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Abstract 
This paper presents an approach for improving requirements 
tracing based on framing it as an information retrieval (IR) 
problem.  Specifically, we focus on improving recall and 
precision in order to reduce the number of missed traceability 
links as well as to reduce the number of irrelevant potential 
links that an analyst has to examine when performing 
requirements tracing.  Several IR algorithms were adapted and 
implemented to address this problem.  We evaluated our 
algorithms by comparing their results and performance to those 
of a senior analyst who traced manually as well as with an 
existing requirements tracing tool.  Initial results suggest that 
we can retrieve a significantly higher percentage of the links 
than analysts, even when using existing tools, and do so in much 
less time while achieving comparable signal-to-noise levels. 
 

Research 

1. Introduction 
 

   There are two primary motivators for performing 
requirements tracing:  ensuring that a new system does 
indeed satisfy all its specified requirements, and 
performing impact analysis on proposed changes.  Both of 
these can be facilitated if a developer builds a detailed 
requirements trace as development proceeds.  The 
adoption of CASE tools such as DOORS [25], RDD-100 
[13], and Rational RequisitePro [21], or initiating process 
improvement initiatives, such as ISO–9000 [14], 
Capability Maturity Model [6], or Personal Software 
Process (PSP)/Team Software Process (TSP) [24], can 
spark such discipline in organizations that were formerly 
remiss.  Though our auditing and verification and 
validation experience has shown the old adage “you can 
lead a horse to water but you can’t make it drink” to be 
true in many cases. 
   Requirement tracing is at best a mundane, mind 
numbing activity, as anyone who has spent any time 

performing this activity will tell you.  Even with 
automation support, it is still a time consuming, error 
prone, person-power intensive task.  It has been our 
experience that the tools that do exist to support this 
activity have numerous shortcomings:  they require the 
user to perform interactive searches for potential linking 
requirements or design elements, they require the user to 
assign keywords to all the elements in both document 
levels prior to tracing, they return many potential or 
candidate links that are not correct, they fail to return 
correct links, and they do not provide support for easily 
retracing new versions of documents. 
   Since there are still many times when a requirements 
traceability matrix (RTM) does not exist and there is a 
need to ensure requirement completion and to understand 
change impact, a method for easy “after-the-fact” 
requirements tracing is needed.  Requirements traces can 
be evaluated by calculating two metrics:  the percentage of 
actual matches that are found (recall) and the percentage 
of correct matches as a ratio to the total number of 
candidate links returned (precision).  As mentioned above, 
current methods are prone to error and require intense 
effort on the part of the analyst.  Recall, precision, and 
performance values for these methods are not widely 
known or generalized.  This paper presents the results of 
NASA-funded research to improve the state of the art of 
after the fact requirements tracing.  The problem was cast 
in as an Information Retrieval problem, three algorithms 
were developed, an analysis tool was developed, and an 
evaluation study was performed.  Our retrieval with 
thesaurus algorithm provided recall of 85.3% and 
precision of 40.6% in a much shorter period of time than 
analysts performing the same task. 
   Section 2 discusses related work in requirements tracing.  
IR Background on Information Retrieval (IR) is presented 
in Section 3.  We discuss how requirements tracing can be 
represented as an IR problem and the algorithms we used 
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in our study in Section 4.  Section 5 discusses the results 
obtained from evaluation.  Finally, Section 6 presents 
conclusions and areas for future work. 

2. Related work 
 

   In the context of our work, there are two areas of 
interest:  requirements tracing and IR as it has been 
applied to the problem of requirements analysis.  Each 
will be addressed below. 
 
