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Abstract

Background: High-throughput sequencing is gradually replacing microarrays as the preferred method for studying

mRNA expression levels, providing nucleotide resolution and accurately measuring absolute expression levels of

almost any transcript, known or novel. However, existing microarray data from clinical, pharmaceutical, and

academic settings represent valuable and often underappreciated resources, and methods for assessing and

improving the quality of these data are lacking.

Results: To quantitatively assess the quality of microarray probes, we directly compare RNA-Seq to Agilent microarrays

by processing 231 unique samples from the Allen Human Brain Atlas using RNA-Seq. Both techniques provide highly

consistent, highly reproducible gene expression measurements in adult human brain, with RNA-Seq slightly

outperforming microarray results overall. We show that RNA-Seq can be used as ground truth to assess the reliability of

most microarray probes, remove probes with off-target effects, and scale probe intensities to match the expression

levels identified by RNA-Seq. These sequencing scaled microarray intensities (SSMIs) provide more reliable, quantitative

estimates of absolute expression levels for many genes when compared with unscaled intensities. Finally, we validate

this result in two human cell lines, showing that linear scaling factors can be applied across experiments using the

same microarray platform.

Conclusions: Microarrays provide consistent, reproducible gene expression measurements, which are improved using

RNA-Seq as ground truth. We expect that our strategy could be used to improve probe quality for many data sets from

major existing repositories.

Keywords: Allen Brain Atlas, Microarray, RNA-Seq, High-throughput sequencing, Transcriptome profiling, Reliability,

Gene expression, Brain

Background

RNA-Seq and related sequencing-based technologies are

gradually emerging as the preferred method for genome-

wide transcriptional analyses, as they provide several po-

tential advantages over hybridization-based microarray

technologies [1-5]. Fragment counts from RNA-Seq

more reliably track absolute gene expression levels (as

measured by quantitative PCR) than the fluorescence- or

intensity-based measures obtained using DNA microar-

rays [2,3]. Microarray intensities can also be prone to

background noise and hybridization saturation, leading

to a lower dynamic range than RNA-Seq [1,2,4]. Further-

more, as RNA-Seq does not require a priori probe

selection, it allows unbiased analysis of the entire tran-

scriptome, including measurements of gene isoforms,

noncoding RNAs, novel transcripts [4], and base-level

transcriptional changes. But RNA sequencing techno-

logies do not always represent the most appropriate

strategy for large scale transcriptomics. In particular,

comparison between new and historical data sets is often

desired, and direct comparisons across platforms can be

problematic [6,7]. Currently, data from thousands of

studies on all of the major microarray platforms are pub-

licly available in databases such as ArrayExpress [8] and* Correspondence: mikeh@alleninstitute.org
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Gene Expression Omnibus (GEO) [9]. These data have

stimulated important advances in many biological areas

over the past two decades, including classification of

cancer subtypes [10]; identification of gene expression

changes in many diseases; drug discovery [11,12]; and

novel insights into the evolution, development, struc-

ture, and dysfunction of the human brain [13-16]. More-

over, microarrays and related technologies are still used

in the clinic to measure biomarkers for tumor classifica-

tion, patient diagnosis, patient prognosis, and predicted

response to treatment [17-20]. While there are several

options, both commercial (i.e, GeneSpring) and open

source (i.e., the "affy" and "limma" libraries in R), for

microarray analysis and data quality assessment, to the

best of our knowledge none take advantage of the im-

proved absolute gene expression measurements from

sequencing technologies.

Here we present the largest comparison between micro-

array and RNA-Seq to date, using samples from the Allen

Human Brain Atlas [14,21], a publicly available gene ex-

pression atlas of the human brain with microarray-based

genome-wide transcriptional profiling of specific brain re-

gions spanning all major anatomical structures of the

adult brain. RNA aliquots from 231 unique samples across

two adult human brains previously analyzed using Agilent

microarrays were reprocessed using the Illumina Hiseq

RNA-Seq technology, sequenced to a depth of 30 million

reads. We find that both methods produce highly re-

producible gene expression measurements. RNA-Seq

performed slightly better in terms of reproducibility of

measurements and detection of differential expression

between regions as described previously [2,3]. However,

by treating the RNA-Seq as ground truth, we were able

to improve microarray results. First, taking advantage of

the high variability of gene expression levels across the

adult human brain, we were able to identify the most

reliable microarray probe for each gene and remove

poorly behaving probes. Moreover, intensities for over

80% of probes could be scaled to provide highly reliable,

quantitative estimates of absolute gene expression that

should be transferable to any experiment using the same

microarray. Finally, we propose an extension to our experi-

mental setup which allows it to be applied to a greater

number of probes, and across several microarray platforms.

In summary, we find that microarray data can be improved

by filtering and scaling probes to RNA-Seq expression

values using a relatively small number of samples, and that

both methods provide reproducible gene-level expression

information that can lead to valuable biological insights.

Results

Experimental design

The Allen Human Brain Atlas (http://human.brain-map.

org) includes transcriptional profiling data from more than

3500 samples comprising approximately 200 brain regions

in six clinically unremarkable adult human brains using

custom Agilent DNA microarrays [14,21]. These arrays in-

clude every probe on the Agilent Human GE 44K micro-

array and approximately 16,000 additional probes. To

directly compare the output of transcriptome analysis from

microarrays and RNA-Seq across the human brain, we rea-

nalyzed a subset of the same RNA isolates used for micro-

array analysis using RNA-Seq. A total of 240 samples from

29 matched cortical and subcortical regions in two brains

were processed using Illumina HiSeq RNA-Seq technology

(Figure 1). In total each brain region was analyzed in eight

independent samples, spanning both hemispheres of both

brains, with two independent sampling sites per hemi-

sphere (treated as biological replicates). This experiment

was designed to facilitate comparisons between biological

replicates, between left and right hemispheres, between

brains, and across 22 relatively similar neocortical regions

and 7 more transcriptionally distinct non-neocortical

regions [14]. Overall nine samples were excluded from

this analysis—eight technical replicates and one sample

that failed quality control—leaving a total of 231 unique

samples.

