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ABSTRACT
Conversational recommender systems (CRSs) assist online users in
their information-seeking and decision making tasks by supporting
an interactive process. Although these processes could be rather
diverse, CRSs typically follow a fixed strategy, e.g., based on cri-
tiquing or on iterative query reformulation. In a previous paper,
we proposed a novel recommendation model that allows conversa-
tional systems to autonomously improve a fixed strategy and even-
tually learn a better one using reinforcement learning techniques.
This strategy is optimal for the given model of the interaction and
it is adapted to the users’ behaviors. In this paper we validate our
approach in an online CRS by means of a user study involving sev-
eral hundreds of testers. We show that the optimal strategy is dif-
ferent from the fixed one, and supports more effective and efficient
interaction sessions.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Types of Systems—
Decision Support

General Terms
Design, Algorithms, Experimentation

Keywords
Conversational Recommender Systems, Markov Decision Process,
Reinforcement Learning, Adaptivity, User Study

1. INTRODUCTION
Recommender systems are intelligent applications which assist

users in their information-seeking tasks, by suggesting those items
(products, services, information) that best suit their needs and pref-
erences [17]. They have been exploited for recommending travel
products, books, CDs, financial services, and in many other ap-
plications [1, 6, 8]. During the interaction, recommender systems
acquire the users’ preferences, and use them to build some type of
a user model. Then, the system predicts the set of products that
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best “matches” the user model, and recommends them to the user.
Users specify their preferences by providing during the interaction
various types of information or feedbacks, which are used to update
the user model, and hence inform future recommendations.

Many recommender systems support a simple human/computer
interaction: when the user enters some search query, it is assumed
that all her preferences have been specified such that the system
can output its recommendations [1]. These type of systems require
all the preferences to be specified upfront, at the beginning of the
interaction. This is a stringent requirement, because users might
not have a clear idea of their preferences at that point. Moreover, in
these simple approaches, if the result does not satisfy the user, then
she can only start a new request by modifying, if possible, her user
model. Such a behavior is not interactive, and the system does not
provide an effective assistance in the information search process.

In order to address these limitations, conversational recommender
systems [24, 3, 16, 4] have been proposed. These systems mimic
the more natural human-to-human approach where preferences are
elicited over the length of the interaction, rather than upfront. These
systems support conversations where the user and the system inter-
act with each other over a sequence of interaction stages. At each
stage the user makes a request, such as querying the product cata-
logue, and in response the system selects and executes one action
in order to assist the user in acquiring her goal. For instance, when
the user queries the catalogue the system could execute the query
and show the retrieved products, or it could ask the user to input
some more preferences. The particular action that the system exe-
cutes at each stage is dictated by its recommendation strategy. We
define a “strategy” as the abstract plan of action that the system
employs during the interaction session. For instance, imagine that
a conversational travel recommender system is required to suggest
a few hotels that could suit the users’ preferences. To this end, the
system may employ the following two strategies (amongst many
others): Strategy 1, which dictates querying the user for her prefer-
ences, and acquiring enough information from her, in order to se-
lect and recommend a candidate set of hotels, or; Strategy 2, which
dictates initially making some suggestions, and then acquiring user
preferences as ratings, in order to personalize the future recommen-
dations.

A major limitation of conversational systems is that their strategy
is typically hard-coded in advance; at each stage, the system always
executes a fixed, pre-determined action, notwithstanding the fact
that other actions could also be available for execution. In order
to understand this limitation, suppose that, in the above scenario,
Strategy 2 is adopted by the system. This would not be suitable
for users who are unwilling to provide ratings, and therefore might
lead to failure situations (e.g., the user quits the session). In this
situation, the system should be able to dynamically decide by itself,



when to stop collecting ratings and to start taking some alternative
action, for instance, querying the user for her preferences (as in
Strategy 1). In this case, we say that the system should be able to
improve Strategy 2 in order to switch to Strategy 1.

In fact, some conversational systems could support quite com-
plex interactions with the users [13, 4]. For instance, in [4], the
authors employ a complex strategy in order to allow users to con-
figure E-commerce products through a dialogue. However, even
in this case, the response of the system to each possible user ac-
tion/request is hard-coded in advance and the system cannot learn
from its failures or successes.

In a previous paper we have tackled these requirements by propos-
ing a new type of conversational recommender system that inter-
acting with users is able to autonomously improve an initial de-
fault strategy in order to eventually learn and employ a better one
[10]. This new strategy is optimal for a particular Markov Deci-
sion Process, and is learnt through Reinforcement Learning (RL)
techniques [20]. In RL the system basically executes different sys-
tem actions through trial-and-error, and then observes the response
of the users to these actions, in order to maximize a numerical cu-
mulative reward function that models how much benefit the user is
supposed to get from each session. In the context of RL we use the
term policy rather than “strategy”, where a policy simply specifies
how the strategy is implemented in terms of the system actions.

In [10] we validated our approach in off-line experiments through
simulations applied to a portion of the interaction flow of the NutK-
ing travel recommender system. Moreover, in [11] we performed
some more simulations in order to determine the information, i.e.,
the state variables, that the system needs to acquire in order to
learn the optimal policy. We showed that the relevancy of a state
variable depends on the user behavior as well as on the numeri-
cal reward function. In another short paper, we provided an initial
brief account of the application of our approach to an online con-
text [12], within the Travel Planner (TP) tool that we prototyped
for the Austrian tourism web portal (Austria.info), in the context of
the etPackaging project funded by Austrian Network for E-Tourism
(ANET).

