

Improving Requirements Tracing via Information Retrieval

Jane Huffman Hayes

Computer Science Department
Laboratory for Advanced

Networking
University of Kentucky

hayes@cs.uky.edu
(corresponding author)

Alex Dekhtyar
Computer Science Department

University of Kentucky
dekhtyar@cs.uky.edu

James Osborne
Computer Science Department

University of Kentucky
jas@netlab.uky.edu

Abstract
This paper presents an approach for improving requirements
tracing based on framing it as an information retrieval (IR)
problem. Specifically, we focus on improving recall and
precision in order to reduce the number of missed traceability
links as well as to reduce the number of irrelevant potential
links that an analyst has to examine when performing
requirements tracing. Several IR algorithms were adapted and
implemented to address this problem. We evaluated our
algorithms by comparing their results and performance to those
of a senior analyst who traced manually as well as with an
existing requirements tracing tool. Initial results suggest that
we can retrieve a significantly higher percentage of the links
than analysts, even when using existing tools, and do so in much
less time while achieving comparable signal-to-noise levels.

Research

1. Introduction

 There are two primary motivators for performing
requirements tracing: ensuring that a new system does
indeed satisfy all its specified requirements, and
performing impact analysis on proposed changes. Both of
these can be facilitated if a developer builds a detailed
requirements trace as development proceeds. The
adoption of CASE tools such as DOORS [25], RDD-100
[13], and Rational RequisitePro [21], or initiating process
improvement initiatives, such as ISO–9000 [14],
Capability Maturity Model [6], or Personal Software
Process (PSP)/Team Software Process (TSP) [24], can
spark such discipline in organizations that were formerly
remiss. Though our auditing and verification and
validation experience has shown the old adage “you can
lead a horse to water but you can’t make it drink” to be
true in many cases.
 Requirement tracing is at best a mundane, mind
numbing activity, as anyone who has spent any time

performing this activity will tell you. Even with
automation support, it is still a time consuming, error
prone, person-power intensive task. It has been our
experience that the tools that do exist to support this
activity have numerous shortcomings: they require the
user to perform interactive searches for potential linking
requirements or design elements, they require the user to
assign keywords to all the elements in both document
levels prior to tracing, they return many potential or
candidate links that are not correct, they fail to return
correct links, and they do not provide support for easily
retracing new versions of documents.
 Since there are still many times when a requirements
traceability matrix (RTM) does not exist and there is a
need to ensure requirement completion and to understand
change impact, a method for easy “after-the-fact”
requirements tracing is needed. Requirements traces can
be evaluated by calculating two metrics: the percentage of
actual matches that are found (recall) and the percentage
of correct matches as a ratio to the total number of
candidate links returned (precision). As mentioned above,
current methods are prone to error and require intense
effort on the part of the analyst. Recall, precision, and
performance values for these methods are not widely
known or generalized. This paper presents the results of
NASA-funded research to improve the state of the art of
after the fact requirements tracing. The problem was cast
in as an Information Retrieval problem, three algorithms
were developed, an analysis tool was developed, and an
evaluation study was performed. Our retrieval with
thesaurus algorithm provided recall of 85.3% and
precision of 40.6% in a much shorter period of time than
analysts performing the same task.
 Section 2 discusses related work in requirements tracing.
IR Background on Information Retrieval (IR) is presented
in Section 3. We discuss how requirements tracing can be
represented as an IR problem and the algorithms we used

 .

in our study in Section 4. Section 5 discusses the results
obtained from evaluation. Finally, Section 6 presents
conclusions and areas for future work.

2. Related work

 In the context of our work, there are two areas of
interest: requirements tracing and IR as it has been
applied to the problem of requirements analysis. Each
will be addressed below.

