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Abstract—A new approach is presented for computing
approximations of the reached sets of linear hybrid automata.
First, we present some new theoretical results on termina-
tion of a class of reachability algorithms, which includes
Botchkarev’s, based on ellipsoidal calculus. The main con-
tribution of the paper is a revised reachability computation
that avoids the approximations caused by the union operation
in the discretized flow tube estimation. Therefore, the new
algorithm may classify as unreachable states that are reachable
according to the previous algorithm because of the looser
over-approximations introduced by the union operation. We
implemented the new reachability algorithm and tested it
successfully on a real-life case modeling a hybrid model of
a controlled car engine.

I. INTRODUCTION

Hybrid automata (see [1], [2]) are a formalism often
used to model the interactions between a controller and its

environment. A hybrid automaton is a “finite-state” machine

with continuous variables that evolves according to discrete

“nodes” characterized by systems of differential equations.

Hybrid automata are used in various domains from control

of industrial plants to biological systems and it is very

important to be able to verify safety properties of systems
modeled in such a way. Checking safety properties on

automata reduces to the reachability problem; in particular,
to prove that a safety property ϕ is always true for a hybrid
automaton H , we only need to prove that all the states in
which ϕ is false are not reachable from the initial states
of H . Since, it has been proved in [3] that, in general, the
reachable set is not computable, many works propose over-
approximations techniques (see [4], [5], [6]).

This paper describes a work in progress on conserva-

tive reachability analysis of linear hybrid systems. The

starting point is an algorithm for reachability analysis due

to Botchkarev (see [7]), based on the representation of

continuous regions with ellipsoids; it approximates the

global flow-tube of reached sets by the union of partial

flow-tubes obtained by discretizing integration time. We

present a revised reachability computation that avoids the
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approximations caused by the union operation in the dis-

cretized flow-tube estimation. The new algorithm may clas-

sify as unreachable states that the previous one certifies as

reachable due to looser over-approximations. Moreover, we

give theoretical results on convergence of both algorithms,

introducing a class of linear hybrid automata on which

they terminate. Finally, checking the correct behaviour of

an engine controller by reachability analysis of the corre-

sponding hybrid automaton, we report results on verifying

that a closed-loop engine control system satisfies a given

reachability specification (see [8], [9]). The experimental

study shows that our algorithm succeeds in proving cor-

rectness, whereas Botchkarev’s algorithm may fail, due to

looser over-approximations of the computational scheme.

II. HYBRID AUTOMATA

Hybrid automata have been introduced in [1], [2]. For-

mally, a hybrid automaton is defined as follows. Let Cm be

the set of continuous functions from IRm to IRm:

Definition 1: [Hybrid Automaton] A hybrid automaton,
H , is a tuple ( �X,L,E, S0,F, I,A,R) such that:

�X is a set of n continuous variables taking values in
IR; a valuation �x = (x1, . . . , xn) of these variables
represents the continuous component of a state.

L is a finite set of locations; a valuation � of L
represents the discrete component of a state. A pair

(�, �x) ∈ L × IRn is called state of the automaton;
E is the set of arcs (or edges) of the automaton. Each
arc e = (�, �′) links a source location, � ∈ L, to a
target location, �′ ∈ L;

S0 is the set of initial states;
F is a function that associates to each location a system

of differential equations. The system F(�)( �X) is
the dynamical system associated to the automaton’s

location �;
I is a function called invariant that associates to each
location a subset of IRn. A hybrid automaton cannot

stay in a state s = (�, �x) such that �x /∈ I(�);
A is a function that associates to every arc a subset of

IRn. A hybrid automaton having a state s = (�, �x)
may traverse an arc e ∈ E if and only if �x ∈ A(e).
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The set A(e) is called activation region or guard of
the arc e;

R associates to every arc e a continuous function from
IRn to IRn, which reassigns values to the continuous

variables when an arc is traversed. If the automaton

H is in state s = (�, �x), by traversing e = (�, �′),
H goes into state s′ = (�′,R(e)(�x)). Extending the
meaning of this function, given the set R ⊆ IRn,

R(e)(R) will be equal to the set {R(e)(�x)|�x ∈ R}.