RNA-Seq data preparation using RSEM alignment

followed by TbT and ComBat normalization

Several methods for sequence alignment and gene ex-

pression quantification of RNA-Seq data have been de-

veloped (for review see [22]) including the Tuxedo Suite

[23], RSeqTools [24], and RSEM [25]. These methods

each aim to summarize expression levels based on the

number of reads that align to each gene, but differ in

their treatment of splice junctions and ambiguous se-

quence alignments. For sequence alignment we used

RSEM, which aligns reads to known isoforms and then

calculates gene expression as the sum of isoform expres-

sion for a given gene, assigning ambiguous reads to mul-

tiple isoforms using a maximum likelihood statistical

model [25]. The resulting gene expression values are

presented as transcripts per million (TPM) after scaling

for gene length and for the total number of reads. Our

analyses can be reproduced starting from these TPM

values using Additional file 1 and data available from the

Allen Brain Atlas data portal (www.brain-map.org).

Proper normalization of microarray data can remove

non-biological differences between samples due to batch

effects and differences between arrays. These RNA-Seq

data showed minimal batch effects (Additional file 2;

supplementary figure legends in Additional file 3), but

could potentially still be improved with respect to variability

after scaling to the total transcript count. One strategy for

doing this is TbT normalization, which scales each sample

based on the total number of reads found in genes that

are not differentially expressed [26]. This normalization
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strategy resulted in a slight improvement in data quality

when considering cortical vs. non-cortical regions as the

two sample groups. Specifically, we see a three-fold de-

crease in between-sample gene expression variability

(based on standard deviation; Additional file 4) and

improved between-brain reproducibility, as measured

by between-brain correlation of differential expression

across brain regions (detailed in next section; increase

from R = 0.89 to R = 0.90; Additional file 4). After TbT

normalization, we identified a systematic bias between

samples from the two brains, in that many genes show a

consistent change in expression between brains across

many regions assayed. For example, samples from the

two brains cluster distinctly for many brain regions

(Additional file 2), and furthermore region and brain of

origin make up most of the variance between samples

(Additional file 4). Whether these between-brain differ-

ences are due to real biological differences in brain (i.e.,

due to age) or technical issues (i.e., due to RNA quality),

these systematic differences detract from our ability to

compare expression levels between brains, which is one

of our primary strategies for assessing biological repro-

ducibility. Therefore, to standardize gene expression

data between brains we used ComBat [27], which is an

empirical Bayes framework that was designed to remove

batch effects from microarray data. In addition to re-

moving the systematic bias between samples from the

two brains (Additional file 4), we find that ComBat also

improved between-brain reproducibility in our RNA-

Seq data (increase from R=0.90 to R= 0.92; Additional file 4),

which justifies our use of this method in this context.

Finally, we note that we used a comparable strategy

to further normalize the subset of microarray data

from the Allen Human Brain Atlas used in this study

(Additional file 3), leading to comparable improvements

in data quality (Additional file 4).

RNA-Seq only slightly outperforms microarray based on

global reproducibility measures

Several strategies for comparing RNA-Seq and micro-

array technologies have been previously used, including

correlation between absolute expression levels, dynamic

range assessments, and measurements of differential ex-

pression [1-5,28], but these comparisons typically in-

volved very few samples. In order to quantitatively

characterize the quality of gene expression calls from

both RNA-Seq and microarray, we performed these and

other global reproducibility assessments tailored specif-

ically to our experimental design. We first evaluated the

similarity of expression between each pair of biological

replicates using Pearson correlation (Figure 2A). RNA-

Seq showed a small but significant improvement over

microarray (p < 10-31; Wilcoxon rank sum test); however,

correlations for both methods were quite high (median

R = 0.984 vs. R = 0.994), suggesting a high degree of re-

producibility when using either method. Next, we dir-

ectly compared average TPM values for each gene with

corresponding average intensities measured by microarray

(Figure 2B). These two measures are highly correlated

(R = 0.78), at a level consistent with previous studies in

liver and kidney ([3]; Spearman = 0.73 and 0.75), nucleus

accumbens ([2]; R = 0.698-0.764), and pathogenic bacteria

([28]; Spearman = 0.78 and 0.80). Interestingly, a few hun-

dred genes had at least one (and in some cases all) probes

Figure 1 Experimental design. RNA from 240 samples spanning 29 neocortical (c) and non-neocortical (s) regions were run using microarray

and RNA-Seq in two brains. Gene expression levels were then calculated using comparable strategies. Microarray results were assessed, filtered,

and improved using RNA-Seq as ground truth. Details on region selection and preprocessing are available in the Methods and Additional file 3.

The source of the microarray image is Guillaume Paumier.
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with much higher microarray intensity levels than ex-

pected by their TPM values (red dots in Figure 2B), al-

though the converse—genes with high expression in

RNA-Seq and low expression with microarray—were very

rare. These probes targeted members of several gene fam-

ilies (i.e., histone and keratin genes; Additional file 5) sug-

gesting that they may be more prone to non-specific or

off-target hybridization, for example with genes with a

high degree of sequence similarity. Furthermore, these

probes, which were selected on the basis of their absolute

expression differences between methods, also tended not

to show consistent differential expression patterns be-

tween methods (Additional file 5), suggesting that expres-

sion of a subset of probes may not be accurately assessed

using microarray (as discussed in detail later).

To compare the dynamic range of both methods, we

next plotted a histogram of gene expression levels across

all samples in our study (Figure 2C). We note that this

result will be highly dependent on sequencing depth,

and that our results are based on approximately 30 mil-

lion reads per sample. RNA-Seq shows higher sensitivity

in quantifying genes with very low expression, as shown

by the extended leftward tail in the bottom relative to the

top plot. Consistent with this finding, more genes were

identified as present by RNA-Seq compared to microarray,

regardless of the number of samples assessed (Figure 2D).

