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ABSTRACT

The ability to aggregate huge volumes of queries over a large
population of users allows search engines to build precise
models for a variety of query-assistance features such as
query recommendation, correction, etc. Yet, no matter how
much data is aggregated, the long-tail distribution implies
that a large fraction of queries are rare. As a result, most
query assistance services perform poorly or are not even trig-
gered on long-tail queries. We propose a method to extend
the reach of query assistance techniques (and in particu-
lar query recommendation) to long-tail queries by reasoning
about rules between query templates rather than individ-
ual query transitions, as currently done in query-flow graph
models. As a simple example, if we recognize that ‘Mon-
tezuma’ is a city in the rare query “Montezuma surf” and if
the rule ‘<city> surf — <city> beach’ has been observed,
we are able to offer “Montezuma beach” as a recommenda-
tion, even if the two queries were never observed in a same
session. We conducted experiments to validate our hypothe-
sis, first via traditional small-scale editorial assessments but
more interestingly via a novel automated large scale eval-
uation methodology. Our experiments show that general
coverage can be relatively increased by 24% using templates
without penalizing quality. Furthermore, for 36% of the 95M
queries in our query flow graph, which have no out edges and
thus could not be served recommendations, we can now offer
at least one recommendation in 98% of the cases.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Query for-
mulation; H.2.8 [Database Applications]: Data Mining

General Terms

Algorithms, Experimentation

Keywords

query templates, query recommendation, query mining

1. INTRODUCTION

Mining query logs on a large scale has been shown to be
tremendously useful for web search and web applications.
Query logs have been successfully explored for a variety of
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purposes such as core ranking, automatic query expansion,
web caching, user modeling, matching ads, and more. One
of the most direct and visible applications of query log min-
ing is query recommendations in its multiple forms, from
dynamic query suggestions “as you type” to related searches
displayed on the search-engine results page.

Yet, in spite of their relative success, all query-log based
methods exhibit the same weakness: they cease being as
useful when reaching the long tail. As a result, methods
that operate at the level of individual queries cannot, as of
today, handle rare or one-time queries and this leads to a
significant coverage issue on the long tail.

One approach could be to simply ignore the long tail and
concentrate on serving best head and torso needs. This
approach, we believe, would probably be a mistake. In-
deed, Goel et al. [12] conducted a thorough analysis of the
“anatomy of the long tail,” and showed that most “ordinary
people ..[have].. extraordinary tastes,” i.e. all of us exhibit a
certain level of eccentricity. Even more importantly, it turns
out that supporting the tail boosts the head by providing
users a convenient one-stop shop for both their mainstream
and niche interests. Following this view, we believe that it is
critical to appropriately handle long-tail queries, especially
in the query-recommendation family of applications.

In this paper, we focus on related query recommendation,
one of the tasks for which the long-tail issue is the most
visible. 'We propose to address the long-tail problem by
leveraging query templates [1], which are query constructs
that abstract and generalize queries. Our key idea is to
identify rules between templates as means for suggesting re-
lated queries. The rationale for our approach is based on the
fact that many individual queries share the same query in-
tent while focusing on different entities. Hence, their related
queries also share similar structures. As an example, assume
that the queries “Los Angeles hotels”, “New York hotels”
and “Paris hotels” have been abstracted into the common
query template “<city> hotels”. In addition, if “Los An-
geles restaurants” is a query recommendation for “Los
Angeles hotels” and similarly “New York restaurants” is
a recommendation for “New York hotels”, we can extract
the general rule:

‘<city> hotels — <city> restaurants’

Using such a rule, we could then offer for the query “Yancheng
restaurants”, the suggested query “Yancheng hotels” even
if both are rare queries and had never been observed before.

The key challenge in this approach is to ensure that while
significantly improving coverage for query recommendations,
we maintain a certain level of quality in order to satisfy
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users. We even argue that a small drop in quality would be
acceptable as long as the user has enough valid recommenda-
tions to select from. In contrast, not offering any suggestion
damages the user experience, as lack of coverage remains a
significant issue: we have observed on a Yahoo! query log
sample that 34M queries, out of 95M, had no consecutive
query. Thus, in our sample, any query recommendation sys-
tem that leverages query reformulation would not be able to
derive any information for more than 36% of the queries.
In this paper we make the following contributions:

e We introduce the concept of rules between query tem-
plates, which can be used to infer recommendations
for rare or previously unseen queries. We apply the
concept of template rules on the query-flow graph [5].
At a high level, the concept is general and can be used
to enhance other query-log constructs.

e We explain how to build templates and more specifi-
cally how to extract template rules. Note that unlike
prior work on templates, which used semi-supervision
on restricted domains [1, 16], we can afford to work
at a general, large-scale level because we extract rules
rather than stand-alone templates and ambiguity is
therefore automatically reduced (see Section 4.5).

e We introduce the query-template flow graph as an en-
richment of the query-flow graph with templates. We
then describe how to use the query-template flow graph
for the task of query recommendation.

e We provide an experimental evaluation, which shows
that using a query-template flow graph instead of a
query-flow graph construct consistently improves the

quality of recommendations, especially for long-tail queries.

We verify our claims using manual evaluation, as well
as a novel automated large-scale evaluation process
over millions of tested recommendations.

2. RELATED WORK

Query recommendations. Most query-recommendation
methods use similarity measures obtained by mining (¢) the
query terms, (ii) the clicked documents, and/or (7ii) the
user sessions containing the queries. Typical methods use a
combination of these factors.

Query recommendation based on clicked documents.
Baeza-Yates et al. [3] propose a measure of query similarity
and use it to build methods for query expansion. Their
technique is based on a term-weight vector representation of
queries, obtained from the aggregation of the term-weight
vectors of the URLs clicked after the query. Wen et al. [27]
also present a clustering method for query recommendation
that is centered around the query-click graph [4].