The execution of a hybrid automaton corresponds to a

sequence of states of the automaton. Any infinite transition

sequence starting from an initial state, s0, will be called

automaton run and it will be represented using the notation:
s0 =⇒∗. Hybrid automata have two kinds of transitions:

flows, capturing the continuous evolution of a state, and

steps, capturing the changes of location.

More formally, if f is a solution of F(�)( �X) such that
f(0) = �x and if I(�) includes f(t′) for all t′ ∈ (0, t], then
there exists a t-timed flow from s = (�, �x) to s′ = (�, f(t))

and we write s
t
−→ s′. The set 〈S〉→t = {s′|s

t′

−→ s′ ∧ s ∈
S ∧ 0 ≤ t′ ≤ t} includes all the states that the automaton
can reach from the set of states S using a t′-timed flow,
where t′ ≤ t. This set is called flow-tube from S of time t.
Given state s = (�, �x) and arc e = (�, v′), if �x ∈ A(e) then
the automaton may take a step transition from s = (�, �x)
to s′ = (�′,R(e)(�x)). When state s = (�, �x) is such that
�x ∈ A(e), we will say that arc e is enabled. Moreover, we
will represent the set of states that are reachable from state

set S with a step transition by the arc e = (�, �′), using
the notation [S]

→

e = {s′|(�, �x) ∈ S ∧ �x ∈ A(e) ∧ s′ =
(�′,R(e)(�x))}.

In general, a state set S may include states belonging to
more than one location and, indeed, it can be partitioned into

a finite number of subsets {S�}�∈L such that S� ⊆ {�} ×
IRn. Thus, the reach set from S may be computed as the
union of the reach sets from each single subset S�. Later on,

to ease notation, we suppose that the initial set, S0, has the

form {�} × R, R ⊆ IRn, because the proposed algorithms

can be extended to the general case S0 ⊆ L×IRn, by simply

iterating them for each single set of the suggested partition.

Given a set of states S = {(�, �x)| �x ∈ R} where � ∈ L,
we introduce the discrete projection operator ↓ that restricts

it to the location � and the continuous projection operator ⇓
that restricts it to the continuous component R (i.e., [S]↓ =
� and [S]⇓ = R). To ease the notation, we may omit a
projection operator when it is clear from the context.

An important subset of hybrid automata is the class of

linear hybrid automata.

Definition 2: A linear hybrid automaton is a hybrid
automaton such that, for each arc e and for each location
�, both F(�)( �X) and R(e) are linear.

Later on, we will focus on such automata and we will

present two reachability analysis algorithms and theoretical

results on their termination.

III. PREVIOUS WORK

A technique used to represent and operate on sets in

reachability analysis is sometimes called a calculus method.
Calculus methods may differ for the technique employed to

represent set of states as well the algorithmic aspects of

continuous state set computations. Two calculi commonly

used are polyhedral calculus (see [10], [11]) and ellipsoidal

calculus (see [5], [7]), the former representing sets using

polyhedra and the latter using ellipsoids.

An algorithm based on ellipsoidal representations was

presented by Botchkarev in [7]. The algorithm over-

approximates the reachable set of a linear hybrid automaton

and in fact can be used with any calculus method. If

Botchkarev’s algorithm returns UNREACHABLE on a given
linear hybrid automaton H , a set of states ST , and a real

number t̄, then the over-approximation guarantees that H
cannot reach ST in time t̄. To evaluate the reach set, the
algorithm maintains a table T of pairs. Each pair has the
form (S, tS), where S is a set of states and tS is a positive
real value. When (S, tS) is in T , the set of states S is
considered as reachable by automaton H in time tS .

The key point in Botchkarev’s approach is the discretiza-

tion of time, by a time step, δ. Given the parameter δ,

for each k ∈ {0, . . . ,
⌈

t̄−tS

δ

⌉
}, the algorithm starts by

computing the set, Rk, of points reachable from R at time
t = kδ. Since some of the states that are reachable with
a t′-timed flow, where kδ ≤ t′ ≤ (k + 1)δ, may not be
included in these approximations, the algorithm expands,

using the Minkowski sum, each set Rk by a ball Bε(�0),
centered in �0 and with radius ε. The radius ε is set in
such a way to account for every state reachable at time
t ≤ t′ ≤ t + δ. Lemma 1 (from [7]) shows how the radius
ε can be evaluated beforehand as a function of δ and of the
flow function for the current location.

