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Abstract. We present an improved version of random projections that takes ad-
vantage of marginal norms. Using a maximum likelihood estimator (MLE), margin-
constrained random projections can improve estimation accuracy considerably.
Theoretical properties of this estimator are analyzed in detail.

1 Introduction

Random projections[1] have been used in machine learning [2–6] and many other ap-
plications in data mining and information retrieval, e.g.,[7–12].

One application of random projections is to compute the Grammatrix AA
T effi-

ciently, whereA ∈ R
n×D is a collection ofn data points∈ R

D. In modern applica-
tions,n andD can be very large hence computingAA

T is prohibitive. The method of
random projections multipliesA with a projection matrixR ∈ R

D×k, which typically
consists of i.i.d.N(0, 1) entries.3 Let B = 1√

k
AR. SupposeuT

i is theith row of A,

and the correspondingith row in B is vT
i , then as shown in Lemma 1.3 of [1]

E
(

‖vi − vj‖2
)

= ‖ui − uj‖2, Var
(

‖vi − vj‖2
)

=
2

k
‖ui − uj‖4. (1)

Therefore, one can compute pairwise distances ink dimensions, as opposed toD
dimensions. Whenk � min(n, D), the savings fromO(n2D) to O(n2k + nDk) is
enormous.

Random projections generate a small sketch (i.e.,B) of the original data.B may
be small enough to reside in the main memory. Operations suchas query optimization
or nearest neighbor searching can then be conducted on the much smaller space in the
main memory, avoiding disk IO, which can be convenient for applications in databases,
information retrieval, etc.

1.1 Our Results

We improve random projections by taking advantage of marginal norms, which we
might as well compute, since they are useful and no harder to compute than the random

3 The only necessary condition for preserving pairwise distance is thatR consists of i.i.d. entries
with zero mean[2]. The case of i.i.d.N(0, 1) entries is the easiest to analyze.
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projections. Given ann×D matrixA, it costs justO(nD) time to compute the marginal
norms, considerably less than theO(nDk) time required fork random projections.

We will propose an estimator based on maximum likelihood. Some maximum like-
lihood estimators suffer from severe bias, slow rate of convergence toward normality,
multiple roots, etc. These concerns will be addressed.

Some (approximate) tail bounds will also be presented, which can improve the cur-
rent well-known tail bounds and consequently also improve some Johnson and Linden-
strauss (JL) embedding bounds in a practical sense.4

2 Random Projections Using Marginal Norms

Recallui ∈ R
D denotes data vectors in the original space andvi = 1√

k
R

Tui ∈ R
k

denotes vectors in the projection space, where the projection matrixR ∈ R
D×k consists

of i.i.d N(0, 1) entries. We assume that the marginal norms,‖ui‖2, are known. As
‖u1−u2‖2 = ‖u1‖2 +‖u2‖2−2uT

1u2, we only need to estimate the dot productuT
1u2.

For convenience, we denote

a = uT
1u2, m1 = ‖u1‖2, m2 = ‖u2‖2, d = ‖u1 − u2‖2 = m1 + m2 − 2a.

The following lemma is proved in Appendix A.

Lemma 1. Given u1, u2 ∈ R
D, and a random matrix R ∈ R

D×k consisting of i.i.d.
standard normal N(0, 1) entries, if we let v1 = 1√

k
R

Tu1, and v2 = 1√
k
R

Tu2, then5

E
“

vT
1v2

”

= a, Var
“

vT
1v2

”

=
1

k

`

m1m2 + a2
´

, E
“

vT
1v2 − a

”3

=
2a

k2

`

3m1m2 + a2
´

(2)

with the moment generating function

E
(

exp(vT
1v2t)

)

=

(

1 − 2

k
at − 1

k2

(

m1m2 − a2
)

t2
)− k

2

, (3)

where −k√
m1m2−a ≤ t ≤ k√

m1m2+a .

The moment generating function may be useful for deriving tail bounds, from which
one can hope to derive theorems similar to the JL-embedding bounds for‖v1 − v2‖2

[13–15]. However, it is more difficult to derive practicallyuseful tail bounds forvT
1v2

than for‖v1 − v2‖2. One intuitive way to see this is via the coefficients of variations:

√

Var(‖v1 − v2‖2)

‖u1 − u2‖2
=

√

2

k
(constant),

√

Var
(

vT
1v2

)

uT
1u2

≥
√

2

k
(unbounded).

A straightforward unbiased estimator of the dot producta = uT
1u2 would be

âMF = vT
1v2, Var(âMF ) =

1

k

(

m1m2 + a2
)

, (4)

4 The JL-embedding bound[13] was originally defined much moregenerally than for estimating
the 2-norm distances, which is the only case we consider.

