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Abstract. We present an improved version of random projections thaistad-
vantage of marginal norms. Using a maximum likelihood eaton(MLE), margin-
constrained random projections can improve estimatiomracy considerably.
Theoretical properties of this estimator are analyzed taibe

1 Introduction

Random projections[1] have been used in machine learning] [@nd many other ap-
plications in data mining and information retrieval, e[@=12].

One application of random projections is to compute the Gmaatrix AAT effi-
ciently, whereA € R™"*P is a collection ofn. data pointsc R”. In modern applica-
tions,n andD can be very large hence computiAgA " is prohibitive. The method of
random projections multiplieA with a projection matrix® € RP>*, which typically
consists of i.i.d.N(0, 1) entries® Let B = ﬁAR. Suppose.] is thei” row of A,

and the corresponding® row in B is v], then as shown in Lemma 1.3 of [1]
2
E (lvi —v;1%) = i — %, Var (||v; — v %) = gl = uill*. (@)

Therefore, one can compute pairwise distances dimensions, as opposed o
dimensions. Whet < min(n, D), the savings fronO(n?D) to O(n?k + nDk) is
enormous.

Random projections generate a small sketch (B3.of the original dataB may
be small enough to reside in the main memory. Operations asicfuery optimization
or nearest neighbor searching can then be conducted on ttie smaller space in the
main memory, avoiding disk 10, which can be convenient f@liations in databases,
information retrieval, etc.

1.1 Our Results

We improve random projections by taking advantage of maitgiorms, which we
might as well compute, since they are useful and no hardetpate than the random

% The only necessary condition for preserving pairwise distds thalR consists of i.i.d. entries
with zero mean[2]. The case of i.i.8/(0, 1) entries is the easiest to analyze.



projections. Given an x D matrix A, it costs jusO(n D) time to compute the marginal
norms, considerably less than thé¢n Dk) time required fok random projections.

We will propose an estimator based on maximum likelihoodn&maximum like-
lihood estimators suffer from severe bias, slow rate of eog@nce toward normality,
multiple roots, etc. These concerns will be addressed.

Some (approximate) tail bounds will also be presented, lwbén improve the cur-
rent well-known tail bounds and consequently also imprareesJohnson and Linden-
strauss (JL) embedding bounds in a practical sénse.

2 Random Projections Using Marginal Norms

Recallu; € RP denotes data vectors in the original space ane- ﬁRTui € R

denotes vectors in the projection space, where the projectatrixR € R”** consists

of i.i.d N(0,1) entries. We assume that the marginal norins,|?, are known. As

lur —uz||? = |Ju1|? + |Juz||? — 2u]uz, we only need to estimate the dot produftis.
For convenience, we denote

a=ujuz, mi=lurl®,  ma=|uall’,  d=ur— usl® =m+mo - 2a.

The following lemma is proved in Appendix A.
Lemmal. Givenu,up € RP, and a random matrix R € RP** consisting of i.i.d.

standard normal N (0, 1) entries, if welet v, = ﬁRTul, and vy, = ﬁRT’U/Q, then®

E (UIUQ) =a, Var (U1U2) = % (m1m2 + az) , E (vIvg — a)3 i2 (3m1m2 +a ) )

with the moment generating function
k
2

E (exp(vIUQt)) = <1 — %at - % (mima — a®) t2) B ’ (3)

where —F <t < k

vmimz—a —  — /mimaz+a’

The moment generating function may be useful for deriviildptaunds, from which
one can hope to derive theorems similar to the JL-embeddingds for||v; — vzH2
[13-15]. However, it is more difficult to derive practicalgeful tail bounds for] v,
than for||v; — v2]|?. One intuitive way to see this is via the coefficients of viwias:

JVar([or — w2 \/Var (v]vs)
o1 = val*) \/7 (constany, v \/> (unbounded

[|ur — ual|? Culus

A straightforward unbiased estimator of the dot produet u]u, would be

. . 1
apmrF = vIvg, Var (apyr) = % (m1m2 + a2) , 4)
4 The JL-embedding bound[13] was originally defined much ngemerally than for estimating
the 2-norm distances, which is the only case we consider.