Lemma 1: Let (�,R) be a set of states and let �̇x = A��x+
U� be the differential equation associated to � by F(�)( �X),
where A is a n × n-matrix and U ⊆ IRn is compact and

convex. For all t ∈ [0, δ] is true that [〈(�,R)〉→t ]
⇓
⊆ R +

Bεδ
(�0) where εδ =

(
eNAδ − 1

)
D + eNAδNUδ and NA =

‖A‖, NU = maxu∈U ‖u‖ and D = maxx∈R ‖x‖.

Proof: See the proof in [7].
From now on, we will denote with χ+

�,δ(R, k) the function
that evaluates the region reached with a kδ-timed flow
from the set R in the location �. Furthermore, given a
region R, a location � and an arc a = (�, �′), the regions
V +

a and W+
a will denote the over-approximation of the

intersection between the flow tube and the guard of a and
the over-approximation of the continuous part reset by a

step transition over a respectively.

The parameters of Botchkarev’s algorithm are: an au-

tomaton H , a set of states ST whose reachability must be

tested, and a time step δ. During the initialization phase the
pair (S0, 0) is inserted into T . The steps of the algorithm
can be described as follows:
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�

ẋ = 1,
ẏ = 0

y > 0 /
x ← 1; y ← 0

S0 = {(�, (1, 0))}

Fig. 1. This automaton is non-Zeno, but the reachability algorithm does
not terminate on it.

1) if T is empty then stop and return UNREACHABLE.
Otherwise, pick in T a pair (S, tS), with the smallest
tS and where S = (�,R), and remove it from the
table;

2) for the selected pair (S, tS):

a) evaluate R+
�,k = χ+

�,δ(R, k) + Bεδ
(�0), for k ∈

{0, . . . ,m}, where m is the minimum between⌈
t̄−tS

δ

⌉
and the smallest k such that R+

�,k ∩

I(�) = ∅;
b) if � = [ST ]↓ and R+

�,k ∩ [ST ]⇓ �= ∅, for some
k ∈ {0, . . . ,m}, then return REACHABLE;

c) let Aq = {a1, . . . , al} be the set of arcs leaving
location �.

i) For each a ∈ Aq, set the regions V +
a and

W+
a to ∅;

ii) Let jmin(ai) be the minimum value between

m + 1 and the smallest k such that A(ai) ∩
R+

�,k �= ∅. If 0 ≤ jmin(ai) ≤ m then compute

V +
ai

⊇
⋃m

j=jmin(ai)

(
R+

�,j ∩ A(ai)
)
.

iii) If V +
ai

�= ∅ then compute W+
ai

⊇
[
V +

ai

]→
ai
.

3) let τi be such that τi = jmin(ai)δ and let ai = (�, �i).
Then, for each W+

ai
�= ∅ computed at step 2(c)iii, add

to T the pair (Si, tp + τi), where Si = (�i,W
+
ai

), and
repeat from step 1.

Termination of Botchkarev’s algorithm is not guaranteed.

As a matter of fact, if we apply this algorithm to a Zeno
automaton, the table T will not necessarily become empty.
Note also that, because of the over-approximation of the

flow-tube, the algorithm may fail to terminate even on a

non-Zeno automaton. For instance, consider the example

presented in Fig. 1: the flow starting from the initial states

does not enable any arc, thus the automaton is not a Zeno

automaton. Nevertheless, NA > 0, NU = 0 and D > 0 and
then the ball Bεδ

(�0) used in step 2a of the algorithm has
radius εδ > 0. Indeed, R+

0 intersects the arc’s guard and the

pair (S, 0), where S = (�, {(1, 0)}), will be inserted into
T , bringing back the algorithm to the initial state.