5 A recent proof by [12, Lemma 5.4] verified that Var
`

vT
1v2

´

≤ 2
k

`

‖u1‖2‖u2‖2
´

= 2
k
m1m2.
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where the subscript “MF” stands for “margin-free.”
It is expected that if the marginal norms,m1 = ‖u1‖2 andm2 = ‖u2‖2, are given,

one can do better. For example,

âSM =
1

2

(

m1 + m2 − ‖v1 − v2‖2
)

, Var(âSM) =
1

2k
(m1 + m2 − 2a)2 , (5)

where the subscript “SM” stands for “simple margin (method).” UnfortunatelyâSM is
not always better than̂aMF . For example, whena = 0, Var(âSM ) = 1

2k (m1 +m2)
2 ≥

Var(âMF ) = 1
k (m1m2). It is easy to show that

Var(âSM ) ≤ Var(âMF ) only whena ≥ (m1 + m2) −
√

1

2
(m2

1 + m2
2) + 2m1m2.

We propose an estimator based on maximum likelihood in the following lemma,
proved in Appendix B. This estimator has smaller variance than botĥaMF andâSM .

Lemma 2. Suppose the margins, m1 = ‖u1‖2 and m2 = ‖u2‖2, are known; a maxi-
mum likelihood estimator (MLE), denoted as âMLE , is the solution to a cubic equation:

a3 − a2
(

vT
1v2

)

+ a
(

−m1m2 + m1‖v2‖2 + m2‖v1‖2
)

− m1m2v
T
1v2 = 0. (6)

The variance of âMLE (asymptotic, up to O(k−2) terms) is

Var (âMLE) =
1

k

(

m1m2 − a2
)2

m1m2 + a2
≤ min (Var (âMF ) , Var (âSM )) . (7)

Figure 1 verifies the inequality in (7) by plottingVar(âMLE)
Var(âMF ) and Var(âMLE)

Var(âSM) . The

improvement is quite substantial. For example,Var(âMLE)
Var(âMF ) = 0.2 implies that in order to

achieve the same mean square accuracy, the proposed MLE estimator needs only20%
of the samples required by the current margin-free (MF) estimator.

Maximum likelihood estimators can be seriously biased in some cases, but usually
the bias is on the order ofO(k−1), which may be corrected by [16] “Bartlett correction.”
In Lemma 3 (proved in Appendix C), we are able to show that the asymptotic bias of
our âMLE is onlyO(k−2) and therefore there is no need for bias correction. Lemma 3
also derives the asymptotic third moment ofâMLE as well as a more accurate variance
formula up toO(k−3) terms. The third moment is needed if we would like to model
the distribution of̂aMLE more accurately. The more accurate variance formula may be
useful for smallk or in the region where theO(k−2) term in the variance is quite large.

Lemma 3. The bias, third moment, and the variance with O(k−2) correction for the
maximum likelihood estimator, âMLE , derived in Lemma 2, are given by

E (âMLE − a) = O(k−2), (8)

E
(

(âMLE − a)
3
)

=
−2a(3m1m2 + a2)(m1m2 − a2)3

k2(m1m2 + a2)3
+ O(k−3), (9)

Var (âMLE)
c
2 =

1

k

(

m1m2 − a2
)2

m1m2 + a2
+

1

k2

4(m1m2 − a2)4

(m1m2 + a2)4
m1m2 + O(k−3). (10)
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Fig. 1. The variance ratios,Var(âMLE)

Var(âMF )
and Var(âMLE)

Var(âSM )
verify that our proposed MLE has

smaller variance than both the margin-free (MF) estimator and the simple margin (SM) method.
Var(âMLE), Var(âMF ), and Var(âSM) are given in (7), (4), and (5), respectively. We consider
m2 = 0.2m1, m2 = 0.5m1, andm2 = 0.8m1, in panels (a), (b), and (c), respectively.

Eq. (10) indicates that whena = 0, theO(k−2) term of the asymptotic variance is
4
k of theO(k−1) term. Whenk ≤ 10 anda is very small, we might want to consider
using (10) instead of (7) for Var(âMLE). However, as we will show next, for very small
k, there is also a multiple root problem in solving the cubic MLE equation (6).