For example, approximately 80% of genes were found by

microarray to be expressed in at least half of the samples,

compared with approximately 90% by RNA-Seq, with the

difference mostly in genes with low expression. However,

very few genes identified as absent in RNA-Seq (i.e., no

transcript fragments) were called present by microarray,

suggesting a relatively low false positive rate in the Agilent

present/absent call.

Most genes show expression patterns between brain

regions that are highly consistent among individuals

[14]. To assess between-brain consistency in these data,

we selected 100,000 random genes and 100,000 pairs of

randomly selected non-neocortical brain regions in both

brains, identified the log2 fold change of each gene be-

tween the corresponding pairs of regions, and then plot-

ted these values between brains (Figure 2E-F). Using this

HGFE

DCBA

Figure 2 Microarray and RNA-Seq show highly consistent gene expression metrics. A) Pearson correlations of absolute expression levels

between 115 replicate sample pairs using both methods. B) Average log2 expression levels between RNA-Seq (TPM) and microarray (intensity)

are strongly correlated. A subset of bright probes (red) show particularly increased intensity in microarray. C) Histograms showing distribution of

gene expression measures across all samples with microarray (top) and RNA-Seq (bottom). Note the extended leftward tail on the RNA-Seq

distribution indicating the lower range sensitivity. D) Number of genes called present in microarray (light grey) and RNA-Seq (dark grey) for at

least 5%, 50%, and 95% of samples. Horizontal black bars indicate the percentage of overlapping genes called as present using both methods.

E-F) Correlation of differential expression between brains based on microarray intensity (E) and RNA-Seq TPM values (F). Each of 100,000 points

shows the log2 fold change of a random gene between two random non-neocortical regions as measured by brain 1 (x-axis) and brain 2 (y-axis).

G) Correlation of differential expression between methods in the training set (brain 2). Labeling as in E, except fold changes correspond to

RNA-Seq (x-axis) and microarray (y-axis). H) Number of genes differentially expressed between non-neocortical regions based on an ANOVA, for

various p-value thresholds. Colors and lines as in (D).
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strategy, we found highly correlated expression patterns

between brains for both microarray (R = 0.84) as well as

RNA-Seq (R = 0.92). We next directly compared the mag-

nitude of differential gene expression between methods

using the same strategy (Figure 2G). As with absolute ex-

pression levels, differential expression fold changes be-

tween methods are highly correlated (R = 0.78), at a level

consistent with previous studies (Spearman = 0.73 be-

tween liver and kidney, for example [3]). These correla-

tions are not as significant as between brains (Figure 2E),

despite the fact that RNA from the same RNA samples

were used in both methods, supporting results from previ-

ous studies that comparisons across platforms can be

problematic [6,7]. Finally, to identify specific genes show-

ing significantly different patterns of expression between

non-neocortical brain regions, we performed ANOVA

on all samples from these areas. At several p-value

thresholds we identified a highly overlapping set of dif-

ferentially expressed genes, with more genes reaching

significance using RNA-Seq than microarray (Figure 2H).

Collectively, these global metrics show that, although

Illumina sequencing technologies slightly outperform

Agilent microarrays by all of these metrics, both

methods can consistently and reproducibly evaluate

expression levels in the adult human brain for a large

percentage of genes.

Reproducibility dependent on gene expression level and

gene size

Genes with very low expression cannot necessarily be reli-

ably evaluated with either arrays or sequencing approaches.

In microarray, changes in expression of such genes are

often indistinguishable from fluctuations in intensity due

to background noise [29]. Likewise, expression measures

derived from a small number of sequence fragments are

subject to Poisson counting error [3,30,31]. Thus, while

RNA-Seq yields a broader dynamic range and higher per-

centage of expressed genes, there is no guarantee that the

percentage of genes with reproducibly predicted expression

levels will be higher using RNA-Seq (for example, see [4]).

To quantify this relationship, we first defined a metric of

biological reproducibility—defined as the between-brain

correlation of average expression level in each region—for

each gene separately (Figure 3A). We then sorted genes

based on expression level, divided them into twenty bins of

equal size, and identified the mean and standard error of

the mean (SEM) for each bin. For both technologies we

find that genes expressed at very low levels show progres-

sively decreasing reproducibility with decreasing expres-

sion level, whereas for more highly expressed genes

(TPM > 1 for RNA-Seq; log2[intensity] > 5 for Agilent

microarray), reproducibility is much less dependent on

expression level (Figure 3B). Furthermore, regardless of

the expression level, RNA-Seq appears to produce more

consistent gene expression patterns between brains than

microarray. Finally, to test the effect of gene size on repro-

ducibility, we repeated the above assessment, this time

sorting genes based on transcript length (Additional file 6).

Although the effect is more pronounced with RNA-Seq,

we find a nearly linear relationship (R = 0.96) between

transcript length and biological reproducibility using both

methods. This result appears to be due to a combination

of technical variability (the number of sheared fragments

per transcript increases with increasing transcript size)

and biological variability (larger genes tend to be more dif-

ferentially expressed across the human brain than smaller

genes; Additional file 6). The relationship between gene

size and biological variability would be an interesting topic

for future study.

B

A

Figure 3 Gene expression reproducibility is dependent on

expression level. A) Example genes showing good (CBNL2, left) and

poor (TCF15, right) reproducibility using microarray. Reproducibility is

defined here based on the between-brain correlation of a gene on

average log2(intensity) values in each of the 29 brain regions. B) There

is a strong relationship between expression level and reproducibility

for genes with low expression. Genes were sorted from lowest to

highest expression and divided into 20 bins based on expression,

which each represent 5% of array genes (x-axis). Each point shows

the average between-brain correlation (as in A) for all genes in that

bin (y-axis), as measured by microarray (blue) and RNA-Seq (green).