IV. SOME THEORETICAL RESULTS ON TERMINATION

To guarantee convergence of the reachability algorithm,

we would like to restrict non-Zeno automata to identify

a class such that the expansions made by the algorithm

at step 2a and the approximations produced by the cal-

culus method do not cause an infinite sequence of arc

activations. For this reason, we introduce the definitions of

εH -expansive hybrid automaton, approximation index of a

calculus method and (C, δ)-compatibility. The idea is that,
if e is an arc and S is a set of states, if a hybrid automaton is
εH -expansive, then expanding [S]

→

e by means of a εH -ball,

no arc at the destination location is enabled.

Definition 3: [εH -expansive hybrid automaton] A hybrid

automaton H is εH -expansive, where εH ∈ IR≥0 is the ex-

pansion radius, if
(
[{�1} × A(e1)]

→

e1
+ BεH

(�0)
)
∩A(e2) =

∅, for each pair of arcs e1 = (�1, �2), e2 = (�2, �3) ∈ E.
To obtain termination, we also need to guarantee that

the approximation made by the calculus method does not

enable an arc incorrectly. For this reason, we introduce the

approximation index of a calculus method. Given an arc
e = (�, �′) and a calculus method C, let V C

e be the over-

approximation of the set Ve = {�} × A(e).
Definition 4: [Approximation index of a calculus

method] The approximation index γC
H of calculus method

C on hybrid automaton H is:

γC
H = max

e∈E
h+

([
V C

e

]→
e

, [{�} × A(e)]
→

e

)
, (1)

where h+ is the Hausdorff’s semi-distance between two sets
of states.

Definition 5: [(C, δ)-compatibility] Let H be an εH -

expansive hybrid automaton and, for each location �, let
ẋ = A�x + U� be the flow system of �. Suppose that γC

H

is the approximation index of calculus method C on H . If
there exists a δ ∈ IR>0 such that, for each arc e = (�, �′),

εH − γC
H >

(
eNA

�′
δ − I

)
D(e) + eNA

�′
δNU�′

δ, (2)

where D(e) = maxx∈[V C
e ]→

e
‖x‖, NA�′

= ‖A�′‖ and
NU�′

= maxu∈U�′
‖u‖, then, we say that H is compatible

with calculus method C and time step δ, i.e., that H is

(C, δ)-compatible.
The next theorem gives an upper bound on the number

of cycles required by Botchkarev’s algorithm when it runs

on a (C, δ)-compatible automaton H .
Theorem 1: Let H be a (C, δ)-compatible hybrid au-
tomaton. Furthermore, let ST be a set of states whose

continuous part is a compact and convex region, let t̄ ∈
IR>0. Then Botchkarev’s algorithm, applied to H and ST ,

with maximum flow time t̄ and time step δ, performs at
most ψt̄,δ(n) cycles, where n is the maximum number of
arcs leaving a location and:

ψt̄,δ(n) =

⎧⎪⎨
⎪⎩

(⌊
t̄
δ

⌋
+ 1

)
+ 1 if n = 1,

n

(
n
� t̄

δ �+1
−1

n−1

)
+ 1 if n �= 1.

(3)

Proof: See the proof in [12].
From this theorem, the following termination result follows.

Corollary 1: Let H be a (C, δ)-compatible hybrid au-
tomaton. Furthermore, let ST be a set of states whose

continuous part is a compact and convex region, and let

t̄ ∈ IR>0. If ST is reachable by H in time t ≤ t̄,
then Botchkarev’s algorithm, applied to H and ST , with

maximum flow time t̄ and time step δ, terminates and
returns REACHABLE.
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�

ẋ = −y,
ẏ = x

(x, y) ∈ IR2 /

(x, y) ← �xc

S0 = {(�, �xc)}

Fig. 2. This automaton is a critical example for Botchkarev’s approxi-
mation algorithm: many unreachable states are classified as reachable.

V. AN IMPROVED APPROXIMATION ALGORITHM

The approximation of the flow tube made by

Botchkarev’s algorithm tends to be too conservative

because step 2(c)ii may include in the reachable set

many unreachable states, which we call trash states. For
instance, consider the automaton in Fig. 2 and suppose we

want to evaluate the states that are flow-reachable from

S0 = {(�, �xc)}, where �xc = (0,−1). The result of applying
Botchkarev’s algorithm at the end of step 2a is shown in

Fig. 3(a). The set indicated as V +
a in the algorithm is the

ellipsoid shown in Fig. 3(b). The grey area in Fig. 3(c) is

the set of all unreachable states, which are classified as

reachable because of the over-approximation of the union

made at step 2(c)ii.