® A recent proof by [12, Lemma 5.4] verified that Var{ vz) < 2 (|lu1 [|*[|uz]?) = 2mama.



where the subscript “MF” stands for “margin-free.”
It is expected that if the marginal norms; = ||u;]|? andms = |Juz||?, are given,
one can do better. For example,

. 1 . 1

asm = 3 (m1 4+ mg — |lvy —v2?) Var (asyr) = o (m1 +msa — 2a)°, (5)
where the subscript “SM” stands for “simple margin (methodpfortunatelyasys is
not always better thaiy, . For example, whea = 0, Var (dsy ) = ;—k(ml +mg)? >
Var (aar) = 7 (mims). Itis easy to show that

1
Var (asar) < Var(ayr) onlywhena > (my +mg) — \/5(m% +m3) + 2mymo.

We propose an estimator based on maximum likelihood in thewing lemma,
proved in Appendix B. This estimator has smaller varianemthotha ; » andag ;.

Lemma 2. Supposethe margins, m; = |Juy||? and mo = ||uz||?, are known; a maxi-
mum likelihood estimator (MLE), denoted asa ;1 i, iSthe solution to a cubic equation:

a® — a® (v{va) + a (=mama + ma|[va||® + ma|[v1]|?) — mimaviva = 0.  (6)

The variance of a7,z (asymptotic, up to O(k—2) terms) is

—a2)?
Var (anrpp) = L(mume —a®)" L (Var (ane) Var (asar)) . (7)

k mims + a?

Figure 1 verifies the inequality in (7) by plottinﬁr([’m’f) and Ya@srLe) The

R ar(an r) Var(asar) *
improvement is quite substantial. For exam&%&“ﬁ#’%) = 0.2 implies thatin order to
achieve the same mean square accuracy, the proposed Mbtatstneeds onlg0%
of the samples required by the current margin-free (MF)vestibr.

Maximum likelihood estimators can be seriously biased ma@ases, but usually
the bias is on the order 6f(k~1), which may be corrected by [16] “Bartlett correction.”
In Lemma 3 (proved in Appendix C), we are able to show that gyergtotic bias of
ouray g is only O(k~2) and therefore there is no need for bias correction. Lemma 3
also derives the asymptotic third momentaf . g as well as a more accurate variance
formula up toO(k~3) terms. The third moment is needed if we would like to model
the distribution ofa ;L g more accurately. The more accurate variance formula may be
useful for smallk or in the region where th€(k~?2) term in the variance is quite large.

Lemma 3. The bias, third moment, and the variance with O(k~2) correction for the
maximum likelihood estimator, a1, g, derived in Lemma 2, are given by

E(amre —a) = O(k™?), (8)

—2a(3mima + a?)(mimsg — a?)?

k2(mimsg 4 a?)3

+O0(k™?), (9)

1 (mimg — a2)2 1 4(mima — a?)*
k. mima + a2 k2 (mymg + a?)*

mimso + O(kig) (10)
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Fig.1. The variance ratios g2t and “GLeLE) verify that our proposed MLE has

smaller variance than both the mké?gin-free (MF) estimanakthe simple margin (SM) method.
Var (amre), Var(aamr), and Var(asas) are given in (7), (4), and (5), respectively. We consider
mz = 0.2m1, me = 0.5m1, andmz = 0.8m;, in panels (a), (b), and (c), respectively.

Eg. (10) indicates that when= 0, the O(k~2) term of the asymptotic variance is
2 of theO(k™!) term. Whenk < 10 anda is very small, we might want to consider
using (10) instead of (7) for V&ii\/ 1. ). However, as we will show next, for very small
k, there is also a multiple root problem in solving the cubicBquation (6).

Lemma 4. The cubic MLE equation (6) in Lemma 2 admits multiple real roots with a
small probability, expressed as

Pr (multiplereal roots) = Pr (P?(11 — Q%/4 —4Q + P*) + (Q — 1)* <0), (11)

1mz’

vl v 1 |? va||? . e .
where P = \/"1= Q= % + % This probability is (crudely) bounded by

Pr (multiple real roots) < ¢~0-0085F 4 o —0.0966k (12)
When a = my = ma, this probability can be (sharply) bounded by
Pr (multiplereal roots| a = my = my) < e 19328k 4 04672k (13)

Although the bound (12) is crude, the probability of admitimultiple real roots
in (11) can be easily simulated. Figure 2 shows that this givdity drops quickly to
< 1% whenk > 8.

