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Improving reliability of river flow forecasting using neural

networks, wavelets and self-organising maps

Mukesh K. Tiwari, Ki-Young Song, Chandranath Chatterjee

and Madan M. Gupta
ABSTRACT
Neural network (NN) models have gained much attention for river flow forecasting because of their

ability to map complex non-linearities. However, the selection of appropriate length of training datasets

is crucial and the uncertainty in predictions of the trained NNswith new datasets is a crucial problem. In

this study, self-organising maps (SOM) are used to classify the datasets homogeneously and the

performance of four types of NN models developed for daily discharge predictions – namely traditional

NN, wavelet-based NN (WNN), bootstrap-based NN (BNN) and wavelet-bootstrap-based NN (WBNN) – is

analysed for their applicability cluster-wise. SOM classified the training datasets into three clusters

(i.e. cluster I, II and III) and the trained SOM is then used to assign testing datasets into these three

clusters. Simulation studies show that theWBNNmodel performs better for the entire testing dataset as

well as for values in clusters I and III; for cluster II the performance of BNN model is better compared

with others for a 1-day lead time forecasting. Overall, it is found that the proposed methodology can

enhance the accuracy and reliability of river flow forecasting.
doi: 10.2166/hydro.2012.130
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INTRODUCTION
River flow forecasting for short time horizons (hourly, daily)

can help to improve water resources management. The task

of river flow forecasting is a great challenge. Neural network

(NN) models have shown their potential in river flow fore-

casting and have been successfully applied because of their

ability to map complex non-linearities between inputs and

outputs (Altunkaynak ; Solomatine & Ostfeld ;

Demirel et al. ; Tiwari & Chatterjee a, b, c). Sub-

stantial literature on NN has been reported in ASCE

(a, b). NNs are the unstable learning techniques

where small changes in training datasets/parameter selec-

tion can produce a large change in predicted outputs

(Naftaly et al. ; Carney & Cunningham ). NN

models are computationally fast and efficient, which

makes them a highly suitable tool for river flow forecasting.

Disadvantages related to NN models include interpretation

of the NN structure (‘black box’) and their extrapolation

capacity (Minns & Hall ).
Recently, researchers have been exploring different pre-

processing approaches for inclusion of additional hydrologi-

cal knowledge as input to NN models to improve the

hydrological representation and generalization (Corzo &

Solomatine a, b). Abrahart () employed the boot-

strap technique to continuously sample the input space in

the context of rainfall–runoff modelling and reported that

it offered marginal improvement in terms of greater accu-

racies and better global generalizations. Jeong & Kim

() used ensemble neural network (ENN) and bootstrap

techniques to simulate monthly rainfall–runoff. They con-

cluded that ENN is less sensitive to the input variable

selection and the number of hidden nodes than the single

neural network (SNN). Jia & Culver () used the boot-

strap technique to estimate the generalization errors of

neural networks with different structures and to construct

the confidence intervals (CIs) for synthetic flow prediction

with a small data sample. Han et al. () found that the
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performance of the NN model for long-term predictions was

only probabilistic depending on the arrangement of cali-

bration and testing datasets.

Ensemble forecasting has been suggested to overcome

the drawbacks of traditional NN models, and increases the

forecasting accuracy by controlling the generalization of pre-

dictive model (Jeong & Kim ). Boucher et al. ()

found that ensemble forecasts using stacked NNs outper-

form point forecasts. Ensemble predictions using bootstrap

techniques are found to be more accurate and reliable

(Sharma & Tiwari ; Tiwari & Chatterjee a).

Processing the inputs to NN models using wavelet

transformation have further improved the accuracy and con-

sistency of predictions of water resources variables

(Adamowski a, b; Kisi ; Partal & Cigizoglu ;

Tiwari & Chatterjee b; Adamowski & Chan ;

Adamowski et al. ).

Furthermore, the performance of trained NN models

largely depends on the appropriate length of training data-

sets and their appropriate representation in different river

flow profiles such as low, medium, high or extreme (Minns

& Hall ; Kentel ; Tiwari & Chatterjee a).

Despite having an appropriate training dataset, there is a

probability that an extreme event (i.e. unfamiliar input)

beyond the range of recorded datasets might occur in the

future and could not be forecasted correctly. Even though

it is not straightforward to classify an event as regular or

extreme with many input variables, the extreme event can

be identified by clustering techniques (Kentel ).

In the traditional clustering method (e.g. K-means

method), the number of clusters is determined subjectively

(Lin & Wang ). For similar types of data, different clus-

tering techniques generate different clustering results

(Nathan & McMahon ). Kentel () tested the fuzzy

c-means clustering algorithm and found that it satisfactorily

classified input vectors into ‘regular event’ or ‘extreme event’

classes. Self-organising maps (SOMs) (Kohonen ) are

also recognized as a powerful clustering technique and

have recently been used in water resources studies (Astel

et al. ; Kalteh et al. ). SOMs map high-dimensional

input datasets into low-dimensional output space, which

helps to understand the relationship between complex data.

Moradkhani et al. () explored the applicability of

a self-organising radial basis (SORB) function to one-step
://iwaponline.com/jh/article-pdf/15/2/486/386998/486.pdf
ahead forecasting of daily streamflow. Composed of a Gaus-

sian radial basis function architecture and self-organising

feature map (SOFM), SORB was used in data classification.

It was found that SORB outperformed the two other NN

algorithms. Jain & Srinivasulu () decomposed the flow

hydrograph into different segments based on physical con-

cept and modelled different segments using conceptual and

NN models. The major finding was that decomposing a

flow hydrograph into different segments corresponding to

different dynamics based on physical concepts was better

than using soft decomposition employed using SOM.