Arrows indicate approximate average TPM and intensity values

below which RNA-Seq (TPM = 1) and microarray (log2(intensity) = 5)

become progressively less reliable. Approximately 25% and 33% of

genes have expression levels below these thresholds in RNA-Seq

and microarray, respectively. The standard error of the mean (SEM)

for each bin is smaller than the dot size.

Miller et al. BMC Genomics 2014, 15:154 Page 5 of 14

http://www.biomedcentral.com/1471-2164/15/154



RNA-Seq can filter Agilent microarray probes

Many microarray platforms include multiple probes for

a subset of genes. While most such probes show roughly

consistent gene expression patterns, when these probes

do not agree it is not always obvious which one most accur-

ately reflects gene expression levels. Choosing the probe

with the highest expression produces consistent expression

levels between experiments (i.e., [32] and this paper); how-

ever, such a method only shows that probe expression is

reliable and not that the probe uniquely targets the appro-

priate gene (for example, see Figure 2b and Additional file 5).

We hypothesized that choosing optimal probes based on

correlation with RNA-Seq TPM calls, which have previ-

ously been shown to accurately track absolute gene ex-

pression levels [2,3], should lead to more reproducible

microarray results than any strategy based solely on array

intensities. To test this we chose the probes with the high-

est ("best") and lowest ("worst") between-method corre-

lation across samples for each of the 91% of genes with at

least two representative probes on the array, and assessed

how each set of probes compared with the array-derived,

highest expressed probes. As an extreme example, three

probes for ZFR2 showed markedly different expression

patterns as compared with RNA-Seq (Figure 4A), and in

this case correct choice of probe is important. Overall, we

find improved between-method reproducibility for our

best probes (Figure 4B, left bars), which is expected since

our probes were chosen this way. More interestingly, we

also see a slight improvement in biological reproducibility

between brains (Figure 4B, right bars; R = 0.86 compared

with R = 0.85), suggesting that RNA-Seq could be used as

a tool for probe selection or at least a posteriori analysis.

We note that, although only 60% of the best probes were

also the most highly expressed, choosing the most highly

expressed probe leads to highly biologically reproducible

results, as previously shown [32].

In addition to choosing the best probe for each gene,

this strategy can be used to assign each probe with a

quality score (or pass/fail call) based on reproducibility,

which could, for example, help eliminate genes from the

analysis in which all probes show potential off-target ef-

fects or non-specific binding. In this case we score each

probe based on the correlation, defining all probes with

significant positive correlation as passing (Figure 4A).

After correcting for multiple comparisons (q < 0.1), 82%

of genes have at least one passing probe on the array, a

number that decreases only to 68% if we consider as few as

16 carefully selected samples in the analysis (Additional file 7).

After omitting the set of best probes that failed quality

control, the remaining genes show marked improvements

in between-method and between-brain reproducibility

(Figure 4B; green bars; R = 0.87 vs. 0.85 and R = 0.88 vs.

0.86, respectively). Given our previous result showing

that genes with low expression tended to show poor

biological reproducibility (Figure 3B), we next compared

the expression levels of our best probes that passed com-

pared with those that failed (Figure 4C). Around half the

probes with log2(intensity) < 3 passed, compared with

more than 90% of probes with log2 (intensity) > 3, suggest-

ing that some probes likely fail because the probe itself is

bad, whereas other probes may be properly targeting their

corresponding gene, but that gene is not expressed in the

brain and therefore the between-method reproducibility

cannot be accurately assessed. Strategies for recovering

this second class of failed probes will be discussed later.

RNA-Seq can be used to improve microarray quality by

scaling probes

Microarray probes tend to measure relative gene expres-

sion levels more accurately than absolute levels. How-

ever, at non-extreme intensities (where the effects of

background noise and oversaturation can mostly be ig-

nored), the relationship between probe intensities and

gene expression levels identified through other experi-

mental strategies is nearly linear [33]. We therefore hy-

pothesized that, by using a simple linear transformation,

it should be possible to scale probe intensities so that

they more accurately reflect absolute expression levels.

To calculate such values—which we refer to as "sequen-

cing scaled microarray intensities" or "SSMIs"—we tried

several approaches (see Additional file 3). For these data

the most effective was a quantile-based approach, where

we identified the 5th and 95th quantile of expression for

each microarray probe (using intensity) and for the cor-

responding RNA-Seq gene (using TPM), and then

linearly scaled the microarray intensities so that these

values align with TPMs (Figure 5A). We performed this

scaling strategy using only samples from brain 2, and re-

served brain 1 as an independent test set. SSMIs were

only calculated for probes passing our quality control

assessment, as discussed above. Most probes showed a

relatively small range of slopes (m; 50% between 1 and

2) and required a small negative offset (b > 0), suggest-

ing that microarray intensity can be used as a rough

approximation for absolute expression levels after ad-

justing for background, but that the relationship is not

identical from probe to probe (Figure 5A, inset). Sca-

ling parameters and probe quality control measure-

ments are provided in Additional file 8.

To test whether SSMIs provide more biologically repro-

ducible results than corresponding intensity scores, we re-

peated all of our quantitative assessments (see Figures 2

and 3) using SSMIs for the set of optimal probes chosen

by RNA-Seq (see Figure 4). As hypothesized, absolute

expression levels show a dramatic improvement in re-

producibility between RNA-Seq and microarray, with

Pearson correlations increasing in many cases to R >

0.95 (Figure 5B). For example, while many microarray
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probe intensities overestimate gene expression levels by

several orders of magnitude, SSMIs for nearly all probes

much more closely match TPM values determined by

RNA-Seq (Figure 5C). It is important to emphasize that

we see these improvements in the test set (brain 1) using

scaling parameters calculated using an independent train-

ing set (brain 2). Along the same lines, between-method

measures of consistency based on differential expression

show similar improvements, in both the training set (brain

2; Figure 5D) and test set (brain 1). Furthermore, diffe-

rential expression fold change correlations between brains

based on SSMIs (R = 0.90) are nearly as high as those

based on RNA-Seq TPMs (R = 0.92; Figure 5D), sugges-

ting that after probe selection, filtering, and scaling, mi-

croarrays can nearly match sequencing technologies in

certain measures of biological reproducibility. Compa-

rable improvements can be found if we generate scaling

parameters with as few as 16 samples (Additional file 7).