This paper extends [12] providing a full description of the exper-
imental evaluation strategy and its results. In particular, we discuss
the changes that we made to TP to adopt the proposed technology.
We illustrate the interaction points where the new system is de-
signed to be adaptive, we illustrate the evaluation strategy and the
outcome of a user study involving several hundreds of real users.
Our results show that the optimal policy, which is adapted to the
served users, deviates from the initial default policy. Moreover,
the optimal policy is able to assist the users in acquiring their goals
more effectively, i.e., it increases the task completion rate, and more
efficiently, i.e., in a lesser number of interaction stages and in a
lesser amount of time. Consequently, users spend lesser effort dur-
ing the interaction: composing a smaller number of queries and
viewing fewer result pages.

In this paper, we will initially give an example illustrating the
the application of our recommendation approach to the mentioned
Travel Planning tool. We will illustrate two system decision points,
which we have incorporated within the interaction flow, and we will
show how the system can learn a more sophisticated action selec-
tion policy in these situations. Then, we will describe the policy
learning problem and the proposed procedure for learning the op-
timal policy. Further on, we will present our proposed evaluation
methodology and its results: the characteristics of the learnt opti-
mal policy and the comparison of several system performance vari-
ables. Then, we will discuss some related work and finally present
our conclusions and future work.

2. DECISION POINTS EXAMPLE
In this section, we will illustrate, by referring to the TP tool, the

proposed adaptive recommendation approach. Our method is based
on the introduction of one or more decision points for the system,
within the default interaction flow of the TP. We label these points
as the system decision points (SDP). In each SDP a set of system
actions is available for execution, and the system’s job is to learn
to choose the best action from amongst this set depending on the
value of some observed state variables (more on this later on).

Figure 1: Default navigation flow from the Welcome Page

Figure 2: Welcome Page

The basic model of the interaction management assumes that at
each interaction stage, the user is presented with a particular view
page, which represents any web page, and makes one user request,
e.g., submit a product query. This leads the interaction into a system
state, which depicts the point where the system must select the next
(system) action, and lead the user to a next view page.

Figure 1 depicts the initial part of the fixed interaction flow of
TP as defined by the Trip@dvice recommendation technology. In
Trip@dvice the user can select travel components from catalogues
(experiences, destinations, or travel events) and bundle them in a
plan [14]. In Figure 1, view pages are depicted as white boxes,
e.g., the WelcomePage representing the view shown in Figure 2,
and from this page an exit arrow labelled as SlctQrySrch indicates



Figure 3: View page SpecChars

the user request to initiate a query search, that brings to a system
state (black ellipse), in which the system can just perform the action
AskChars, i.e., ask for travel characteristics in the view shown in
Figure 3.

In this default navigation flow of TP, from the WelcomePage, the
users can make two requests:

• SlctSeekInsp: the user requests the system to compute some
complete travel plan proposals, also called “Inspirations”. At
this point the default strategy of Trip@dvice dictates ask-
ing the user for several travel characteristics (system action
AskChars), bringing the interaction to the view state Spec-
Chars (Figure 3). After the user has specified the travel char-
acteristics (user request EnterChars), the system shows in
the view state ViewProposals some travel plan proposals (in-
spirations) and then after a user has tentatively selected one
it will keep showing some similar proposals until the user
finally choose one (see Figure 4). This flow implements a
preference-based recommendation approach [13].

• SlctQrySrch: the user requests to formulate a query (not shown
here for lack of space) to one of the available product cata-
logues (“Destinations”, “Events”, or “Experiences”) in order
to retrieve some item that are ranked with a social filtering
approach described in [14]. The first time the user makes one
of these search requests the default strategy of Trip@dvice,
as for the request SlctSeekInsp, dictates asking the user for
travel characteristics (AskChars). After the user has speci-
fied the travel characteristics (the user requests EnterChars),
the system shows in the view state ViewSrchOpts the rele-
vant query form, depending on the user’s previously-selected
query function, i.e., search for destinations, experiences, or
events. This flow implements a search-based recommenda-
tion approach.

In fact, one may wonder if asking for travel characteristics (sys-
tem action AskChars) is always beneficial. On one hand, the system
needs this information. In fact, in the strategy initiated by Slct-
SeekInsp, the travel characteristics are exploited to shown relevant
"Inspirations", and in the strategy initiated by SlctQrySrch, these
are used for computing the score of the products, which depicts

Figure 4: View page ViewProposals

Figure 5: Adaptive Navigation Flow from the Welcome Page

how much a recommendation is predicted to be suitable for the
user, and for ranking the query results accordingly [14]. On the
other hand, the user may not wish to invest the additional effort of
specifying the travel characteristics, and might prefer to obtain im-
mediately some travel inspirations or query results, even if they are
less relevant to her.

In order to learn a better system behavior, we have incorporated
two SDPs, StartQuerySearch and ShowProposals, within this por-
tion of the default interaction flow, as shown in Figure 51. Here, if
the user request is SlctQrySrch (i.e., start a query search), the flow
enters into the SDP StartQuerySearch, where the system should de-
cide whether to ask the user for travel characteristics (system action
AskChars) as in the default flow, or to deviate from the default flow,
skip that step and show immediately the query search form (sys-
tem action ShowOpts). Similarly, if the user requests SlctSeekInsp
(travel “Inspirations”), then the flow enters into the SDP ShowPro-
posals, where the system should decide whether to ask for travel
characteristics (AskChars) as in the default flow, or show directly
the proposals (ShowProposals) without asking the travel character-
istics.

1We note that in the final prototype, as it will be explained later,
three SDPs have been included in the full interaction flow. Here we
describe just these two to illustrate the core idea.