Chang et al. () found that SOM NNs can adequately

produce streamflow forecasting. They proposed an enforced

self-organising map (ESOM) network by recycling the high-

flow data to retrain the SOM network. They found that it not

only increased the mapping spaces of peak flow in the topo-

logical structure of the SOM, but also improved the

performance of flood forecasting at high flows. Gopakumar

et al. () evaluated the performance of NNmodels for the

modelling of daily river flows in a humid tropical river basin

with seasonal rainfall pattern. They explored the rainfall and

discharge data using SOM and identified the subset of data

which had a distinct relationship with the selected hydrolo-

gic variables. NN models were developed for each subset

and the SOM technique was found to be very helpful for

developing logically sound NN models.

Abrahart & See () assessed the performance of NN

and ARIMA models for hydrologic forecasting and found

that, even though the performance of the models was simi-

lar, the NN model performance was improved when the

training data were clustered in distinct groups using the

SOM technique. Ismail et al. () introduced the SOM

and least-square support vector machine (LSSVM) model,

referred to as SOM-LSSVM model, by combining the capa-

bilities of SOM and LSSVM. The SOM algorithm was used

to cluster the training data into several disjointed clusters,

and the individual LSSVM models were developed to fore-

cast the river flow. The models were evaluated using flow

data from Bernam River located in Selangor, Malaysia.

Results showed that the SOM-LSSVM model outperformed

other models for forecasting river flow.

In this study, we propose a novel method to improve the

predictive capacity of hydrologic forecasting by analysing

the performance of different developed NN models
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cluster-wise. First, NN models are developed for 1-day lead

time forecasting considering the effect of length of training

datasets. The effect of input patterns is also investigated

using the bootstrap resampling method considering different

training algorithms. Thereafter input data are clustered

using SOM. Subsequently, the performance of NN models

is assessed with cluster-wise model predictions.

In an earlier study, Tiwari & Chatterjee (b) devel-

oped different NN models such as traditional NN, wavelet-

based NN (WNN), bootstrap-based NN (BNN) and wave-

let-bootstrap-based NN (WBNN). Firstly, NN models are

developed using the significant inputs and optimising the

NN structure by trial and error method. Thereafter, wavelets

are used to decompose the original time series data at each

station into different discrete wavelet components (DWCs).

Significant DWCs are then selected and combined to make

new time series data at each gauging station. The new time

series data are used as input to the NN model to develop

WNN models. BNN models are the ensemble of several

NN models developed using bootstrap resamples of training

dataset, whereas WBNN models are the ensemble of BNN

models developed by resampling newly constructed time

series using wavelets instead of raw dataset.

In this study, we have used these models to evaluate their

performance in simulating clustered datasets using SOMs.

Note that we have not developed separate NN models for

each identified input cluster, as the number of datasets in

some of the clusters was too few. Instead, we have developed

NN models using the entire training datasets and then eval-

uated their performance in forecasting the clustered testing

datasets using SOMs. To the best of our knowledge, this is

the first such attempt in this direction and will prove to be

extremely useful in improving the river flow forecasts.
THEORY

Neural networks (NNs)

Neural networks have been widely used in information pro-

cessing, systems identification and image processing

applications and it has been proved that NNs are capable

of model non-linear, multi-input and multi-output systems

in an efficient way (Gupta & Rao ; Gupta et al. ).
om http://iwaponline.com/jh/article-pdf/15/2/486/386998/486.pdf
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Three-layered feed-forward NNs are widely used in water

resources successfully, and consist of an input layer, one

hidden layer and an output layer of computational neurons.

NNs map the input vectors x and target vector y by

adjusting the weights through the Levenberg–Marquardt

algorithm. The performance function of the neural module

is defined (Hou & Gupta ):

E(W) ¼ 1
2
eTe ¼ 1

2

XN
k¼1

e2(k) (1)

where N is the number of training datasets and e represents

the error between observed values Oi and predicted values

Pi. The gradient of error is calculated:

ΔE(W) ¼ JT (W)e (2)

where J(W ) is a Jacobian matrix containing the first deriva-

tives of network errors with respect to the weights and

biases. The Hessian is determined by:

∇2J(W) ¼ JT (W)J(W)þ S(W) (3)

where

S(W) ¼
XN
k¼1

e∇2e(k)

is usually small and can be ignored. The Hessian can there-

fore be written:

∇2J(W) ≅ JT (W)J(W) (4)

For detailed information on the different properties of

NNs and their use in water resources, see Haykin (),

Maier & Dandy () and Gupta et al. ().
Bootstrap-based neural networks (BNNs)

The bootstrap is a computational procedure that uses inten-

sive resampling with replacement to estimate the sampling

distribution of a statistic (Efron ; Efron & Tibshirani

). The estimates of different bootstrap resamples can pro-

duce more stable and reliable solutions (Efron & Tibshirani
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). Assume that the data consist of i.i.d. (independent and

identically distributed) sample Tn¼X1, X2,…Xn of size n

with an unknown cumulative distribution function (CDF)

F. Let θ be a parameter to be estimated using a function of

the data θ̂¼ θ̂ X1, X2,…Xn. We want to know the true

sampling distribution of θ̂ to determine its bias as an estima-

tor of the true value θ and its variance to know the average

and variability in terms of percentiles. Since F is unknown,

true sampling distribution of θ̂ cannot be derived. A boot-

strap technique that uses true resampling with replacement

can approximate the sampling distribution of θ̂ by replacing

unknown CDF F with the empirical distribution function F̂

by putting mass 1/n on X1, X2,…Xn to generate a bootstrap

resample T*. Thus, a set of bootstrap samples B can be gen-

erated as T�
n ¼ T1, T2,…,Tb,…,TB where B is the total number

of bootstrap samples and generally takes the value 50� 200

(Efron ). For each Tb, an NN prediction model is devel-

oped and the output is represented as fNNðxi;wb=T
bÞ, built

using all n observations (Jia & Culver ), where xi is a par-

ticular input vector and wb is a weight vector.