To the best of our knowledge, there is no consensus on whae iisdst solution to
multiple roots[17]. Because the probability of multipleots is so small whe# > 8
while in the large-scale applications we expect 10, we suggest not to worry about
multiple roots. Also, we will only use th@(k~!) term of Valans . x), i.e, (7).

Figure 3 presents some simulation results, using two wor##S” and “HAVE,”
from some MSN Web crawl! data. Hetg ; (u2 ;) is the number of occurrences of word
“THIS” (word “HAVE”) in the jth page;j = 1to D = 2'6. As verified in Figure 3, due
to the existence of multiple roots at smaljlsome small bias is observable, as well as
some small discrepancies between the observed momentsath@bretical asymptotic
moments. Whett > 8, the asymptotic formulas fary, g are very accurate.
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Fig. 2. Simulations show thaPr (multiple real root} decreases exponentially fast with respect
to increasing sample siZe(notice the log scale in the vertical axis). After> 8, the probability
that the cubic MLE equation (6) admits multiple roots becerse small £ 1%) that it can be

safely ignored in practice. Herg = \/ﬁ The curve for the upper bound is given by (13).

3 Some Tail Bounds

Tails bounds are necessary for deriving JL-type boundsdterchining the number of
projections (i.e.k) needed in order to achieve a certain specified level of acgur

Recallu; € RP denotes data vectors in the original space and R”* denotes
vectors in the projection space. The usual estimatod fer||u; — us||? is

. dy, R 2 2d?
dyrr = |[or — va |2 = d, ﬁ ~x3, Var(dur) = =llor = vt = =
The well-known Chernoff chi-squared tail bound gives (foy & < e < 1)®
. k k
Pr (‘dMF d‘ > ed) < 2exp( e+ e ) : (15)

from which a JL-embedding bound follows, using the Bonfertmion bound [15]:

2 k k 442
n—2exp (——62+—63) <n T =k>k = + logn, (16)

2 4 6 €2/2—¢€3/3

i.e., if & > ko, then with probability at least — »n ™7, for any two rowsu;, u; from the
data matrix withn rows, we havel — €)||u; —u;||? < |lv; —v;||* < (14€)|lu; —u;]|*.

As mentioned in [15], the above bounds are tight. We will skieat, from a practical
point of view, using the marginal information can actuaityprove the bounds.

6 Since we know the exact distribution in this case, we mighival computek exactly by
iteratively solving a nonlinear equation:

"; (Pr(xi > (1+ek)+Pr(xi < (1-e)k)) =a (e.g.,a =0.05), (14)

which always outputs smallérvalues than the JL-bound (e.g., by abd0% whene = 0.5).
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Fig. 3. Estimations of the dot products between two vectors “THI&I 8HAVE.” (a): b'Tas (b):

v Vzr(&), (c): v E“Z*“)S. This experiment verifies that (A): Marginal informationncemprove
the estimations considerably. (B): As soonfas> 8, amre is essentially unbiased and the
asymptotic variance and third moment match simulationsarkably well. (C): The margin-free
estimator ¢ ) is unbiased and the theoretical moments are indistingbishfrom simulations.

Usinga sz, an MLE ford = ||u; — usl|?, would be

2)2
dyre =mi+my — 2ayLe,  Var (CZMLE) = %M 17)
mimso + a

Botha .z andda .z are asymptotically normal. It is well-known that for “small
deviations,” (e.g., small) the asymptotic normality of MLE holds with high accuracy.
We often care about the “small deviation” behavior becauseauld like the estimate
to be close to the truth. However, when we estimate all pagwiistances simultane-
ously (as is considered in the JL-embedding bound), the@omii union bountimay
push the tail to the “large deviation” range hence assunsyg@totic normality could
be a concern. On the other hand, the Bonferroni bound lealdsger k values; and
largerk improves the accuracy of the asymptotic normality. Baseth@(heuristic)
argument, the asymptotic tail boundsagf . g may be still useful in practice.