3. ADAPTIVE RECOMMENDER MODEL
In our proposed model the recommender system is comprised

of two entities: the Information System (IS) and the Recommenda-
tion Agent (RA). IS is the non-adaptive entity which is accessed
by the user in order to obtain some information, e.g., when she re-
quests a recommendation. RA is the adaptive entity whose role is
to observe the user, the IS and the on-going interaction, in order
to assist the user in obtaining the desired information at the appro-
priate stage. Specifically, when the user makes some request, e.g.,
submit a product query, the job of Agent is to autonomously decide
what to do after this request, e.g., decide to show the requested
information, or decide to ask for some additional information etc.
The Agent’s ultimate goal is to select those system actions that, in
the long run, i.e., by the end of the interaction session, are more
likely to bring the user quickly to her goal, whatever this might be.
As the interaction proceeds, the Agent should optimize it’s action
selection policy, i.e., it should learn the best recommendation pol-
icy. In this context, as the system must decide to take an action at
each stage, we model the recommendation process as a sequential
decision problem, and we solve it by exploiting the Markov De-
cision Process (MDP) framework [20]. Then, we use this frame-
work along with techniques from Reinforcement Learning in order
to solve the policy-learning problem.

3.1 The Markov Model of the
Recommendation Agent

In this section, we will model the sequential system action se-
lection of the Recommendation Agent (RA) as a Markov Decision
Process (MDP). The MDP model of the Agent includes the follow-
ing four entities:

1. A set of states S, which represents the different situations
that the Agent can observe during the interaction, and depicts
information that is required by the Agent in order to learn the
optimal policy. We model S through a set of state variables,
which we label as the state model, e.g., the request of the
user, the number of times the user has submitted a particular
request, the number of times the system has taken a particular
action etc.

2. A set of possible system actions A, which the Agent can
perform in a given state s ∈ S, and that will produce a tran-
sition into a next state s′ ∈ S. In fact, the selection of the
particular action depends on the Agent’s current policy. A
policy is a function π : S → A that indicates for each state
s ∈ S, the action π(s) = a taken by the Agent in that state.

3. A transition function T (s, a, s′) which gives the probability
of making a transition from state s to state s′ when the Agent
performs the action a.

4. A reward function R(s, a) which assigns a numerical re-
ward to the Agent for each action a taken in state s. As we
are interested in systems which aid the user in her decision
process, the reward here reflects the (positive or negative)
effect of the action a. For instance, if some action is suit-
able for the interaction and leads the user to acquire her main
goal (or a sub-goal), then the Agent could be rewarded with a
positive value, e.g., +5. On the other hand, if the user didn’t
acquire her goal, then the Agent could be punished through
a negative reward, e.g., -1. In our context the goal of the user
is to select some products and add them to the current travel
plan.

Figure 6: Interaction Model for learning the Optimal Policy

A policy, i.e., a function π : S → A, is said to be optimal if there
is no other policy that can give to the agent a larger expected cu-
mulative reward. The expected cumulative reward is the expected
value of the sum of the rewards that the agent gets during a ses-
sion (see [10, 20] for more details). So we stress that the optimality
property of a policy strictly depends on the full MDP model, i.e.,
the state model, the actions, the transition probabilities and the re-
ward.

3.2 The Agent-Environment Interaction
Having described the MDP model, we will now illustrate how

the Agent learns the optimal policy through RL (See Figure 6).
Specifically, the Agent executes some trial-and-error sessions with
the user, who is part of its environment, along with the Information
System. At each stage, and after the user has made some request,
the Agent observes of the current state (step 1 in Figure 6). In
the current state, multiple system actions could be available to the
Agent for execution. If this is the case the system ha entered a
decision point (SDP) (refer to Figure 5). In the SDP states the
Agent tries out (selects) one among the available actions during
the session (Step 2). For each action execution (Step 3), and it’s
corresponding user response (next user request), the Agent receives
a numerical reward from the Environment (Step 4), informing it
whether its previous action was suitable for the user or not. As
users continue to interact with the system, the Agent exploits the
received rewards in order to learn to avoid unsuitable actions and
to take the suitable ones (Step 5). The RL procedure guarantees that
this process eventually leads the Agent to learn the optimal action
in each SDP state, i.e., the optimal policy.

3.3 Optimal Policy Learning
In the experiments reported later, to learn the optimal policy we

used the Policy Iteration algorithm [20]. Policy Iteration requires a
model of the environment, i.e., the set of state transition probabili-
ties. This means that a certain number of sessions are recorded and
transition probabilities are computed based on this sample. Given
such a model and an initial policy π, the Agent, using this algo-
rithm, iterates through the following two steps at each run:

1. Policy Evaluation, where the Agent determines the expected
cumulative reward for each possible state s ∈ S, while the
system employs some policy;

2. Policy Improvement, where the Agent uses these reward
values in order to improve the policy π.

Basically, for each state s, the algorithm determines whether the
current action a = π(s), can be improved, i.e., whether some other
action a′, which the Agent can take in s, is better than a, i.e.,
whether a′ can accumulate more expected cumulative reward than



State Variable Description
UserRequest Label ranging over all the possible user re-

quests.
CurrentResultSize The number of products retrieved by the

current product search query.
CharacteristicsSpecified Whether the user, up to the current stage,

has specified at least five travel character-
istics (or not).

TravelPlanStatus Whether the user, up to the current stage,
has added some product to her travel plan
(or not).

ResultPagesViewed The total number of result pages that the
user has currently viewed.

UserGoal The goal of the user in her session. In our
application this is fixed to “travel plan-
ning”.

UserExperience The user level of experience about tourism
in Austria.

UserTightResponse The response of the user to the tightening
suggestions.

UserRelaxResponse The response of the user to the relaxation
suggestions.

UserAutoRelaxResponse The response of the user to the auto-
relaxation offer.

The position of the most recent
product that the user has added to
her travel plan

“Position” refers to the rank of the se-
lected product in the result list.