The performance NN model during training is evaluated

using the observation pairs that are not included in a boot-

strap sample (i.e. testing dataset). The average performance

of these NNs built using 200 bootstrap resamples using Tn

is used as an estimate of the generalization error. The gener-

alization error E0 of an NN model is defined (Twomey &

Smith ; Jia & Culver ):

Ê0 ¼
PB

b¼1

P
i∈Ab

yi � fANN xi, wb=Tb
� �� �2

PB
b¼1 #(Ab)

(5)

and the BNN estimate θ̂ xð Þ is given by the average of the

outputs of NN models developed using B bootstrapped

resamples:

θ̂ xð Þ ¼ 1
B

XB
b¼1

fNN xi, wb=T
b

� �
(6)
Wavelet analysis

Wavelet analysis is multi-resolution analysis and provides

time and frequency representation of a signal. The
://iwaponline.com/jh/article-pdf/15/2/486/386998/486.pdf
continuous wavelet transform of time series f (t) is defined:

CWT(a, b) ¼ aj j�1=2
ðþ∞

�∞

f(t)ψ� t� b
a

� 	
dt (7)

where CWT(a, b) is the wavelet coefficient, a is scale par-

ameter, b is translation parameter and * corresponds to

the complex conjugate. Wavelet function ψ tð Þ is called the

mother wavelet and is defined:

ðþ∞

�∞

ψ(t)dt ¼ 0

The shifted and scaled version of the mother wavelet

ψa,b tð Þ is obtained as:

ψa,b(t) ¼ aj j�1=2ψ� t� b
a

� 	
(8)

Time series decomposition using wavelet transformation

generates a wavelet coefficient contour map CWT(a, b)

known as a scalogram, which allows the frequency to be

determined at different scales. However, a large number of

data is generated by computing the wavelet coefficients at

every possible scale or resolution level. To avoid this, logar-

ithmic uniform spacing can be used for the a scale

discretization with correspondingly coarser resolution of

the b locations. This transform is called the discrete wavelet

transform (DWT) and is defined (Mallat ):

ψm,p tð Þ ¼ a�m=2
0 ψ� t� pb0am0

am0

� 	
(9)

wherem and p are integers that control the wavelet scale and

translation, respectively; a0 is a specified fined dilation step

greater than 1; and b0 is a location parameter greater than

zero. A general choice for these parameters is: a0¼ 2 and

b0¼ 1. By adjusting the scale and the translation parameters

based on the powers of dyadic scales and translation (i.e.

a0¼ 2 in Equation (9)), the volume of data may be reduced

considerably and analysis can be more efficient.

DWT operates high-pass and low-pass filters on the orig-

inal time series. The time series is decomposed into one
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comprising low frequencies and its trend (the approxi-

mation) and another comprising the high frequencies and

the fast events (the detail).
Self-organising maps (SOMs)

SOMs are a kind of NN which use an unsupervised learning

algorithm to map high-dimensional input space into

low-dimensional space. The SOM clustering technique is

non-linear and it has an ability to preserve the topological

structure of the data (ASCE a). Figure 1 displays SOM

network architecture consisting of one input layer and one

output layer (Kohonen layer). The input layer of neurons is

fully connected to the output layer and the dimension of

the output space is two-dimensional. The topological struc-

ture of SOM can be one-, two- and higher-dimensional, but

higher-dimensional SOMs are generally not used. Each

input data pattern is represented as a vector:

x ¼ [x1, x2, . . . , xq]
T (10)

where q is the dimension of the input data pattern x. The

synaptic weight vectors of neurons of the Kohonen layer

are denoted (Kohonen ):

wj ¼ [wj1, wj2, . . . , wjq]
T, j ¼ 1, 2, . . . , l (11)

where wj is the synaptic weight vector of neuron j in the

Kohonen layer and l is the total number of neurons in the

Kohonen layer. The synaptic weights are initialized with

small random numbers at the beginning of training process.

The SOM algorithm computes the similarity measures in
Figure 1 | Architecture of a 2D self-organising feature map.

om http://iwaponline.com/jh/article-pdf/15/2/486/386998/486.pdf
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terms of Euclidean distance between random input pattern

x and synaptic weight vector wj as:

iðxÞ ¼ argmin
j

x�wj


 

; j ¼ 1; 2; . . . l (12)

Smaller Euclidean distance indicates higher similarity

between the input pattern x and the synaptic weight vector

wj. The winning neuron is therefore selected using the smal-

lest distance from the current input vector to all neurons of

the Kohonen layer. After determining the winning neuron,

the neurons in the topological neighbourhood are updated as

wj(tþ 1) ¼ wj(t)þ η(t)hj,i(x)(t)(x�wj(t)) (13)

where η(t) is the learning rate at time t and wj(tþ 1) is the

synaptic weight vector of neuron j at time tþ 1. Here, hj,i(x)
determines the degree of neighbourhood between the win-

ning neuron and a new neuron for an input x. This

function is required to be symmetric about the winning

neuron and decreasing to zero with growing lateral distance

from the winning neuron (Haykin ). This topological

neighbourhood function is represented mathematically as:

hj,i(x)(t) ¼ exp�
d2
j,i

2σ2(t)

 !
, t ¼ 0, 1, 2, . . . (14)

where dj,i is the Euclidean distance between the winning

neuron i and the neighbouring neuron j and σ(t) is the effec-

tive width of the topological neighbourhood, defined:

σ(t) ¼ σ(0) exp � t
τ2

� 	
(15)
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where σ(0) is set to be equal to the radius of the lattice in the

output layer of SOM and τ2 is a constant, defined:

τ2 ¼ tmax

ln σ(0)
(16)

Finally, a trained SOM can be obtained. More details

regarding the SOM can be found in Kohonen ().
STUDY AREA AND DATA USED

Mahanadi River basin, India, flows to the Bay of Bengal in

east-central India with a drainage area of 141 589 km2 and

length of 851 km. Mahanadi River basin lies at longitude

80W300–86W500 E and latitude 19W210–23W350 N. Some impor-

tant tributaries of the Mahanadi River are Seonath, Jonk,

Hasdeo, Mand, Ib, Tel and Ong. Several dams, irrigation

projects and barrages are present in the Mahanadi River

basin, the most prominent being Hirakud reservoir. Maha-

nadi River flows during the monsoon season (June–

September). The location Naraj, situated at the mouth of

the Delta region, was selected for daily discharge forecast-

ing. The location map of different gauging stations is

shown in Figure 2.
Figure 2 | Index map of the middle reaches of Mahanadi River basin showing location of diffe

://iwaponline.com/jh/article-pdf/15/2/486/386998/486.pdf
The data used for the study consist of daily discharge

data from six gauging sites from the middle reaches of

Mahanadi River basin and the daily release data from Hir-

akud reservoir during the period 2000–2006. Seven years

of daily discharge data for the monsoon period (13 July–

25 September) during 2000–2006 yield 525 data patterns.

Some of the statistical properties of the discharge data

for different years and for different gauging stations are

listed in Table 1. The dataset for the years 2000–2004

(375 data patterns) is used for training the models and

the dataset for the year 2006 (75 data patterns) is used

for testing the performance of the models. The dataset

for the year 2005 (75 data patterns) is used as cross-

validation that helps to implement an early stopping

approach in order to avoid over-fitting of the model

during training.
METHOD

Input determination

One of the most important steps in the development of an

NN hydrologic model is determining the significant input
rent gauging stations (after Tiwari & Chatterjee 2010b).



Table 1 | Statistics of the datasets for daily river flow forecasting (13 July–25 September for the years 2000–2006)

Year Statistics (m3 s–1) Khairmal Hirakud Release Salebhata Kesinga Kantamal Tikarpara Naraj

2000 Mean 1,758.8 764.4 27.1 356.4 567.6 1,985.6 2,260.2
Standard deviation 885.5 689.8 22.3 357.7 628.7 839.6 650.4
Maximum 5,720.0 4,601.3 114.0 2,452.0 3,661.0 4,774.8 5,050.0
Minimum 509.7 132.9 4.3 113.5 105.0 600.0 901.5

2001 Mean 7,506.9 4,442.9 305.7 1,023.8 1,622.5 6,387.1 10,352.3
Standard deviation 6,654.9 4,588.5 493.6 921.4 1,159.7 5,704.6 8,962.9
Maximum 30,468.9 21,567.3 3,225.0 5,293.0 6,500.0 26,700.0 36,714.7
Minimum 894.8 474.5 8.6 116.5 336.7 1,369.6 1,842.1

2002 Mean 2,128.9 1,131.7 133.9 241.8 448.3 2,119.4 2,967.4
Standard deviation 2,757.9 1,925.5 239.2 321.7 571.0 2,374.8 3,539.1
Maximum 14,724.8 10,329.4 1,545.4 1,990.9 2,900.0 12,305.6 16,630.3
Minimum 305.8 43.2 1.1 10.0 20.2 436.8 215.1

2003 Mean 8,621.4 4,652.4 630.7 1,207.1 1,575.4 7,173.0 11,203.9
Standard deviation 8,284.7 5,255.9 1,131.5 1,308.1 2,027.1 6,452.6 9,966.4
Maximum 34,150.1 24,267.2 7,916.0 8,908.4 12,915.1 25,062.0 35,253.2
Minimum 1,076.0 471.8 1.2 280.0 208.6 687.0 2,111.4

2004 Mean 4,448.0 2,518.3 191.5 718.8 928.7 4,094.9 5,347.9
Standard deviation 4,531.0 3,178.7 231.2 618.6 673.8 3,771.4 5,349.5
Maximum 20,331.5 14,952.0 1,004.0 3,240.6 4,014.0 17,744.4 22,465.4
Minimum 1,121.3 457.5 13.6 182.6 345.5 1,139.1 1,320.7

2005 Mean 5,417.1 3,265.6 144.9 645.5 960.7 4,802.2 7,908.8
Standard deviation 5,456.3 3,624.2 278.3 1,180.0 1,742.7 4,081.8 6,949.1
Maximum 26,249.7 13,196.6 1,924.0 8,120.8 11,030.1 19,000.0 24,399.1
Minimum 849.5 393.9 1.0 113.4 131.8 1,130.0 1,274.9

2006 Mean 7,255.2 3,175.7 543.4 1,217.3 2,035.9 6,789.0 11,399.5
Standard deviation 5,785.4 3,038.5 824.0 1,294.4 2,935.5 5,491.4 8,847.4
Maximum 27,099.2 11,870.3 4,681.4 6,483.1 15,276.2 29,000.0 33,979.2
Minimum 815.5 120.0 2.0 167.9 203.9 600.0 696.7

492 M. K. Tiwari et al. | Improving reliability of river flow forecasting Journal of Hydroinformatics | 15.2 | 2013

Downloaded fr
by guest
on 21 August 2
variables. The current study used a statistical approach

suggested by Sudheer et al. () to identify the appropriate

input vectors. The method is based on the heuristic that the

potential influencing variables corresponding to different

time lags can be identified through statistical analysis of

the data series that uses cross-correlation functions (CCF),

autocorrelation functions (ACF) and partial autocorrelation

functions (PACF) between the variables. This process was

also applied by Tiwari & Chatterjee (b) to select signifi-

cant inputs from the seven discharge gauging stations for

daily river flow forecasting.