Lemma 4. The cubic MLE equation (6) in Lemma 2 admits multiple real roots with a
small probability, expressed as

Pr (multiple real roots) = Pr
(

P 2(11 − Q2/4 − 4Q + P 2) + (Q − 1)3 ≤ 0
)

, (11)

where P =
vT
1
v2√

m1m2

, Q = ‖v1‖2

m1

+ ‖v2‖2

m2

. This probability is (crudely) bounded by

Pr (multiple real roots) ≤ e−0.0085k + e−0.0966k. (12)

When a = m1 = m2, this probability can be (sharply) bounded by

Pr (multiple real roots | a = m1 = m2) ≤ e−1.5328k + e−0.4672k. (13)

Although the bound (12) is crude, the probability of admitting multiple real roots
in (11) can be easily simulated. Figure 2 shows that this probability drops quickly to
< 1% whenk ≥ 8.

To the best of our knowledge, there is no consensus on what is the best solution to
multiple roots[17]. Because the probability of multiple roots is so small whenk ≥ 8
while in the large-scale applications we expectk � 10, we suggest not to worry about
multiple roots. Also, we will only use theO(k−1) term of Var(âMLE), i.e, (7).

Figure 3 presents some simulation results, using two words “THIS” and “HAVE,”
from some MSN Web crawl data. Hereu1,j (u2,j) is the number of occurrences of word
“THIS” (word “HAVE”) in the jth page,j = 1 to D = 216. As verified in Figure 3, due
to the existence of multiple roots at smallk, some small bias is observable, as well as
some small discrepancies between the observed moments and the theoretical asymptotic
moments. Whenk ≥ 8, the asymptotic formulas for̂aMLE are very accurate.
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Fig. 2. Simulations show thatPr (multiple real roots) decreases exponentially fast with respect
to increasing sample sizek (notice the log scale in the vertical axis). Afterk ≥ 8, the probability
that the cubic MLE equation (6) admits multiple roots becomes so small (≤ 1%) that it can be
safely ignored in practice. Herea′ = a√

m1m2
. The curve for the upper bound is given by (13).

3 Some Tail Bounds

Tails bounds are necessary for deriving JL-type bounds for determining the number of
projections (i.e.,k) needed in order to achieve a certain specified level of accuracy.

Recallui ∈ R
D denotes data vectors in the original space andvi ∈ R

k denotes
vectors in the projection space. The usual estimator ford = ‖u1 − u2‖2 is

d̂MF = ‖v1 − v2‖2 = d,
d̂MF

d/k
∼ χ2

k, Var
(

d̂MF

)

=
2

k
‖v1 − v2‖4 =

2d2

k
.

The well-known Chernoff chi-squared tail bound gives (for any 0 < ε < 1)6

Pr

(∣

∣

∣d̂MF − d
∣

∣

∣ ≥ εd
)

≤ 2 exp

(

−k

4
ε2 +

k

6
ε3
)

, (15)

from which a JL-embedding bound follows, using the Bonferroni union bound [15]:

n2

2
2 exp

(

−k

4
ε2 +

k

6
ε3
)

≤ n−γ ⇒ k ≥ k0 =
4 + 2γ

ε2/2 − ε3/3
log n, (16)

i.e., if k ≥ k0, then with probability at least1 − n−γ , for any two rowsui, uj from the
data matrix withn rows, we have(1− ε)‖ui−uj‖2 ≤ ‖vi−vj‖2 ≤ (1+ ε)‖ui−uj‖2.

As mentioned in [15], the above bounds are tight. We will showthat, from a practical
point of view, using the marginal information can actually improve the bounds.

6 Since we know the exact distribution in this case, we might aswell computek exactly by
iteratively solving a nonlinear equation:

n2

2

`

Pr
`

χ2
k ≥ (1 + ε)k

´

+ Pr
`

χ2
k ≤ (1 − ε)k

´´

= α (e.g.,α = 0.05), (14)

which always outputs smallerk values than the JL-bound (e.g., by about40% whenε = 0.5).



6

0 5 10 20 30
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Sample size (k)

N
or

m
al

iz
ed

 b
ia

s

 

 

MF

MLE

(a) Bias

0 5 10 20 30
0

0.2

0.4

0.6

0.8

1

Sample sizee (k)

N
or

m
al

iz
ed

 v
ar

ia
nc

e

 

 

MF
MLE
Theor.

(b) Variance

0 5 10 20 30

−0.5

0

0.5

1

1.5

Sample size  k

N
or

m
al

iz
ed

 th
ird

 m
om

en
t

 

 

MF
MLE
Theor.

(c) Third moment
Fig. 3. Estimations of the dot products between two vectors “THIS” and “HAVE.” (a): bias

a
, (b):√

Var(â)

a
, (c):

3
√

E(â−a)3

a
. This experiment verifies that (A): Marginal information can improve

the estimations considerably. (B): As soon ask > 8, âMLE is essentially unbiased and the
asymptotic variance and third moment match simulations remarkably well. (C): The margin-free
estimator (̂aMF ) is unbiased and the theoretical moments are indistinguishable from simulations.