2.1 Requirements tracing 
 
   We have been tackling the requirements tracing problem 
for many decades.  In 1978, Pierce [18] designed a 
requirements tracing tool, basically a way to build and 
maintain a requirements database, to facilitate 
requirements analysis and system verification and 
validation for a large Navy undersea acoustic sensor 
system.  
   Hayes et al [12] built a front end for a requirements 
tracing tool called the Software Automated Verification 
and Validation and Analysis System (SAVVAS) Front 
End processor (SFEP).  This was written in Pascal and 
interfaced with the SAVVAS requirements tracing tool 
that was based on an Ingres relational database.  SFEP 
allows the extraction of requirement text as well as the 
assignment of requirement keywords through the use of 
specified linkwords such as shall, must, will, etc.  These 
tools are largely based on keyword matching and 
threshold setting for that matching.  Several years later the 
tools were ported to hypercard technology on Macs, and 
then to Microsoft Access and Visual Basic running on 
PCs.  This work is described by Mundie and Hallsworth in 
[17].  These tools have since been further enhanced and 
are still in use as part of the Independent Verification and 
Validation (IV&V) efforts for the Mission Planning 
system of the Tomahawk Cruise Missile as well as for 
several NASA Code S science projects. 
   Abrahams and Barkley, Ramesh, and Watkins and Neal 
[1, 19, 27] discuss the importance of requirements tracing 
from a developer's perspective and explain basic concepts 
such as forward tracing, backward tracing, vertical tracing, 
and horizontal tracing.  Casotto [7] examined run-time 
tracing of the design actvity.  Her approach uses 
requirement cards organized into linear hierarchical stacks 
and supports retracing.  Tsumaki and Morisawa [26] 
discuss requirements tracing using UML.  Specifically 
they look at tracing artifacts such as use-cases, class 
diagrams, and sequence diagrams from the business model 
to the analysis model and to the design model (and back) 
[26]. 
   There have also been significant advances in the area of 
requirements elicitation, analysis, and tracing.  Work has 

largely been based on lexical analysis, such as extraction 
and analysis of phoneme occurrences to categorize and 
analyze requirements and other artifacts [22].  Bohner's 
work on software change impact analysis using a graphing 
technique may be useful in performing tracing of changed 
requirements [4].  Anezin and Brouse present advances in 
backward tracing and multimedia requirements tracing in  
[2, 5].  
   Cleland-Huang et al [8] propose an event-based 
traceability technique for supporting impact analysis of 
performance requirements.  Data is propagated 
speculatively into performance models that are then re-
executed to determine impacts from the proposed change.  
Ramesh et al examine reference models for traceability.  
They establish two specific models, a low-end model of 
traceability and a high-end model of traceability for more 
sophisticated users [20].  They found that a typical low 
end user created traceability links to model requirement 
dependencies, to examine how requirements had been 
allocated to system components, to verify that 
requirements had been satisfied, and to assist with change 
control.  A typical high-end user, on the other hand, uses 
traceability for full coverage of the life cycle, includes the 
user and the customer in this process, captures discussion 
issues, decision, and rationale, and captures traces across 
product and process dimensions [20]. 

2.2 Information retrieval in requirements 
analysis 
 
   Dag et al [9] perform automated similarity analysis of 
textual requirements using IR techniques.  They found this 
to be a promising method that helped identify 
relationships between requirements.  Our work differs 
from theirs in that we examine requirements tracing “after 
the fact” while they focus on assisting developers who 
must deal with a rapid arrival of new requirements from 
numerous diverse sources. They propose to continuously 
analyze the flow of incoming requirements to increase the 
efficiency of the requirements engineering process [9].   
   Antionol et al [3] applied a probabilistic and a vector 
space IR model in two case studies to trace C++ source 
code onto manual pages and to trace Java code to 
functional requirements.  They examined the effect of 
requiring 100% recall and found that the probabilistic 
model achieves the highest recall values, less than 100 
percent, with a smaller number of documents retrieved 
and then performs better when 100% recall is required. 
 
 
3. Information retrieval (IR) 
 
   IR is a field that studies the problem of finding relevant 
documents in document collections given user queries. 
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While IR research first appeared in the 1960s, it became a 
separate discipline of Computer Science in the late 1970s. 
The advent of the World Wide Web and the growth of 
data storage capacity of computers, which lead to the 
growth in the number and size of document repositories, 
generated a new wave of IR research in the 1990s. A 
recent introduction to IR is found in  [10]; [11] provides 
an excellent roadmap for developing IR systems from 
scratch. We refer the reader interested in the history and 
development of IR to Sparck Jones, and Willet [23], a 
large collection of seminal and influential papers from the 
field.  
   IR attempts to model individual documents within 
document collections and to model user information 
needs. IR methods determine how relevant the document 
representation is to the query that represented user 
information need.  
   Among a large variety of methods of IR, keyword-based 
retrieval is arguably the most-studied and often-used 
method. In keyword-based IR, each document in the 
repository is analyzed to determine the (key)words or 
terms that are important for this document and can be used 
to query it. User queries are also analyzed for keywords 
and these keywords are compared with the ones associated 
with each document in the collection in order to determine 
matches. In most keyword-based methods, the relevance 
of the document to the query is expressed using a 
similarity measure that computes how closely the 
representations of a document and a query match. The 
answer to the query is given in the form of a list of 
documents in descending order of their expected 
relevance to the query. 
   The quality of IR methods is measured by how well the 
documents returned match the user’s expectations. This is 
typically formalized with two metrics:  precision and 
recall. Precision is computed as the fraction of the 
relevant documents in the list of all documents returned by 
the IR method given a query. Recall is the fraction of the 
retrieved relevant documents in the entire set of 
documents, retrieved and omitted, that are relevant to the 
query. We notice here that precision is a quantity that 
usually is relatively easy to measure given the query and 
the list of answers. Measuring recall is a much harder task, 
as it requires knowledge of the entire document collection. 
IR methods are usually designed to work on large 
collections of data: a typical test collection for an IR 
system is around 5-7 GB, whereas industrial-strength 
applications, such as WWW search engines are expected 
to handle data collections that are at least 2-3 orders of 
magnitude greater, and provide answers within seconds. 
Because of this, performance of the IR methods also plays 
a major role in their evaluation, as sometimes methods 
that give higher precision and recall become impractical 
due to the time it takes for them to deliver the answer.   