To decrease the number of trash states, we propose a

new algorithm that avoids performing the union operation.

This algorithm is more expensive computationally, but it

obtains a tighter flow-tube approximation and has a better

theoretical approximation index than Botchkarev’s one. The

new algorithm is based on the fact that a state s is reachable

from the set
⋃m

j=jmin(ai)

(
R+

�,j ∩ A(ai)
)
if and only if s

is reachable from the set R+
�,j ∩ A(ai), for some j ∈

{jmin(ai), . . . , m}. Thus, we can evaluate the reach set

of
⋃m

j=jmin(ai)

(
R+

�,j ∩ A(ai)
)
as the union of the reach

sets of each R+
�,j ∩ A(ai). In particular, in the example of

Fig. 3, this new algorithm avoids the approximation due to

replacing the union of R+
�,j’s by V +

a and instead evaluates

the reach set of each single R+
�,j .

This idea could be implemented using a recursive func-

tion called verify whose parameters are S, ST , tS , t̄ and δ,
where S and ST are sets of states, while tS , t̄ and δ are
real numbers. This function uses a time step of length δ and
returns TRUE, if any state in ST is classified as reachable

from set S in time (t̄ − tS).

The main function of the algorithm does the following.

1) if verify(S0, t̄, 0, ST , δ) =TRUE, where S0 is the set

of initial states, then return REACHABLE;
2) return UNREACHABLE.

The function verify(S, t̄, tS , ST , δ) performs the follow-
ing steps.

1) let � be the location of all the states of S and R =

[S]⇓. For each j ∈ {0, . . . ,
⌈

t̄−tS

δ

⌉
}:

a) evaluate R+
�,j = (χ+

� (R, jδ) + Bε�,δ
(�0)) ∩ I(�);

R+
�,k

�xc

�0

(a) Sets
R+

�,k
are

evaluated by
Botchkarev’s
algorithm at
step 2a.

V +
a

�xc

�0

(b) The
grey area
represents
an over-
approximation
of the union
of sets R+

�,k
.

�xc

�0

(c) States
lying in the
grey area are
included in
the reachable
set, but
actually
they are not
reachable.

Fig. 3. These images show how Botchkarev’s algorithm may over-
approximate a flow-tube. The proposed algorithm avoids the union of sets
R+

�,k
evaluating all their reach sets in place of the reach set of the union.

b) if � = [ST ]↓ and R+
�,j ∩ [ST ]⇓ �= ∅ for some j

then return TRUE;
c) for each arc e = (�, �′):

i) if R+
�,j ∩ A(e) = ∅, then set V +

e,j = ∅, else

evaluate V +
e,j ⊇ R+

�,j ∩ A(e);

ii) if V +
e,j �= ∅:

A) compute W+
e,j ⊇

[
V +

e,j

]→
e
;

B) if verify(Se,j , t̄, tS + jδ, ST , δ), where
Se,j = (�′,W+

e,j), returns TRUE, then
return TRUE;

2) return FALSE.

Although termination is not guaranteed for this new al-

gorithm either, we can prove a complexity bound analogous

to Theorem 1.

Theorem 2: Let H be a (C, δ)-compatible hybrid au-
tomaton. Furthermore, let ST be a set of states whose

continuous part is a compact and convex region and let

t̄ ∈ IR>0. The new algorithm, applied to H and ST , with

maximum flow time t̄ and time step δ, calls the function

verify at most (n + 1)�
t̄
δ � times, where n is the highest

number of arcs leaving a location.

Proof: See the proof in [12].
To gauge the accuracy of the new algorithm, we introduce

a new kind of index called algorithmic approximation
index. This new index gives an error estimate of the flow-
tube approximation to compare the quality of different

reachability algorithms.