UsingâMLE , an MLE ford = ‖u1 − u2‖2, would be

d̂MLE = m1 + m2 − 2âMLE , Var
(

d̂MLE

)

=
4

k

(m1m2 − a2)2

m1m2 + a2
. (17)

Both âMLE andd̂MLE are asymptotically normal. It is well-known that for “small
deviations,” (e.g., smallε) the asymptotic normality of MLE holds with high accuracy.
We often care about the “small deviation” behavior because we would like the estimate
to be close to the truth. However, when we estimate all pairwise distances simultane-
ously (as is considered in the JL-embedding bound), the Bonferroni union bound7 may
push the tail to the “large deviation” range hence assuming asymptotic normality could
be a concern. On the other hand, the Bonferroni bound leads tolargerk values; and
largerk improves the accuracy of the asymptotic normality. Based onthis (heuristic)
argument, the asymptotic tail bounds ofâMLE may be still useful in practice.

3.1 Normal Approximation

Based on the asymptotic normalityâMLE ∼ N(a, Var(âMLE)), we can obtain8

Pr (|âMLE − a| ≥ εa)
∼
≤ 2 exp

(

−kε2

2

a2(m1m2 + a2)

(m1m2 − a2)2

)

, (19)

7 The Bonferroni bound is well-known for being too conservative, partly because it ignores the
correlations. But the major problem is that the criterion istoo stringent for largen (here we
actually haven2

2
tests). A reasonable alternative is to allow a certain fraction of tests to fail

[18, Chapter 9]. For example, if we allow at most1/p tests to fail, we can solve fork from
`

Pr
`

χ2
k ≥ (1 + ε)k

´

+ Pr
`

χ2
k ≤ (1 − ε)k

´´

= α/p (e.g., α = 0.05, p = 100) (18)

8 Of course, we can also use the exact normal tail probabilities instead of the upper bounds.
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where
∼
≤ indicates that bound holds only asymptotically.

Similarly, the asymptotic normalitŷdMLE ∼ N(d, Var(d̂MLE)) yields

Pr

(∣

∣

∣
d̂MLE − d

∣

∣

∣
≥ εd

) ∼
≤ 2 exp

(

−k

4
ε2

d2

2

m1m2 + a2

(m1m2 − a2)2

)

. (20)

Note that d2

2
m1m2+a2

(m1m2−a2)2 = Var(âSM )
Var(âMLE) ≥ 1 (unbounded), with equality holds when

m1 = m2 = a. Therefore, as expected, we can obtain better bounds using marginal
information. In practice, we have to choose some reasonablevalues form1, m2 anda
based on prior knowledge of the data, or for the regions we aremost interested in.

It would be interesting to see how normal approximation ond̂MF affects its tail

bound. Assuming normality, i.e.,̂dMF ∼ N
(

d, 2d2

k

)

, we obtain

Pr

(∣

∣

∣d̂MF − d
∣

∣

∣ ≥ εd
) ∼
≤ 2 exp

(

−k

4
ε2
)

, (21)

which agrees with the exact bound on the dominatingε2 term.
When applying normal approximations, it is important to watch out for the third

moments, which, to an extent, affect the rate of convergence:

E
(

d̂MF − d
)3

=
8d3

k2
, E

(

d̂MLE − d
)3

= 8
−2a(3m1m2 + a2)(m1m2 − a2)3

k2(m1m2 + a2)3
.

Some algebra can verify that
∣

∣

∣

∣

∣

∣

∣

E
(

d̂MLE − d
)3

E
(

d̂MF − d
)3

∣

∣

∣

∣

∣

∣

∣

≤
(

Var(âMLE)

Var(âMF )

)
3

2

≤ 1, (22)

which means the third moment of̂dMLE (andâMLE) is well-behaved.

3.2 Generalized Gamma Approximation

The normal approximation matches the first two (asymptotic)moments. The accuracy
can be further improved by matching the third moment. For example, [19] used a gen-
eralized gamma distribution to accurately approximate thefinite-dimensional behavior
of the random matrix eigenvalues arising in some wireless communication channels.

