
similarity searches, and 26% relative to conventional ANNs. MolPrint2D fingerprints using 
the optimal settings and comparison metric proved superior to conventional ANNs trained 
with the SR descriptor set, but inferior to dropout ANNs by ~18% in logAUC. Nevertheless, 
MolPrint2D fingerprints were superior in training dropout ANNs on one dataset 
(AID488997). It may prove fruitful to use the MolPrint2D fingerprints as additional 
descriptors to train ANNs in future work, based on the results with dropout ANNs using 
MACCS keys. These results further validate a smaller benchmark that found similar 
improvement using ANNs on fingerprint-style descriptors [5]. We expect, however, that 
fingerprint-type will be relatively limited in terms of identifying novel active scaffolds, a 
purpose for which we anticipate that conformational and electrostatic descriptors such as 
those used here will have a clear advantage.

Sensitivity to choice of atom properties

For the BM descriptor set, we used atom properties from prior studies [6,38], specifically: 
Identity, Polarizability, Electronegativities (σ, π, lone-pair) and partial charges (σ, π, σ+π, 
VCharge) for use in 2DA and 3DA functions [20,39,40]. The charge properties can take on 
positive and negative values, and likewise were used exclusively in the sign-sensitive 2DA 
and 3DAs [15].

For the SR descriptor set, a reduced set of four atom properties was used: σ charge, 

. Testing proved that this set 
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yielded slightly better (1.5% on average logAUC) performance than that of the BM set, 
while being substantially smaller in size. Testing with sixteen different sets of up to twenty 
different atom properties produced logAUC that remained within 5% of this optimal set so 

long as the set contained σ charge and  or a similar descriptor capable 
of describing hydrogenation and steric bulk (results not shown), suggesting that our results 
are relatively insensitive to atom properties. The additional atom properties that were tested 
included splitting charges based on whether they were associated with a heavy or light atom, 
as well as simpler versions of the charges where each atomic charge was converted to 0, −1, 
or +1 depending on specific cutoffs derived from the distribution of each of the charge 
types. While these descriptors improved results on specific datasets by up to 10% in some 
cases, the improvements did not hold across the benchmark.

Caveats and Limitations

ANNs trained in this study had a single hidden layer with thirty-two neurons. To understand 
the relative influence of neural architecture on our results, we used our optimized parameters 
to train a larger ANN, keeping other parameters set to their optimal values from the 
benchmark. Using a hidden layer size of 256 neurons resulted in an insignificant change (p > 
0.1) in logAUC values (+1.3% +/− 3.2%) across the benchmark datasets. While larger ANNs 
or additional hidden layers could improve the outcomes of this study, this exploration leads 
us to expect that the benefit of larger ANNs will be small relative to the use of dropout itself.

ANNs were trained to one hundred iterations. For ANNs without dropout, optimal 
performance was obtained between 2 and 49 iterations (μ=14, σ2=15) using the SR 
descriptors, depending on the dataset. With an input and hidden layer dropout fraction of 
25%, convergence to within 99% of the final logAUC required between 8 and 26 iterations 
(μ=15, σ2=6). Increasing the input dropout rate to 50% further increased the number of 
iterations for convergence to an average of 35 (range: 20 – 69). Input dropout rates of 75% 
and higher likewise may require more than one hundred iterations converge to within 1% of 
their optimal logAUC on some datasets. Given that this is well above the optimal input 
dropout rate found in this study for all descriptor sets, it appears unlikely that our 
optimization would differ significantly if performed with further iterations.