Definition 6: [Algorithmic approximation index] Let H
be a hybrid automaton, α a reachability analysis algorithm
and t ∈ IR≥0. Furthermore, for each pair of edges e and e′,
let F+ α

e,e′ be the over-approximation by algorithm α of the
set

Fe,e′ =
[
〈[{�1} × A(e)]

→

e 〉
→

t

]
⇓
∩ A(e′), (4)

which is the subset of A(e′) reachable from A(e) by
a discrete step and a flow. The algorithmic approxima-
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tion index of α on H at time t is the real number
µα

H = maxe,e′∈E h+(F+ α
e,e′ , Fe,e′). The rationale is to upper

bound the over-approximations obtained by algorithm α
over all flows induced by all edge transitions.

Note that the smaller is the approximation index of an

algorithm, the better is the precision in flow-tube evaluation.

As a matter of fact, let us consider two algorithms, α and
β that check reachability of the same set of states with the
same maximum flow time. Suppose that they have algorith-

mic approximation indices at time t respectively equal to
µα and µβ , where µα ≤ µβ . If α verifies reachability then β
does too. On the other hand, if β verify reachability, α may
return UNREACHABLE. Therefore, the set of unreachable
states that algorithm α marks as REACHABLE is a subset
of the states that β marks as REACHABLE. For this reason,
it is better to use an algorithm with a low algorithmic

approximation index.

Theorem 3: Let H be a linear hybrid automaton. If µα

and µβ are the algorithmic approximation indices on H ,
respectively, of the new algorithm and of Botchkarev’s

algorithm, then µα ≤ µβ .

Proof: See the proof in [12].
Thus, even though the calculus method used by both

algorithms cannot express exactly the union of sets R+
�,j ∩

A(e), the algorithmic approximation index of the proposed
algorithm is at least as small as the one of Botchkarev’s

algorithm.

VI. TEST CASE RESULTS

To test the quality of the proposed algorithm, we verified

the behavior of an automotive engine subject to idle speed

control. The objective was to prove that, for the given engine

model, the proposed controller maintains a crankshaft speed

between 750 and 850 rpm, for a least 0.5 seconds. For that
purpose, we modeled the engine and its controller using

hybrid automata. Furthermore we defined forbidden regions

of the controlled system and we checked whether they could

be reached, by using both algorithms discussed above.

We used the engine model presented in [8], [9]. It is

composed of three main blocks: the intake manifold, the
cylinders and the powertrain.
The intake manifold’s pressure, p, determines the amount
of air, m, loaded by the cylinders. Its evolution is subject
to the linear dynamics ṗ = app + bpα, where α is the
engine control input and denotes the throttle valve position.

Parameters ap and bp depend on geometric features of

the intake mainfold. For small variations of the crankshaft

revolution speed, n, the amount of air loaded by the engine
can be assumed to be proportional to the intake manifold

pressure, i.e.m = kp. The torque, T , generated by cylinders
depends on the air–fuel mixture loaded from the intake

manifold and on the spark ignition time. Assuming fuel

injection proportional to air intake, so to have stoichiometric

air–fuel mixture, the torque generated can be described by

T = Gmη(φ), where φ is the spark advance, G is the air–

θ ≤ 180θ ≤ 180

θ
=

18
0

/
θ
←

0;
T

←
G

m
η
(φ

);
m

←
k
p

θ
≥

16
0
∧

sp
a
rk

/
φ
←

18
0
−

θ

θ
=

180
/

θ
←

0;
T

←
G

m
η
(φ

);m
←

k
p

θ
≥

160
∧

sp
a
rk

/
φ
←

180
−

θ

θ = 180 /θ ← 0;

T ← Gmη(0);

m ← kp

θ = 180 /θ ← 0;

T ← Gmη(0);

m ← kp

clutch off ∧ θ < 180

clutch on ∧ θ < 180

clutch off ∧ θ = 180 /

θ ← 0; T ← Gmη(φ);

m ← kp

clutch on ∧ θ = 180 /

θ ← 0; T ← Gmη(φ);

m ← kp

SLS

θ ≥ 160

θ ≤ 180

θ ≥ 160

θ ≤ 180

clutch off ∧ θ < 180

clutch on ∧ θ < 180

clutch off ∧ θ = 180 /

θ ← 0; T ← Gmη(φ);

m ← kp

clutch on ∧ θ = 180 /

θ ← 0; T ← Gmη(φ);

m ← kp

S+
LS+

Fig. 4. Engine model

θ ≤ 180,
time ≤ ∆

time = ∆ /

time ← 0;