The query-click graph is also utilized for finding related
documents using random walks [8], finding related keywords
for advertising [11], query rewriting through co-citation gen-
eralization [2] and ranking related queries using the notion
of hitting time [19].

Query recommendation based on query reformula-
tions. Many effective approaches focus on the analysis of
user query sessions [10, 14, 30]. Fonseca et al. [10] propose
a query recommendation system based on association rules.
Another attempt of extracting information from the query
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log is due to Zhang and Nasraoui [30], who represent each
user session by a complete graph where consecutive queries
are connected with an edge of a predefined weight d. Non-
consecutive queries are connected by an edge weighted with
the product of the weights on the walk connecting them.
Recent papers have shown that not only the previous query,
but also the long-term interests of users, are important for
understanding their information needs [18, 22].

Jones et al. [14] introduce the notion of query substitu-
tion: for each query, a set of similar queries is obtained
by replacing the whole query or its sub-phrases. White et
al. [28, 29] use the query rewrites observed in a query log to
generate query recommendations. Sadikov et al. [23] have
recently proposed to cluster the refinements of a user query
by performing a random walk on a query-document graph
that incorporates both session and click information.

One limitation for query recommendation that is common
to the above works is that recommendations cannot be made
for queries that were not seen before. Additionally, the qual-
ity of recommendations declines for infrequent queries.

Name-entity and template extraction using query
logs. A few researchers have addressed the problem of ex-
tracting name-entities and hierarchy knowledge-bases from
query logs [9, 21]. The main idea of these papers is to use
the query log in order to extract entities and populate lex-
icons and/or ontology data. Since in this paper we are not
concerned with building an entity hierarchy, such a line of
research is orthogonal and complementary to ours.

Few works attempt to tag query terms [13, 16], an impor-
tant step towards generating templates for queries. These
works apply semi-supervised approaches for tagging with
predefined categories. Recently, Agarwal et al. [1] intro-
duced query templates as means to detect query intent and
query attributes for a specific domain. They propose a semi-
supervised approach for learning relevant templates in a do-
main, where both the domain attributes and seed queries are
manually provided. Unlike these works, we aim at broad-
coverage recommendation using templates for any query,
with neither predefined categories nor specific domains.

Templates in Natural Language Processing Finally
we note that templates and rules between them have been
successfully used in a number of NLP tasks such as infor-
mation extraction [26], taxonomy population [24], question
answering [17] and machine translation [6].

3. PRELIMINARIES

In this section we review the concepts of query logs and the
query-flow graph, which are central concepts in our paper.

3.1 Query logs

Query-log analysis is typically used by search engines to
build models of the interaction of the users with the search
engine, and it is applicable to a wide range of applications.
A typical query log L is a set of records (g, us,t:, Vi, Ci),
where ¢; is a query submitted to the search engine; u; is an
anonymized identifier for the user who submitted the query;
t; is a timestamp; V; is the set of documents returned as
results to the query; and Cj is the set of clicked documents.

A useful concept is a physical session, or simply session:
a sequence of queries of one particular user within a specific
timeout tg. A typical timeout threshold often used in query-
log analysis is t9 = 30 minutes.
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3.2 The Query-Flow Graph

The query-flow graph, which was introduced by Boldi et
al. [5], is a graph structure that aggregates information con-
tained in a query log. At an intuitive level, a query-flow
graph is a graph in which nodes are queries, and edges (¢;, q;)
with large weights indicate that query g¢; is a very likely re-
formulation of query ¢;. Formally, a query-flow graph is
defined as a directed graph Gq = (Qo, Fqq, Sqq) Where:

e Qo = QU {s,t} is the set of distinct queries @ sub-
mitted to the search engine plus two special nodes s
and t, representing a starting state and a terminal state
of any user search task;

e Fqq € Qo X Qo is the set of directed edges;

® Sqq : Eqq — (0..1] is a weighting function that assigns
to every pair of queries (¢;, qj) € Eqq ascore sqq(gi, ¢5)-

In the basic construction of the query-flow graph, two queries
¢; and ¢; are connected by an edge if there is at least one ses-
sion in the query log in which g; follows g;. The edge weight
w may depend on the application; one simple definition is
to use as weight the frequency of the transition (g, g;) out
of all instances of ¢;. While there are more sophisticated
versions of query-flow graph the definition of edge weights
is orthogonal to the focus of this paper and so we set query-
flow graph edge weights to be transition probabilities.

One application of the query-flow graph, suggested by
Boldi et al., is query recommendation. The idea is fairly
natural: for a query ¢; recommend queries ¢; for which the
weight of the edge (gi,q;) in the query-flow graph is high
enough. Various alternatives for picking those queries were
studied. Those alternatives were inspired by ideas based on
PageRank and personalized PageRank.

An obvious limitation of using the query-flow graph for
query recommendation is that no recommendation can be
made for queries that were not seen before. This is the
limitation that we try to alleviate with the present work.

4. QUERY TEMPLATES AND THE QUERY
TEMPLATE FLOW GRAPH

In this section, we describe our query-template approach
for handling the long-tail problem of query logs. We for-
mally describe query templates and template construction.
We then introduce relations between templates, and present
a recommendation algorithm based on a query-flow graph
enhanced with templates.

4.1 Query Templates

Our notion of query templates is similar to the one used
by Agarwal et al. [1]; the main differences are that (i) we
define templates over a hierarchy of entity types, and (i¢) we
define a global set of templates for the whole query log and
we do not restrict our templates on specific domains (say,
travel, weather, or movies).