For convenience, we considera ≥ 0 (true in most applications). Assuming−âMLE ∼
G(α, β, ξ), a generalized gamma distribution with three parameters(α, β, ξ), then

E(−âMLE) = αβ, Var(−âMLE) = αβ2, E(−âMLE + a)
3

= (ξ + 1)αβ3, (23)

from which we can compute(α, β, ξ):

α =
ka2(m1m2 + a2)

(m1m2 − a2)2
= kα′, β =

−(m1m2 − a2)2

k(m1m2 + a2)a
=

−1

k
β′,

ξ =
2a2(3m1m2 + a2)

(m1m2 + a2)(m1m2 − a2)
− 1 (24)
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The generalized gamma distribution does not have a closed-form density, but it does
have closed-form moment generating functions [19, (69)(70)]:

E(exp (−âMLEt)) =



















exp
(

α
ξ−1

(

1 − (1 − βξt)
ξ−1

ξ

))

whenξ > 1

exp

(

α
1−ξ

(

(

1
1−βξt

)
1−ξ

ξ − 1

))

whenξ < 1

(1 − βt)−α whenξ = 1

ξ > 1 happens when a2

m1m2

>
√

17−3
4 = 0.2808. Using the Chernoff inequality and

assumingξ > 1 (other cases are similar) , we obtain

Pr

“

d̂MLE ≥ (1 + ε)d
” ∼
≤ exp

 

−k

 

„

2a

2a − εd

«ξ−1 „
α′

ξ − 1
− a

β′ξ

«

− α′

ξ − 1
+

2a − εd

2β′ξ

!!

,

Pr

“

d̂MLE ≤ (1 − ε)d
” ∼
≤ exp

 

−k

 

„

2a

2a + εd

«ξ−1 „
α′

ξ − 1
− a

β′ξ

«

− α′

ξ − 1
+

2a + εd

2β′ξ

!!

.

4 Sign Random Projections

We give a brief introduction to “sign random projections,” (i.e., only storing the signs
of the projected data), and compare sign random projectionswith regular random pro-
jections. For each data point, sign random projections store just one bit per projection.
There are efficient algorithms for computing hamming distances [14, 10, 11].

We will show that when the data are roughly uncorrelated, thevariance of sign ran-
dom projections is only aboutπ

2

4 ≈ 2.47 of the variance of regular random projections,
which store real numbers. With highly correlated data, however, sign random projec-
tions can be quite inefficient compared to regular random projections.

Recallui ∈ R
D denotes data vectors in the original space andvi = 1√

k
R

Tui ∈ R
k

for vectors in the projection space. It is easy to show that[10]

Pr (sign(v1,j) = sign(v2,j)) = 1 − θ

π
, j = 1, 2, ..., k, (25)

whereθ = cos−1
(

uT
1
u2

‖u1‖‖u2‖

)

= cos−1
(

a√
m1m2

)

is the angle betweenu1 andu2.

We can estimateθ as a binomial probability, whose variance would be

Var
(

θ̂
)

=
π2

k

(

1 − θ

π

)(

θ

π

)

=
θ(π − θ)

k
. (26)

We can also estimatea = uT
1u2 from θ̂ if knowing the margins:

âSign = cos(θ̂)
√

m1m2. (27)

By the Delta method,̂aSign is asymptotically unbiased with the asymptotic variance

Var(âSign) = Var(θ̂) sin2(θ)m1m2 =
θ(π − θ)

k
sin2(θ)m1m2, (28)
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providedsin(θ) is nonzero, which is violated whenθ = 0 or π. In fact, whenθ is close
to 0 or π, due to the high nonlinearity, the asymptotic variance formula is not reliable.

Regular random projections store real numbers (32 or 64 bits). At the same number
of projections (i.e., the samek) , obviously sign random projections will have larger
variances. If the variance is inflated only by a factor of (e.g.,) 4, sign random projections
would be preferable because we could increasek to (e.g.,)4k, to achieve the same
accuracy while the storage cost will still be lower than regular random projections.

We compare the variance (Var(âSign)) of sign random projections with the variance
of regular random projections considering the margins (i.e., Var(âMLE)) by

VSign =
Var(âSign)

Var(âMLE)
=

θ(π − θ) sin2(θ)m1m2

(m1m2−a2)2

m1m2+a2

=
θ(π − θ)(1 + cos2(θ))

sin2(θ)
, (29)

which is symmetric aboutθ = π
2 . It is easy to check (also shown in Figure 4) thatVSign

is monotonically decreasing in(0, π
2 ] with minimum π2

4 ≈ 2.47, attained atθ = π
2 .
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2
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16
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48

64

θ (π)

V
ar
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Fig. 4. The ratios of varianceVSign =
Var(âSign)
Var(âMLE)

decreases monotonically in(0, π
2
], with mini-

mum = π2

4
≈ 2.47 attained atθ = π

2
. Note that the horizontal axis is inπ.