3.1 Normal Approximation
Based on the asymptotic normality; .z ~ N (a, Var(ayrz)), we can obtaif

ke a?(mams + a2>)

2 (myimg — a?)? (19)

Pr (lapre — al > ea) % 2 exp (—

" The Bonferroni bound is well-known for being too consematipartly because it ignores the
correlations. But the major problem is that the criteriomos stringent for large: (here we

actually have’g—2 tests). A reasonable alternative is to allow a certain ipacof tests to fail
[18, Chapter 9]. For example, if we allow at mdgip tests to fail, we can solve fdr from

(Pr(xi > (1+ek)+Pr(xi <(1-ek)) =a/p (e.9., a=005 p=100) (18)

8 Of course, we can also use the exact normal tail probalsilitistead of the upper bounds.



where; indicates that bound holds only asymptotically.
Similarly, the asymptotic normalityy; .z ~ N(d, Var(dyLr)) yields

A ~ kE ,d> mimo + a?
Pr (’dJWLE_d‘ Zﬁd) §2exp (_162?“]’),11771227—0,2)2) . (20)
Note that%2 (;1”11”’;122:‘22)2 - V\;f(rg’;if;) > 1 (unbounded), with equality holds when

my1 = mg = a. Therefore, as expected, we can obtain better bounds usingjimal
information. In practice, we have to choose some reasonalles formy, mo anda
based on prior knowledge of the data, or for the regions wenast interested in.

It would be interesting to see how normal approximationdape affects its tail

bound. Assuming normality, i.edysr ~ N (d, %) we obtain

Pr (‘CZMF _ d‘ > ed) < 2exp (—%3) : 1)

which agrees with the exact bound on the dominatigrm.
When applying normal approximations, it is important to etabut for the third
moments, which, to an extent, affect the rate of convergence

8d?
k2

—2a(3myma + a?)(mimg — a?)3

k2(mima + a?)3

E(JMF —d)3 - E(CZMLE — d)3 —38

Some algebra can verify that

~ 3
E (dMLE _ d) < <Var(dMLE))g <1 22)
s N T \WVaraye) ) T

E (dMF - d) (arrr)

which means the third moment df; . & (andays . g) is well-behaved.

3.2 Generalized Gamma Approximation

The normal approximation matches the first two (asymptaticjnents. The accuracy
can be further improved by matching the third moment. Formgda, [19] used a gen-
eralized gamma distribution to accurately approximatefithite-dimensional behavior
of the random matrix eigenvalues arising in some wirelessmanication channels.

For convenience, we consider> 0 (true in most applications). Assumingiy g ~
G(a, 5,€), a generalized gamma distribution with three paraméters, €), then

E(—CALI\,[LE) = Oéﬁ, Var(—dMLE) = 0462, E(_dl\f{LE + a)3 = (f + 1)0&63, (23)
from which we can computgy, 3, €):
_ ka*(mimg + a?)
(myimg — a?)?
2a?(3mima + a?)

£= -1 (24)

(mima + a?)(mimsy — a?)

=ka, (= —(mams — a%)* a’)* = _—15/,

k(mimsg + a?)a k




The generalized gamma distribution does not have a clazeddensity, but it does
have closed-form moment generating functions [19, (69](70

exp (25 (1-(1- 8607 ) wheng¢ > 1

N 1-¢
B Canee)) =4 o (12 () © -1))  whene <1
(1-p0t)~« when¢ =1

¢ > 1 happens whenﬂ% > @ = 0.2808. Using the Chernoff inequality and
assuming > 1 (other cases are similar) , we obtain

~ £-1 / , B
Pr (JMLE >(1 +e)d) < exp <—k; <<2a2—aed) <£‘i - - ﬂ‘fﬁ) B go_é -+ 2(;5/£d>> 7

~ £-1 ’ ’
Pr (CZMLES(I—E)d) < exp (—k <<2a2-|(—led) (f(il_ﬂi/g> _£—1+2Z;£d>>-

4 Sign Random Projections

We give a brief introduction to “sign random projections,(, only storing the signs
of the projected data), and compare sign random projectidthsregular random pro-
jections. For each data point, sign random projectionggtest one bit per projection.
There are efficient algorithms for computing hamming dises{14, 10, 11].

We will show that when the data are roughly uncorrelatedyén@nce of sign ran-
dom projections is only abou‘g;E ~ 2.47 of the variance of regular random projections,
which store real numbers. With highly correlated data, haesign random projec-
tions can be quite inefficient compared to regular randorjeptions.