We start our discussion by considering the set of all queries
Q = {q1,q2, ...} that appear in a query log of a search en-
gine, where each query, ¢ € @ is a sequence of search terms,
q = wi...w,. For a query q we define a tokenization to be
a grouping of the terms of ¢ into consecutive sequences of
terms. For example, all possible tokenizations of “chocolate
cookie recipe” are: (chocolate)(cookie)(recipe), (cho-
colate)(cookie recipe), (chocolate cookie)(recipe), and
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(chocolate cookie recipe), where parentheses are used only
for indicating the token boundaries. Very often, not all pos-
sible tokenizations of a query are meaningful.

In addition to the query log, we also assume that we have
access to an additional source of information: a generaliza-
tion hierarchy H = (E, R) on a set of entities E. As usual,
the set of generalizations R C E x E contains a pair e; — e;
if the entity e; is a semantic generalization of the entity e;
(R induces a DAG on E). We also say that e; is a type of
e;. For example, R may contain the following pairs:

chocolate — food

chocolate — drink

cookie — dessert

chocolate cookie — dessert
dessert — food

food — substance

recipe — instruction

We overwrite the notation to denote e; — e; if there is a
sequence of generalizations in R that leads from entity e;
to entity e; in the hierarchy H. So, in the above example,
we have chocolate — substance, since chocolate — food
— substance. If e; — ej, we write d(e;,e;) to denote the
shortest path from e; to e; using the generalizations of R.
So, d(chocolate,substance) = 2.

Now let ¢ = wi...w, be a query with a tokenization
q = ki1...ks. Assume that the i-th token of the query, k;
is present as an entity in the generalization hierarchy H,
namely k; = e; € E, and that e; — e;, for some other en-
tity e;. We define a template t(q | ki — e;) of ¢ by replacing
the entity k; with a placeholder of type <e;> in the query q.
In other words ¢(q | ki — e;) = k1...ki—1<ej>kip1...ks.
The angle brackets <-> are used to indicate that a substi-
tution by a placeholder has taken place. We denote the set
of templates of ¢ by T'(q) = {t1,t2,...}.

In our running example, some of the possible templates
for the query ¢ =“chocolate cookie recipe” are:

<food> cookie recipe

<drink> cookie recipe

<food> recipe

<substance> recipe

chocolate cookie <instruction>

We define kq(t) to be the token of ¢ that was replaced when
generating ¢ and e(t) to be the placeholder in ¢. In our
example, kq(“<food> recipe”) is ‘chocolate cookie’ and
e(“<food> recipe”) is ‘food’.

A template is utilized by instantiating it with a token
whose type matches the type of the template placeholder.
We denote by Iu(t | k) the query generated by instantiating
template ¢t with token k£ based on the generalization hierar-
chy H. For example, I (“<food> recipe” | “soup”) is “soup
recipe”. The result of instantiating an invalid token of an
unmatched type is null. The power of template instantiation
lies in its ability to generate queries that were not observed
before, as a cross product of templates and entities.

For each template ¢ € T(q) of a query ¢ we associate
a score Sqt(q,t). This score provides a measure of good-
ness of the template ¢ as a generalization of the query g.
Intuitively, for our query “chocolate cookie recipe”, the
template “<food> recipe” should have a higher score than
“<substance> recipe”. This captures the notion that the
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more we generalize a query, the less confident we are, the
risk being to over-generalize. In addition, “<food> recipe”
should have a higher score than “<drink> cookie recipe”,
so as to give preference to more semantically valid templates.

4.2 Template Rules

Rules among templates enable the inference of meaningful
recommendations for queries that have been seen very rarely,
even for the first time. Once queries have been generalized
to templates, the next step is to mine for frequent transi-
tions among templates, which we call template rules. The
transition ‘<city> hotels — <city> restaurants’ shown
in the introduction is an example of a template rule.

The power of template rules lies in their ability to provide
inference rules by aggregating over many different individual
query transitions. Thus, template rules eliminate noise very
effectively and capture meaningful transitions. More discus-
sion on template rules follows in the rest of this section.

4.3 The Query-Template Flow Graph

4.3.1 Representation

A central concept in this paper is the query-template flow
graph, which extends the query-flow graph of Boldi et al [5].
The query-template flow graph is a graph whose nodes rep-
resent not only the queries () but also the templates 7. In
addition to the query-to-query edges Eyq, there are also
edges Eq that specify the mapping from a query ¢ to its
templates T'(q), and also edges E; between templates. More
formally, the query-template flow graph is a graph G =
(QO7 T, qu, eq, Ett7 Sqqs Sqts Stt)7 Where

e (Qo, as in the query-flow graph, is the set of queries
plus the starting and terminal queries;

e T'is the set of all templates formed by the queries of @,
that is, T'= U .o T(q);

o Fq is the set of query-to-query transition edges, as in
the query-flow graph;

e F is the set of query-to-template mapping edges, that
is, edges between queries ¢ € @ and templates of T'(q);

e [ is the set of template-to-template transition edges,
to be defined shortly;

® Sqq are query-to-query scores on the edges of Eqq, as
in the query-flow graph;

e syt are query-to-template scores on the edges of Fq¢
mentioned above, to be defined shortly;

e si¢ are template-to-template scores on the edges of Fiy;
st (t1,t2) is a measure of goodness that template ¢ is a
good transition from template t1, to be defined shortly;

We next describe how the parts of the query-template flow
graph are constructed in this paper, namely, the set of tem-
plates T, the query-to-template and template-to-template
edges, Eq; and Ey, and their respective scores sqr and sgs.

4.3.2  Template construction

As discussed above, templates are constructed with the
help of a generalization hierarchy H over entities. In our
implementation, H is the WordNet 3.0 hypernymy hierar-
chy [20] and the Wikipedia category hierarchy, connected
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together via the YAGO' induced mapping [25]. This hier-

archy features more than 1,750,000 entities with more than
4,470,000 direct generalizations between them. In general,
our approach can employ any method for generating an en-
tity hierarchy, e.g. from query logs [9, 21].