   There is a wide array of keyword-based retrieval models 
for document collections. Boolean model is the simplest: a 
representation of a document is a Boolean vector 
identifying the keywords present in the document. Vector 
model extends Boolean model by associating with each 
term in the document representation a weight that signifies 
its assumed importance to the document collection. 
Consider a standard vector retrieval model. Given a 
document d in the collection, let us denote its 
representation in the vector model as a vector d=(w1, 
w2,...,wN), where N is the number of terms in the document 
collection’s vocabulary and wi is the abovementioned 
weight of the ith term. This weight is computed as  

,)( iii idfdtfw ⋅=  

where tfi(d) is the term frequency of the ith keyword in 
document d and idfi  is the inverse document frequency of 
the ith term in the document collection. Term frequency is 
usually the number of occurrences of the term in the 
document and is usually normalized. Inverse document 
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the document collection and n is the size of the document 
collection. Basically, the importance of the term is judged 
by how often this term is found in the document and by 
how discriminating the term is. That is., the less frequent 
the term is in the collection, the more its presence is 
important for the document. A user query is also 
converted into a similar vector q=(q1,…,qN) of term 
weights. In this model, given a document vector d and a 
query vector q, the similarity between them is computed 
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N-dimensional space: 

.),cos(),(

1 1

22

1

∑ ∑

∑

= =

=

⋅

⋅
==

N

i

N

i
ii

N

i
ii

qw

qw
qdqdsim  

   Different extensions of the standard vector retrieval 
model exist, based on modifications to the computation of 
term weights in the document and similarity between the 
document and query vectors. There are also extensions of 
the vector model based on the use of additional 
information: 

Retrieval based on user feedback.  After the original list 
of the answers to the user query is compiled, the user is 
asked to specify which of the returned documents were 
relevant and which were not. Using this information it is 
possible to re-weigh the query vector and adjust the 
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similarity computation in a way that documents similar to 
the ones the user declared relevant will get a higher 
relevance rating, while the documents similar to the ones 
declared irrelevant will drop significantly in their 
relevance rating. 

Thesaurus—based retrieval.  Classical vector model 
compares only the occurrences of individual keywords 
and key phrases. However, in many situations, one needs 
to take into account the presence in the document of the 
keywords synonymous or otherwise related to the query 
keywords. For example, the query “car retailer” will not 
match the document describing “Toyota dealership” in 
classical vector retrieval, but it may be very relevant to the 
query. Thesauri are collections of information about the 
relationship between different terms. Use of thesauri in IR 
allows one to extend classical vector retrieval to account 
for the presence of synonyms, words representing 
subcategories of the query terms, etc. Thesauri can come 
in a variety of different flavors: from very detailed 
descriptions of term hierarchies to ad-hoc lists of synonym 
pairs. The exact way of incorporating the thesaurus into 
the IR method depends of its type. 
 