The cross-correlation statistics for daily discharge are

presented in Figure 3. The CCF between the discharge at

Kantamal and discharge at Naraj shows a significant corre-

lation for 1–2 days lag as shown in Figure 3(a). For Hirakud

dam release and Naraj, the significant correlation is for 1–3

days (Figure 3(b)). To select significant input variables from
om http://iwaponline.com/jh/article-pdf/15/2/486/386998/486.pdf
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the Naraj time series itself, the ACF and PACF are used. The

ACF (Figure 3(c)) shows a significant correlation at the 95%

confidence level for 0 to >20 days, whereas the PACF

(Figure 3(d)) shows a significant correlation for up to

2 days lag. The decaying pattern of the PACF confirms the

dominance of the autoregressive process, relative to the

moving-average process.

A similar procedure is applied to select significant

inputs from the discharge data of six gauging stations

and Hirakud dam release for daily discharge forecasting.

The total input vectors identified are 17 for daily dis-

charge forecasting models, listed in Table 2. These 17

input variables are used to forecast 1-day lead time dis-

charge at Naraj gauging station. The river flow forecast

at 1-day lead time (Qtþ1) at Naraj gauging station is there-

fore a function of 17 input variables as identified in

Table 2.



Figure 3 | Correlation statistics for input vector identification for daily discharge forecasting. (a) CCF between discharge at Kantamal and discharge at Naraj; (b) CCF between discharge at

Hirakud Dam and discharge at Naraj; (c) ACF of discharge at Naraj; and (d) PACF of discharge at Naraj.

Table 2 | Most significant input variables selected using cross-correlation statistics (CCF,

ACF and PACF) for daily discharge forecasting (Qt–1 represents discharge at

1-day lag time)

Gauge stations Input variables

Naraj Qt, Qt–1

Tikarpara Qt, Qt–1

Khairmal Qt, Qt–1, Qt–2

Kantamal Qt–1, Qt–2

Hirakud Release Qt, Qt–1, Qt–2

Salebhata Qt, Qt–1, Qt–2

Kesinga Qt–1, Qt–2
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Optimal NN model structure identification

The identification of the optimal network geometry is one of

the major tasks in developing NN models. As discussed ear-

lier, the performance of an NN model during training is

evaluated using the generalization error which estimates

the average error on the testing dataset by a trained NN

model built using 200 bootstrap resamples of training data-

set. The optimum number of hidden neurons is calculated

using the generalization error of various NN structures
://iwaponline.com/jh/article-pdf/15/2/486/386998/486.pdf
tested for one to six hidden neurons. The NN structure

with four hidden neurons is selected as optimum, for

which the generalization error is minimum.
Selection of training algorithms and length of training

datasets

In this study, 200 bootstrap resamples are generated to create

various data scenarios for each length of training datasets

(i.e. 1-, 3- and 5-year training datasets). We have tested

three popular training algorithms – namely Levenberg–Mar-

quardt (LM), Bayesian Regularization (BR) and Conjugate

Gradient (CGB) – to study the performance of the models

for different data scenarios using a 1-year (i.e. 2000), 3-year

(i.e. 2000–2002) and 5-year (i.e. 2000–2004) training dataset

to train NN models. In all scenarios, the 2005 dataset is used

for cross-validation and the 2006 dataset is used to test the

performance of the developed NN models.
NN model development

Once an appropriate length of training dataset and an

appropriate training algorithm is selected, an NN model is
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established. Four NN models (NN, WNN, BNN and

WBNN), described in detail in Tiwari & Chatterjee

(b), are then developed. A brief explanation of these

models is provided here.

First, NN models are developed as described in the pre-

vious section using the most significant inputs. In the next

step, all the time series data are decomposed using DWT

and the effective discrete wavelet components (DWCs) are

determined using the correlation coefficients between each

wavelet component and the observed discharge at Naraj. Cor-

relation between the periodic component and the original

discharge data is ameasure of the effectiveness of the different

wavelet components (i.e. sub-time series). Significant wavelet

components of a particular gauging station are added to con-

stitute the new time series. These DWCs data are taken as

inputs for the NN model, instead of raw data, to develop the

WNN model. By taking the ensemble of 200 NN and WNN

models, BNNandWBNNmodels are developed, respectively.

The WBNN model has both bootstrap resampling and wave-

let transformation capabilities. Bootstrap resamples of

training datasets for BNN and WBNN models are generated

using an Excel Add-In named Bootstrap.xla (Barreto &How-

land ). All four models use the same number of training

datasets to maintain consistency and all models are tested

with one to six hidden neurons and four hidden neurons;

the selected optimal structure is that for which the generaliz-

ation error is minimum.
Cluster analysis

A SOM is trained using the training datasets (375 input pat-

terns from 17 input variables) and the trained SOM is used

to cluster the training and testing datasets (75 data patterns

from 17 variables). One of the major advantages of SOM

over the conventional clustering methods is that the

number of clusters and the members of each cluster can

be determined objectively without prior assignment of clus-

ter numbers. The SOM classification identifies similar

classes, which can further be joined to form homogeneous

groups or clusters of dataset. Input data patterns belonging

to similar classes activate adjoining nodes on the output

layer or Kohonen layer. In this way, closer nodes may be

considered representative of similar classes.
om http://iwaponline.com/jh/article-pdf/15/2/486/386998/486.pdf
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The steps to develop a SOM-based clustering method

are as follows. Firstly, after SOM training is complete as dis-

cussed in the ‘Theory’ section, all the input patterns are fed

into the well-trained SOM. If a neuron in the output layer

responds to a specific input pattern, the neuron becomes

the winner and is called the image of the specific input pat-

tern. A feature map is then obtained by labelling all winning

neurons in the output layer with the identities of corre-

sponding input patterns. The feature map is two-

dimensional and composed of grids that represent neurons

in the Kohonen layer. The density of winning neurons pre-

sents the statistical distribution of input data patterns. If

input data patterns are similar in the input space, their

images will be located in a certain place of the feature

map (Zhang & Li ). Accordingly, the SOM feature

map can be used to objectively cluster the input data

patterns.