All the distinct queries in the query-flow graph are pro-
cessed. For each query g we construct the set of templates
T(q) as follows:

First we normalize ¢ by converting all characters to lower
case, collapsing continuous spaces, removing non-printable
characters, etc.

Then, every word n-gram up to length 3 in ¢ is considered
as a token for replacement by a placeholder. For every n-
gram k, we add to T'(q) all the templates formed by replacing
k with each of its generalizations in H (if any). We note that
n-grams that consist of stop-words are ignored.

In addition to the above general scheme, we found that
the coverage of the produced templates can be improved by
taking care of a small number of special cases, which appear
often in query logs, when an n-gram is not found in the
YAGO hierarchy. If there are context words around such an
n-gram (the n-gram is not the whole query) we further look
into the following cases:

e If the n-gram is an email address, we generate an
email-typed template, e.g., “ggg@yahoo.com instant
message” becomes “<email> instant message”.

e If the n-gram is a url, we generate a url-typed tem-
plate, e.g. “nbc.com login” becomes “<URL> login”.

e If the n-gram contains numbers, we generate a numerically-
typed template, e.g., “655-7777 address” becomes “<000-

0000> address”.

e Otherwise, if the n-gram is a noun-phrase, we create a
postfix-typed template, e.g., “luxury cars sale” be-
comes “<?7-cars> sale”.

4.3.3 Query-to-template edges

Query-to-template edges Eqt are used to specify the map-
ping from a query ¢ to the templates 7'(¢). That is, we have
(g,t) € Eq if and only if t € T(q). As already mentioned,
some templates in T'(¢) are more confident generalizations
than others, a notion captured by the score sq;(q,t) as the
goodness of the edge (q,t) € Fqs.

Let ¢ be a query and t € T(q) be a template for q. To
compute the score sqt (g, t) we first compute a score Sqt(q, t),
and we then normalize all scores Sq(g,t) to ensure that the
total score from the query ¢ sums to 1. For the unnormalized
scores Sqt(g,t) we use the following rules, which we found
to work well in practice.

e If t was obtained by substituting the token kq(t) with
an entity e in the hierarchy H then, intuitively, the
higher e is located in the hierarchy, the less confident
we are in the template quality. Consequently, we se-
lect our score to be exponentially decaying with the
distance d(kq(t),e) between the token and the gener-
alization e in the hierarchy:

Sqt(q,t) = a9

where o was set to 0.9 in our experiments.

lyww.mpi-inf .mpg.de/yago—naga/yago/
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e For all email-typed, url-typed, and numerically-typed
templates ¢ of a query ¢ we set Sq:(q,t) = 0.5.

e Finally, for all postfix-typed templates ¢ of a query ¢
we set Sqt(g,t) = 0.1.

In addition, if ¢’ is a query and (q,q') € FEqq then, for
convenience of notation, we set Sq(q,q') = 1, otherwise,
Sqt(q,¢") = 0. Normalization is then performed by setting

Sqt (q7 t)
Zt’eT(q)uQ Sqt ((b t/)

It is important to note that both the template construc-
tion procedure and the query-to-template score function are
not dependent on query occurrences in the query log, only
on the hierarchy H. Hence, whenever we encounter a new
query ¢ that is currently not in Qo (an unseen query), we
can add it to Qo as well as its mapping edges to already
existing templates in 7" in an on-line fashion.

sqt(q,t) = , where t € T(q) UQ

4.3.4 Template-to-template edges

The set of edges Ey forms the set of template rules that
were introduced in Section 4.2. Template rules describe the
possible transitions between templates for suggesting related
templates. Recalling our running example, a possible transi-
tion could be ‘<food> recipe — healthy <food> recipe’.
Each template rule in Ey is accompanied by a score sit,
which captures the confidence of generating valid related
queries by instantiating the corresponding templates.

Consider two templates ¢1 and t2 in the query-template
flow graph. A directed edge (t1,t2) is in Ey if and only if:

e ¢(t1) = e(t2), i.e., they have the same placeholder type.

e there is at least one edge (¢1,¢2) in the query-flow
graph between queries g1 and g2 such that ¢1 € T'(q1),
ta € T(q2) and kg, (t1) = kg, (t2), that is the substi-
tuted token in ¢; and in g2 is the same. We call such
query-to-query edges support edges and denote the set
of support edges for (t1,t2) by Sup(ti,t2).

As an example, an edge ‘sandwich recipe — healthy
sandwich recipe’ in the query-flow graph would give rise
to the edge ‘<food> recipe — healthy <food> recipe’ in
the query-template flow graph.

To compute the score si(t1,%2) between the templates ¢4
and t2, we sum over the scores of all supporting pairs of
queries, and we normalize so that the total score out of each
template sums to 1:

Se(t,t2) = > Sqq(q1,92),
(q1,92)€Sup(t1,t2)
Se(t1,t

Stt(t17t2) — M

> Selta,t)
4.4 Generating Query Recommendations

We next discuss how to utilize the query-template flow
graph in order to provide query recommendations. Given
an input query g that was submitted by a user, our task is
to recommend other queries ¢’ that are likely to be helpful
for the user. Our output is a ranked list of candidate related-
queries, ordered by their confidence score (highest first).

Using the query-flow graph, the candidate related queries
are those for which there is a directed edge (q,q") in Fqq.
The related query confidence score 7(q, q') is $qq(q,q’)-
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Similarly, utilizing the query-template flow graph, the can-
didate related queries are those for which there is either a
directed edge (q,q’) in Eqq or there is a mapping edge (q,t)
and a template-to-template transition edge (¢,¢'), such that
In(t' | kq(t)) = ¢/, that is the instantiation of template ¢’
with the mapping token of g to t results in ¢’.