2.1 Requirements tracing

 We have been tackling the requirements tracing problem
for many decades. In 1978, Pierce [18] designed a
requirements tracing tool, basically a way to build and
maintain a requirements database, to facilitate
requirements analysis and system verification and
validation for a large Navy undersea acoustic sensor
system.
 Hayes et al [12] built a front end for a requirements
tracing tool called the Software Automated Verification
and Validation and Analysis System (SAVVAS) Front
End processor (SFEP). This was written in Pascal and
interfaced with the SAVVAS requirements tracing tool
that was based on an Ingres relational database. SFEP
allows the extraction of requirement text as well as the
assignment of requirement keywords through the use of
specified linkwords such as shall, must, will, etc. These
tools are largely based on keyword matching and
threshold setting for that matching. Several years later the
tools were ported to hypercard technology on Macs, and
then to Microsoft Access and Visual Basic running on
PCs. This work is described by Mundie and Hallsworth in
[17]. These tools have since been further enhanced and
are still in use as part of the Independent Verification and
Validation (IV&V) efforts for the Mission Planning
system of the Tomahawk Cruise Missile as well as for
several NASA Code S science projects.
 Abrahams and Barkley, Ramesh, and Watkins and Neal
[1, 19, 27] discuss the importance of requirements tracing
from a developer's perspective and explain basic concepts
such as forward tracing, backward tracing, vertical tracing,
and horizontal tracing. Casotto [7] examined run-time
tracing of the design actvity. Her approach uses
requirement cards organized into linear hierarchical stacks
and supports retracing. Tsumaki and Morisawa [26]
discuss requirements tracing using UML. Specifically
they look at tracing artifacts such as use-cases, class
diagrams, and sequence diagrams from the business model
to the analysis model and to the design model (and back)
[26].
 There have also been significant advances in the area of
requirements elicitation, analysis, and tracing. Work has

largely been based on lexical analysis, such as extraction
and analysis of phoneme occurrences to categorize and
analyze requirements and other artifacts [22]. Bohner's
work on software change impact analysis using a graphing
technique may be useful in performing tracing of changed
requirements [4]. Anezin and Brouse present advances in
backward tracing and multimedia requirements tracing in
[2, 5].
 Cleland-Huang et al [8] propose an event-based
traceability technique for supporting impact analysis of
performance requirements. Data is propagated
speculatively into performance models that are then re-
executed to determine impacts from the proposed change.
Ramesh et al examine reference models for traceability.
They establish two specific models, a low-end model of
traceability and a high-end model of traceability for more
sophisticated users [20]. They found that a typical low
end user created traceability links to model requirement
dependencies, to examine how requirements had been
allocated to system components, to verify that
requirements had been satisfied, and to assist with change
control. A typical high-end user, on the other hand, uses
traceability for full coverage of the life cycle, includes the
user and the customer in this process, captures discussion
issues, decision, and rationale, and captures traces across
product and process dimensions [20].

2.2 Information retrieval in requirements
analysis

 Dag et al [9] perform automated similarity analysis of
textual requirements using IR techniques. They found this
to be a promising method that helped identify
relationships between requirements. Our work differs
from theirs in that we examine requirements tracing “after
the fact” while they focus on assisting developers who
must deal with a rapid arrival of new requirements from
numerous diverse sources. They propose to continuously
analyze the flow of incoming requirements to increase the
efficiency of the requirements engineering process [9].
 Antionol et al [3] applied a probabilistic and a vector
space IR model in two case studies to trace C++ source
code onto manual pages and to trace Java code to
functional requirements. They examined the effect of
requiring 100% recall and found that the probabilistic
model achieves the highest recall values, less than 100
percent, with a smaller number of documents retrieved
and then performs better when 100% recall is required.

3. Information retrieval (IR)

 IR is a field that studies the problem of finding relevant
documents in document collections given user queries.

 .

While IR research first appeared in the 1960s, it became a
separate discipline of Computer Science in the late 1970s.
The advent of the World Wide Web and the growth of
data storage capacity of computers, which lead to the
growth in the number and size of document repositories,
generated a new wave of IR research in the 1990s. A
recent introduction to IR is found in [10]; [11] provides
an excellent roadmap for developing IR systems from
scratch. We refer the reader interested in the history and
development of IR to Sparck Jones, and Willet [23], a
large collection of seminal and influential papers from the
field.
 IR attempts to model individual documents within
document collections and to model user information
needs. IR methods determine how relevant the document
representation is to the query that represented user
information need.
 Among a large variety of methods of IR, keyword-based
retrieval is arguably the most-studied and often-used
method. In keyword-based IR, each document in the
repository is analyzed to determine the (key)words or
terms that are important for this document and can be used
to query it. User queries are also analyzed for keywords
and these keywords are compared with the ones associated
with each document in the collection in order to determine
matches. In most keyword-based methods, the relevance
of the document to the query is expressed using a
similarity measure that computes how closely the
representations of a document and a query match. The
answer to the query is given in the form of a list of
documents in descending order of their expected
relevance to the query.
 The quality of IR methods is measured by how well the
documents returned match the user’s expectations. This is
typically formalized with two metrics: precision and
recall. Precision is computed as the fraction of the
relevant documents in the list of all documents returned by
the IR method given a query. Recall is the fraction of the
retrieved relevant documents in the entire set of
documents, retrieved and omitted, that are relevant to the
query. We notice here that precision is a quantity that
usually is relatively easy to measure given the query and
the list of answers. Measuring recall is a much harder task,
as it requires knowledge of the entire document collection.
IR methods are usually designed to work on large
collections of data: a typical test collection for an IR
system is around 5-7 GB, whereas industrial-strength
applications, such as WWW search engines are expected
to handle data collections that are at least 2-3 orders of
magnitude greater, and provide answers within seconds.
Because of this, performance of the IR methods also plays
a major role in their evaluation, as sometimes methods
that give higher precision and recall become impractical
due to the time it takes for them to deliver the answer.