Recallu; € R” denotes data vectors in the original space gne #RTui € RF
for vectors in the projection space. It is easy to show tift[1

. . 0 ,
Pr (Slgr‘(vl,j) = Slgl"(Ug,j)) =1—-—, 1=12 .k, (25)

™

wheref = cos™! (M) = cos™! ( a ) is the angle betweem andus.

llua [[[[uz]] mima

We can estimat@ as a binomial probability, whose variance would be

Var (9) = %2 (1 - g) (g) = Q(Lk_e) (26)

We can also estimate= u]us from g if knowing the margins:

CALSign = COS(@) mimeso. (27)
By the Delta method 5,4, is asymptotically unbiased with the asymptotic variance

b(r —6) sin?(0)myma, (28)

Var (éigign ) = Var(d) sin?(0)mymey =



providedsin (@) is nonzero, which is violated wheh= 0 or 7. In fact, wher¥ is close
to 0 or 7, due to the high nonlinearity, the asymptotic variance faanis not reliable.
Regular random projections store real numbers (32 or 63t Bitshe same number
of projections (i.e., the sam@ , obviously sign random projections will have larger
variances. If the variance is inflated only by a factor of (¢4 sign random projections
would be preferable because we could increlade (e.g.,)4k, to achieve the same
accuracy while the storage cost will still be lower than lagtandom projections.
We compare the variance (Mats;g», )) of sign random projections with the variance
of regular random projections considering the margins, & (a1, £)) by

Var(asign)  0(m — 0)sin?(0)mima  O(7 — 0)(1 + cos?(0))
VSign - ~ = (mymz—a?)? = . 2 B
Var(avre) oo sin®(0)

(29)

which is symmetric about = 7. Itis easy to check (also shown in Figure 4) that,,,
is monotonically decreasing i, %] with minimum %2 ~ 2.47, attained ab = 7.

64

Var ratio
w
N

0.050.1 0.2 3 0.4 0.5

0.
8 (n

Var(agign )
y Var(an L)
mum =7 = 2.47 attained at = 7. Note that the horizontal axis is in

Fig. 4. The ratios of varianc&s;gn = decreases monotonically {0, 5], with mini-

When the data points are nearly uncorrelatedligse to7, in facté > % could be
good enough), sign random projections should have goodmeaice. However, some
applications such as duplicate detections are interestddta points that are close to
each other hence sign random projections may cause réydtivge errors.

5 Some Recent Progress On Random Projections

There is considerable recent interestparse random projections, proposed by Achliop-
tas [15]. It replaces th&/ (0, 1) entries inR with entries in\/s x {—1, 0, 1} with prob-
abilities{5-,1— 1, L}, 1 < s < 3. With s = 3, one can get a threefold speedup.
We[20] recently proposedery sparse random projections by usings = /D, to
obtain av/D-fold speedup. The analysis is based on the asymptotic giepef the
projected data. For example, assuming bounded third moamethte original data, the

projected data converge to normal at the ratedf5iz), which is sufficiently fast
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sinceD has to be large otherwise there would be no need of seekingxpate an-
swers. The MLE proposed in this study is still usefuvény sparse random projections.

The limitation of random projection is that it can not estismenulti-way distances
nor can it estimate 1-norm distances. The authors’ coneuwerk[21] has proposed
a new sketch-based sampling algorithm, which is capabletohating two-way and
multi-way distances in any norms. In particular, this aithon provably outperforms
random projections in boolean data and nearly independeat d

6 Conclusion

We propose a maximum likelihood estimator (MLE) for randorjgctions, taking
advantage of the marginal information, which can be easipmuted at negligible
incremental cost. This estimator has provably smallelavene than the current method;
and therefore it can reduce the required number of projestio
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A Proof of Lemma 1

Recallui, us € RP, v, = ﬁRTul, andv, = ﬁRT’U/Q, whereR € RP** consists of
i.i.d. N(0,1) entries. Note that] vy = 25:1 vy U, = 25:1 TulR;RJuy is asum
of i.i.d. terms, wherdR,; is the;j*" column ofR..