For example, one recommendation for the query “Adele As-
taire” is “Adele Astaire biography”, based on the map-
ping edge ‘Adele Astaire — <artist>’ and the transition
edge ‘<artist> — <artist> biography’.

Notice that the recommended query ¢’ does not have to be
in @, i.e. it does not have to appear in the query log. This
is because ¢’ is generated as an instantiation of a template
with a token extracted from the input query (which itself
could be an unseen query). The confidence score 7(q,q")
based on the query-template flow graph is:

>

teT (q) N
(t,t')EBge A
Iy (¢ |kq(t)=q"

T'(q, q/) = Sqt(q, q/)'SQQ(q’ q/)—’_ Sqt (qa t)'Stt (t’ t/)

Since both scores sqi(q,t) and sy (¢,t') are normalized,
r(q,q’) is always between 0 and 1. In particular, it can be
interpreted as the probability of going from ¢ to ¢’ by one
of the feasible paths in the query-template flow graph. We
note that in our experiments we rank first queries that were
seen before as related (sqq(q,q") > 0), assuming that they
are more reliable recommendations.

4.5 Discussion

Choosing the right template or set of templates for a query
is a difficult task, since many queries consist of more than
one term, and many terms are ambiguous. For example, in
“jaguar transmission fluid” it is unclear on which term
the focus is. Additionally, “jaguar” has several meanings
based on which the query could be generalized. Hence,
prior work on query templates focused on semi-supervised
approaches in specific domains, where the task is simpler [1,
16]. However, we aim at a general large-scale application
of template rules for all kinds of queries. For our advan-
tage, extracting rules instead of single templates diminishes
the problems mentioned above. First, shared terms between
queries typically coincide with the query focus. Second, ag-
gregating occurrence statistics for rules emphasizes the cor-
rect sense of ambiguous terms under the query context.

For example, the query transition ‘jaguar transmission
fluid — jaguar used parts’ indicates that “jaguar” is the
focus. In addition, by observing other transitions, e.g. ‘toy-
ota transmission fluid — toyota used parts’, the tem-
plate rule ‘car> transmission fluid — <car> used parts’
is brought forward as the frequent rule, diminishing the
effect of other possibly extracted rules, such as ‘<feline>
transmission fluid — <feline> used parts’.

4.6 Complexity and System Design

One nice feature of the proposed method is that it can be
implemented efficiently in a map-reduce environment, such
as the hadoop platform?. For building the query-template
flow graph, templates may be generated independently for
each query, together with their mapping scores, at hadoop
nodes that keep the hierarchy H in memory. Template nodes
are then aggregated at reduce time. If H is too big to fit

*http://hadoop.apache.org/
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Table 1: Statistics for the query-flow graph and the
query-template flow graph used in our experiments
(query statistics are the same for the query-flow
graph and the query-template flow graph).

queries templates
# nodes 95,279,132 5,382,051,983
# edges 83,513,590 4,345,497,267
avg in/out degree 0.88 0.81
max out-degree 14,145 34,249
(craigslist) (<album>)
max in-degree 14,317 133,874
(youtube)  (<institution>)

Table 2: Accuracy of each configuration and each
sample-set based on manual evaluation

QFG QTFG

set-A  98.48%  97.84%
set-B 97.65%  98.86%
set-C' — 94.38%

in main memory, it may be partitioned among the hadoop
nodes. In this case, different n-gram pieces of one query may
be processed by different hadoop nodes and be aggregated at
the end. Finally, the template-to-template edges and scores
may also be computed in a map-reduce fashion as a sequence
of joins—we omit the details.

On the other hand, generating query recommendations
needs to be an online process. For a computationally viable
solution, the idea is again to split the query-template flow
graph among different back-end nodes, mapped according
to queries and query templates. A new query is first parsed
by a broker to generate the set of possible templates. Then
the templates are sent to the appropriate back-end nodes
to compute candidate recommendations and scores, which
are returned to the broker in order to be aggregated and
produce the final ranking.

S. EXPERIMENTS

In this paper, we tested the proposed query-template flow
graph on the task of query recommendation. We compared
between two configurations: (i) recommendations using the
query-flow graph, denoted QFG; and (i7) recommendations
using the query-template flow graph, denoted QTFG.

We conducted two experiments. The first experiment fol-
lows the typical manual evaluation of query recommendation
methods [3, 10, 18], where the quality of recommendations is
assessed by human judges. However, manual evaluation suf-
fers from limitations, such as human labor and scale. There-
fore, as a second experiment, we propose a novel automatic
evaluation approach for the query recommendation task.

5.1 Implementation

For constructing the query-flow graph, and consequently
the query-template flow graph, we used a development query
log from which we sampled user sessions. For testing the
graphs, sessions were sampled from a later query log, de-
noted the test-query-log (see each experiment for the exact
test-set construction details).

Table 1 presents statistics for the two graphs. From the
figures we see that 56 candidate templates are generated
on average for each query, and this reflects the number of
template-to-template edges generated. While the query-
template flow graph performance is significantly better than

52

March 28-April 1, 2011, Hyderabad, India

the query-flow graph (see the following sections), this gener-
ation is still noisy and many of the generated templates and
edges between templates are incorrect, though with lower
scores. In future work, we plan to improve our identifica-
tion of correct templates and edges that should be generated
for a given query or a given edge in the query-flow graph.

The average degree of a node is very small, but the vari-
ance is huge. While about a third of the nodes (both for
queries and templates) have no outgoing edges and about
a similar percentage have no incoming edges, the maximum
in and out degrees are very large. For templates, some of
the large degrees are due to very general templates, while
some queries (and consequently templates) are simply very
frequent in sessions, as shown in the table.