Score of the most recent product
that the user has added to her travel
plan

The product “Score” ranges between 1
and 100 and is the recommender system’s
estimation of the goodness of the recom-
mendation.

Table 1: State Model for the TP

a. If this condition holds, then π is improved to take action a′ in s,
i.e., π(s) = a′. This procedure is repeated for all the states in S.
If any improvements occur in this phase, then a new run starts, i.e.,
the new policy is evaluated (first step) and then improved (second
step). This process continues until no improvement is possible. At
that point, the current policy is the optimal one for the given model.

We observed that we decided not to adopt other RL algorithms
(as Q-learning), which are capable to learn the optimal policy on-
line, i.e., while interacting with the users, for a major reason: in a
real scenario the recommender system owner always want to keep
control on the system behavior. An on-line learning procedure
would have modified, without control, the current policy while in-
teracting with the users. Moreover, in our validation we wanted to
compare a non-optimal policy with an optimal one, and this would
have been more difficult with an evolving version of the optimal
variant, considering also the limited number of experiences (ses-
sions) that we could use for learning.

4. MDP MODEL FOR THE TP TOOL
In this section, we will detail the MDP model for the online eval-

uation of the TP tool, i.e., the state model, the set of system actions,
and the reward function.

4.1 State Model
Table 1 shows the 12 state variables that are included in the state

model. We included the state variables that we conjectured can
convey to the Agent useful information in order to learn a good
policy.

The most important state variable is UserRequest, as it gives in-
formation about the user’s response to the system actions during
the session. In order to learn the optimal action, it is clear that

the Agent must know what the user is actually requesting. In all,
we have identified 44 different user requests. Moreover, the state
variable CurrentResultSize depicts the size of the result set that is
obtained when a product query of the user is executed. This should
be relevant in two different decision situations, i.e., when some
products are retrieved, i.e., CurrentResultSize > 0, and when the
query fails, i.e., CurrentResultSize = 0 (described in Section 4.2).
We note that in case that more than 20 products are retrieved, the
initial default policy of TP suggests to the user a set of product
attributes to further constrain, or tighten, the query, in order to re-
duce this large result set [14, 10]. In addition, if the user query
fails, TP indicates the conditions (on attributes) that if removed
(relaxed) from the current query, would allow the system to re-
trieve some products. Moreover, TP also provides the auto-relax
functionality, which asks the user’s consent for automatically se-
lecting the conditions to relax in her failing query. In our evalua-
tion, the system should decide when to offer tightening, relaxation,
or auto-relaxation to the users (refer to Section 4.2). To this end,
we believe that the system should have knowledge about the previ-
ous responses of the user to these offers, given in the same session,
which are depicted by the state variables UserTightResponse, User-
RelaxResponse, and UserAutoRelaxResponse.

The state variable CharacteristicsSpecified is a boolean variable
that depicts whether, at some stage, the user has specified at least
five travel characteristics (or not), that would allow the system to
compute the numerical score for products and offer relevant “In-
spirations”. This information could be helpful at the SDPs Show-
Proposals and StartQuerySearch (see Figure 5), in order to decide
whether to ask the user for the characteristics. Moreover, in our
scenario, the main goal of the users is to add one or more products
to the travel plan, hence the Agent should have information about
whether the user’s travel plan is currently empty (or not), which is
depicted by the state variable TravelPlanStatus.

The state variable ResultPagesViewed models the number of re-
sult pages (showing the products) that the user has viewed, up to
the current stage. This information is important because the user’s
likelihood to interact further with an E-commerce system is related
to the number of viewed result pages, up to some stage 2. So, in
our system, users could be willing to provide their travel character-
istics when they have viewed a small number of result pages (and
not later).

The state variable UserExperience models the level of previous
knowledge or travel experience of the user related to tourism in
Austria. This information could be important because it can sig-
nificantly influence the behavior of users during the information
search session [15]. For instance, at the SDPs StartQuerySearch
and ShowProposals, it could be optimal not to query the experi-
enced users for their travel characteristics. Finally, we included
two state variables related to the position and the score of the most
recent product that the user has added to the travel plan. The prod-
uct’s “position” refers to its rank in the result list, and the product’s
score is an estimation of its goodness for the user (as mentioned
before). In fact, E-commerce users typically tend to select products
that have a higher score, or are located at higher positions [2]. In
our system, this information could be useful in deciding whether to
push the user to add the top-scored product (with highest rank) to
the travel plan (refer to Section 4.2 for details).

4.2 System Actions
Our system comprises 30 actions. We will specify the actions

that are available in the SDP states, as only these can characterize

2http://www.ecommerce-guide.com/news/news/article.php/2203851



Decision Situation System Action Set
Decision Situation A: The user
enters the system and submits a re-
quest to initiate the query search
for products, at the SDP Start-
QuerySearch

a1: Show the product search options to
the user.
a2: Query the user for travel character-
istics before showing the product search
options.

Decision Situation B: The user
enters the system and requests the
travel suggestions (complete travel
plans), computed by the system at
the SDP ShowProposals

b1: Show the product proposals to the
user.
b2: Query for travel characteristics be-
fore showing the product proposals.

Decision Situation C: After Situ-
ation A, the user submits a prod-
uct query at the SDP Execute-
Query, and one or more prod-
ucts have been retrieved, i.e.,
CurrentResultSize > 0

c1: Suggest product attributes for tight-
ening the current query.
c2: Show the result page with products’
scores to the user.
c3: Show the result page, without scores,
and requests the user to specify the travel
characteristics.
c4: Show the result page (with scores),
push the user to select the top ranked
product, and suggest searching other
product types related to the top ranked
product.
c5: Show the result page (with scores)
and suggest searching other product
types related to the top ranked product.

