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Abstract

While attention mechanisms have been proven

to be effective in many NLP tasks, major-

ity of them are data-driven. We propose

a novel knowledge-attention encoder which

incorporates prior knowledge from external

lexical resources into deep neural networks

for relation extraction task. Furthermore,

we present three effective ways of integrat-

ing knowledge-attention with self-attention to

maximize the utilization of both knowledge

and data. The proposed relation extraction sys-

tem is end-to-end and fully attention-based.

Experiment results show that the proposed

knowledge-attention mechanism has comple-

mentary strengths with self-attention, and our

integrated models outperform existing CNN,

RNN, and self-attention based models. State-

of-the-art performance is achieved on TA-

CRED, a complex and large-scale relation ex-

traction dataset.

1 Introduction

Relation extraction aims to detect the semantic

relationship between two entities in a sentence.

For example, given the sentence: “James Dobson

has resigned as chairman of Focus On The Family, which he

founded thirty years ago.”, the goal is to recognize the

organization-founder relation held between “Focus

On The Family” and “James Dobson”. The various rela-

tions between entities extracted from large-scale

unstructured texts can be used for ontology and

knowledge base population (Chen et al., 2018a;

Fossati et al., 2018), as well as facilitating down-

stream tasks that requires relational understand-

ing of texts such as question answering (Yu et al.,

2017) and dialogue systems (Young et al., 2018).

Traditional feature-based and kernel-based ap-

proaches require extensive feature engineer-

ing (Suchanek et al., 2006; Qian et al., 2008; Rink
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and Harabagiu, 2010). Deep neural networks such

as Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs) have the abil-

ity of exploring more complex semantics and ex-

tracting features automatically from raw texts for

relation extraction tasks (Xu et al., 2016; Vu et al.,

2016; Lee et al., 2017). Recently, attention mech-

anisms have been introduced to deep neural net-

works to improve their performance (Zhou et al.,

2016; Wang et al., 2016; Zhang et al., 2017). Es-

pecially, the Transformer proposed by Vaswani et

al. (2017) is based solely on self-attention and

has demonstrated better performance than tradi-

tional RNNs (Bilan and Roth, 2018; Verga et al.,

2018). However, deep neural networks normally

require sufficient labeled data to train their numer-

ous model parameters. The scarcity or low qual-

ity of training data will limit the model’s ability to

recognize complex relations and also cause over-

fitting issue.

A recent study (Li and Mao, 2019) shows that

incorporating prior knowledge from external lex-

ical resources into deep neural network can re-

duce the reliance on training data and improve re-

lation extraction performance. Motivated by this,

we propose a novel knowledge-attention mecha-

nism, which transforms texts from word semantic

space into relational semantic space by attending

to relation indicators that are useful in recogniz-

ing different relations. The relation indicators are

automatically generated from lexical knowledge

bases which represent keywords and cue phrases

of different relation expressions. While the exist-

ing self-attention encoder learns internal seman-

tic features by attending to the input texts them-

selves, the proposed knowledge-attention encoder

captures the linguistic clues of different relations

based on external knowledge. Since the two atten-

tion mechanisms complement each other, we inte-

grate them into a single model to maximize the uti-
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lization of both knowledge and data, and achieve

optimal performance for relation extraction.

In summary, the main contributions of the paper

are: (1) We propose knowledge-attention encoder,

a novel attention mechanism which incorporates

prior knowledge from external lexical resources to

effectively capture the informative linguistic clues

for relation extraction. (2) To take the advantages

of both knowledge-attention and self-attention, we

propose three integration strategies: multi-channel

attention, softmax interpolation, and knowledge-

informed self-attention. Our final models are fully

attention-based and can be easily set up for end-to-

end training. (3) We present detailed analysis on

knowledge-attention encoder. Results show that

it has complementary strengths with self-attention

encoder, and the integrated models achieve start-

of-the-art results for relation extraction.

2 Related Works

We focus here on deep neural networks for rela-

tion extraction since they have demonstrated bet-

ter performance than traditional feature-based and

kernel-based approaches.

Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs) are the ear-

liest and commonly used approaches for relation

extraction. Zeng et al. (2014) showed that CNN

with position embeddings is effective for rela-

tion extraction. Similarly, CNN with multiple fil-

ter sizes (Nguyen and Grishman, 2015), pairwise

ranking loss function (dos Santos et al., 2015)

and auxiliary embeddings (Lee et al., 2017) were

proposed to improve performance. Zhang and

Wang (2015) proposed bi-directional RNN with

max pooling to model the sequential relations. In-

stead of modeling the whole sentence, perform-

ing RNN on sub-dependency trees (e.g. short-

est dependency path between two entities) has

demonstrated to be effective in capturing long-

distance relation patterns (Xu et al., 2016; Miwa

and Bansal, 2016). Zhang et al. (2018) pro-

posed graph convolution over dependency trees

and achieved state-of-the-art results on TACRED

dataset.

Recently, attention mechanisms have been

widely applied to CNNs (Wang et al., 2016; Han

et al., 2018) and RNNs (Zhou et al., 2016; Zhang

et al., 2017; Du et al., 2018). The improved per-

formance demonstrated the effectiveness of atten-

tion mechanisms in deep neural networks. Particu-

larly, Vaswani et al. (2017) proposed a solely self-

attention-based model called Transformer, which

is more effective than RNNs in capturing long-

distance features since it is able to draw global

dependencies without regard to their distances in

the sequences. Bilan and Roth (2018) first ap-

plied self-attention encoder to relation extraction

task and achieved competitive results on TACRED

dataset. Verga et al. (2018) used self-attention

to encode long contexts spanning multiple sen-

tences for biological relation extraction. How-

ever, more attention heads and layers are required

for self-attention encoder to capture complex se-

mantic and syntactic information since learning is

solely based on training data. Hence, more high

quality training data and computational power are

needed. Our work utilizes the knowledge from

external lexical resources to improve deep neural

network’s ability of capturing informative linguis-

tic clues.

External knowledge has shown to be effective

in neural networks for many NLP tasks. Ex-

isting works focus on utilizing external knowl-

edge to improve embedding representations (Chen

et al., 2015; Liu et al., 2015; Sinoara et al., 2019),

CNNs (Toutanova et al., 2015; Wang et al., 2017;

Li and Mao, 2019), and RNNs (Ahn et al., 2016;

Chen et al., 2016, 2018b; Shen et al., 2018). Our

work is the first to incorporate knowledge into

Transformer through a novel knowledge-attention

mechanism to improve its performance on relation

extraction task.

3 Knowledge-attention Encoder

We present the proposed knowledge-attention en-

coder in this section. Relation indicators are first

generated from external lexical resources (Sec-

tion 3.1); Then the input texts are transformed

from word semantic space into relational seman-

tic space by attending to the relation indicators us-

ing knowledge-attention mechanism (Section 3.2);

Finally, position-aware attention is used to sum-

marize the input sequence by taking both relation

semantics and relative positions into consideration

(Section 3.3).

3.1 Relation Indicators Generation

Relation indicators represent the keywords or cue

phrases of various relation types, which are es-

sential for knowledge-attention encoder to capture

the linguistic clues of certain relation from texts.
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Figure 1: Knowledge-attention process (left) and multi-head structure (right) of knowledge-attention encoder.

We utilize two publicly available lexical resources

including FrameNet1 and Thesaurus.com2 to find

such lexical units.

FrameNet is a large lexical knowledge base

which categorizes English words and sentences

into higher level semantic frames (Ruppenhofer

et al., 2006). Each frame is a conceptual struc-

ture describing a type of event, object or relation.

FrameNet contains over 1200 semantic frames,

many of which represent various semantic rela-

tions. For each relation type in our relation ex-

traction task, we first find all the relevant seman-

tic frames by searching from FrameNet (refer Ap-

pendix for detailed semantic frames used). Then

we extract all the lexical units involved in these

frames, which are exactly the keywords or phrases

that often used to express such relation. The-

saurus.com is the largest online thesaurus which

has over 3 million synonyms and antonyms. It

also has the flexibility to filter search results by

relevance, POS tag, word length, and complexity.