5.2 Manual Evaluation

Following the typical evaluation procedure in prior work,
the authors evaluated a random sample of query recommen-
dations for the two tested configurations, QFG and QTFG.

For each configuration we randomly sampled 300 queries
that occurred in the test-query-log, and which were followed
by a consecutive query within a single session. Each system
suggested related queries, from which one recommendation
was chosen randomly out of the top 10 recommendations. In
total, 300 pairs of an input query and one of its recommen-
dations were sampled for each configuration, denoted set-A.

In addition, 100 pairs were randomly chosen from the 300
pairs sampled for QrG. We then extracted, for the input
queries in these pairs, the recommendations by QTFG that
were ranked in the same position as those in the query-flow
graph pairs. This sample, denoted set-B, compares more
directly between the two methods on the same input queries
and the same recommendation ranked positions.

Finally, 100 queries, for which no recommendation could
be provided by QFG (queries that were not seen before), were
randomly sampled from the test-query-log, and one of the
top 10 recommendations by QTFG was randomly selected
for each. This sample, denoted set-C, assesses the extension
capabilities of the query-template flow graph.

In total, 800 query-recommendation pairs were evaluated.
Two of the authors blindly evaluated these pairs, with an
overlap of 100 queries for agreement assessment. The mea-
sured agreement between the two judges is 93% and the
corresponding Kappa statistic [7] is 0.37, which is typically
viewed as “fair” agreement [15]. No decision was made by
the authors for about 10% of the examples.

Table 2 presents the results of the manual evaluation. The
accuracy of both methods is very high, with a slight gain for
the query-flow graph in general (set-A). Yet, when looking
at proposed related queries for the same input queries at the
same ranked position (set-B), we see that actually it is QTFG
that has a slight gain over QFG. Nevertheless, the power
of QTFG over QFG is demonstrated by the results on the
set of unseen queries (set-C): for this set, even though the
overall performance of QTFG drops slightly it still remains
very high (94.38%), while the QFG could not provide any
recommendation at all.

5.3 Automatic Evaluation

5.3.1 Motivation

While manual evaluation provides a good quality assess-
ment for query recommendation systems, it has several lim-
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itations. First, the task is hard to define—which recommen-
dations should be considered as valid related queries. This
difficulty is reflected in the mediocre Kappa value achieved
for the inner annotator agreement. Furthermore, the two an-
notators reported that though almost all recommendations
seem “related”; some seem more useful than others, a quality
that is hard to measure.

A second limitation of the manual evaluation is that the
amount of examples that are analyzed manually typically
sums up to no more than several hundred examples [3, 8,
10, 30], which may not be statistically indicative (compared
to query-log sizes). Finally, manual evaluation is a slow
process, which poses a real problem when several rounds
of evaluation are needed during the development of a new
system or algorithm.

A different approach is to directly evaluate a tested rec-
ommendation method in a search engine via bucket test-
ing. Yet, this is not a feasible option for the majority of
researchers in the field.

5.3.2  Methodology

To overcome the limitations of the current evaluation ap-
proaches, we propose a novel automatic evaluation based on
a previously unseen query log. This query log is partitioned
into sessions and from each session the list of consecutive
query pairs are extracted. Our assumption is that if a user
entered two queries, {qi,q;+1}, one after the other in the
same session, then the second query may be viewed as a
valid related query for the first query. Furthermore, we as-
sume that since a user explicitly entered g;1+1 as related to
qi, ¢i+1 should be considered more related to ¢; compared
to other possible related queries. Thus, a recommendation
system should also provide g;11 as a recommendation to g;,
and rank it high. These seem reasonable assumptions, as
they are also behind recommendation methods that learn
from query logs, such as the query-flow graph.

Our proposed automatic evaluation is to test how many
of the pairs {¢,qi+1}, extracted from the new query log,
are also proposed by the tested recommendation system.
Furthermore, these recommendations should be ranked high.
This evaluation setup has the advantage of being fast, as
it is automatic. In addition, it may be applied to a large
number of pairs (several millions in our experiment bellow).
Finally, there are no agreement issues between annotators,
since any related query generated by real users is taken as a
valid example — as the gold standard.

We note that this evaluation ignores other recommenda-
tions for a given query by the tested system, which may also
be valid. Thus, the absolute quality of recommendations is
not directly assessed. Yet, the proposed evaluation is very
useful as a relative comparison between different recommen-
dation systems, since when testing on a large volume of rec-
ommendations that were useful for users, each system should
propose (and rank high) a reasonable amount of them. This
evaluation measures how well a recommendation system an-
swers the need for related queries as explicitly formulated
by a large number of real users.

5.3.3  Experimental Setup

We extracted pair occurrences from the sampled sessions
in our test-query-log (see Section 5.1). We experimented
with two versions of this test-set. In the first version, de-
noted all-pairs, all pairs of consecutive queries were extracted
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from each session, summing up to 3,134,388 pairs. In the sec-
ond version, denoted first-last, we generated just one pair
from each session, which consists of the first and the last
query in the session. In this setup, which contains 4,591,044
pair occurrences, we assume that the last query in a session
is the real target query of the user, and we test if the systems
can propose it given the first query in the session.

To confirm that these gold-standard pairs indeed describe
related queries, 100 pairs were sampled from the first-last
dataset and were blindly evaluated by two of the authors
together with the 800 examples judged in Section 5.2 (900
in total). The accuracy achieved for this sample is 100%,
that is all pairs are related queries. This result further sup-
ports our choice of user generated pairs as a valid test-set
for related query recommendation.