3. Automating requirements tracing 
 
   Among the tasks that must be performed during the 
requirements tracing, the most time-consuming and crucial 
activity is the generation of candidate links. Even with the 
aid of currently available support tools, this is still largely 
an analyst-driven process. Whether performing forward-, 
lateral- or back-tracing, the majority of the time analysts 
spend is devoted to the generation of sensible lists of 
candidate matches. . It is this portion of the requirements 
tracing process that we are automating.  
   In addressing the problem of automating the 
requirements tracing process, our main objectives were to 
improve the quality of the candidate lists as well as 
decrease the time needed for their generation. We notice 
that IR metrics of recall and precision are appropriate 
characteristics of the quality of candidate lists: recall 
measures the fraction of true matches that had been 
included, while precision measures the signal-to-noise 
ratio. Between these two metrics, we chose recall as our 
most important objective.  This ordering ensures that an 
analyst feels confident that all related links have, indeed, 
been retrieved.  Precision comes next, so that the analyst 
would not have to sift through numerous erroneous 
potential links. We notice however, that without good 
precision, total recall is a meaningless accomplishment. 
For example, in forward tracing, it can be achieved by 
simply including every single lower-level requirement in 
the candidate lists for every higher-level requirement. 

   As is apparent, automatic generation of candidate lists is 
bound to be orders of magnitude faster than their manual 
generation by the analyst, even assisted by currently 
available interactive tools. Automated generation 
drastically reduces the burden on the analyst of two time-
consuming and frustrating activities: keyword assignment 
and interactive search for candidate links. 
   There were six major activities as we performed this 
work: (i) framing the problem in terms of an IR problem, 
(ii) selecting IR algorithms to implement, (iii) preparing 
the input requirement text, (iv) analyzing the output from 
the algorithms, (v) selecting strategies for trimming 
algorithm output, and (vi) comparing algorithm 
performance to human analyst performance.  Each activity 
will be discussed in subsections below except for the 
algorithm evaluation activities that will be deferred until 
Section 5. 
 
3.1 Requirements tracing as an IR problem 
 
   We illustrate how requirements tracing can be 
represented as an IR problem using forward tracing as an 
example. Note that the same technique can be applied to 
tracing design descriptions backward to requirement 
specifications, to tracing requirement specifications 
laterally to test specifications, to tracing design elements 
forward to code elements, etc.  The collection of high-
level requirements can be extracted from the high-level 
requirements document. Similarly, the lower-level 
document can be broken into the collection of individual 
lower-level requirements (also called design elements 
here). Each requirement and each design element can be 
treated as a separate document in an IR document 
repository. Generally it should contain all text and 
supplemental information (e.g., tables, graphs if such 
exist) necessary for the requirement/design element to be 
readable and understandable on its own. 
   Now, given the list R = (r1,…,rN) of requirements and 
the list S=(s1,…,sM) of lower-level design elements, a 
requirements trace is a mapping tr:Rà2S , where every 
design elements∈tr(r) satisfies part  or all of requirement r  
and no other design elements  satisfy any parts of r.  
   The approach we adopt for this research is to consider 
requirements tracing as an IR problem. Because most 
manual or semi-automatic technologies for requirements 
tracing are keyword-based, keyword-based IR methods 
appear to be a natural extension of this process.  In 
particular, we formalize the requirements tracing problem 
as follows. The universe of documents D = R∪S is the 
union of all individual requirements and design elements. 
Let VD = {k1,k2,…,kL} be the vocabulary of D, i.e., the list 
of all terms that appear in both higher-level and lower-
level requirements. Each document di∈D is represented as 
the vector of term weights di=(wi,1,...,wi,L). Assume the 
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existence of a similarity measure, sim, that, given two 
vectors di and dj,, quantifies the similarity between them. 
   The process of building candidate link lists for the 
requirements tracing problem is then reduced to the 
procedure of computing the matrix of similarities between 
vectors r1,…,rN ,representations of high-level 
requirements, and vectors si,…,sM ,representations of 
lower-level requirements. For each high-level requirement 
ri the list s’1,…,s’Mi of design elements, such that sim(ri,s’-
j)=0 ,sorted in the order of descending similarity value, 
serves as the first approximation of the candidate list. This 
list can further be pruned in a variety of different ways: for 
example, by considering only the top five vectors on the 
list, or by setting up some similarity threshold a and 
pruning out all specifications that exhibit smaller 
similarity. 
 
3.2 Features of the requirements tracing process 
 

   While IR methods seem to provide a good match for the 
problem of automating the generation of the lists of 
candidate matches, the requirements tracing problem has a 
number of specific features that typical IR settings do not 
have. We briefly address these features here and discuss 
their implications on our attempts to apply IR techniques 
to requirements tracing. 