To broaden the coverage of relation indicators, we

utilize the synonyms in Thesaurus.com to extend

the lexical units extracted from FrameNet. To re-

duce noise, only the most relevant synonyms with

the same POS tag are selected.

Relation indicators are generated based on the

word embeddings and POS tags of lexical units.

Formally, given a word in a lexical unit, we find its

word embedding wi ∈ R
dw and POS embedding

1https://framenet.icsi.berkeley.edu/

fndrupal
2https://www.thesaurus.com

ti ∈ R
dt by looking up the word embedding ma-

trix Wwrd ∈ R
dw×V wrd

and POS embedding ma-

trix Wpos ∈ R
dt×V pos

respectively, where dw and

dt are the dimensions of word and POS embed-

dings, V wrd is vocabulary size3 and V pos is total

number of POS tags. The corresponding relation

indicator is formed by concatenating word embed-

ding and POS embedding, ki = [wi, ti]. If a lex-

ical unit contains multiple words (i.e. phrase), the

corresponding relation indicator is formed by av-

eraging the embeddings of all words. Eventually,

around 3000 relation indicators (including 2000

synonyms) are generated: K = {k1,k2, ...,km}.

3.2 Knowledge Attention

3.2.1 Knowledge-attention process

In a typical attention mechanism, a query (q) is

compared with the keys (K) in a set of key-value

pairs and the corresponding attention weights are

calculated. The attention output is weighted sum

of values (V ) using the attention weights. In

our proposed knowledge-attention encoder, the

queries are input texts and the key-value pairs are

both relation indicators. The detailed process of

knowledge-attention is shown in Figure 1 (left).

Formally, given text input x = {x1, x2, ..., xn},

the input embeddings Q = {q1,q2, ...,qn} are

generated by concatenating each word’s word em-

bedding and POS embedding in the same way as

relation indicator generation in Section 3.1. The

3Same word embedding matrix is used for relation indi-
cators and input texts, hence the vocabulary also includes all
the words in the training corpus.

https://framenet.icsi.berkeley.edu/fndrupal
https://framenet.icsi.berkeley.edu/fndrupal
https://www.thesaurus.com
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hidden representations H = {h1,h2, ...,hn} are

obtained by attending to the knowledge indicators

K, as shown in Equation 1. The final knowledge-

attention outputs are obtained by subtracting the

hidden representations with the relation indicators

mean, as shown in Equation 2.

H = softmax(
QKT

√
dk

)V (1)

knwl(Q,K,V) = H−
∑

K/m (2)

where knwl indicates knowledge-attention pro-

cess, m is the number of relation indicators, and

dk is dimension of key/query vectors which is a

scaling factor same as in Vaswani et al. (2017).

The subtraction of relation indicators mean will

result in small outputs for irrelevant words. More

importantly, the resulted output will be close to

the related relation indicators and further apart

from other relation indicators in relational seman-

tic space. Therefore, the proposed knowledge-

attention mechanism is effective in capturing the

linguistic clues of relations represented by relation

indicators in the relational semantic space.

3.2.2 Multi-head knowledge-attention

Inspired by the multi-head attention in Trans-

former (Vaswani et al., 2017), we also have

multi-head knowledge-attention which first lin-

early transforms Q, K and V h times, and then

perform h knowledge-attentions simultaneously,

as shown in Figure 1 (right).

Different from the Transformer encoder, we use

the same linear transformation for Q and K in

each head to keep the correspondence between

queries and keys.

headi = knwl(QW
Q
i ,KW

Q
i ,VWV

i ) (3)

where W
Q
i ,W

V
i ∈ R

dk×(dk/h) and i ∈ [1, 2, ...h].
Besides, only one residual connection from input

embeddings to outputs of position-wise feed for-

ward networks is used. We also mask the outputs

of padding tokens using zero vectors.

The multi-head structure in knowledge-

attention allows the model to jointly attend inputs

to different relational semantic subspaces with

different contributions of relation indicators. This

is beneficial in recognizing complex relations

where various compositions of relation indicators

are needed.