When the data points are nearly uncorrelated (θ close toπ
2 , in factθ > π

5 could be
good enough), sign random projections should have good performance. However, some
applications such as duplicate detections are interested in data points that are close to
each other hence sign random projections may cause relatively large errors.

5 Some Recent Progress On Random Projections

There is considerable recent interest insparse random projections, proposed by Achliop-
tas [15]. It replaces theN(0, 1) entries inR with entries in

√
s×{−1, 0, 1} with prob-

abilities{ 1
2s , 1 − 1

s , 1
2s}, 1 ≤ s ≤ 3. With s = 3, one can get a threefold speedup.

We[20] recently proposedvery sparse random projections by usings =
√

D, to
obtain a

√
D-fold speedup. The analysis is based on the asymptotic properties of the

projected data. For example, assuming bounded third momenton the original data, the
projected data converge to normal at the rate ofO

(

1
D1/4

)

, which is sufficiently fast
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sinceD has to be large otherwise there would be no need of seeking approximate an-
swers. The MLE proposed in this study is still useful invery sparse random projections.

The limitation of random projection is that it can not estimate multi-way distances
nor can it estimate 1-norm distances. The authors’ concurrent work[21] has proposed
a new sketch-based sampling algorithm, which is capable of estimating two-way and
multi-way distances in any norms. In particular, this algorithm provably outperforms
random projections in boolean data and nearly independent data.

6 Conclusion

We propose a maximum likelihood estimator (MLE) for random projections, taking
advantage of the marginal information, which can be easily computed at negligible
incremental cost. This estimator has provably smaller variance than the current method;
and therefore it can reduce the required number of projections.
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A Proof of Lemma 1

Recallu1, u2 ∈ R
D, v1 = 1√

k
R

Tu1, andv2 = 1√
k
R

Tu2, whereR ∈ R
D×k consists of

i.i.d. N(0, 1) entries. Note thatvT
1v2 =

∑k
j=1 v1,jv2,j =

∑k
j=1

1
kuT

1RjR
T
ju2 is a sum

of i.i.d. terms, whereRj is thejth column ofR.
It is easy to show that(v1,j , v2,j) are jointly normal with zero mean and covariance

Σ (denotingm1 = ‖u1‖2, m2 = ‖u2‖2, anda = uT
1u2)

[

v1,j

v2,j

]

∼ N

([

0
0

]

, Σ =
1

k

[

‖u1‖2 uT
1u2

uT
1u2 ‖u2‖2

]

=
1

k

[

m1 a
a m2

])

. (30)

It is easier to work with the conditional probability:

v1,j |v2,j ∼ N

(

a

m2
v2,j ,

m1m2 − a2

km2

)

, (31)

from which we can get

E(v1,jv2,j)
2

= E
(

E
(

v2
1,jv

2
2,j |v2,j

))

= E

(

v2
2,j

(

m1m2 − a2

km2
+

(

a

m2
v2,j

)2
))

=
m2

k

m1m2 − a2

km2
+

3m2
2

k2

a2

m2
2

=
1

k2

(

m1m2 + 2a2
)

. (32)
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Therefore,

Var(v1,jv2,j) =
1

k2

(

m1m2 + a2
)

, Var
(

vT
1v2

)

=
1

k

(

m1m2 + a2
)

. (33)

The third moment can be proved similarly. In fact, one can compute any moments,
using the moment generating function:

E(exp(v1,jv2,jt)) = E(E(exp(v1,jv2,jt)) |v2,j)

=E

(

exp

((

a

m2
v2,j

)

v2,jt +

(

m1m2 − a2

km2

)

(v2,jt)
2
/2

))

=E

(

exp

(

v2
2,j

k

m2

(

a

k
t +

1

k2

(

m1m2 − a2
) t2

2

)))

=

(

1 − 2a

k
t − 1

k2

(

m1m2 − a2
)

t2
)− 1

2

. (34)

Here, we use the fact that
v2

2,j

m2/k ∼ χ2
1, a chi-squared random variable with one de-

gree of freedom. Note that E(exp(Y t)) = exp
(

µt + σ2t2/2
)

if Y ∼ N(µ, σ2); and

E(exp(Y t)) = (1 − 2t)
− 1

2 if Y ∼ χ2
1. By independence, we have proved that

E
(

exp(vT
1v2t)

)

=

(

1 − 2

k
at − 1

k2

(

m1m2 − a2
)

t2
)−k

2

, (35)

where −k√
m1m2−a ≤ t ≤ k√

m1m2+a . This completes the proof of Lemma 1.