Conclusions

When training ANNs on large QSAR datasets, dropout is important in both the input and 
hidden layers. Compared to conventional ANNs trained with no model selection or early 
termination, dropout ANNs improves logAUC by an average of 36%, and enrichment by 
29%. Compared to ANNs trained with model selection, dropout ANNs still outperforms 
conventional ANNs by an average of 22% across the descriptors sets considered here. 
Dropout ANNs outperformed optimized similarity searching methods based on MolPrint2D 
fingerprints by 18%. The dropout technique thus places ANNs at the forefront of QSAR 
modeling tools.
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Applying dropout to the ANN hidden layer at the fractions prescribed by this benchmark 
will provide a starting point for further optimization on QSAR datasets of commercial and 
academic interest, and further highlight the need for widespread dissemination of 
contemporary machine learning techniques into broader disciplines.
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Fig. 1. 
Average logAUC by training epoch for dropout and conventional networks. Conventional 
ANNs converge within 10 iterations on all datasets and over-train afterwards. Dropout 
ANNs converge within 25 iterations on all datasets, reach higher logAUC values and do not 
over-train, even after 1000 iterations. Using momentum (α) improves convergence at the 
expense of slightly lower logAUC. Batch update and resilient propagation exhibit slower 
convergence but similar overtraining without dropout, and reach essentially the same peak 
performance as observed with online-learning.
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Fig. 2. 
Optimization of input and hidden layer dropout rates, averaged over the benchmark datasets. 
Optimum is at Dinp=0.6, Dhid=0.25, with an average logAUC of 0.377. The weakest 
performance is seen with Dinp=Dhid=0 (e.g. no dropout), with an average logAUC of 0.255.
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Fig. 3. 
Per-dataset optimization of logAUC. Title bar for each dataset indicates ID - logAUC of the 
dataset trained without dropout → logAUC after dropout rate optimization.
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Fig. 4. 
Dependence of Dinp optimization on descriptor set. Dhid = 0.25 for all descriptor sets. BM – 
Benchmark descriptor set, SS – substructure descriptor set, SR – short-range descriptor set.
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Fig. 5. 
Dependence of Dhid optimization on descriptor set. Optimal values of Dinp used for each 
descriptor set from Figure 2 (Dinp = 0.05 for SS & SR, Dinp = 0.6 for BM).
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Fig. 6. 
Effect of artificial descriptor set defects on Dinp optimization. SR - short range descriptor 
set, SR+Noise – SR descriptors & an equal number of Gaussian noise columns, SRx2 – SR 
descriptors, repeated (all descriptors represented twice), SR+0s – SR descriptors, with all 
descriptors paired with an all-0 column.

Mendenhall and Meiler Page 20

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mendenhall and Meiler Page 21

Table 1

Datasets used in the benchmark. The PubChem Summary ID (SAID) is used to refer to the datasets throughout 
this manuscript

Protein Class – Target PubChem SAID # Active Molecules # Inactive Molecules

GPCR – Orexin1 Receptor Antagonists 435008 233 (0.11%) 217925

GPCR – M1 Muscarinic Receptor Agonists 1798 187 (0.30%) 61646

GPCR – M1 Muscarinic Receptor Antagonists 435034 362 (0.59%) 61394

Ion Channel – Kir2.1 K+ Channel Inhibitors 1843 172 (0.06%) 301321

Ion Channel – KCNQ2 K+ Channel Potentiators 2258 213 (0.07%) 302192

Ion Channel – Cav3 T-type Ca2+ Inhibitors 463087 703 (0.70%) 100172

Transporter – Choline Transporter Inhibitors 488997 252 (0.08%) 302054

Kinase Inhibitor –Serine/Threonine Kinase 33 Inhib. 2689 172 (0.05%) 319620

Enzyme –Tyrosyl-DNA Phosphodiesterase Inhib. 485290 281 (0.08%) 341084
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Table 2

Complete list of descriptors in the BM and SR descriptor sets. For signed 2DAs and 3DAs, unsigned atom 
properties (Polarizability, Identity, VdW Surface Area) were multiplied by −1 for hydrogen atoms, to enhance 
the information content of these descriptors.