3.3 Position-aware Attention

It has been proven that the relative position infor-

mation of each token with respective to the two

target entities is beneficial for relation extraction

task (Zeng et al., 2014). We modify the position-

aware attention originally proposed by Zhang et

al. (2017) to incorporate such relative position in-

formation and find the importance of each token to

the final sentence representation.

Assume the relative position of token xi to tar-

get entity is p̂i. We apply position binning func-

tion (Equation 4) to make it easier for the model

to distinguish long and short relative distances.

pi =

{

p̂i |p̂i| ≤ 2
p̂i
|p̂i|

⌈log2 |p̂i|+ 1⌉ |p̂i| > 2
(4)

After getting the relative positions psi and poi to the

two entities of interest (subject and object respec-

tively), we map them to position embeddings base

on a shared position embedding matrix Wp. The

two embeddings are concatenated to form the final

position embedding for token xi: pi = [ps
i ,p

o
i ].

Position-aware attention is performed on the

outputs of knowledge-attention O ∈ R
n×dk , tak-

ing the corresponding relative position embed-

dings P ∈ R
n×dp into consideration:

f = OT softmax(tanh(OWo +PWp)c) (5)

where Wo ∈ R
dk×da , Wp ∈ R

dp×da , da is atten-

tion dimension, and c ∈ R
da is a context vector

learned by the neural network.

4 Integrate Knowledge-attention with

Self-attention

The self-attention encoder proposed by Vaswani

et al. (2017) learns internal semantic features by

modeling pair-wise interactions within the texts

themselves, which is effective in capturing long-

distance dependencies. Our proposed knowledge-

attention encoder has complementary strengths of

capturing the linguistic clues of relations precisely

based on external knowledge. Therefore, it is ben-

eficial to integrate the two models to maximize the

utilization of both external knowledge and train-

ing data. In this section, we propose three inte-

gration approaches as shown in Figure 2, and each

approach has its own advantages.
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Figure 2: Three ways of integrating knowledge-attention with self-attention: multi-channel attention and softmax

interpolation (top), as well as knowledge-informed self-attention (bottom).

4.1 Multi-channel Attention

In this approach, self-attention and knowledge-

attention are treated as two separate channels to

model sentence from different perspectives. Af-

ter applying position-aware attention, two feature

vectors f1 and f2 are obtained from self-attention

and knowledge-attention respectively. We apply

another attention mechanism called multi-channel

attention to integrate the feature vectors.

In multi-channel attention, feature vectors are

first fed into a fully connected neural network to

get their hidden representations hi. Then atten-

tion weights are calculated using a learnable con-

text vector c, which reflects the importance of each

feature vector to final relation classification. Fi-

nally, the feature vectors are integrated based on

attention weights, as shown in Equation 6.

r =
∑

i

softmax(hT
i c)hi (6)

After obtaining the integrated feature vector r, we

pass it to a softmax classifier to determine the re-

lation class. The model is trained using stochastic

gradient descent with momentum and learning rate

decay to minimize the cross-entropy loss.

The main advantage of this approach is flexibil-

ity. Since the two channels process information

independently, the input components are not nec-

essary to be the same. Besides, we can add more

features from other sources (e.g. subject and ob-

ject categories) to multi-channel attention to make

final decision based on all the information sources.

4.2 Softmax Interpolation

Similar as multi-channel attention, we also use

two independent channels for self-attention and

knowledge-attention in softmax interpolation. In-

stead of integrating the feature vectors, we make

two independent predictions using two softmax

classifiers based on the feature vectors from the

two channels. The loss function is defined as to-

tal cross-entropy loss of the two classifiers. The

final prediction is obtained using an interpolation

function of the two softmax distributions:

p = β · p1 + (1− β) · p2 (7)

where p1, p2 are the softmax distributions

obtained form self-attention and knowledge-

attention respectively, and β is the priority weight

assigned to self-attention.