Finally, to test whether our quantile-based scaling is

applicable to gene expression intensities derived from

other tissue, we processed RNA from two pluripotent

human embryonic stem cell (hESC) lines (H1 and H9;

Additional file 3) using both microarray and RNA-Seq,

which were used to assess, but not to improve, micro-

array quality. Following the same computational strategy

and using the same scaling parameters derived from

brain 2 above, we scaled microarray intensities from these

cell lines, and compared both measures of microarray

gene expression to TPM values based on RNA-Seq. As

with brain, SSMIs in both undifferentiated hESC lines

show significantly improved correlation with RNA-Seq

relative to unscaled intensities that much more closely

map to RNA-Seq derived absolute intensities (Figure 6).

Comparable results were found after differentiating these

hESC lines for up to 54 days to generate cortical neurons

(data not shown; Additional file 3). Although the Allen

Human Brain Atlas and the hESC lines were processed at

the same site, we note that different methodologies were

used for tissue processing, and that both the microarrays

and RNA-Seq for these data sets were processed off-site at

C
B

A

Figure 4 Probes chosen by RNA-Seq show improved reproducibility metrics. A) Example gene (ZFR2) with different probes showing the

"worst" between-method correlation (left), the "highest" average expression (center) and the "best" between-method correlation (right). Each plot

shows the expression level of a microarray probe (y-axis) and the corresponding gene TPM value as measured by RNA-Seq (x-axis). Each dot

represents a single sample in our training set (brain 2). Two of these probes would be filtered out as "low quality" using our metric. B) Between

method (left) and between-brain (right) measures of differential expression correlation when defining microarray genes based on the worst,

highest, and best probes (left three bars). Note that correlations in the "highest probes" bars come directly from Figure 2G (*) and Figure 2E (^).

The other two bars correspond to the subset of best probes that pass (green) and fail (red) quality control based on our filtering strategy,

respectively. Note that the best passing probes have the highest reproducibility. C) Genes with low expression are more likely to fail than genes

with moderate to high expression. Genes were binned based on expression levels (x-axis) and the number of passing and failing probes is shown

for each bin (y-axis). 91% of genes with log2(intensity) > 3 passed, compared to only 47% with lower expression.
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different locations (Methods). These results suggest that

scaling parameters derived from a single experiment

can be applied to other experiments utilizing the same

array platform to improve array quality. More generally,

we find that RNA-Seq can be used as a tool to evaluate

microarray probe quality, filter out bad probes, and im-

prove the utility of microarrays as tools to measure ab-

solute gene expression levels. Such filtering appears

largely to be experiment independent, suggesting it could

be retroactively applied to improve data from thousands

of currently available data sets.

Identifying differentially expressed genes in neocortex

using microarray and RNA-Seq

We have previously shown that differences in transcrip-

tional patterns of distinct neocortical areas depend on

the distance between these areas, although compara-

tively few genes show very high levels of differential ex-

pression in the neocortex [14]. To assess the extent to

which these more subtle expression relationships can be

found using RNA-Seq as compared with microarray,

we performed ANOVA on all samples from these 22

neocortical areas. RNA-Seq identified 3458 genes dif-

ferentially expressed (p < 0.05, Bonferroni corrected),

compared with 2144 identified using microarray inten-

sities, of which 1121 agree between methods (p ~ 0).

An additional 194 genes were identified using SSMIs

instead of intensities, including 120 found by RNA-Seq

that were not initially identified by microarray, show-

ing that RNA-Seq scaling improved the sensitivity

of microarrays to detect differential expression by

approximately 10%, even when comparing relatively

similar tissue. Thus, despite the relatively mild tran-

scriptional differences between neocortical areas, we

find common differentially expressed genes between

methods. Collectively, these results demonstrate the

biological reproducibility and applicability of both of

these genome-wide transcriptional methodologies.

DC

BA

Figure 5 Scaling of microarray probes by RNA-Seq leads to improved biological reproducibility. A) Strategy to convert intensity levels of

all probes to sequencing scaled microarray intensities (SSMIs) using samples from brain 2. SATB2 is shown as an example. 5th and 95th quantiles

(red dots) are compared between methods, and microarray intensities are scaled linearly such that these quantiles align. Grey and black dots

show expression of a sample in brain 2 for both methods before and after scaling, respectively. Inset shows the range of slope (m) and intercept

(b) parameters across all probes (25%, 50%, and 75% quantiles shown in bold; 5% and 95% quantiles shown in light lines or enumerated if off the

plot). (B-C) After scaling (black dots), all samples in brain 1 show markedly improved between-method correlation of absolute expression levels

compared with before (grey dots). This result holds for all 115 samples in brain 1 (B). A single example is shown in C (corresponding to the arrow

in B; labeling as in Figure 2B). Diagonal dotted line indicates perfect agreement of absolute expression levels (y = x). D) SSMIs show improved

reproducibility between methods based on between-method (left; * = compare with Figure 2G) and between-brain (right; ^ = compare with

Figure 2E) differential expression measures (compare with Figure 4C). The blue line indicates the between-brain correlation as measured by

RNA-Seq (Figure 2F), which is now only slightly higher (ΔR=0.02) than in microarray.
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Discussion