We measured the following figures over the performance
of each tested configuration:

e How many of the tested pairs could be proposed by
the system (upper-bound coverage).

e How many pairs were ranked in the top 100 recom-
mendations of the system.

e How many pairs were ranked in the top 10 recommen-
dations of the system (the typical list visible for users).

e How many pairs were ranked highest (first place).

e Mean Average Precision (MAP) of the test-pairs, view-
ing no more than 100 recommendations per query (if
the pair is not in the top 100, its precision is 0).

e Average position (rank) of test-pairs, only for those
that appear in the top 100 recommendations.

Some of the pairs occur in our dataset more than once.
We thus report the above figures both for pair occurrences
and for unique pairs (considering each pair only once).

While our initial target for using the query-template flow
graph was to address the long tail of infrequent queries
and unseen queries, we also noticed that the query-template
flow graph helps to better rank recommendations in general.
Thus, in addition to the QFG and QTFG configurations we ex-
perimented, on the first-last data-set, with a configuration of
query-template flow graph restricted only for re-ranking rec-
ommendations by query-flow graph, denoted QTFG-RERANK.

5.3.4 Results

Tables 3 and 4 present the results for the all-pairs and
first-last test-sets. The first result seen from the tables is
that by utilizing our current implementation of the query-
template flow graph the coverage of the test-pairs increases
relatively by 22-24% (depending on the test-set). If only
unique pairs are considered, the increase is even more sub-
stantial, by about 45% for both test-sets. This shows that
the query-template flow graph significantly increases the
coverage for the long tail of infrequent or unseen queries. For
example, for the input query “1956 dodge lancer”, QTFG
ranked first the test-pair {“1956 dodge lancer”, “1956 dodge
lancer for sale”} using rules such as ‘1956 <car> — 1956
<car> for sale’, while QFG could not suggest any related
query for “1956 dodge lancer”. Other examples are pre-
sented in Table 5.

When focusing on the top-10 recommendations per query,
the difference in test-pair coverage is widening. This result
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Table 3: Results on the all-pairs data-set for each configuration

pair occurrences

QFG QTFG relative increase
total in test-set 3134388 3134388
upper-bound coverage  (22.65%) 709832 (28.17%) 882851 24.37%
# in top-100 (16.97%) 531854  (25.49%) 799001 50.23%
# in top-10 (9.49%) 297462 (20.74%) 649939 118.49%
# ranked highest (2.86%) 89740 (10. 01%) 313638 249.5%
MAP 0.050 0.137
avg. position 18.35 8.3

unique pairs

QFG QTFG relative increase
total in test-set 2755922 2755922
upper-bound coverage  (13.28%) 366047 (19.38%) 533960 45.87%
# in top-100 (12.06%) 332487 (17.25%) 475323 42.96%
# in top-10 (8.41%) 231811 (13.52%) 372481 60.68%
# ranked highest (2.86%) 78783 (6.5%) 179093 127.32%
MAP 0.047 0.089
avg. position 12.33 9.43

Table 4: Results on the first-last data-set for each configuration

pair occurrences

QFG QTFG-RERANK QTFG relative increase
QTFG vs. QFG
total in test-set 4591044 4591044 4591044
upper-bound coverage  (27.63%) 1268579  (27.63%) 1268579  (33.85%) 1554282 22.52%
# in top-100 (18.78%) 862232 (24.79%) 1137920 (28.59%) 1312408 52.21%
# in top-10 (10.22%) 469165 (19.37%) 889383 (21.53%) 988568 110.71%
# ranked highest (3.21%) 147501 (9.32%) 427828 (10.11%) 464260 214.75%
MAP 0.055 0.128 0.140
avg. position 19.36 9.52 10.75
unique pairs
QFG QTFG-RERANK QTFG relative increase
QTFG Vs. QFG
total in test-set 3856355 3856355 3856355
upper-bound coverage  (15.51%) 598114 (15.51%) 598114 (22.62%) 872377 45.85%
# in top-100 (13.7%) 528333  (14.48%) 558255 (18.86%) 727220 37.64%
# in top-10 (9.23%) 355843 (11.63%) 448383 (14.13%) 545062 53.17%
# ranked highest (3.33%) 128267 (6.01%) 231797 (6.92%) 266862 108.05%
MAP 0.052 0.079 0.094
avg. position 13.48 8.63 10.97

is also reflected by the higher MAP values when utilizing
query-template flow graph. The difference is at its most
when looking at the highest ranked recommendation, where
the number of user-generated related queries that are ranked
first is twice as much for unique queries and more than thrice
as much for pair occurrences. This surprising result indi-
cates that query-template flow graph not only provides rec-
ommendations for unseen or rare queries, but it also helps
to better rank recommendations that are proposed by the
query-flow graph. For example, QTFG ranked first the test-
pair {“gangrene”, “gangrene symptoms”} using rules such as
‘<pathology> — <pathology> symptoms’, while QFG ranked
it at 23rd place.

The surprising result that the query-template flow graph
helps to better rank the query-flow graph recommendations
is also expressed by the performance of the QTFG-RERANK
configuration, where a significant improvement in perfor-
mance is achieved just by re-ranking the query-flow graph
output by the query-template flow graph. This is further
emphasized by looking at the average position of recom-
mendations in the top-100. While QTFG recommendations
are better positioned on average than QFG, QTFG-RERANK
achieves the best average positions for user-generated re-
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lated queries. The reason for lower positions in QTFG than
in QTFG-RERANK is due to additional unseen queries for
which only QTFG could provide recommendations. For these
queries the average position is lower than for the seen ones,
as expected, and hence the lower overall average position.