Since knowledge-attention focuses on capturing

the keywords and cue phrases of relations, the pre-

cision will be higher than self-attention while the

recall is lower. The proposed softmax interpo-

lation approach is able to take the advantages of

both attention mechanisms and balance the preci-

sion and recall by adjusting the priority weight β.

4.3 Knowledge-informed Self-attention

Since knowledge-attention and self-attention

share similar structures, it is also possible to

integrate them into a single channel. We propose

knowledge-informed self-attention encoder which

incorporates knowledge-attention into every

self-attention head to jointly model the semantic

relations based on both knowledge and data.

The structure of knowledge-informed self-

attention is shown in Figure 3. Formally, given

texts input matrix Q ∈ R
n×dk and knowledge in-

dicators K ∈ R
m×dk . The output of each attention

head is calculated as follows:

headi = knwl(QW
Q
i ,KW

Q
i ,KWV

i )+

self(QW
Qs

i ,QWKs

i ,QWVs

i )
(8)
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Figure 3: Knowledge-informed self-attention structure.

Q, K represent input matrix and knowledge indicators

respectively, h is the number of attention heads.

where knwl and self indicate knowledge-

attention and self-attention respectively, and all

the linear transformation weight matrices have the

dimensionality of W ∈ R
dk×(dk/h).

Since each self-attention head is aided with

prior knowledge in knowledge-attention, the

knowledge-informed self-attention encoder is able

to capture more lexical and semantic information

than single attention encoder.

5 Experiment and Analysis

5.1 Baseline Models

To study the performance of our proposed models,

the following baseline models are used for com-

parison:

CNN-based models including: (1) CNN: the clas-

sical convolutional neural network for sentence

classification (Kim, 2014). (2) CNN-PE: CNN

with position embeddings dedicated for relation

classification (Nguyen and Grishman, 2015). (3)

GCN: a graph convolutional network over the

pruned dependency trees of the sentence (Zhang

et al., 2018).

RNN-based models including: (1) LSTM: long

short-term memory network to sequentially model

the texts. Classification is based on the last hid-

den output. (2) PA-LSTM: Similar position-aware

attention mechanism as our work is used to sum-

marize the LSTM outputs (Zhang et al., 2017).

CNN-RNN hybrid model including contextu-

alized GCN (C-GCN) where the input vectors

are obtained using bi-directional LSTM net-

work (Zhang et al., 2018).

Self-attention-based model (Self-attn) which

uses self-attention encoder to model the input sen-

tence. Our implementation is based on Bilan and

Roth (2018) where several modifications are made

on the original Transformer encoder, including the

use of relative positional encodings instead of ab-

solute sinusoidal encodings, as well as other con-

figurations such as residual connection, activation

function and normalization.

For our model, we evaluate both the proposed

knowledge-attention encoder (Knwl-attn) as well

as the integrated models with self-attention in-

cluding multi-channel attention (MCA), softmax

interpolation (SI) and knowledge-informed self-

attention (KISA).

5.2 Experiment Settings

We conduct our main experiments on TACRED,

a large-scale relation extraction dataset introduced

by Zhang et al. (2017). TACRED contains over

106k sentences with hand-annotated subject and

object entities as well as the relations between

them. It is a very complex relation extraction

dataset with 41 relation types and a no relation

class when no relation is hold between entities.

The dataset is suited for real-word relation extrac-

tion since it is unbalanced with 79.5% no relation

samples, and multiple relations between different

entity pairs can be exist in one sentence. Besides,

the samples are normally long sentences with an

average of 36.2 words.

Since the dataset is already partitioned into

train (68124 samples), dev (22631 samples) and

test (15509 samples) sets, we tune model hyper-

parameters using dev set and evaluate model us-

ing test set. The evaluation metrics are micro-

averaged precision, recall and F1 score. For fair

comparison, we select the model with median F1

score on dev set from 5 independent runs, same

as Zhang et al. (2017). The same “entity mask”

strategy is used which replaces subject (or object)

entity with special
〈

NER
〉

-SUBJ (or
〈

NER
〉

-OBJ)

tokens to avoid overfittting on specific entities and

provide entity type information.