It is easy to show tha; ;, v2 ;) are jointly normal with zero mean and covariance

X (denotingm; = ||u1]|?, ma = ||uz||?, anda = u]us)
vl 0 _1 lut|? wlusg _1limioa
|:’L)27j:| N ([O] &= k |:'LL-{U2 luol>| ~ k| @ mal|)” (30)
It is easier to work with the conditional probability:
(31)
from which we can get

mimeo — CL2 a 2
E (v1,v2,5)° = E(E (v} jv3 lv2,)) = E <U§J <L - <_2U2’j> ))

2 2 2
Mo M1Mo — a 3m; a 1 9
:7 s 12 m_% = 72 (m1m2 + 2a ) . (32)
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Therefore,
Var (vy -)*i( +a?), Var(vf )*1( +a?) (33)
U1,502,5) = k2 mimso a y Viv2) = © mimso a .
The third moment can be proved similarly. In fact, one canpot® any moments,
using the moment generating function:

E (exp(v1 jvz,5t)) = E(E (exp(v1 ju2,t)) |vz,5)

2
a mimgz —a 2
=E (eXP ((m—sz,j) vg it + (W) (va,5t) /2>)
k [a 1 t?
=& (e (5507 (G g =) 5)))

1

2a 1 e

_ <1 2 L fmma — a?) t2> | (34)
2

Here, we use the fact thanflj—/jk ~ X3, a chi-squared random variable with one de-

gree of freedom. Note that (Exp(Y't)) = exp (ut + 02t?/2) if Y ~ N(u,0?); and

E(exp(Yt)) = (1 — 2t)7% if Y ~ x3. By independence, we have proved that

k
2 1 T2
E (exp(vivat)) = (1 - Eat ~ 12 (mimg — a®) t2) , (35)
where———=£ <t< k This completes the proof of Lemma 1.

mims—a — mima—+a’

B Proof of Lemma?2

From Appendix A, we can write down the joint likelihood fuiwst for {v, ;, v2 ; }§:13

k
. _k 1 _ (W
W ({ogoastio) <12 o | =5 D oy o] 27 [10] ) @
where (assumingi;mo # a to avoid triviality)
_ 1 2 -1 k ma —a
151 = gelmama = a), Y = [ —am]

which allows us to express theg likelihood function,/(a), to be

k
k k 1
l(a) = —5 log (m1m2 - a2) _ Em J:Zl (viij — 201 V2 50 + v;jml) .

Settingl’(a) to zero, we obtaifd /1, i, which is the solution to the cubic equation:

a’® — a? (vIvg) +a (—mlmg + my||lval|? + m2||v1|\2) — mlmngvg =0. (37)
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The well-known large sample theory says that;, i is asymptotically unbiased and
converges weakly to a normal random variaNIe{a, Var(ayre) = @) , where [a),

the expected Fisher Information, i&) = —E (I”(a)). Recalli(a) is thelog likelihood
function obtained in Appendix B. Some algebra will show that

2
mims + a? R 1 (mlmz - a2)
l(a) = k—————. Var (a =< 38
@ (mimg — OL2)2 (Garez) k mimsg + a? (38)
Applying the Cauchy-Schwarz inequality a couple of times peove
. 1 (m1m2 - a2)2 . R .
Var(ayre) = [ —————c < min (Var(ayr),Var(isu)), (39)

where Var(dMF) = % (mlmg + CLQ), Var(dSM) = % (m1 + mo — 20,)2.

C Proof of Lemma3

We analyze the higher-order propertiesagfr, g using stochastic Taylor expansions.
We use some formulations appeared in [16, 22, 23]. The bias

E("(a)) + 2I'(a)

o) +O0(k™?), (40)

E (dMLE — CL) = —
which is often called the “Bartlett correction.” Some algeban show

(a) = Zk(if”ﬂz;”f;g)‘; ) E("(a)) = —20'(a), E (anrip — a) = O(k~2). (41)

The third central moment

31 (a) —E(1"(a
O£ | o3
2a(3mima + a®)(mymsg — a?)3

- kE2(mimao + a?)3 + O(k_?))' (42)

E(d}\,{LE — CL)3 =

TheO(k~2) term of the variance, denoted b¥f, can be written as

c _ 1 " 2 2 0 (E (l/”(a)) + 2|/(a))
‘/2 - |3(CL) (E (l (a)) — 1 (a) - da )
1 / 2 " " ’
+ 3 (10 ("(@)” — E@" (@) (E("(@)) - 4V(a)))