 There is a wide array of keyword-based retrieval models
for document collections. Boolean model is the simplest: a
representation of a document is a Boolean vector
identifying the keywords present in the document. Vector
model extends Boolean model by associating with each
term in the document representation a weight that signifies
its assumed importance to the document collection.
Consider a standard vector retrieval model. Given a
document d in the collection, let us denote its
representation in the vector model as a vector d=(w1,
w2,...,wN), where N is the number of terms in the document
collection’s vocabulary and wi is the abovementioned
weight of the ith term. This weight is computed as

,)(iii idfdtfw ⋅=

where tfi(d) is the term frequency of the ith keyword in
document d and idfi is the inverse document frequency of
the ith term in the document collection. Term frequency is
usually the number of occurrences of the term in the
document and is usually normalized. Inverse document

frequency is computed as 







=

i
i df

n
idf 2log , where dfi

is the total number of documents containing the ith term in
the document collection and n is the size of the document
collection. Basically, the importance of the term is judged
by how often this term is found in the document and by
how discriminating the term is. That is., the less frequent
the term is in the collection, the more its presence is
important for the document. A user query is also
converted into a similar vector q=(q1,…,qN) of term
weights. In this model, given a document vector d and a
query vector q, the similarity between them is computed
as the cosine of the angle between vectors d and q in the
N-dimensional space:

.),cos(),(

1 1

22

1

∑ ∑

∑

= =

=

⋅

⋅
==

N

i

N

i
ii

N

i
ii

qw

qw
qdqdsim

 Different extensions of the standard vector retrieval
model exist, based on modifications to the computation of
term weights in the document and similarity between the
document and query vectors. There are also extensions of
the vector model based on the use of additional
information:

Retrieval based on user feedback. After the original list
of the answers to the user query is compiled, the user is
asked to specify which of the returned documents were
relevant and which were not. Using this information it is
possible to re-weigh the query vector and adjust the

 .

similarity computation in a way that documents similar to
the ones the user declared relevant will get a higher
relevance rating, while the documents similar to the ones
declared irrelevant will drop significantly in their
relevance rating.

Thesaurus—based retrieval. Classical vector model
compares only the occurrences of individual keywords
and key phrases. However, in many situations, one needs
to take into account the presence in the document of the
keywords synonymous or otherwise related to the query
keywords. For example, the query “car retailer” will not
match the document describing “Toyota dealership” in
classical vector retrieval, but it may be very relevant to the
query. Thesauri are collections of information about the
relationship between different terms. Use of thesauri in IR
allows one to extend classical vector retrieval to account
for the presence of synonyms, words representing
subcategories of the query terms, etc. Thesauri can come
in a variety of different flavors: from very detailed
descriptions of term hierarchies to ad-hoc lists of synonym
pairs. The exact way of incorporating the thesaurus into
the IR method depends of its type.