1. Size of the domain. IR methods are designed for 
working with large numbers of large documents in the 
presence of large vocabularies. In requirements 
tracing, our domain is a fairly small collection of 
documents: there are on the order of thousands of 
requirements in a large-scale software development 
project, whereas, typical document collections 
number hundreds of thousands to millions of 
documents. An individual requirement is also quite 
short: it often contains just 2-3 sentences. Finally, the 
limited document collection that the requirements 
form has a relatively limited vocabulary. 

Implications of domain size. (i) Traditional IR 
methods become robust on large collections of data. 
Their performance on smaller collections can be not 
as good because the influence of individual 
components of the model on the final result grows, 
and, sometimes, coincidental matches outscore the 
true similarities. Therefore, we must be careful in 
evaluation of our IR methods. (ii) On the other hand, 
because of small domain sizes, we can apply some of 
the more complex IR techniques that are typically 
deemed to be too slow for large data collections.  
This is part of our future work. 

2. Query interdependence. It is customary in IR systems 
to consider all queries as being independent. It is a 

reasonable assumption for Internet search engines 
which process thousands of queries each second 
coming from thousands of different users. In the 
requirements tracing problem, though, the queries are 
the higher-level requirements, which are, very often, 
related to each other. 

Implications of query interdependence. The result of 
our automated process is the matrix of similarities 
between higher-level and lower-level requirements. 
Knowing that the rows of this matrix may be not 
independent, we can perform secondary analysis on 
this matrix comparing the candidate lists for different 
requirements and the similarity measures.  

 
3.3 Selection and modification of IR algorithms 
 

In our initial study we have explored three different IR 
methods: classical vector IR model and two extensions of 
it with simple thesauri constructs.  All algorithms followed 
the same path from data preparation to generation of 
answers. First, individual requirements were extracted 
from higher- and lower-level requirements documents 
using automatic extraction scripts, similar to those found 
in SuperTracePlus™ and commercial tools. Each 
requirement/design element was stored as a separate file. 
The repository thus generated was used as the input for 
the model-building tool.  
   On the model-building stage the following is done: (i) 
each requirement is parsed and tokenized; (ii) stopwords 
(i.e., words that are not useful for the purposes of 
retrieval, like “shall”, “the” or “for”) are detected and 
removed from the token stream; (iii) the remaining tokens 
are stemmed to ensure that different forms of the same 
word are treated as one term (e.g., “information” and 
“informational”); (iv) the vector representation of the 
document is created and stored. As a byproduct, the 
master vocabulary of the repository is constructed. 
   Once the vector models of requirements are built, the 
actual retrieval process proceeds as follows. The list of 
queries, higher-level requirements for the case of forward-
tracing, is processed one-by-one and converted into query 
vectors using the same parse -> remove stopwords -> stem 
sequence. After that, similarity computation is performed 
for each query-design element pair. A list of design 
elements with non-zero similarity is created for each 
query, sorted in the descending order of the similarity 
value. These lists are returned to the analyst. 
   The first method implemented, vanilla vector 
retrieval, has been described in Section 2. As the basis, 
we have used a generic IR system developed by a graduate 
student during an IR course taught by one of the co-
authors. The provided software had been modified to 
work with repositories of requirements and design 
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elements, but the main computational procedures were 
kept intact. 
   For the second method, retrieval with key-phrases, we 
have augmented the traditional vector model, by 
associating a list of technical terms or key-phrases with 
the document repository. When the model-building 
software detected a technical term, it was added to the 
vocabulary and treated as any other term from then on. 
This allowed us to raise the relevance of matches related 
to technical terminology and exclude some coincidental 
matches. For example, our requirements and design 
elements contain the phrases “ecs production 
environment” and “ecs archive metadata.” In the standard 
vector model, the match on keyword “ecs” generated a 
false positive, but by qualifying the phrases above as 
vocabulary terms we were able to decrease the relevance 
of this match. On the other hand, because “ecs archive 
metadata” became a much more discriminating term than 
any of its individual components, the key-phrase match 
between two documents started to carry much more 
weight.  We note here, that the generation of the list of 
technical terms is a reasonably simple and straightforward 
task: it is readily found in the definitions or acronyms 
sections of most requirement documents. 
   The third method, thesaurus retrieval, took the idea of 
incorporating technical lingo into the retrieval process one 
step further. To aid vector retrieval we used a simple 
thesaurus. Each entry of our thesaurus is a triple (ki,kj,aij), 
where ki and kj are vocabulary terms (either words or key-
phrases) and aij∈[0,1] is a perceived similarity coefficient 
of ki and kj. The analyst assigns this coefficient to each 
thesaurus entry  , hence the qualifier “perceived”.   During 
the model-building stage, thesaurus entries are recognized 
and added to the vocabulary as new terms, similar to the 
addition of key-phrases in the previous method. The main 
change in the behavior of this method with respect to the 
other two, however, comes during the query processing 
stage. When computing the similarity between a query 
requirement r=(r1,…,rN) and a design element d=(w1,…,w-
N), the standard cosine computation receives an add-on 
that is generated by matches found via the thesaurus. More 
formally, letting T denote the thesaurus, the new similarity 
measure, simT, used in this method is computed as: 
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   Construction of a thesaurus for our thesaurus-based 
retrieval method is a reasonably straightforward 
procedure. Most of the information linking technical terms 
is present in data dictionaries and acronym lists that are 