Decision Situation D: After Situ-
ation A, the user submits a prod-
uct query at the SDP Execute-
Query, and the query fails, i.e.,
CurrentResultSize = 0

d1: Suggest product attributes for relax-
ing the current query.
d2: Ask the user’s consent to automati-
cally relax her product query.

Table 2: Decision Situations and the corresponding System Ac-
tions sets

the behavior of the optimal policy. For the sake of clarity, we have
grouped the SDP states under four generic decision situations of
the system. In Table 2, we describe these situations, and the sys-
tem actions for each situation. Here the word “product” refers to
a destination, a travel event, or a travel experience. Specifically,
Decision Situations A and B are related to the system functional-
ity at the SDPs StartQuerySearch and ShowProposals respectively,
which we have described previously in Section 2. Situations C and
D are related to the SDP ExecuteQuery, i.e., the situation where the
user has requested the execution of a query.

Specifically, Situation C occurs when the query retrieves some
results, i.e. the state variable CurrentResultSize > 0. Then, the
system can either suggest tightening attributes (action c1), or can
show one of four different types of result pages. The first type
of page is the simplest one; it just shows the ranked (and scored)
list of products (action c2). That is the page shown in the default
interaction flow of TP. The second type shows the list where the
scores of the products are not shown, because the user has not pro-
vided yet the travel characteristics, hence the system is alerting the
user to specify the travel characteristics (action c3). The third type
shows the scored list, and a message pushing the user to add the
top-ranked destination to her plan, and suggests searching related
products, i.e., search for events or experiences in the top-ranked
destination (action c4). Figure 7 shows an example of this page
type. The fourth type shows the scored list, and suggests (as in
c4) searching for other product types in the top-ranked destination
(action c5). From each result page, the user can add any of the
displayed products to her travel plan. Conversely, situation D oc-
curs when the query fails, i.e., CurrentResultSize = 0. In this case
the system can either suggest the attributes that can be alternatively
removed for relaxing the query and obtaining some results (action

Figure 7: Result Page shown after Action c4

d1), or can ask the user’s consent to automatically relax the failing
query (action d2).

The motivation for considering these diverse actions is that in
principle we do not know what is the best system response to the
user requests. For instance, in Situations A and B, some users might
not be willing to specify the travel characteristics at the beginning
of the interaction. For these users, the Agent could decide to show
the search options (action a1) or the travel proposals (action b1),
and for willing users, the Agent could decide to ask for characteris-
tics before showing the options (action a2) or the proposals (action
b2). Similarly, in Situation C, if some user is not willing to accept
tightening suggestions (action c1), the Agent could decide to show
any of the result pages to her (actions c2, c3, c4 or c5). Specifically,
the Agent could decide to take action c3, if it needs more informa-
tion about the travel’s characteristics in order to score the retrieved
products (see [14] for details). Moreover, in case the user has not
added any product to her plan, the Agent could decide that it is the
right time to push the user to make a decision (c4) or it could sug-
gest related search functionality to provide diverse, possibly better
motivating, information (c4 and c5).

4.3 Reward Function
Finally, we specify our reward function, which is based on the

interpretation of the goals that users want to achieve with our sys-
tem. Basically, we assign positive rewards if the user acquires her
goal, with the magnitude of the reward depicting the importance
of acquiring this goal. Specifically, we assign a large positive re-
ward (+5), in the stage where the user adds some product to her
travel plan, that is the main user’s goal in our system. Moreover,
we assign a small positive reward (+1) in the stage where the sys-
tem shows a result page to the user, i.e., any of the view states
that shows one or more products. This is the secondary goal of the
users, since it dictates an intermediary (through necessary) step in
order to achieve the main goal. Finally, we assign no reward (0) in
all other situations.

5. EVALUATION METHODOLOGY
To validate our recommendation approach in an online context

we built two variants of the system, the Default and the Adaptive,
and we tested some hypotheses about the proposed methodology by
comparing a set of performance variables across the two variants.
Specifically, in a first phase, we used the Default (non-adaptive)
variant that employed a set of default (fixed) policies. Then, in
a second phase, we used the Adaptive variant that employed the
optimal policy, which was learnt using the data collected in the first
phase.



The default policies used by the Default variant were selected
randomly during the interaction, so that the system could try the
available system actions in each SDP state. In this way, different
action executions, generate transitions into different possible states.
Such a behavior is necessary in order to learn the set of transition
probabilities (environment model), which is required by the Policy
Iteration algorithm. Notwithstanding the random method of policy
selection, Default produced diverse but “sensible” policies for the
user, i.e., coherent with the current interaction flow. It is worth not-
ing that the exploration strategy here implemented can influence
the numerical estimation of the transition probability and conse-
quently the optimal policy. But this is an unavoidable factor that
one should take into account when acquiring the model interacting
with real users and not trough simulations (that is going to intro-
duce other limitations). So the model acquired with some finite
number of interactions will always be an approximation of the full
model that can be acquired with infinite resources (interactions).

During both the first and second phases, we logged the sequential
data and the performance data. The sequential data collects the
state and the system action (amongst other related data), at each
stage of every session, and those collected in the first phase were
used to learn the environment model and then the optimal policy.
The performance data are a set of 26 performance variables, which
were logged at the end of each session, such as the number of items
added to the plan, or the number of travel characteristics expressed
by the user.

The main goal of the evaluation was to prove that, compared
to the default (non-adaptive) policy, the optimal policy supports
better interactions for the users. In order to qualify this goal, we
conjectured that the following hypotheses could be validated:

• Hypothesis 1: Compared to the Default variant, users are
able to acquire their goals more efficiently with the Adaptive
variant, i.e., in a lesser number of interaction stages and in a
smaller amount of time.