3. Automating requirements tracing

 Among the tasks that must be performed during the
requirements tracing, the most time-consuming and crucial
activity is the generation of candidate links. Even with the
aid of currently available support tools, this is still largely
an analyst-driven process. Whether performing forward-,
lateral- or back-tracing, the majority of the time analysts
spend is devoted to the generation of sensible lists of
candidate matches. . It is this portion of the requirements
tracing process that we are automating.
 In addressing the problem of automating the
requirements tracing process, our main objectives were to
improve the quality of the candidate lists as well as
decrease the time needed for their generation. We notice
that IR metrics of recall and precision are appropriate
characteristics of the quality of candidate lists: recall
measures the fraction of true matches that had been
included, while precision measures the signal-to-noise
ratio. Between these two metrics, we chose recall as our
most important objective. This ordering ensures that an
analyst feels confident that all related links have, indeed,
been retrieved. Precision comes next, so that the analyst
would not have to sift through numerous erroneous
potential links. We notice however, that without good
precision, total recall is a meaningless accomplishment.
For example, in forward tracing, it can be achieved by
simply including every single lower-level requirement in
the candidate lists for every higher-level requirement.

 As is apparent, automatic generation of candidate lists is
bound to be orders of magnitude faster than their manual
generation by the analyst, even assisted by currently
available interactive tools. Automated generation
drastically reduces the burden on the analyst of two time-
consuming and frustrating activities: keyword assignment
and interactive search for candidate links.
 There were six major activities as we performed this
work: (i) framing the problem in terms of an IR problem,
(ii) selecting IR algorithms to implement, (iii) preparing
the input requirement text, (iv) analyzing the output from
the algorithms, (v) selecting strategies for trimming
algorithm output, and (vi) comparing algorithm
performance to human analyst performance. Each activity
will be discussed in subsections below except for the
algorithm evaluation activities that will be deferred until
Section 5.

3.1 Requirements tracing as an IR problem

 We illustrate how requirements tracing can be
represented as an IR problem using forward tracing as an
example. Note that the same technique can be applied to
tracing design descriptions backward to requirement
specifications, to tracing requirement specifications
laterally to test specifications, to tracing design elements
forward to code elements, etc. The collection of high-
level requirements can be extracted from the high-level
requirements document. Similarly, the lower-level
document can be broken into the collection of individual
lower-level requirements (also called design elements
here). Each requirement and each design element can be
treated as a separate document in an IR document
repository. Generally it should contain all text and
supplemental information (e.g., tables, graphs if such
exist) necessary for the requirement/design element to be
readable and understandable on its own.
 Now, given the list R = (r1,…,rN) of requirements and
the list S=(s1,…,sM) of lower-level design elements, a
requirements trace is a mapping tr:Rà2S , where every
design elements∈tr(r) satisfies part or all of requirement r
and no other design elements satisfy any parts of r.
 The approach we adopt for this research is to consider
requirements tracing as an IR problem. Because most
manual or semi-automatic technologies for requirements
tracing are keyword-based, keyword-based IR methods
appear to be a natural extension of this process. In
particular, we formalize the requirements tracing problem
as follows. The universe of documents D = R∪S is the
union of all individual requirements and design elements.
Let VD = {k1,k2,…,kL} be the vocabulary of D, i.e., the list
of all terms that appear in both higher-level and lower-
level requirements. Each document di∈D is represented as
the vector of term weights di=(wi,1,...,wi,L). Assume the

 .

existence of a similarity measure, sim, that, given two
vectors di and dj,, quantifies the similarity between them.
 The process of building candidate link lists for the
requirements tracing problem is then reduced to the
procedure of computing the matrix of similarities between
vectors r1,…,rN ,representations of high-level
requirements, and vectors si,…,sM ,representations of
lower-level requirements. For each high-level requirement
ri the list s’1,…,s’Mi of design elements, such that sim(ri,s’-
j)=0 ,sorted in the order of descending similarity value,
serves as the first approximation of the candidate list. This
list can further be pruned in a variety of different ways: for
example, by considering only the top five vectors on the
list, or by setting up some similarity threshold a and
pruning out all specifications that exhibit smaller
similarity.

3.2 Features of the requirements tracing process

 While IR methods seem to provide a good match for the
problem of automating the generation of the lists of
candidate matches, the requirements tracing problem has a
number of specific features that typical IR settings do not
have. We briefly address these features here and discuss
their implications on our attempts to apply IR techniques
to requirements tracing.

1. Size of the domain. IR methods are designed for
working with large numbers of large documents in the
presence of large vocabularies. In requirements
tracing, our domain is a fairly small collection of
documents: there are on the order of thousands of
requirements in a large-scale software development
project, whereas, typical document collections
number hundreds of thousands to millions of
documents. An individual requirement is also quite
short: it often contains just 2-3 sentences. Finally, the
limited document collection that the requirements
form has a relatively limited vocabulary.