The density map can be constructed using feature map.

First, the number of data patterns in each grid/node of the

feature map is counted. The number of data patterns repre-

senting the frequency of grids in the output layer is

‘imaged’ by specific input data patterns. By visually inspect-

ing the feature and the density maps, the number of

clusters and the members of each cluster can be objectively

determined.
Performance indices

The Nash–Sutcliffe coefficient E, root mean square error

(RMSE) and mean absolute error (MAE) performance indi-

ces are used to evaluate the model performance. These

performance indices are defined:

E ¼ 1�
Pn

i¼1 (Oi � Pi)
2Pn

i¼1 (Oi �Oi)
2 (17)

where Oi and Pi are observed and predicted discharge; Oi is

mean of the observed discharge; and n is the number of data

points:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

(Oi � Pi)
2

vuut (18)



Figure 4 | Performance of NN models during training using (a) LM, (b) BR and (c) CGB

training algorithms for 200 bootstrap resamples generated using 1-, 3- and

5-year training datasets.

Figure 5 | Performance of NN models during testing using (a) LM, (b) BR and (c) CGB

training algorithms for 200 bootstrap resamples generated using 1-, 3- and

5-year training datasets.
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and

MAE ¼ 1
n

Xn
i¼1

Oi � Pij j (19)
SIMULATION RESULTS AND DISCUSSION

NN models are trained with all the 200 bootstrap resampled

datasets generated from the 1- (i.e. 2000), 3- (i.e. 2000–2002)

and 5- (i.e. 2000–2004) year training datasets, and LM, BR

and CGB training algorithms are used to investigate the per-

formance of NN models. Figure 4 depicts the performance

of the NN model during training and Figure 5 depicts the

performance of NN model during testing. Table 3 lists the

performance comparison of NN models with the three

algorithms and three different lengths of datasets for training

and testing.

It is observed that with 1-, 3- and 5-year training data-

sets, the training performances of LM and BR are much

better than that of CGB. It is also observed that the LM

algorithm is more effective than the BR and CGB algorithms
Table 3 | Performance comparison of NN models with three training algorithms and three diff

Training/
Testing

Training
algorithm

Training
length of data
(years)

Mean
E

Std.
deviation Skewness

S
s

Training LM 5 0.96 0.02 –1.0 0
3 0.96 0.02 –0.8 0
1 0.97 0.02 –1.8 0

BR 5 0.94 0.02 –0.2 0
3 0.94 0.02 –0.9 0
1 0.95 0.03 –1.6 0

CGB 5 0.66 0.22 –0.7 0
3 0.64 0.22 –0.4 0
1 0.63 0.21 –0.4 0

Testing LM 5 0.89 0.02 –0.9 0
3 0.89 0.02 –1.8 0
1 0.84 0.08 –5.9 0

BR 5 0.89 0.02 –6.9 0
3 0.89 0.02 –1.9 0
1 0.87 0.03 –1.8 0

CGB 5 0.71 0.15 –1.8 0
3 0.71 0.15 –2.4 0
1 0.66 0.16 –2.2 0
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to train NN models. It is observed that testing performance

using the 3- and 5-year training dataset is much better than

the 1-year training dataset for NN models. With a 1-year

training dataset, the BR algorithm performed better com-

pared with LM and CGB algorithms for NN models. It

can therefore be concluded that the CGB algorithm is less

effective for NN models; it is therefore not considered for

further analysis.

CDFs aredeveloped to assess the performance and stability

of NN models with randomly selected training datasets.

Figures 6 and 7 confirm our deduction mentioned above. The

increasing steepness of the plotted curve indicates reduced sen-

sitivity of model performance (Yapo et al. ). AnNNmodel

therefore performs betterwithBR training algorithmcompared

with LM training algorithmwith short-length training datasets.

Finally, with the 5-year training dataset, the optimal perform-

ance of the NN model is ensured with the LM algorithm; this

configuration has therefore been used for cluster analysis.

In this study SOM is used to classify each data pattern

shown in Table 2. Each data pattern was taken successively

as input vector x to the input node of SOM. SOMwas initially

applied to the training dataset (375 input patterns). These

input patterns were iteratively used as input to the SOM
erent lengths of training datasets for training and testing

Percentiles

td. error of
kewness Kurtosis

Std. error
of kurtosis Minimum Maximum 25 75

.2 1.7 0.3 0.90 0.99 0.95 0.97

.2 0.5 0.3 0.90 0.99 0.95 0.98

.2 4.3 0.3 0.88 1.00 0.97 0.99

.2 –0.6 0.3 0.90 0.98 0.93 0.95

.2 1.4 0.3 0.86 0.98 0.93 0.96

.2 2.6 0.3 0.84 0.99 0.94 0.97

.2 0.1 0.3 –0.02 0.94 0.51 0.86

.2 –0.9 0.3 0.02 0.95 0.48 0.86

.2 –0.5 0.3 0.03 0.95 0.48 0.82

.2 0.5 0.3 0.83 0.92 0.88 0.90

.2 5.8 0.3 0.76 0.93 0.87 0.90

.2 49.2 0.3 0.05 0.92 0.82 0.88

.2 73.5 0.3 0.65 0.92 0.88 0.90

.2 6.4 0.3 0.78 0.92 0.88 0.90

.2 5.9 0.3 0.73 0.91 0.86 0.89

.2 3.9 0.3 0.12 0.91 0.65 0.82

.2 9.7 0.3 –0.24 0.91 0.65 0.81

.2 11.1 0.3 –0.46 0.89 0.59 0.78



Figure 6 | Empirical CDFs of Nash–Sutcliffe coefficient E for training datasets of 5, 3 and 1