typically found in the appendices of requirements 
documents. The analyst has to assign similarity weights to 
each constructed pair, but the final computation of 
similarity is fairly robust with respect to small fluctuations 
in these weights so the analyst needs only provide the 
“ballpark” estimate.  If the analyst chose not to assign 
such a value, a default value is assigned.  Using a 
thesaurus entry (“corrupted data”, “missing packets”, 1.0), 
we can establish similarity between a requirement and a 
design element which otherwise contain no matching 
terms. 
   All our IR algorithms were implemented in C++ running 
under Linux.  
 

4. Evaluation 
 

   We undertook a multi-faceted evaluation effort to ensure 
that our research objectives had been met.  We built two 
datasets from open source NASA Moderate Resolution 
Imaging Spectroradiometer (MODIS) documents [16] for 
this purpose.  One dataset contains ten high level 
requirements and ten lower level requirements and the 
other contains 19 high level and 50 low-level 
requirements.  The 10x10 dataset was a subset of the 
19x50 dataset.  We then verified the 10x10 trace and the 
19x50 trace.  To accomplish this, we had a senior analyst 
with 20 years of experience examine the traceability 
matrix provided in Table 7-1 of the MODIS Science Data 
Processing Software Requirements Specification Version 
2 document [16].  These high level requirements were 
traced down to the Level 1A (L1A) and Geolocation 
Processing Software Requirements Specification [15].  
Several changes were made based on this review.  For 
example, some links were deleted from the RTM and 
some links were added.  Approximately 90% of the RTM 
remained unchanged though. 
   Second, we ran the vanilla vector retrieval algorithm on 
the 10x10 and 19x50 datasets.   We developed an analysis 
tool to compare the result matrix generated by the query 
tool to the manually verified RTM (see Section 5).  The 
tool, written in C++, computes precision and recall for 
each document and for the whole of the dataset.  We used 
the data analysis tool to examine the results.  We also 
asked two junior analysts with less than 5 years of 
experience to manually trace the 10x10 dataset.  The 
results of these tracing activities are shown in Table 1.   
   As can be seen, the analysts tied or outperformed the 
vanilla vector algorithm in overall recall (by 0 – 20%).  
One analyst outperformed precision by 12.4% while the 
other analyst was outperformed by 2.6%.  The vanilla 
vector algorithm had slightly better recall on the larger 
dataset, but lower precision.  The analysts recorded the 
amount of time it took them to build candidate lists and 
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perform a relative/similarity assessment of these (the same 
tasks performed by our algorithm).  It took the analysts 65 
minutes and 150 minutes, respectively, to perform the 
trace.  Not surprisingly, our algorithms ran in less than a 
minute. 
 
Table 1. Results of baseline algorithm compared 

to analysts. 

 Analyst 
1 

Analyst 
2 

Vanilla 
vector 
(10 x 10) 

Vanilla 
vector 
(20 x 50) 

Recall 23.0% 42.9% 23.0% 25.4% 

Precision 15.0% 30.0% 17.6% 11.4% 

Performance 
(min.) 