Implications of domain size. (i) Traditional IR
methods become robust on large collections of data.
Their performance on smaller collections can be not
as good because the influence of individual
components of the model on the final result grows,
and, sometimes, coincidental matches outscore the
true similarities. Therefore, we must be careful in
evaluation of our IR methods. (ii) On the other hand,
because of small domain sizes, we can apply some of
the more complex IR techniques that are typically
deemed to be too slow for large data collections.
This is part of our future work.

2. Query interdependence. It is customary in IR systems
to consider all queries as being independent. It is a

reasonable assumption for Internet search engines
which process thousands of queries each second
coming from thousands of different users. In the
requirements tracing problem, though, the queries are
the higher-level requirements, which are, very often,
related to each other.

Implications of query interdependence. The result of
our automated process is the matrix of similarities
between higher-level and lower-level requirements.
Knowing that the rows of this matrix may be not
independent, we can perform secondary analysis on
this matrix comparing the candidate lists for different
requirements and the similarity measures.

3.3 Selection and modification of IR algorithms

In our initial study we have explored three different IR
methods: classical vector IR model and two extensions of
it with simple thesauri constructs. All algorithms followed
the same path from data preparation to generation of
answers. First, individual requirements were extracted
from higher- and lower-level requirements documents
using automatic extraction scripts, similar to those found
in SuperTracePlus™ and commercial tools. Each
requirement/design element was stored as a separate file.
The repository thus generated was used as the input for
the model-building tool.
 On the model-building stage the following is done: (i)
each requirement is parsed and tokenized; (ii) stopwords
(i.e., words that are not useful for the purposes of
retrieval, like “shall”, “the” or “for”) are detected and
removed from the token stream; (iii) the remaining tokens
are stemmed to ensure that different forms of the same
word are treated as one term (e.g., “information” and
“informational”); (iv) the vector representation of the
document is created and stored. As a byproduct, the
master vocabulary of the repository is constructed.
 Once the vector models of requirements are built, the
actual retrieval process proceeds as follows. The list of
queries, higher-level requirements for the case of forward-
tracing, is processed one-by-one and converted into query
vectors using the same parse -> remove stopwords -> stem
sequence. After that, similarity computation is performed
for each query-design element pair. A list of design
elements with non-zero similarity is created for each
query, sorted in the descending order of the similarity
value. These lists are returned to the analyst.
 The first method implemented, vanilla vector
retrieval, has been described in Section 2. As the basis,
we have used a generic IR system developed by a graduate
student during an IR course taught by one of the co-
authors. The provided software had been modified to
work with repositories of requirements and design

 .

elements, but the main computational procedures were
kept intact.
 For the second method, retrieval with key-phrases, we
have augmented the traditional vector model, by
associating a list of technical terms or key-phrases with
the document repository. When the model-building
software detected a technical term, it was added to the
vocabulary and treated as any other term from then on.
This allowed us to raise the relevance of matches related
to technical terminology and exclude some coincidental
matches. For example, our requirements and design
elements contain the phrases “ecs production
environment” and “ecs archive metadata.” In the standard
vector model, the match on keyword “ecs” generated a
false positive, but by qualifying the phrases above as
vocabulary terms we were able to decrease the relevance
of this match. On the other hand, because “ecs archive
metadata” became a much more discriminating term than
any of its individual components, the key-phrase match
between two documents started to carry much more
weight. We note here, that the generation of the list of
technical terms is a reasonably simple and straightforward
task: it is readily found in the definitions or acronyms
sections of most requirement documents.
 The third method, thesaurus retrieval, took the idea of
incorporating technical lingo into the retrieval process one
step further. To aid vector retrieval we used a simple
thesaurus. Each entry of our thesaurus is a triple (ki,kj,aij),
where ki and kj are vocabulary terms (either words or key-
phrases) and aij∈[0,1] is a perceived similarity coefficient
of ki and kj. The analyst assigns this coefficient to each
thesaurus entry , hence the qualifier “perceived”. During
the model-building stage, thesaurus entries are recognized
and added to the vocabulary as new terms, similar to the
addition of key-phrases in the previous method. The main
change in the behavior of this method with respect to the
other two, however, comes during the query processing
stage. When computing the similarity between a query
requirement r=(r1,…,rN) and a design element d=(w1,…,w-
N), the standard cosine computation receives an add-on
that is generated by matches found via the thesaurus. More
formally, letting T denote the thesaurus, the new similarity
measure, simT, used in this method is computed as:

.