Besides TACRED, another dataset called

SemEval2010-Task8 (Hendrickx et al., 2009)

is used to evaluate the generalization ability of

our proposed model. The dataset is significantly

smaller and simpler than TACRED, which has

8000 training samples and 2717 testing samples.

It contains 9 directed relations and 1 other relation

(19 relation classes in total). We use the official

macro-averaged F1 score as evaluation metric.

We use one layer encoder with 6 attention heads

for both knowledge-attention and self-attention
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since further increasing the number of layers and

attention heads will degrade the performance. For

softmax interpolation, we choose β = 0.8 to

balance precision and recall. Word embeddings

are fine-tuned based on pre-trained GloVe (Pen-

nington et al., 2014) with dimensionality of 300.

Dropout (Srivastava et al., 2014) is used during tri-

aning to alleviate overfitting. Other model hyper-

parameters and training details are described in

Appendix due to space limitations.

5.3 Results and Analysis

5.3.1 Results on TACRED dataset

Table 1 shows the results of baseline as well as

our proposed models on TACRED dataset. It is

observed that our proposed knowledge-attention

encoder outperforms all CNN-based and RNN-

based models by at least 1.3 F1. Meanwhile, it

achieves comparable results with C-GCN and self-

attention encoder, which are the current start-of-

the-art single-model systems.

Comparing with self-attention encoder, it is ob-

served that knowledge-attention encoder results in

higher precision but lower recall. This is reason-

able since knowledge-attention encoder focuses

on capturing the significant linguistic clues of re-

lations based on external knowledge, it will re-

sult in high precision for the predicted relations

similar to rule-based systems. Self-attention en-

coder is able to capture more long-distance de-

pendency features by learning from data, result-

ing in better recall. By integrating self-attention

and knowledge-attention using the proposed ap-

proaches, a more balanced precision and recall can

be obtained, suggesting the complementary effects

of self-attention and knowledge-attention mech-

anisms. The integrated models improve perfor-

mance by at least 0.9 F1 score and achieve new

state-of-the-art results among all the single end-

to-end models.

Comparing the three integrated models, soft-

max interpolation (SI) achieves the best perfor-

mance. More interestingly, we found that the pre-

cision and recall can be controlled by adjusting the

priority weight β. Figure 4 shows impact of β on

precision, recall and F1 score. As β increases, pre-

cision decreases and recall increases. Therefore,

we can choose a small β for relation extraction

system which requires high precision, and a large

β for the system requiring better recall. F1 score

reaches the highest value when precision and re-

Model P R F1

CNN† 72.1 50.3 59.2

CNN-PE† 68.2 55.4 61.1

GCN‡ 69.8 59.0 64.0

LSTM† 61.4 61.7 61.5

PA-LSTM† 65.7 64.5 65.1

C-GCN‡ 69.9 63.3 66.4

Self-attn†† 64.6 68.6 66.5

Knwl-attn 70.0 63.1 66.4

Knwl+Self (MCA) 68.4 66.1 67.3*

Knwl+Self (SI) 67.1 68.4 67.8*

Know+Self (KISA) 69.4 66.0 67.7*

Table 1: Micro-averaged precision (P), recall (R) and

F1 score on TACRED dataset. †, ‡ and †† mark the

results reported in (Zhang et al., 2017), (Zhang et al.,

2018) and (Bilan and Roth, 2018) respectively. ∗
marks statistically significant improvements over Self-

attn with p < 0.01 under one-tailed t-test.

Figure 4: Change of precision, recall and F1 score on

dev set as the priority weight β in softmax interpolation

changes.

call are balanced (β = 0.8).

Knowledge-informed self-attention (KISA) has

comparable performance with softmax interpola-

tion, and without the need of hyper-parameter tun-

ing since knowledge-attention and self-attention

are integrated into a single channel. The per-

formance gain over self-attention encoder is 1.2

F1 with much improved precision, demonstrat-

ing the effectiveness of incorporating knowledge-

attention into self-attention to jointly model the

sentence based on both knowledge and data.