• Hypothesis 2: Compared to the Default variant, the Adap-
tive variant supports more effective interaction sessions for
the users, i.e., the task completion rate of the users increases
during the usage of the Adaptive variant.

• Hypothesis 3: Compared to the Default variant, the Adaptive
variant is able to increase the expected response rate of the
users, i.e., the rate at which users provided the responses that
were expected by the interaction designers (e.g., the users do
relax the query when relaxation was suggested).

In order to test the two variants we selected a set of participants
according to the guidelines mentioned in [15]3. Specifically, 469
users were selected for testing the Default, and 307 of them tested
also the Adaptive variant, hence we adopeted a within subject ap-
proach. We note that the two sessions (first the Default then the
Adaptive variants) were separated by a two months period, to min-
imize the transfer of knowledge from session to session. We ob-
serve, that we were not able to control this aspect, since the evalu-
ation involved another research group, and we adapted the evalua-
tion to these constraints.

Our participants were divided into two groups, i.e., Group A,
which executed Task 1, and Group B, which executed Task 2. Task
1 was simple, and required an interaction flow that was never en-
countering an SDP. We decided to use the log data coming from this

3These users were selected in collaboration with Vienna University
of Economics and Business Administration, under the supervision
of Prof. Josef Mazanec.

task to have some additional information on the transition model,
but this task was designed in order to perform another test that is
not described here for lack of space. Task 2 was more complicated;
it required a navigation path through the three SDPs StartQuery-
Search, ShowProposals, and ExecuteQuery. It also informed the
participants of the possible system behavior at these SDPs, e.g.,
that the system can request for travel characteristics, suggest or
request for query changes (i.e., the tightening, relaxation and the
auto-relaxation functionality). Hence, we note that we learned the
optimal policy, which was used by the Adaptive variant, by us-
ing the sequential data collected from the users interactions along
two types of tasks. One can conjecture that a better policy can be
learned if the system would support a single task, but this is nonre-
alistic for an operational recommender system.

It is important to note that before carrying out the experimental
evaluation, we performed a Heuristic evaluation of the Graphical
User Interface (GUI) of the system, in order to judge its compli-
ance with the standard heuristics of web usability [15]. This eval-
uation was carried out by usability experts as well as by students,
who detected some shortcomings in our GUI. We catered for all
of these limitations, and modified our GUI before the experimental
evaluation. We note that this system (with the default policy) has
been iteratively improved over several years and it is now used in
many commercial products. Hence, in general the users testing the
system had no major usability problems.

6. ANALYSIS OF THE OPTIMAL POLICY
The state model comprises 41, 287, 680 possible states, but when

the users evaluated our system, the number of states which actu-
ally occurred (logged) were 1709, out of which the system had to
learn the optimal action for 739 SDP states. This clearly points
out another limitation of this test. A longer testing of the Default
(non-adaptive) variant could have produced log data for more states
and ultimately a different optimal policy. So we stress here that the
results here described apply to these particular settings.

As mentioned previously, we have grouped the SDP states under
four decision situations. In this section, we shall present our analy-
sis of the optimal behavior under each of these situations. The aim
of this analysis is to illustrate succinctly the optimal policy, and in
particular, the situations (states described by state variables), their
corresponding actions dictated by the optimal policy, and how they
differ from the default policy.

Let us recall from Section 2 that in Decision Situations A and B,
the system must cope with the user’s requests SlctQrySrch and Slct-
SeekInsp, respectively. For both situations, we found that when the
user makes the first product search request at the start of her ses-
sion, then it is optimal to query for travel characteristics. So, in this
situation, the optimal behavior is exactly similar to the default be-
havior (see Figure 1). However, we also found that it is optimal to
query the user for travel characteristics even on subsequent product
search requests, when the user has not provided enough charac-
teristics to score the products. This behavior is different from the
default one, and is quite meaningful because if the user provides
the travel characteristics, the system will better assist the user by
showing the scored product list.

In Situation C, the system should decide what to do when the
user’s query has retrieved some products. Our analysis reveals that
if the user has not added any product to her travel plan, then it is op-
timal to show the result page with an explicit message that pushes
her to add the top-ranked destination to the plan, and offers her to
make other product searches related to this destination. It turns out
that when the system pushes the user to add a product, there is a
greater chance that she will actually add this product to her plan,



Performance Variable Default Adaptive

Number of products added to the cart 2.8 2.4
Number of elapsed interaction stages 10.5 8.1*
Interaction Session Time (minutes) 29.03 15.8*
Number of result pages viewed by the user 3.3 2.7
Number of user requests for destination search 1.8 1.3*
Number of destination queries executed 1.8 1.5*

Table 3: Comparison of Performance Variables, ∗ indicates sig-
nificant difference (t-test, p=0.05)

i.e., acquire her main goal. In addition, the optimal policy largely
dictates suggesting tightening under-constrained queries later on in
the interaction, when the users’ main goal has already been ac-
quired. This behavior implies a general unwillingness of our users
to accept tightening suggestions during their sessions. In fact, in
the above situation, tightening is largely suggested to assist inex-
perienced users who don’t have much knowledge about the travel
domain.

Finally, in Situation D, the system should learn to cope with a
failing query. In this situation, the default behavior was to always
suggest relaxation to the user. However, the optimal behavior sug-
gests relaxation only in case it has not been offered before, or if
users have accepted it in the past. In case users have always re-
jected relaxation in the past, the optimal policy intelligently stops
suggesting relaxation, and instead, offers the auto-relax option to
the user.

In conclusion, our analysis of Decision Situations A, B, C, and
D has revealed that the optimal policy is different from the default
policy, and dictates a more intelligent behavior that is adapted to
the users. We stress that, the default policy was conjectured to be
a good one in the previous development stage of the TP tool. This
shows that the optimal policy can help the interaction designers to
revise the flow management decisions they have made.