65 150 seconds Seconds 

 
   These results are not surprising.  The vanilla vector 
algorithm works well only when the vocabularies of the 
high and low level requirements are close enough to 
generate multiple keyword matches.  In this case, the two 
levels of requirements had been written using very 
different terminology.  This contributed to low recall.  
Low precision can be explained by the fact that 
coincidental matches of common English words often 
obscured technical terminology.      
   Next, we implemented two additional IR algorithms that 
extend the vanilla vector algorithm as discussed in Section 
4.  The key-phrase retrieval algorithm slightly improved 
recall on the 10x10 dataset (see Table 3).  However, the 
precision went down.  This is also not surprising:  while 
the introduction of technical terminology allowed us to 
capture some previously undetected matches, more noise 
was also introduced. 
   The retrieval with thesaurus algorithm was tested on the 
19x50 dataset.  In addition, we had a senior analyst at 
Science Applications International Corporation (SAIC) 
trace the same dataset using the latest version of 
SuperTracePlus™, the requirements tracing tool discussed 
in [12] and [17] in Section 2.1.  The results are shown in 
Table 2.  We show two sets of recall and precision 
measures.  The average recall and precision metrics 
represent the respective means of precision and recall 
values for the 19 individual requirements.  The overall 
precision and recall are computed as the fractions of the 
total number of correctly found matches to the total 
numbers of supplied answers and correct links, 
respectively.   
 

Table 2. Results of enhanced algorithms 
compared to SuperTracePlus. 

 SuperTracePlus 
Tool 

Analyst Retrieval with 
thesaurus 
algorithm 

Correct links 41 41 41 

Correct links 
found 

26 18 35 

Total number 
of candidates 

67 39 86 

Missed 
requirements 

3 6 4 

Average recall 69.37% 

 

53.30% 

 

71.69% 

 

Average 
precision 

56.48% 

 

53.55% 

 

32.76% 

 

Overall recall 63.41% 

 

43.9% 

 

85.36% 

 

Overall 
precision 

38.80% 

 

46.15% 

 

40.69% 

 

Performance 
(hours) 

N/A – included in 
analyst 

performance 

9 Seconds for 
algorithm, 
0.33 for 

thesaurus 
building 

 
   The 19x50 dataset included a number of high-level 
requirements with no matching low-level requirements.  
For the purposes of evaluation, we considered precision 
and recall for these requirements to be 100% if no 
candidates were produced and 0% otherwise.  This is 
accounted for in the average recall and precision measures 
but not in the overall recall and precision because the 
latter measures look only at the total number of correct 
links retrieved. 
   Note that the retrieval with thesaurus algorithm achieved 
recall of over 85% with 40.6% precision on a dataset that 
is only 19x50.  The recall outperforms SuperTracePlus™ 
by 22% and the analyst by a whopping 42%.  The 
algorithm’s average recall also outperformed the analyst 
by 18% and the SuperTracePlus™ tool by 2%.  The 
analyst outperformed the retrieval with thesaurus 
algorithm in precision per requirement by 21% and in 
overall precision by 5%.  The SuperTracePlus™ tool 
outperformed the algorithm only in precision per 
requirement, by 24%.  It should be noted that it took the 
analyst 13 hours to perform the trace.  Nine of the thirteen 
hours were spent on building a link library (keyword 
assignment, two hours) and tracing and data review 
(examining links and interactively searching for others, 
seven hours).  Our thesaurus was built in less than 20 
minutes by cutting and pasting from the data dictionary 
and other appendices of the document. 
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   Taking a closer look, we see that our algorithm only 
missed 6 links while SuperTracePlus™ missed 15 and the 
analyst missed 17.  We found that there were three high 
level requirements that did have low level links for which 
SuperTracePlus™ found no match, four such 
requirements that were missed by our retrieval with 
thesaurus algorithm, while the analyst’s count was six (see 
“missed requirements” row of Table 3).  Two of the 
requirements that SuperTracePlus™ missed were caught 
by our algorithm.  One of the requirements that our 
algorithm missed was found by SuperTracePlus™.  There 
were three requirements that both SuperTracePlus™ and 
the thesaurus retrieval algorithm missed.  As part of our 
future work, we will examine these three requirements 
carefully to understand how our algorithms might be 
improved.   
   The SAIC analyst made a number of observations 
during the tracing activity: 

§ It was difficult to do some of the tracing because the 
two documents were incomplete.  Section titles would 
have helped.  Also, some requirement text was 
incomplete and ambiguous.  For example, some 
sentences were incomplete sentences, did not have a 
subject, or in one case said "Deleted." 

§ Not knowing acronyms hindered the linking process. 

§ The linking of parent and child requirements does not 
take into account the analyst-assigned status.  For 
example, I might have selected a link or several links, 
but selected a status of "Partial." 