Performance gain is the lowest for multi-

channel attention (MCA). However, the model is

more flexible in the way that features from other

information sources can be easily added to the
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Model P R F1

MCA 68.4 66.1 67.3

+ NER 68.7 66.2 67.5

+ Entity category 70.0 65.8 67.8

+ Both 70.1 66.0 67.9

Table 2: Results of adding NER embeddings and entity

categorical embeddings to the multi-channel attention

(MCA) integrated model.

model to further improve its performance. Table

2 shows the results of adding NER embeddings

of each token to self-attention channel, and en-

tity (subject and object) categorical embeddings to

multi-channel attention as additional feature vec-

tors. We use dimensionality of 30 and 60 for

NER and entity categorical embeddings respec-

tively, and the two embedding matrixes are learned

by the neural network. Results show that adding

NER and entity categorical information to MCA

integrated model improves F1 score by 0.2 and 0.5

respectively, and adding both improves precision

significantly, resulting a new best F1 score.

5.3.2 Results on SemEval2010-Task8 dataset

We use SemEval2010-Task8 dataset to evaluate

the generalization ability of our proposed model.

Experiments are conducted in two manners: mask

or keep the entities of interest. Results in Table

3 show that the “entity mask” strategy degrades

the performance, indicating that there exist strong

correlations between entities of interest and rela-

tion classes in SemEval2010-Task8 dataset. Al-

though the results of keeping the entities are better,

the model tends to remember these entities instead

of focusing on learning the linguistic clues of re-

lations. This will result in bad generalization for

sentences with unseen entities.

Regardless of whether the entity mask is used,

by incorporating knowledge-attention mechanism,

our model improves the performance of self-

attention by a statistically significant margin, espe-

cially the softmax interpolation integrated model.

The results on SemEval2010-Task8 are consistent

with that of TACRED, demonstrating the effec-

tiveness and robustness of our proposed method.

5.3.3 Ablation study

To study the contributions of specific components

of knowledge-attention encoder, we perform abla-

tion experiments on the dev set of TACRED. The

results of knowledge-attention encoder with and

Model mask entity keep entity

Self-attn 76.8 83.1

Knwl-attn 76.1 82.3

Knwl+Self (MCA) 77.4* 84.0*

Knwl+Self (SI) 78.0* 84.3*

Know+Self (KISA) 77.5* 84.0*

Table 3: Macro-averaged F1 score on SemEval2010-

Task8 dataset. ∗ marks statistically significant im-

provements over Self-attn with p < 0.01 under one-

tailed t-test.

Model Dev F1

Knwl-attn Encoder 66.5

1. − Multi-head structure 64.6

2. − Synonym relation indicators 64.7

3. − Relation indicators mean 65.0

4. − Output masking 65.8

5. − Entity masking 65.4

6. − Relative positions 63.0

Table 4: Ablation study on knowledge-attention en-

coder. Results are the median F1 scores of 5 indepen-

dent runs on dev set of TACRED.

without certain components are shown in Table 4.

It is observed that: (1) The proposed multi-

head knowledge-attention structure outperforms

single-head significantly. This demonstrates the

effectiveness of jointly attending texts to different

relational semantic subspaces in the multi-head

structure. (2) The synonyms improve the per-

formance of knowledge-attention since they are

able to broaden the coverage of relation indicators

and form a robust relational semantic space. (3)

The subtraction of relation indicators mean vec-

tor from attention hidden representations helps to

suppress the activation of irrelevant words and re-

sults in a better representation for each word to

capture the linguistic clues of relations. (4-5) The

two masking strategies are helpful for our model:

the output masking eliminates the effects of the

padding tokens and the entity masking avoids en-

tity overfitting while providing entity type infor-

mation. (6) The relative position embedding term

in position-aware attention contributes a signifi-

cant amount of F1 score. This shows that posi-

tional information is particularly important for re-

lation extraction task.