7. COMPARISON OF THE PERFORMANCE
VARIABLES

In this section, we will present the impact of the optimal policy
on the 26 selected performance variables, and we shall determine
whether there was a significant differences in their values, in the
two variants: Default and Adaptive. The significance is determined
through a two-tailed, unequal variance t-test, where a p-value of
less than 0.05 is considered statistically significant, while a p-value
of less than 0.1 is indicative of a statistical trend. We found signifi-
cant differences in the values of six variables, shown in Table 3 (we
don’t list the other variables due to space constraints).

From Table 3, we see that on the average, users added at least two
products to their carts in both variants, i.e., 2.8 in the Default and
2.4 in the Adaptive. First, we note that the task required that at least
one product were added, so the user were not pushed to add many
products. Anyway, one reason for the smaller number in the Adap-
tive variant might be that users spent lesser time interacting with
the Adaptive as compared to the Default (shown later on). We also
observe that the average number of elapsed interaction stages was
significantly reduced from 10.5 in the Default to 8.1 in the Adap-
tive, and the time elapsed during each session significantly reduced
from 29 minutes in the Default to 15 minutes in the Adaptive. This
implies that the optimal policy assisted our users in acquiring their
goals more efficiently (quickly) during their sessions. Along with
this, we see that users acquired their goals using the Adaptive vari-
ant with a smaller number of result page views (2.7 for Adaptive vs.

3.3 for Default), lesser number of query executions (1.5 vs. 1.8),
and fewer query search requests (1.3 vs. 1.8). These observations
again imply that compared to the Default variant, the Adaptive one
supported more efficient sessions for the users, in which users had
to spend lesser (cognitive) effort in acquiring their goals.

We also calculated the task completion rate of the users. Specif-
ically, we determined the percentage of users who were able to
complete their task during the usage of the Default and Adaptive
variants, i.e., users who added at least one item to their travel plan.
In our evaluation, 469 users interacted with Default, of which 241
users completed their tasks, i.e., a completion rate of 51%. More-
over, 307 users interacted with Adaptive, of which 169 completed
their tasks, i.e., a completion rate of 55%. This implies that the op-
timal behavior lead to an additional 10% of the users to complete
their tasks, compared to the behavior of the Default variant. We
note that this is only due to subtle differences in the way the two
systems conducted the interaction (process) as the large majority
of the views and all the displayed content (recommendation items)
were exactly the same.

We also analyzed expected response rate, i.e., the percentage of
times the user provided the expected response for the various offers
and suggestions made by the system during the interaction 4.

The TP prototype supports 14 types of offers, of which the ex-
pected response rate increased for 10 and decreased for the other
4 offers. In Table 4, we show 6 offers (we don’t show all the of-
fers due to lack of space), which dictate pushing the user to add a
product or to make related product searches, querying her for travel
characteristics, and offering relaxation constraints to her. For these
offers, the expected user responses are to add the pushed product
or to make the related product searches, specify the travel charac-
teristics, and accept some relaxation constraint, respectively.

In Table 4, the column System Offer lists the particular offer of
the system, columns Default and Adaptive show the number of
times an offer was made in the Default and Adaptive variants re-
spectively. Columns ERR-Def and ERR-Ada show the percentage
of times the user provided the expected response in the Default and
Adaptive variants respectively. We may observe that, during the
usage of Adaptive, users added more products to the travel plan
and searched for a larger number of other products when they were
pushed to do so by the system. Moreover, they accepted more
relaxation constraints while searching for destinations and travel
events. Conversely, during the usage of Adaptive, users specified
their travel characteristics a fewer number of times when they re-
quested to search for destinations and travel events through the
query function. We also compared the overall expected response
rate for all the 14 offers, across the Default and Adaptive variants,
i.e., the ratio of the total number of times a system offer was ac-
cepted over the total number of time an offer was made. The over-
all response rate during the usage of Default and Adaptive was 30%
and 23% respectively. This result implies that, overall, users didn’t
provide the expected responses to the system’s offers during their
interaction with Adaptive.

In order to explain these results, we must observe that the op-
timal policy is aimed at gathering the largest expected cumulative
reward, and the system is rewarded when users acquire their goals.
Moreover, the expected responses are those that designers thought
to be useful for a positive interaction output, i.e., acquiring the user
goals. So, in Table 4, a large response rate for some offer implies
that a large proportion of the users followed the designers’ expec-
tation. However, even if some offers were not followed with the

4In order to better estimate this ratio given only a small number of
observations, we applied Laplace correction to the above fraction
[5]



System Offer Default Adaptive ERR-Def ERR-Ada
Push the user to add the top-scored product to the plan 104 24 2% 19%
Push the user to make other searches related to the top-scored product 109 32 4% 6%
Offer relaxation while the user searches for destinations 40 26 29% 43%
Offer relaxation while the user searches for travel experiences 15 15 29% 47%
Ask travel characteristics when user searches for destinations 166 203 70% 23%
Ask travel characteristics when user searches for travel events 15 5 29% 14%

Table 4: The Expected Response Rates of the Users for Six System Offers

expected response it could be still optimal to make these offers,
in some situations, in order to acquire the ultimate interaction goal
(add a product to the plan). So, as we mentioned above, the optimal
policy is helping the designers to understand that their conjectures
about the expected responses might be wrong. In fact, users may
prefer to behave differently, and may still be able to acquire their
goals during the interaction. We must observe that we estimated the
response rates for a relatively small user population, and in order
to have a better confidence in these results, we need to evaluate our
system with a larger number of users.