year(s) length using (a) BR and (b) LM training algorithms.
Figure 7 | Empirical CDFs of Nash–Sutcliffe coefficient E for testing datasets of 5, 3 and 1

year(s) length using (a) BR and (b) LM training algorithms.
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and, after training, all data patterns were classified as either

nodes of output layer or Kohonen layer. The SOM technique

is used to classify the training and testing dataset objectively

by considering three groups which can be representative of

low-, medium- and high-discharge values. Several output

layer dimensions of SOM were selected (e.g. 4 × 4, 5 × 5,

6 × 6, 7 × 7 and 8 × 8) and all dimensions were tested using

visual inspection. The 6 × 6 dimension yielded comparatively

better distinction among the desired three clusters, and was

therefore selected as the optimal dimension.

A trained SOM or SOM feature map (Figure 8) shows

topological relationships among input data patterns where

datasets with similar characteristics are closely neighboured,

whereas datasets with significant differences are located at a
://iwaponline.com/jh/article-pdf/15/2/486/386998/486.pdf
distance from each other. The SOM feature map is used to

group the dataset into three groups by visual inspection

(two lines in Figure 8); the distance or dissimilarity between

the nodes increases as the connection between the nodes

changes from bright to dark.

A SOM density map yields the number of clusters for

input patterns objectively. The number of training and test-

ing data patterns assigned in different clusters for (a)

training datasets and (b) testing datasets are shown in

Figure 9. As discussed earlier, SOM is trained using the

training datasets and the trained SOM is used to cluster

the training and testing datasets. Generally, empty nodes

are used to separate different clusters (Lin & Wu ),

but instead in our study we used SOM neighbour distances



Figure 9 | The density map derived from the SOM of 6 × 6 dimension for (a) training

datasets and (b) testing datasets.

Figure 8 | SOM neighbour distances of the feature map derived from the SOM of 6 × 6

dimension.
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for the similarity/dissimilarity between the nodes since no

empty nodes were found. To verify the classification by

SOM, SOM neighbour distances which show the similarity

measures between the nodes are applied by visually inspect-

ing groups which can be demarcated comparatively.

Other authors (e.g. Jain & Srinivasulu ; Nayak et al.

; Tiwari & Chatterjee a, b, c) have evaluated the

weakness and strength of different models in predicting

different profiles of flow magnitude by dividing the time

series data into low-, medium- and high-flow values using

simple statistics. In this study the capability of SOM is

used to classify the time series data into three clusters (e.g.

low-, medium- and high-discharge profiles) and the perform-

ance of different NN models are evaluated for different

discharge profiles.

The trained SOM neural network is used to cluster the

testing dataset. Clustering of different data patterns in the

testing dataset is based on 17 input variables (Table 2). How-

ever, for the sake of simplicity, clustering of the testing

dataset at Naraj gauging station is shown in Figure 10. The

data are grouped into clusters I, II and III using the SOM

feature map. It is observed that cluster I represents low-dis-

charge values, cluster II represents medium-discharge

values and cluster III represents high-discharge values.

From Figure 10, it appears that a few data within the

medium-discharge cluster are located in the high-discharge

cluster; this is because the classification is based on the
om http://iwaponline.com/jh/article-pdf/15/2/486/386998/486.pdf
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non-linear relationship among the 17 input variables.

Figure 10 shows a simple representation of clustered dis-

charge values based on a single variable, i.e. for the time

series data at Naraj gauging station.

Table 4 shows the number of data patterns in different

clusters for training and testing datasets. SOM is first trained

using training datasets, three clusters are developed, and the

trained SOM is then used to assign corresponding cluster for



Figure 10 | SOM clustering results for 2006 testing dataset for Naraj gauging station.

Table 4 | Cluster assigned for datasets at Naraj gauging station

Category Training Testing
Number of
points

Percentage of
the total data

Number of
points

Percentage of
the total data

Cluster I 276 74 37 49

Cluster II 38 10 8 11

Cluster III 61 16 30 40

Total 375 100 75 100

Table 5 | Performance of NN models for the entire testing dataset (year 2006) for one day

lead time forecasting

Model E RMSE (m3 s–1) MAE (m3 s–1)

NN 0.825 3,675.0 2,428.9

WNN 0.923 2,440.2 1,885.5

BNN 0.915 2,568.8 1,694.8

WBNN 0.936 2,228.8 1,671.7

Table 6 | Performance of NN models for different clusters of testing datasets (year 2006)

for 1-day lead time forecasting

Category E RMSE (m3 s–1) MAE (m3 s–1)

NN

Cluster I 0.481 1,651.4 1,154.5

Cluster II –0.514 5,576.3 3,638.8

Cluster III 0.268 4,702.0 3,678.2

WNN

Cluster I 0.601 1,602.1 1,233.2

Cluster II 0.546 3,051.7 2,340.8

Cluster III 0.689 3,065.8 2,566.9

BNN

Cluster I 0.529 1,573.3 1,085.4

Cluster II 0.763 2,205.8 1,965.8

Cluster III 0.598 3,485.2 2,374.1

Combined 0.915 2,568.8 1,694.8

WBNN

Cluster I 0.569 1,504.2 929.1

Cluster II 0.539 3,077.1 2,329.6

Cluster III 0.774 2,615.5 2,219.3

Entire testing dataset
(with best models)

0.942 2,115.8 1,632.9
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new datasets (i.e. testing datasets). It is observed that cluster

I has the highest percentage of low-discharge values for

training and testing datasets and cluster III has the highest

percentage of high-discharge values for testing datasets.