   The first observation is accurate.  The requirements 
were extracted from the RTM of the documents and the 
section headings were not repeated with the requirement 
text.  We also found the second observation to be true as 
we verified the trace and also as we interviewed the two 
analysts who manually traced the 10x10 dataset.  The final 
comment is also valuable.  Basically the analyst is saying 
that (s)he may not have been convinced that a high level 
requirement was satisfied.  But the analyst could not find 
any more links for it, so had to leave it.  The analyst 
therefore would have noted that requirement as only 
partially satisfied.  Our study did not allow for collection 
of that information.  We will consider this for improving 
our future studies. 
   Analysis of our retrieval algorithms showed the presence 
of many false positives.  We also noticed that many of 
these were returned with very low relevance.  In order to 
analyze the true effectiveness of our algorithms, we chose 
to implement various thresholds to trim the lists of 
candidate links.   Decreasing the size of the lists this way 
allows us to improve precision at a potential cost to recall.  
We have decided upon four thresholds: Top 4 candidates, 
any candidates with similarity above 0.25, and any 

candidates with similarity within 0.33 and 0.50 of the 
similarity of the top candidate.   
   Table 3 shows how overall recall ([R]) and precision 
([P]) for all three of our algorithms change for different 
trimming thresholds.  Note that Above 25% trimming 
yields the highest results for the first two algorithms, but 
not for the retrieval with thesaurus algorithm. 
 

Table 3. Algorithm results after trimming. 

 Vanilla 
algorithm 

(10x10) 

[R,P] 

Retrieval w/key 
phrases 
algorithm 
(10x10) 

[R,P] 

Retrieval 
w/thesaurus 
algorithm 
(19x50) 

[R,P] 

No 
trimming 

[23%,17.6%] [27.2%,5.2%] [85.4%,40.6%] 

Top 4 [23%,17.6%] [27.2%,8.3%] [36.5%,30.6%] 

Above 
25 

[23%,75%] [27.2%,25%] [9.7%,40%] 

Within 
33 

[23%,23%] [27.2%,15.7%] [48.7%,44.4%] 

Within 
50 

[23%,20%] [27.2%,15.7%] [58.5%,42.1%] 

 

5. Conclusions and future work 
 

   In this paper, we have studied a method for improving 
candidate link generation by applying IR techniques.     
We started with a classical vector space model algorithm, 
the vanilla vector algorithm.  We found that this algorithm 
does not outperform analysts or existing tools in terms of 
recall or precision, but that it does perform faster and with 
no keyword assignment required of analysts.  Next, we 
developed two extensions to this algorithm.  The first uses 
a simple key-phrase list, one that can be easily pulled from 
the definitions or acronym section of a requirement 
document.  The retrieval with key-phrases algorithm 
resulted in improved recall but with decreased precision.   
Next, we added a simple thesaurus.  We found this 
information to be readily available in the definition list 
and the data dictionary in the appendix of the traced 
documents.  Testing the thesaurus-based retrieval 
algorithm on the 19x50 dataset, we found that recall 
improved to 85% and that precision moved up to 40%. 
   Evaluation of the algorithms against a comparable 
keyword-based tool and analysts showed that the retrieval 
with thesaurus algorithm outperforms all in terms of recall 
and sometimes - in terms of precision. 
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  Note that the techniques have been evaluated using a 
forward trace process.  However, these techniques can just 
as easily be applied to back tracing and lateral tracing.  
   We found that a number of things pose problems for 
analysts:  incomplete or ambiguous requirement 
documents; undefined acronyms; lack of intimate domain 
area or project knowledge; and different lingo in which 
the high- and low-level documents are written. 
   We note that the methods studied in this paper address 
the problem of automating the candidate link generation.  
It is imperative to have the analyst examine the final 
candidate list to effectively complete requirements tracing.  
By improving the candidate link lists, we reduce the 
burden on the analyst.  In addition to that, using feedback-
based retrieval techniques, we can make this last stage of 
the process more efficient.  We are currently in the 
process of developing such a feedback agent for our 
candidate link generator software.  Another interesting 
area for future research is using IR techniques to predict 
the coverage or satisfaction of traced requirements by 
their lower level requirements.   
   The initial results are promising and indicate that 
additional work is warranted.  The results, however, are 
limited and the effectiveness of our IR models on a 
broader scale remains to be seen.  A much larger scale 
study is required before any broad conclusions can be 
reached.  We have secured agreement from the 
International Space Station to allow use to use their 
documents for tracing studies.  This will allow us to trace 
several thousand high-level requirements to tens of 
thousands of low-level elements.  We are confident that 
our algorithms will only perform better as the document 
collection size increases. 
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