In our evaluation, we also logged the users’ subjective ratings re-
garding different aspects of the quality of the interaction, e.g., how
much easy it was to use the system, or whether the system assisted
the user in finding her desired information, etc. A summary of our
results (not shown here due to lack of space) is that compared to
the Default variant, users perceived that the Adaptive one supports
a more user-friendly behavior, that it has a shorter response time, it
allows them to understand information more easily, and it reduces
the level of ambiguity in interpreting the product descriptions. The
users also perceived that the Adaptive variant shows a larger num-
ber of desired products during the interaction, and retrieves a larger
number of these products during their first search attempt.

We will now refer to our research hypotheses, and discuss them
according to the aforementioned results.

• Hypothesis 1: Compared to the Default variant, users are
able to acquire their goals more efficiently with the Adaptive
variant, i.e., in a lesser number of interaction stages and in a
smaller amount of time.

We have proved this hypothesis because, as shown in Ta-
ble 3, users acquired their goals with Adaptive in a smaller
number of stages and lesser time. Consequently, users spent
lesser (cognitive) effort in acquiring their goals, by compos-
ing fewer queries, viewing lesser result pages, and making
fewer product search requests.

• Hypothesis 2: Compared to the Default variant, the Adap-
tive variant supports more effective interaction sessions for
the users, i.e., the task completion rate of the users increases
during the usage of the Adaptive variant.

We have proved this hypothesis because, as mentioned in
Section 7, the task completion rate of the users increased dur-
ing the usage of Adaptive.

• Hypothesis 3: Compared to the Default variant, the Adaptive
variant is able to increase the expected response rate of the
users, i.e., the rate at which users provided the responses that
were expected by the interaction designers.

We have not proved this hypothesis because the overall ex-
pected response rate decreased during the usage of the Adap-
tive variant (as shown in Table 4).

8. RELATED WORK
Reinforcement Learning (RL) has been applied previously within

the domain of recommender systems in order to learn an optimal
recommendation strategy, but with limited results, and with quite a
different model of the recommendation process. In [18], the state
model comprises the set of products previously bought by the user,
and the system action is aimed at computing the next set of rec-
ommendations. The ultimate goal of this recommender is still to
maximize an cumulative reward, i.e., but this is quite different from
ours, they want to maximize the total number of items bought by
the user in several recommendation sessions. Quite similarly, in
[22] and [21], the state model basically comprises the set of pages
previously viewed by the user, and the goal is to determine the next
best page (set of products) to recommend to the user. A similar
approach has also been applied in [23] where the state model com-
prises the current page which the user is viewing, and the goal is to
recommend the next best link on this page.

Another related work has been carried out by [7], where the state
model is either the current URL (page) of the user, or the current
product selected by the user, and the goal is to intelligently identify
the best recommendation algorithm among some competitive alter-
natives for personalizing the recommendations. In [25], the authors
determine the presentation order of future recommendations by ex-
ploiting the current user feedback as a reward.

In all these works, the goal is similar to that of a traditional rec-
ommender system i.e., to learn what products to recommend next,
or which page to show next to the user. On the contrary, we ad-
dressed a different goal, i.e., to decide which conversation action
to choose from a diverse set of possible moves, at each stage of
the session, in order to actively assist the users in acquiring their
search goals, whatever these might be. We note that the product
selection and ranking methodology used in the two system variants
that we evaluated was exactly the same. In other words, the adap-
tive version was not providing different product recommendations,
and the improvement in efficiency and effectiveness is only due to
differences in the recommendation process.

Our approach is more similar RL applications to Spoken Dia-
logue Systems (SDS), i.e., intelligent applications that support real
time, goal-oriented dialogues between humans and computers [19,
9]. A SDS must process the user’s utterance and then choose in real
time what information to communicate to the user and how to com-
municate it. However the states and actions models in these sys-
tems are completely different from our case and their main goal is
still improving the quality of the communication, i.e., understand-
ing the user utterances.

9. CONCLUSIONS AND FUTURE WORK
In a previous paper, we have proposed a novel methodology for

conversational recommender systems that exploits Reinforcement
Learning techniques in order to autonomously learn an optimal
(user-adaptive) strategy for assisting online users in acquiring their



goals. In this paper, we have applied our approach within an online
travel recommender system; a prototype for the Austrian Tourism
portal (Austria.info). We successfully learnt the optimal policy and
showed that it dictates intelligent system actions for the users. We
successfully validated its performance against a set of default non-
adaptive policies. The main contribution of this paper is that with
our approach, better conversational systems can be built (than tra-
ditional ones), which can assist the users in acquiring their goals
more effectively and efficiently, and with a reduced amount of ef-
fort. Moreover, our approach can provide important insights into
the dynamic of the human-computer interaction by suggesting to
the interaction designer useful changes in the conversational pol-
icy. According to our knowledge, even if several sophisticated con-
versational strategies have been proposed, our work is the first at-
tempt to learn an optimal conversational strategy in a recommender
system, i.e., to adapt the strategy taking into account an objective
measurement of the recommender system performance.

Our approach brings some interesting issues that should be ad-
dressed in future research. Firstly, it is difficult to predict the goal of
the user in advance. In our evaluation, we fixed that to “Travel Plan-
ning”, but in a real-life scenario, users might be equally interested
in just window-shopping, or selecting a product quickly, rather than
actively involve themselves in a detailed interaction with the sys-
tem. In addition, we did not evaluate our system with different
types of users, e.g., those with different types of age groups, or
work backgrounds. In fact, we have shown in previous simulations,
that different state variables are relevant for different types of users
[11], in order to learn an optimal policy for each user category. In
the future we are interested in generalizing our recommendation ap-
proach and applying it to other types of domains and information
system. In this context, we plan to extend the work presented in
[11] in order to determine a more general state model which could
be used for learning the optimal policy for more diverse user tasks.
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