5.3.4 Attention visualization

To verify the complementary effects of

knowledge-attention encoder and self-attention
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Sample Sentences True Relation Predict

SUBJ-PERSON graduated in 1992 from the OBJ-ORGANIZATION OBJ-ORGANIZATION OBJ-ORGANIZATION

with a degree in computer science and had worked as a systems analyst at a Pittsburgh law firm since 1999 .
per:schools
attended

correct

SUBJ-PERSON graduated in 1992 from the OBJ-ORGANIZATION OBJ-ORGANIZATION OBJ-ORGANIZATION

with a degree in computer science and had worked as a systems analyst at a Pittsburgh law firm since 1999 .
correct

OBJ-PERSON OBJ-PERSON , a public affairs and government relations strategist , was executive director of the

SUBJ-ORGANIZATION SUBJ-ORGANIZATION Policy Institute from 2005 to 2010 .
org:top members
/employees

correct

OBJ-PERSON OBJ-PERSON , a public affairs and government relations strategist , was executive director of the

SUBJ-ORGANIZATION SUBJ-ORGANIZATION Policy Institute from 2005 to 2010 .
wrong

Founded in 1992 in Schaumburg , Illinois , the SUBJ-ORGANIZATION is one of the largest Chinese - American

associations of professionals in the OBJ-COUNTRY OBJ-COUNTRY .
org:country of
headquarters

wrong

Founded in 1992 in Schaumburg , Illinois , the SUBJ-ORGANIZATION is one of the largest Chinese - American

associations of professionals in the OBJ-COUNTRY OBJ-COUNTRY .
correct

Table 5: Attention visualization for knowledge-attention encoder (first) and self-attention encoder (second). Words

are highlighted based on the attention weights assigned to them. Best viewed in color.

encoder, we compare the attention weights as-

signed to words from the two encoders. Table 5

presents the attention visualization results on sam-

ple sentences. For each sample sentence, attention

weights from knowledge-attention encoder are

visualized first, followed by self-attention en-

coder. It is observed that knowledge-attention

encoder focuses more on the specific keywords or

cue phrases of certain relations, such as “gradu-

ated”, “executive director” and “founded”; while

self-attention encoder attends to a wide range of

words in the sentence and pays more attention to

the surrounding words of target entities especially

the words indicating the syntactic structure, such

as “is”, “in” and “of”. Therefore, knowledge-

attention encoder and self-attention encoder have

complementary strengths that focus on different

perspectives for relation extraction.

5.3.5 Error analysis

To investigate the limitations of our proposed

model and provide insights for future research, we

analyze the errors produced by the system on the

test set of TACRED. For knowledge-attention en-

coder, 58% errors are false negative (FN) due to

the limited ability in capturing long-distance de-

pendencies and some unseen linguistic clues dur-

ing training. For our integrated model4 that takes

the benefits of both self-attention and knowledge-

attention, FN is reduced by 10%. However, false

positive (FP) is not improved due to overfitting

that leads to wrong predictions. Many errors are

4We observed similar error behaviors of the three pro-
posed integrated models.

caused by multiple entities with different rela-

tions co-occurred in one sentence. Our model

may mistake irrelevant entities as a relation pair.

We also observed that many FP errors are due

to the confusions between related relations such

as “city of death”and “city of residence”. More

data or knowledge is needed to distinguish “death”

and “residence”. Besides, some errors are caused

by imperfect annotations.

6 Conclusion and Future Work

We introduce knowledge-attention encoder which

effectively incorporates prior knowledge from ex-

ternal lexical resources for relation extraction. The

proposed knowledge-attention mechanism trans-

forms texts from word space into relational se-

mantic space and captures the informative linguis-

tic clues of relations effectively. Furthermore, we

show the complementary strengths of knowledge-

attention and self-attention, and propose three dif-

ferent ways of integrating them to maximize the

utilization of both knowledge and data. The pro-

posed models are fully attention-based end-to-

end systems and achieve state-of-the-art results on

TACRED dataset, outperforming existing CNN,

RNN, and self-attention based models.

In future work, besides lexical knowledge,

we will incorporate conceptual knowledge from

encyclopedic knowledge bases into knowledge-

attention encoder to capture the high-level seman-

tics of texts. We will also apply knowledge-

attention in other tasks such as text classification,

sentiment analysis and question answering.
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