E l//a 2 —|2a /a 9
_E( (|)3)<a)> ()‘(:4(3))’ s B ) £ 20— 0. (@3)
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Computing E((l”(a))Q) requires some work. We can write

k
"(a) = -5 (T(4a +8) — S(mimy + a?) — 4aS(vIvg)) , (44)
where, for simplicity, we le§ = m;my —a? andT = vy ||*ma + ||Jv2||*m1 — 2v] vaa.
Expanding(”(a))® generates terms involviri, T2, T'vv,. Rewrite

k

2 k
myme — a? kmo a 5 k
T= Z 2 (V1 = V2 +Z”2j_
k mims — a i meo 4 T meg
: j=1

j=1
2
mimo —a
=L ) (45)
Recallvl_j|v27j ~ N (mizvg_’j, %2;(12), and’UQ_’j ~ N (O, m2). Then

&
b k
n[{v1}5, ~ 3, (independentof{vy ;}5_)), (= ZU;J‘_ ~ X3, (46)

= "2
implying thatn and¢ are independent; ang+ ¢ ~ x3,. Thus,
1
E(T) = 2(mimsy — a?) = 28, E(T?) = 45%(1 + E)' (47)
We also need to compute(E'v{vs). Rewrite
2
T’U-II—’UQ = (vIvg)Hleng + (UIUQ)”UQ”le -2 (vIvg) a. (48)
Expand(v]vs) o |2
k k k k
(lva)[[or | = orgva; Y vt =D o] e+ Y [0 Y vnsva | (49)
=1 =1 j=1 i=1 j#i

Again, applying the conditional probability argument, wietain E(v} vz ;) =
3amy from which it follows that

k2
k
E((U1U2 Hv1|| ZE v} Y25 "’Z U1,z‘)ZE(”17j”27j)
J=1 J#i

- ‘”’“ =y r=a < %) (50)

J#i

To this end, we have all the necessary components for con;p&t((l”(a))z).
After some algebra, we obtain

E(1"(@)°) = g—i <(m1m2 +a?)’ + % (mims3 +a® + 6a2m1mz)) . (BD)

4
4 (mimse — a?
‘/20 = k_ ( 172 a2)4 mimsa. (52)

2 (mimeg +
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We complete the proof of Lemma 3.

D Proof of Lemma4

The cubic MLE equation derived in Lemma 2 may admit multiplets. (Recall a cubic
equation always has at least one real root.) By the well-knGardano condition,

Pr (multiple real rooty = Pr (P?*(11 — Q*/4 — 4Q + P?) + (Q — 1)* < 0), (53)
|12 |12

.
whereP = % Q= ””m;l + % We can obtain a crude upper bound using the

factthatPr(A+ B <0) < Pr(A <0)+Pr(B <0),ie,
Pr (multiple real roots < Pr (11 — Q*/4 —4Q <0) +Pr(Q —1<0). (54)

We will soon prove the following moment generating function

E (exp(Qt)) = (1 - % + t—f (M))_ , (55)

[SIE

mimso
which enables us to prove the following upper bounds:

Pr(Q—1<0) <e 0096k Pr(11-Q?*/4—4Q < 0) < e %0085 (56)
Pr (multiple real rooty < ¢ ~0:0966k | o —0.0085k (57)

using the standard Chernoffinequality, eRyr,(Q > z) = Pr (e9! > ) < E (e?") e~
choosing that minimizes the upper bound.

The upper bound (57) is very crude but nevertheless revieaishe probability of
admitting multiple real roots decreases exponentiall fas

It turns out there is a simple exact solution for the spe@akcofa = m; = mo,

i.e.,Q =2P = ||v1]|?/m1, kP = % ~ X3, and a (sharp) upper bound:
Pr (multiple real rooty = Pr ((P —3)?2 > 8) T P (12))

To complete the proof of Lemma 4, we need to outline the proottie moment
generating function Eexp(Qt)). Using the conditional probability; ;|vs ;, we know

kma 9 9 ka? 9
VY V2.5 ~ where \ = —— v
1,]| 5] Xl,)ﬂ mQ(m1m2 _ aQ) 2

mimse — a2 e (59)

Xi)\ denotes a non-central chi-squared random variable witllegeee of freedom and
non-centrality\. If Y ~ x7 ,, then E(exp(Yt)) = exp (L) (1- 2t)*%. Because

1-2t
UgJ) ) N (60)

k 2 2
_ < V1,5, Y24
E (exp(Qt)) = Jl;[l E <E (e p <—m1 + P ) t

we can obtain the moment generating function in (55) afteresalgebra.
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