B Proof of Lemma 2

From Appendix A, we can write down the joint likelihood function for {v1,j, v2,j}k
j=1:

lik
(

{v1,j , v2,j}k
j=1

)

∝ |Σ|−k
2 exp



−1

2

k
∑

j=1

[

v1,j v2,j

]

Σ−1

[

v1,j

v2,j

]



 . (36)

where (assumingm1m2 6= a to avoid triviality)

|Σ| =
1

k2
(m1m2 − a2), Σ−1 =

k

m1m2 − a2

[

m2 −a
−a m1

]

,

which allows us to express thelog likelihood function,l(a), to be

l(a) = −k

2
log
(

m1m2 − a2
)

− k

2

1

m1m2 − a2

k
∑

j=1

(

v2
1,jm2 − 2v1,jv2,ja + v2

2,jm1

)

.

Settingl′(a) to zero, we obtain̂aMLE , which is the solution to the cubic equation:

a3 − a2
(

vT
1v2

)

+ a
(

−m1m2 + m1‖v2‖2 + m2‖v1‖2
)

− m1m2v
T
1v2 = 0. (37)
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The well-known large sample theory says thatâMLE is asymptotically unbiased and

converges weakly to a normal random variableN
(

a, Var(âMLE) = 1
I(a)

)

, where I(a),

the expected Fisher Information, is I(a) = −E(l′′(a)). Recalll(a) is thelog likelihood
function obtained in Appendix B. Some algebra will show that

I(a) = k
m1m2 + a2

(m1m2 − a2)
2 . Var(âMLE) =

1

k

(

m1m2 − a2
)2

m1m2 + a2
. (38)

Applying the Cauchy-Schwarz inequality a couple of times can prove

Var(âMLE) =
1

k

(

m1m2 − a2
)2

m1m2 + a2
≤ min (Var(âMF ) , Var(âSM)) , (39)

where Var(âMF ) = 1
k

(

m1m2 + a2
)

, Var(âSM) = 1
2k (m1 + m2 − 2a)

2.

C Proof of Lemma 3

We analyze the higher-order properties ofâMLE using stochastic Taylor expansions.
We use some formulations appeared in [16, 22, 23]. The bias

E(âMLE − a) = −E(l′′′(a)) + 2I′(a)

2I(a)
+ O(k−2), (40)

which is often called the “Bartlett correction.” Some algebra can show

I′(a) =
2ka(3m1m2 + a2)

(m1m2 − a2)3
, E(l′′′(a)) = −2I′(a), E(âMLE − a) = O(k−2). (41)

The third central moment

E(âMLE − a)3 =
−3I′(a) − E(l′′′(a))

I3(a)
+ O(k−3)

= −2a(3m1m2 + a2)(m1m2 − a2)3

k2(m1m2 + a2)3
+ O(k−3). (42)

TheO(k−2) term of the variance, denoted byV c
2 , can be written as

V c
2 =

1

I3(a)

(

E(l′′(a))
2 − I2(a) − ∂

(

E(l′′′(a)) + 2I′(a)
)

∂a

)

+
1

2I4(a)

(

10
(

I′(a)
)2 − E(l′′′(a))

(

E(l′′′(a)) − 4I′(a)
)

)

=
E
(

(l′′(a))
2
)

− I2(a)

I3(a)
−
(

I′(a)
)2

I4(a)
, (as E(l′′′(a)) + 2I′(a) = 0). (43)
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Computing E
(

(l′′(a))
2
)

requires some work. We can write

l′′(a) = − k

S3

(

T (4a2 + S) − S(m1m2 + a2) − 4aS(vT
1v2)

)

, (44)

where, for simplicity, we letS = m1m2−a2 andT = ‖v1‖2m2 +‖v2‖2m1−2vT
1v2a.

Expanding(l′′(a))
2 generates terms involvingT , T 2, TvT

1v2. Rewrite

T =
m1m2 − a2

k





k
∑

j=1

km2

m1m2 − a2

(

v1,j −
a

m2
v2,j

)2

+
k
∑

j=1

v2
2,j

k

m2





=
m1m2 − a2

k
(η + ζ) (45)

Recallv1,j |v2,j ∼ N
(

a
m2

v2,j ,
m1m2−a2

km2

)

, andv2,j ∼ N
(

0, m2

k

)

. Then

η
∣

∣{v1,j}k
j=1 ∼ χ2

k, (independent of{v1,j}k
j=1), ζ =

k
∑

j=1

v2
2,j

k

m2
∼ χ2

k, (46)

implying thatη andζ are independent; andη + ζ ∼ χ2
2k. Thus,

E(T ) = 2(m1m2 − a2) = 2S, E(T 2) = 4S2(1 +
1

k
). (47)