Optimizing gene expression measurements from extant

microarray data

We presented an extensive comparison between Agilent

microarray and RNA-Seq using 231 samples from the

Allen Human Brain Atlas [14]. Our analysis aimed to assess

and potentially improve the quality of extant microarray

data, and had three primary goals. First, we showed that

Agilent microarrays generate highly reproducible expres-

sion measurements for many genes, both when comparing

gene expression measurements with RNA-Seq as well as

between individual brains. Our results are in line with pre-

vious studies comparing RNA-Seq and several different

microarray platforms [1-5], in that we identified high corre-

lations of absolute (R = 0.78) and differential (R = 0.78) ex-

pression levels between methods. We also demonstrated a

high degree of biological reproducibility for genes with at

least moderate expression (TPM> 1, log2[intensity] > 5),

which progressively decreases for lower expression levels

using both methods. Second, we have shown that RNA-Seq

can be used to assess microarray probe quality, and

that this can be done using a relatively small number of

experimental samples. We saw progressively increasing bio-

logical reproducibility of gene expression measurements

when we initially used these quality scores to identify the

best microarray probe for each gene, and subsequently ex-

cluded genes from the analysis with no reliable probes.

Third, and most importantly, our study proposes for

the first time the use of high throughput sequencing to

scale microarray probe intensities to more closely reflect

absolute gene expression levels. Previous studies have

presented strategies for measuring absolute expression

using microarray, for example, by co-hybridizing bio-

logical samples with calibrated reference samples on

spotted-glass microarrays [34], and have sought to im-

prove array quality by filtering out bad probes from

Affymetrix probe sets [35]. The advantage of our strat-

egy is that these scaling parameters appear to be broadly

applicable, as those derived from samples run in adult

human brain improved the reliability of expression levels

identified using the same array in two different hESC

lines. In principal, these parameters (Additional file 8)

could now be applied to any sample run using our cus-

tom array (or the widely-used Agilent 44K Whole

B

A

Figure 6 Scaling parameters generated in human brain also improve measurements of absolute expression levels in human hESC

lines. Improved between-method correlation of absolute expression levels is found in H1 (A) and H9 (B) human hESC lines after scaling using

parameters identified in brain. Each point shows expression levels for a single gene in microarray (y-axis) compared with RNA-Seq (x-axis). Labeling

as in Figure 5C.
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Human Genome Microarray) to improve absolute ex-

pression quantification for around 80% of genes without

needing to perform any additional sequencing. While

these scaling parameters may not be optimal for improv-

ing data derived from other experimental conditions, the

key point is that they can improve the data without the

need for performing additional sequencing.

Microarrays and RNA-Seq both currently used in research

and clinical settings

While RNA-Seq will likely replace microarrays in re-

search and clinical settings in the near future due to the

improved dynamic range and potential for finding novel

transcripts and sequence level variations, microarray

data sets are still highly valuable, and application of this

method improves their interpretability. Currently, micro-

array data from thousands of experiments are available

in public databases such as GEO [9] and ArrayExpress

[8], providing valuable resources for cross-study compar-

isons between experiments utilizing the same transcrip-

tional method. For example, both the Allen Human

Brain Atlas [14,21] and a companion BrainSpan atlas tar-

geting prenatal human brain (http://www.brainspan.org)

utilize the same Agilent array to facilitate between age

comparisons, and have provided insight into the structure

and function of the human brain. Furthermore, many

research and clinical laboratories already have standard

operating procedures in place for analyzing microarray

data—including the required machinery, storage space,

analysis tools, and expertise—which could be augmented

in a relatively straightforward manner using our method,

and it will take time to transition to sequencing-based

strategies. Finally, until quite recently RNA-Seq tech-

niques required more total RNA (100 ng-1 μg) than

microarray [4,36]. In our study this requirement limited

the samples that could be included in the experimental

design. However, newer RNA-Seq strategies that allow

transcriptional profiling from single cells [37,38] or even

single nuclei [39] hold great promise in categorizing and

understanding cortical cell types, and at potentially a

fraction of the cost of microarrays. Thus in the near

term, microarrays and RNA-Seq will both likely be used

for high throughout gene expression analysis, and there-

fore any strategies for improving the accuracy of detecting

and corroborating gene expression signal from microar-

rays will be helpful.

Limitations and suggested methodological improvements

One limitation of this analysis is that, in order to accur-

ately assess probe quality and define scaling parameters,

the variability across samples must be accurately mea-

sured. For example, we found that probes targeting genes

with very low expression in brain were much more likely

to be failed, compared with high expressers, and that such

genes also showed less consistent expression patterns be-

tween brains. It is likely that with a more diverse tissue

panel some of these low-expressing probes would be

assessed as higher quality. Another possible limitation is

that our scaling parameters derived from brain may not

be applicable to other tissues for genes showing a high de-

gree of differential isoform expression. Again, by using a

more diverse tissue panel to calculate scaling parameters,

we would expect that probes for such genes would not

show consistent expression between methods, and would

therefore be failed at the quality control step.