However, cluster II features the lowest percentage of train-

ing datasets and shows unclear grouping as shown in

Figure 10. It is observed from Table 4 that the number of

data points for training dataset in Clusters II and III are

too few to develop separate NN models for these individual

clusters. The NN models are therefore developed for the

entire training dataset. The performance of these models is

then tested for the entire testing dataset and then for differ-

ent clusters of the testing dataset.

Table 5 shows the performance of NN models for the

entire testing dataset for 1-day lead time forecasting. It is

observed from Table 5 that the performance of different

NN models for the entire testing dataset can be described

as WBNN> (is better than) WNN>BNN>NN according

to E and RMSE and as WBNN>BNN>WNN>NN

according to MAE.

Table 6 shows the performance of NN models for differ-

ent clusters of testing datasets for 1-day lead time

forecasting. It is observed from Table 6 that the performance
://iwaponline.com/jh/article-pdf/15/2/486/386998/486.pdf
of NN models for high-discharge values (Cluster III) can be

described as WBNN>WNN>BNN>NN according to E

and RMSE. For medium-discharge values (Cluster II), the

BNN model performed much better than the other three

models. For low-discharge values in cluster I which have a

high percentage of training datasets, performance of all

four NN models is very similar, with the WBNN model per-

forming the best.

It is also seen in Table 6 that the variation in the Nash–

Sutcliffe coefficient for different clustered values is very high

compared with that in Table 5 for the entire testing dataset,
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which could be misleading. Jain & Sudheer () found

that Nash–Sutcliffe coefficient alone is not sufficient to

assess the performance of a model and that some other stat-

istical measures also need to be analysed before reaching

any conclusions. The WBNN model is therefore selected

as the best model for cluster I dataset, based on RMSE

and MAE. Further, the best model predictions are selected

for clusters I, II and III (i.e. WBNN model predictions for

clusters I and III and BNN model predictions for cluster

II); E, RMSE and MAE are evaluated as 0.942, 2,115.8

and 1,632.9 m3 s–1, respectively, for the entire testing dataset

as shown in the last row of Table 6. This performance is

better than that of the best-performing NN model (i.e.

WBNN model) for the entire testing dataset, as shown in

the last row of Table 5.

This study shows that the selection of a particular model

for a particular cluster can play a significant role when the

representation of data in a particular cluster is not sufficient.

Similar results – that an NN model with a small length of

training datasets and appropriate representation can per-

form as well as an NN model with a large length of

training datasets – were reported by Tiwari & Chatterjee

(a). The existence of cluster II also proved its impor-

tance as the values in cluster II were well simulated using

the BNNmodel compared with other models; for other clus-

ters as well as for the entire testing dataset, the WBNN

model performs better compared with other models. It can

therefore be said that the entire training dataset may be

used to develop the NN models, instead of developing indi-

vidual NN models for different clusters. Further, selection of

appropriate NN models for different clusters in the testing

dataset leads to an improvement in the prediction perform-

ance. However, more rigorous studies may be carried out in

future for higher lead times and different basins to confirm

this finding.
SUMMARY AND CONCLUSIONS

Improving the model efficiency in river flow forecasting is of

utmost importance in water resources planning and man-

agement. NN models have emerged as powerful tools in

hydrologic forecasting. In this study, we investigated the

effect of the length of training datasets as well as input
om http://iwaponline.com/jh/article-pdf/15/2/486/386998/486.pdf
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patterns on the performance of NN models. Further, to

improve the reliability of NN models with new datasets,

SOMs are used to classify the input patterns. In this study

it is illustrated that short-length training datasets for tra-

ditional NN models are not sufficient for hydrologic

forecasting. In order to overcome the limitation of conven-

tional NN models for hydrologic forecasting, training

algorithms such as Levenberg–Marquardt (LM), Bayesian

Regularization (BR) and Conjugate Gradient (CGB) were

embedded in the traditional NN models to improve the per-

formance when using a short-length training dataset.

The simulation studies show that with a 1-year training

dataset, the BR training algorithm enhances the perform-

ance of NN models more than LM training algorithm.

However, with a large amount of training dataset such as

a 3- and 5-year dataset, NN models showed very similar per-

formances. Subsequently, NN models (i.e. NN, WNN, BNN

and WBNN) are developed using the entire training dataset

and it was found that the WBNN model has the best per-

formance during testing when the entire testing dataset is

considered.

Further, the SOM clustering technique was used in this

study to classify the training and testing datasets into three

clusters (I, II and III representing low-, medium- and high-

discharge values, respectively) to evaluate the performance

of developed NN models (i.e. NN, WNN, BNN and

WBNN). The performance of WBNN model is found to be

the best compared with other models for clusters I and III,

whereas the BNN model provides better performance com-

pared with other models for cluster II for 1-day lead time

forecast. Overall, it is found that a selection of appropriate

NN models for different clusters classified using SOM

leads to an improvement in the prediction performance.

This study has shown the effectiveness of SOM to clus-

ter the data into different groups and to apply a selected

model. This approach has the potential to be applied in

different fields of engineering and medical sciences. In this

study, NN architecture with 17 input variables is selected

based on cross-correlations, autocorrelations and partial

autocorrelation functions between the variables. However,

in future, efforts may be made to examine alternative combi-

nations of inputs for the NNs. Other hydrological data such

as precipitation and temperature may also be considered to

improve the river flow forecasts.
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