5.3.5 Analysis

To further understand the behavior of the query-template
flow graph vs. the query-flow graph, we conducted several
analyses on the results of the first-last test-set. We first
looked at the potential of the query-template flow graph
to extend the query-flow graph for nodes in the query-flow
graph that have no outgoing edges. The queries in these
nodes were seen before (in the development query log, from
which the query-flow graph was constructed), but no related
queries were observed for them (they were only observed as
related queries for other queries). There are 33,883,564 such
queries (36% of the nodes), and the query-template flow
graph managed to propose at least one related query for
98% of them. This further emphasizes the potential benefit
of the query-template flow graph for previously unseen query
relations.

Next, we analyzed the change in test-pairs ranking when
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Table 5: Examples of test-pairs that were ranked high by QTrFG while QrG could not propose any related query
for the input query, showing the large verity of rules that were learned by our approach.

Pair Rank Example rule used
{“8 week old weimaraner”’, “8 week old weimaraner puppy’} 1 8 week 0ld <breed> — 8 week old <breed> puppy
{“1910 swimsuit”, “1910 swimsuit mens”} 1 1910 <clothing> — 1910 <clothing> mens
{“a thousand miles notes”, “a thousand miles piano notes”’} 2 <single> notes — <single> piano notes
{“aaa office twin falls idaho”, “aaa twin falls idaho”} 1 aaa office <city> — aaa <city>

{“air force titles”, “air force ranks”} 2  <military service> titles — <military service> ranks
{“beach cameras”, “live beach cameras”} 1 <geo formation> cameras — live <geo formation> cameras
{“guangzhou flights”, “guangzhou map”} 6 <capital> flights — <capital> map

{“i am legend action figure”, “i am legend’} 2 <fiction> action figure — <fiction>

{“name for salt”, “chemical name for salt”} 2 name for <compound> — chemical name for <compound>

Table 6: Ranking differences of suggestions for the first-last test-set

QFG QTFG
total in test-set 2755922 2755922
# in top-100 528333 727220
# in top-100 but not in the top-100 of the other  (1.42%) 7486 (28.38%) 206373
# in top-10 but not in the top-10 of the other (3.07%) 16211 (28.25%) 205430
# better positioned when both in top-100 (13.47%) 71170  (35.05%) 254919
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Figure 1: first-last pair coverage at top-10 sugges-
tions vs. query length

the input query length (in words) varies. From the graph
presented in Figure 1, we see that the query-flow graph
shows a typical decline in performance for longer queries,
as these are less frequent and thus have less history to rely
on. However, things are different when using the query-
template flow graph. It actually performs better when the
input queries have a few additional words, since they act
as a disambiguating context for ranking appropriate recom-
mendations (see Section 4.5).

In our third analysis, presented in Figure 2, we looked
at the change in test-pairs ranking quality when the input
query frequency varies. The plot in Figure 2 shows that
both configurations find it hard to suggest test-pairs as rec-
ommendations for queries that occur only once in the test
set. This behavior agrees with the manual evaluation, which
showed lower suggestion quality for unseen queries. There is
a substantial increase in performance for queries that occur
twice and then a decline as the frequency increases, since
frequent queries have a more diverse history and its hard
to predict the best suggestions from this history. Yet, we
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Figure 2: first-last pair coverage at top-10 sugges-
tions vs. query frequency

see that the query-template flow graph consistently outper-
forms the query-flow graph, managing to pick more appro-
priate suggestions for frequent queries. For example, for the
query “jack johnson lyrics”, which occurred 14 times in
the test-set, QTFG ranked the pair {“jack johnson lyrics”,
“jack johnson music”} 5th, while QFG ranked it 43rd.
Finally, we analyzed the differences in ranks of the same
suggestions by the query-flow graph and the query-template
flow graph. This analysis, presented in Table 6, shows that
many test-pairs that either cannot be processed by the query-
flow graph or are ranked very low, are positioned in the top-
10 recommendations in the query-template flow graph. This
indicates that the query-template flow graph handles well
recommendations that cannot be processed by the query-
flow graph. Furthermore, only very few pairs (3%) are ranked
significantly higher by the query-flow graph than by the
query-template flow graph (in the top-10), which means that
the query-template flow graph hardly hurts the ranking of
well ranked recommendations by the query-flow graph. This
is despite the fact that about 13% of the test-pairs are ranked
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higher by the query-flow graph than by the query-template
flow graph. These improvements are not significant, as they
are mainly at the lower part of the top-100 ranks and are
usually not displayed to users.

To conclude, the analysis shows that utilizing the query-
template flow graph on top of the query-flow graph improves
consistently the ranking of user-generated related queries,
without any significant loss in performance for a specific
type of queries.

6. CONCLUSIONS

We introduced the concepts of rules between query tem-
plates and the query-template flow graph as an abstraction
and a generalization approach for relations between queries.
This novel approach is useful for addressing the long tail of
rare or previously unseen queries in various search-related
tasks. Yet, it is also helpful in discovering important rela-
tions between frequent queries, for example for better rank-
ing possible suggestions in query recommendation.

We conducted two query-recommendation experiments,
a manual evaluation and a novel large-scale automated eval-
uation. The manual evaluation showed that both the query-
template flow graph and the baseline query-flow graph are
very adequate as methods for query recommendations. Yet,
our automatic evaluation over millions of query-recommen-
dation pairs showed that the query-template flow graph con-
sistently outperforms the query-flow graph by ranking higher
recommendations that were explicitly chosen by users. More
importantly, the query-template flow graph provides good
suggestions for many unseen queries, for which the query-
flow graph could not provide any suggestion.

In future work, we plan to apply the query-template flow
graph on other search-related tasks and to further explore its
structure and behavior. In addition, we want to improve the
quality of rule extraction. Finally, we would like to inves-
tigate the identification of edges from templates to queries,
which capture relations such as between different towns in
a district and the single airport that serves them.
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