Using our current study as a starting point, we propose

a methodology that would address these limitations, and

could further be used to improve microarray data quality

for many publicly available data sets and clinical applica-

tions. First, an RNA atlas of gene expression from several

highly distinct tissues, organs, and cells lines would be col-

lected, for example by contacting an accredited tissue

bank, or in partnership with a related governmental pro-

gram such as the Genotype-Tissue Expression (GTEx)

Project (http://commonfund.nih.gov/GTEx/index). Our

results suggest that approximately 16 carefully chosen

samples would be sufficient, although increasing the num-

ber of samples would moderately improve the power to

detect passing probes (Additional file 7). Previously pub-

lished gene expression atlases on 46 [40] and later 79 [41]

such tissues found that nearly 90% of expressed genes also

showed some degree of differential expression, and these

atlases could be used as filters for determining the most

transcriptionally distinct tissues. Second, RNA from all of

these tissues would be processed using RNA-Seq and sev-

eral of the most commonly used microarray platforms in

parallel. Considering only the most widely published array

platforms for Affymetrix (HG-U133_Plus_2), Illumina

(HumanHT-12 V3.0), and Agilent (014850 Whole Human

Genome Microarray 4x44K G4112F), data for around

100,000 microarrays are currently hosted by Gene Expres-

sion Omnibus [9]. Additional RNA aliquots could be

stored for later processing using other microarray plat-

forms. Third, quality assessments and scaling parameters

for each probe (or in the case of Affymetrix, each probe

set) of each microarray platform would be assessed as de-

scribed above. Finally, the resulting values could be ap-

plied, in principle, to any data utilizing any of the

microarray platforms included in this experiment. We ex-

pect that our strategy could also facilitate direct compari-

sons of data collected using different array platforms,

although this hypothesis would need to be tested.

Conclusions

We showed that both Agilent microarrays and RNA-

Seq can provide highly reproducible measurements of

gene expression in the human brain. Furthermore, for a

majority of genes, we were able to quantifiably assess
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the reproducibility of microarray probes, remove probes

with off-target effects, and scale probe intensities to pro-

vide highly reliable, quantitative estimates of absolute gene

expression levels. The scaling parameters generated using

brain tissue appear to be applicable to other tissues, and

are provided as a resource to the community. Overall, we

calculated SSMIs values for 80% of the approximately

19,000 genes included in our between-method compari-

son with moderate confidence, and expect that many of

the remaining genes could be scaled using a more diverse

set of tissues, as proposed.

Methods
Post-mortem tissue acquisition and sample processing

Methods for post-mortem tissue acquisition and sample

processing have previously been described ([14] and

http://help.brain-map.org/display/humanbrain/Documenta-

tion). In short, tissue for the Allen Human Brain Atlas

was provided by the NICHD Brain and Tissue Bank

(Baltimore, MD) and the University of California Irvine

Department of Psychiatry and Human Behavior Brain

Donor Program (Irvine, CA), under approvals by Insti-

tutional Review Boards of the Maryland Department of

Health and Hygiene and University of Maryland Baltimore,

or the University of California Irvine, respectively, and with

consent from next-of-kin. Specimens for microarray and

RNA-Seq profiling were 24-year-old (Brain 1) and 39-

year-old (Brain 2) African American males. Total RNA

from 120 macrodissected samples initially processed

for microarray from each brain (as described in [14])

were also processed for RNA-Seq. These samples in-

cluded biological replicates from left and right hemi-

sphere in 29 brain regions, as well as four technical

replicates per brain. Aliquots of the same total RNA

isolates generated from macro dissections for microarray

were used for sequencing. RNA was sent to Expression

Analysis Inc. (EA; Durham, NC) for library preparation and

sequencing, of which 250 ng total RNA was input for each

run. EA used the Illumina TruSeq library preparation

protocol and performed paired-end, 50 bp sequencing on

an Illumina HiSeq2000 instrument. The sequencing was

run as 6-plex with target of 30 million reads per sample:

25-35 million reads per sample were generated. Processed

data is available at the Allen Brain Atlas data portal (www.

brain-map.org) in the form of gene counts, as well as TPM

values.

RNA-Seq alignment and data normalization

Sequences were aligned to the genome using RNA-Seq by

Expectation-Maximization (RSEM) [25] (see Additional file 3).

Transcripts (isoforms) were defined using the knownGene

table from UCSC Genome Browser ([42]; http://genome.

ucsc.edu; hg19, Feb. 2009). Summary expression levels for

each gene were calculated in terms of both counts and

TPM using this pipeline. Mapped read files were also con-

verted to BAM file format for visualization using Geno-

meBrowse (Golden Helix, Bozeman, MT).

Microarray data normalization was performed as de-

scribed on the Allen Human Brain Atlas data portal

(http://help.brain-map.org/display/humanbrain/Docu-

mentation). In short, data is preprocessed for systematic

biases, and quantile normalized to the 75th percentile in

each batch. Across batches within each brain, data is nor-

malized by aligning two sets of control samples included

in all batches and capturing method related bias is ad-

justed by a modified quantile normalization method. We

note that approximately 2,200 probes failed quality assess-

ments during generation of the Allen Human Brain Atlas

and were also excluded from this analysis. Across multiple

brains non-biological difference is adjusted again by align-

ing two sets of control samples. RNA-Seq data was TbT

normalized [26] in linear space, as described in the Re-

sults, with the differential expression vector defined as

TRUE if a sample was from neocortex and FALSE other-

wise. Samples were then scaled such that the total log2

(TPM) remained unchanged after normalization. Data

from both microarray and RNA-Seq were then ComBat

normalized [27] in log2 space using a parametric prior,

with the batches corresponding to brain of origin. Un-

less otherwise noted, ComBat normalized data were

used for all comparisons.

Comparisons between microarray and RNA-Seq

The open source R software (www.r-project.org/) was ex-

tensively used for all analyses and visualizations (Additional

file 3). Hierarchical clustering, bar plots showing expression

levels, and MDS in two dimensions were strategies used

for assessing data quality and evaluating the effect of

normalization (Additional file 3). For all between-method

comparisons, unless otherwise noted, a single microarray

probe with the highest average expression level across re-

gions [32] was selected to represent each of the approxi-

mately 19,000 commonly identified genes. A gene was

defined as present in microarray if called present by the

Agilent software, and in RNA-Seq if at least one fragment

was aligned to that gene.