Scalar Descriptors Descriptor Set

Molecular Weight

# hydrogen bond donors and acceptors

LogP - Octanol/water coefficient [18]

Total charge of molecule

# of rotatable bonds
BM & SR

# of aromatic rings

# of rings

TPSA - Total polar surface area of molecule [19]

Bond Girth - maximum # of bonds between two atoms

Girth - Widest diameter of molecule (Å)

# of atoms in largest & smallest rings

# of atoms in aromatic rings

# of bridge atoms in fused rings
SR

# of bridge atoms in fused aromatic rings

Min, Max, Std, Absolute sum of σ charges [20]

Min, Max, Std, Absolute sum of V charges [21]

2DAs

11 bonds - 12 values for each atom property

Binning Kernel Atom Properties Descriptor Set

Sum Identity (1), Polarizability [22], VdW Surface Area BM

Max, Min Polarizability, VdW Surface Area BM

Sum Identity (1), IsInAromaticRing, IsAromaticRingBridgeAtom, VCharge on Hydrogen, σ charge on 
Hydrogen

SR

Signed 2DAs

BM: 11 bonds - 36 values / atom property

SR: 5 bonds - 18 values / atom property

Binning Kernel Atom Properties Descriptor Set

Sum, Max σ charge, V-Charge, Polarizability BM & SR

Max VdW-SA, VdW-SA weighted σ charge, V-Charge, and Polarizability BM

Sum π charge, σ+π charge, VdW-SA weighted σ charge, V-Charge, and Polarizability; VdW-SA, Discretized 
σ charge (Q < −0.15, −0.15 < Q < 0.15, Q > 0.15), Discretized π charge (Q < −0.1, −0.1 < Q < 0.1, Q > 
0.1), Discretized V-charge (Q < −0.25, −0.25 < Q < 0.25, Q > 0.25)

BM

Sum, Max Identity, σ charge on heavy atoms, V-Charge on heavy atoms SR
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3DAs

BM: 0.25 Å bins, 12 Å max – 48 values / atom property

SR: 0.25 Å bins, 6 Å max – 24 values / atom property

Binning Kernel Atom Properties Descriptor Set

Sum, Max, Min Identity (Sum only), Polarizability, VdW SA, VdW-weighted Polarizability BM

Sum, Max IsInAromaticRing, IsAromaticRingBridgeAtom, VCharge on Hydrogen, σ charge on Hydrogen SR

Signed 3DAs

BM: 0.25 Å bins, 12 Å max – 144 values / atom property

SR: 0.25 Å bins, 6 Å max – 72 values / atom property

Binning Kernel Atom Properties Descriptor Set

Sum, Max σ charge, V-Charge, IsH (1 for H, −1 for Heavy atoms) BM & SR

Sum, Max π charge, σ+π charge, VdW-weighted σ, π, σ+π, and V-Charge BM

Sum, Max σ charge on heavy atoms, V-Charge on heavy atoms, Polarizability SR
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Table 4

Optimized training conditions for dropout and conventional ANNs

Parameter Optimum for dropout ANNs Optimum for conventional ANNs

Scaling Z-Score Z-Score

Model Selection No Yes

Active:Inactive Ratio 1:10 1:100

Shuffling Yes Yes
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Table 5

Improvements in logAUC observed across the three descriptors with dropout. Italicized numbers show the 
improvement relative to the baseline conditions of no dropout or model selection and a 1:10 A:I presentation 
ratio. Significance is reported at at p < 0.05 (*), or p < 0.01 (**). Reported logAUC is subject to a standard 
deviation of +/− 2.4% – 2.9% of the reported value (0.008 – 0.009), assessed using bootstrap resampling as 
described in Methods.

log AUC by training condition
Average model results

ANN Parameters

 Dinp 0 0 0.6

 Dhid 0 0 0.25

Model Selection − + −

 A:I ratio 1:10 1:100 1:10

Descriptor set log AUC

 BS 0.26 0.30** +16% 0.37** +46%

 SR 0.29 0.33** +14% 0.39** +35%

 SS 0.26 0.27* +2.6% 0.33** +26%

Descriptor set Enr1

 BS 27 28* +2.6% 35** +31%

 SR 28 31** +12% 37** +33%

 SS 25 25 31** +23%

Similarity Search

Fingerprint log AUC Enr1

 MACCS 0.24 23

 MolPrint2D 0.33 33
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