α ← kα(n − n0) + α(0)

θ ≥ 160/

spark

SC

Fig. 5. Engine controller model

TABLE I

FLOW EQUATIONS OF THE MODEL

8>><
>>:

ṅ(t) = an(t) + bT (t)

θ̇(t) = 6n(t)

Ṫ (t) = φ̇(t) = ṁ(t) = 0
ṗ(t) = app(t) + bpα(t)

(a) Flow equations in S and
S+ (the clutch is on).

8>><
>>:

ṅ(t) = aLn(t) + bLT (t)

θ̇(t) = 6n(t)

Ṫ (t) = φ̇(t) = ṁ(t) = 0
ṗ(t) = app(t) + bpα(t)

(b) Flow equations in SL

and S+
L
(the clutch is re-

leased).

to–torque gain, and η(φ) = 1
175 (2φ + 135) is the ignition

efficiency function.
The powertrain dynamics depends both on the crankshaft
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TABLE II

INITIAL CONDITIONS OF THE MODEL

n(0) ∈ [799, 801] n0 = 800 rotation per minute

θ(0) = 0◦ T (0) = − a
b
n0 = 12.81 Nm

φ(0) = 20◦ m(0) =
T (0)

G
= 9.286e−5 Kg

p(0) =
m(0)

k
= 7300 Pa α(0) =

ap

bp
p(0) = 7.02◦

speed, n, and the angle, θ, between the current crankshaft’s
position and the position of the previous dead center. This

relation can be modeled by ṅ(t) = an(t)+bT (t) and θ̇(t) =
knn(t), where the powertrain dynamics parameters a and
b depend on the position of the clutch that can be either
open (in state on) or closed (in state off). For this reason it

is necessary to distinguish between two different systems:

the former models the powertrain when the clutch is on,

while the latter describes the powertrain when the clutch is

released. The overall engine model and the corresponding

flow equations and initial conditions are reported in Fig. 4,

Table I and II respectively. This engine model was used to

verify the correct behaviour of the proportional controller

on the throttle valve control input, described in Fig. 5.

The proposed algorithm was implemented as part of

a revised version of Verishift, a software package for

reachability analysis of linear hybrid automata written by O.

Botchkarev and S. Tripakis (see [7]), based on Botchkarev’s

original algorithm1. Although Botchkarev’s algorithm re-
ported as reachable some “bad” regions of the controlled

system, the new algorithm could prove that such regions

cannot be reached.

VII. CONCLUSIONS AND FUTURE WORK

In this report we described a new algorithm for reach-

ability analysis that yields a tighter approximation than

Botchkarev’s algorithm, from which it derives. The new

algorithm avoids the approximations caused by the union

operation, and so it can prove that a region is unreachable

by a given hybrid automaton, also when Botchkarev’s

algorithm returns otherwise, due to the over-approximations

of the union operation (declaring reachable states which

are not). Moreover, we introduced the notions of εH -
expansive automaton, approximation index of a calculus
method and (C, δ)-compatibility, to characterize a class of
hybrid automata for which termination of the two algo-

rithms can be proved. We also defined the algorithmic
approximation index to measure the quality of reachability
analysis algorithms, showing that the new algorithm has a

better index than the original one. Finally, we tested both

algorithms on a real life problem, proving with the new one

the correct behaviour of a controlled car engine that could

not be verified with the previous algorithm.

1The modified version of Verishift and models presented in section VI
are available at http://fsv.dimi.uniud.it/papers/improving_EC2004

Future work includes establishing when to use either the

polyhedral or the ellipsoidal calculus based on the ideas

presented in this paper, and designing a reachability analysis

procedure that approximates a given set with more than one

calculus method, choosing the best one according to the

different shapes of the set’s boundary. The correct choice

would decrease the approximation index of the calculus

method and the algorithmic approximation index.
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