Pearson correlations (R) were calculated in several

contexts as measures of consistency or reproducibility

throughout (Additional file 3). Differential expression

was measured in two ways. As a global measure of bio-

logical or technical reproducibility, fold changes of 100,000

random genes between randomly selected region pairs was

compared between brains or methods, respectively, using

Pearson correlation. Alternatively, a p-value for each

gene was calculated by running ANOVA across either the

7 non-neocortical or 22 neocortical regions, representing

transcriptionally diverse and relatively similar tissues, re-

spectively. To assess biological reproducibility of gene
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subsets, genes were sorted based on average expression

level or gene size, binned into 20 groups, and then the

average and standard deviation of the across-region Pear-

son correlations for all genes in each bin were calculated.

Generation of microarray scaling parameters

SSMIs were calculated by performing a linear scaling on

microarray intensities from brain 2 in log2 space. Nor-

malized data prior to ComBat normalization were used

for this analysis to preserve samples from brain 1 as in-

dependent and since ComBat normalized RNA-Seq data

could less closely align to absolute expression levels than

do TbT normalized data. For each gene, scaling parame-

ters were found by identifying the 5th and 95th percent

quantiles of expression in RNA-Seq and microarray and

then linearly shifting microarray expression to match

these quantiles with RNA-Seq (see Figure 5A). All

probes were scaled, but only the probe for each gene

with the highest between-method correlation was in-

cluded in the final comparison between methods. Scaling

confidence was estimated using the significance of cor-

relation (a p-value output by the cor.test R function) and

converting to q-values as a measure of false discovery

rate using the R function qvalue [43]. Probes with q < 0.1

were scaled, and remaining probes were omitted from

the analysis. Finally, scaled array intensities were Com-

Bat normalized as described above for comparison with

other results.

Comparison with human hESC lines

RNA from two human pluripotent ESC lines, H1 and

H9, or their cortical neuronal progeny derived using di-

rected differentiation, were run on microarray and RNA-

Seq (Additional file 3). In short, RNA was generated by

lysing cells in RNAeasy buffer (Qiagen) and then follow-

ing the standard RNAeasy protocol. RNA was then sent

to Covance (for microarray) and Expression Analysis

(for RNA-Seq). This is in contrast to RNA from brain,

which was processed by Cogenics (for microarray) and

Covance (for RNA-Seq), as described above. Correlations

between methods were calculated both before and after

SSMI scaling to demonstrate the effectiveness of these

scaling parameters on absolute expression levels in other

tissues.

Availability of supporting data

All data presented in this manuscript are available either

at the Allen Institute data portal (www.brain-map.org) or

as part of Additional file 1. Specifically, microarray data

(both raw and normalized intensities), as well as sequence

data summarized to the gene level (both fragment counts

and TPM values) can be downloaded from the Allen Insti-

tute data portal by clicking on the "Human Brain" link and

then the "Download" link. Additional file 1 contains the

microarray and sequencing data for hESC lines as well as

annotated code for Figures 2, 3, 4, 5 and 6.

Additional files
Description of additional data files

The following additional data are available with the online

version of this paper. Additional file 1 is a zip file including

code and supporting data required to reproduce our ana-

lysis in R. Additional file 2 is a supplementary figure show-

ing that RNA-Seq has minimal batch effects. Additional file

3 is a text document that includes Supplementary Methods

and Supplementary Figure Legends. Additional file 4 is a

supplementary figure showing that normalization improves

the quality of RNA-Seq and microarray data. Additional file

5 is a supplementary figure showing that certain highly-

expressed microarray probes do not accurately measure

gene expression. Additional file 6 is a supplementary figure

showing that gene expression reproducibility is dependent

on transcript length. Additional file 7 is a supplementary

figure showing that quality control and scaling of micro-

array probes can be done well with as few as 16 matched

RNA-Seq samples. Additional file 8 is a supplementary

table listing scaling parameters for the Agilent Microarray.

Additional file 1: Code and data to reproduce analysis. This zip file

contains two code documents and several supporting data files that

are required, along with data from the Allen Brain Atlas data portal

(www.brain-map.org) to reproduce nearly all figures and statistics

presented in this manuscript.

Additional file 2: Clustering of RNA-Seq samples after TbT

normalization shows minimal batch effects. A dendrogram that

shows samples hierarchically clustered based on the RNA-Seq data. Also

shown are bar plots with biological and technical variables. Samples cluster

based on brain region and brain of origin, but not batch or other technical

variables.

Additional file 3: Supplementary methods and supplementary

figure legends. This file contains the supplementary methods for the

manuscript followed by supplementary figure legends corresponding to

Additional files 2, 4, 5, 6 and 7.

Additional file 4: Normalization improves the quality of RNA-Seq

and microarray data. Several plots showing that RNA-Seq data becomes

progressively more consistent and reproducible after TbT normalization,

which scales for the total reads, and ComBat normalization, which

removes the systematic bias between brains. Microarray data likewise

improved.

Additional file 5: Many probes with specifically high microarray

intensity do not accurately measure gene expression. Probes with

specifically high expression in microarray show poor between-method

agreement, suggesting they do not appropriately measure expression of

their assigned gene. These probes are also more likely than chance to be

part of gene families.

Additional file 6: Gene expression reproducibility is dependent on

transcript length. There is a strong linear relationship between gene

length—defined based both on the average transcript length for all

RefSeq isoforms of the gene as well as for the number of base pairs

spanned in the genome—and reproducibility for genes. This is in part

because large genes tend to show higher variability in the brain

compared with smaller genes.

Additional file 7: Microarray quality control and scaling can be

accurately done with 16 samples. The percent of passing probes

rapidly improves when using a small number of matched samples, and
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starts leveling out at around 16 samples. Excellent between-method

correlation and improvements in scaling are also seen with 16 samples

or fewer.

Additional file 8: Parameters and quality metrics for microarray

probe scaling. This table contains the parameters that can be applied to

any Agilent Human GE 44K microarray to scale probes so that they more

accurately reflect absolute gene expression levels. It also includes quality

metrics which can be used as filters, for example, to omit certain probes

from consideration.
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