We also need to compute E
(

TvT
1v2

)

. Rewrite

TvT
1v2 = (vT

1v2)‖v1‖2m2 + (vT
1v2)‖v2‖2m1 − 2

(

vT
1v2

)2
a. (48)

Expand(vT
1v2)‖v1‖2

(vT
1v2)‖v1‖2 =

k
∑

j=1

v1,jv2,j

k
∑

j=1

v2
1,j =

k
∑

j=1

v3
1,jv2,j +

k
∑

i=1



v2
1,i

∑

j 6=i

v1,jv2,j



 . (49)

Again, applying the conditional probability argument, we obtain E
(

v3
1,jv2,j

)

=
3am1

k2 , from which it follows that

E
(

(vT
1v2)‖v1‖2

)

=

k
∑

j=1

E
(

v3
1,jv2,j

)

+

k
∑

i=1



E
(

v2
1,i

)

∑

j 6=i

E(v1,jv2,j)





=
3am1

k
+ k

m1

k

∑

j 6=i

a

k
= am1

(

1 +
2

k

)

. (50)

To this end, we have all the necessary components for computing E
(

(l′′(a))
2
)

.

After some algebra, we obtain

E
(

(l′′(a))
2
)

=
k2

S4

(

(

m1m2 + a2
)2

+
4

k

(

m2
1m

2
2 + a4 + 6a2m1m2

)

)

, (51)

V c
2 =

4

k2

(

m1m2 − a2
)4

(m1m2 + a2)
4 m1m2. (52)
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We complete the proof of Lemma 3.

D Proof of Lemma 4

The cubic MLE equation derived in Lemma 2 may admit multiple roots. (Recall a cubic
equation always has at least one real root.) By the well-known Cardano condition,

Pr (multiple real roots) = Pr
(

P 2(11 − Q2/4 − 4Q + P 2) + (Q − 1)3 ≤ 0
)

, (53)

whereP =
vT
1
v2√

m1m2
, Q = ‖v1‖2

m1
+ ‖v2‖2

m2
. We can obtain a crude upper bound using the

fact thatPr(A + B ≤ 0) ≤ Pr(A ≤ 0) + Pr(B ≤ 0), i.e.,

Pr (multiple real roots) ≤ Pr
(

11 − Q2/4 − 4Q ≤ 0
)

+ Pr (Q − 1 ≤ 0) . (54)

We will soon prove the following moment generating function

E(exp(Qt)) =

(

1 − 4t

k
+

4t2

k2

(

m1m2 − a2

m1m2

))− k
2

, (55)

which enables us to prove the following upper bounds:

Pr (Q − 1 ≤ 0) ≤ e−0.0966k, Pr
(

11 − Q2/4 − 4Q ≤ 0
)

≤ e−0.0085k, (56)

Pr (multiple real roots) ≤ e−0.0966k + e−0.0085k, (57)

using the standard Chernoff inequality, e.g.,Pr (Q > z) = Pr
(

eQt > ezt
)

≤ E
(

eQt
)

e−zt,
choosingt that minimizes the upper bound.

The upper bound (57) is very crude but nevertheless reveals that the probability of
admitting multiple real roots decreases exponentially fast.

It turns out there is a simple exact solution for the special case ofa = m1 = m2,

i.e.,Q = 2P = ‖v1‖2/m1, kP = k‖v1‖2

m2

∼ χ2
k, and a (sharp) upper bound:

Pr (multiple real roots) = Pr

(

(P − 3)
2 ≥ 8

)

≤ e−1.5328k + e−0.4672k. (58)

To complete the proof of Lemma 4, we need to outline the proof for the moment
generating function E(exp(Qt)). Using the conditional probabilityv1,j |v2,j , we know

km2

m1m2 − a2
v2
1,j |v2,j ∼ χ2

1,λ, where λ =
ka2

m2(m1m2 − a2)
v2
2,j . (59)

χ2
1,λ denotes a non-central chi-squared random variable with onedegree of freedom and

non-centralityλ. If Y ∼ χ2
1,λ, then E(exp(Y t)) = exp

(

λt
1−2t

)

(1 − 2t)
− 1

2 . Because

E(exp(Qt)) =

k
∏

j=1

E

(

E

(

exp

(

v2
1,j

m1
+

v2
2,j

m2

)

t

∣

∣

∣

∣

∣

v2,j

))

, (60)

we can obtain the moment generating function in (55) after some algebra.
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