)(

),(

1 1

22

),,(1

∑ ∑

∑∑

= =

∈=

⋅

⋅+⋅⋅+⋅

=
N

i

N

i
ii

Tkk
ijjiij

N

i
ii

T

rw

rwrwqw

qdsim ijji α

α

 Construction of a thesaurus for our thesaurus-based
retrieval method is a reasonably straightforward
procedure. Most of the information linking technical terms
is present in data dictionaries and acronym lists that are

typically found in the appendices of requirements
documents. The analyst has to assign similarity weights to
each constructed pair, but the final computation of
similarity is fairly robust with respect to small fluctuations
in these weights so the analyst needs only provide the
“ballpark” estimate. If the analyst chose not to assign
such a value, a default value is assigned. Using a
thesaurus entry (“corrupted data”, “missing packets”, 1.0),
we can establish similarity between a requirement and a
design element which otherwise contain no matching
terms.
 All our IR algorithms were implemented in C++ running
under Linux.

4. Evaluation

 We undertook a multi-faceted evaluation effort to ensure
that our research objectives had been met. We built two
datasets from open source NASA Moderate Resolution
Imaging Spectroradiometer (MODIS) documents [16] for
this purpose. One dataset contains ten high level
requirements and ten lower level requirements and the
other contains 19 high level and 50 low-level
requirements. The 10x10 dataset was a subset of the
19x50 dataset. We then verified the 10x10 trace and the
19x50 trace. To accomplish this, we had a senior analyst
with 20 years of experience examine the traceability
matrix provided in Table 7-1 of the MODIS Science Data
Processing Software Requirements Specification Version
2 document [16]. These high level requirements were
traced down to the Level 1A (L1A) and Geolocation
Processing Software Requirements Specification [15].
Several changes were made based on this review. For
example, some links were deleted from the RTM and
some links were added. Approximately 90% of the RTM
remained unchanged though.
 Second, we ran the vanilla vector retrieval algorithm on
the 10x10 and 19x50 datasets. We developed an analysis
tool to compare the result matrix generated by the query
tool to the manually verified RTM (see Section 5). The
tool, written in C++, computes precision and recall for
each document and for the whole of the dataset. We used
the data analysis tool to examine the results. We also
asked two junior analysts with less than 5 years of
experience to manually trace the 10x10 dataset. The
results of these tracing activities are shown in Table 1.
 As can be seen, the analysts tied or outperformed the
vanilla vector algorithm in overall recall (by 0 – 20%).
One analyst outperformed precision by 12.4% while the
other analyst was outperformed by 2.6%. The vanilla
vector algorithm had slightly better recall on the larger
dataset, but lower precision. The analysts recorded the
amount of time it took them to build candidate lists and

 .

perform a relative/similarity assessment of these (the same
tasks performed by our algorithm). It took the analysts 65
minutes and 150 minutes, respectively, to perform the
trace. Not surprisingly, our algorithms ran in less than a
minute.

Table 1. Results of baseline algorithm compared

to analysts.

 Analyst
1

Analyst
2

Vanilla
vector
(10 x 10)

Vanilla
vector
(20 x 50)

Recall 23.0% 42.9% 23.0% 25.4%

Precision 15.0% 30.0% 17.6% 11.4%

Performance
(min.)

65 150 seconds Seconds

 These results are not surprising. The vanilla vector
algorithm works well only when the vocabularies of the
high and low level requirements are close enough to
generate multiple keyword matches. In this case, the two
levels of requirements had been written using very
different terminology. This contributed to low recall.
Low precision can be explained by the fact that
coincidental matches of common English words often
obscured technical terminology.
 Next, we implemented two additional IR algorithms that
extend the vanilla vector algorithm as discussed in Section
4. The key-phrase retrieval algorithm slightly improved
recall on the 10x10 dataset (see Table 3). However, the
precision went down. This is also not surprising: while
the introduction of technical terminology allowed us to
capture some previously undetected matches, more noise
was also introduced.
 The retrieval with thesaurus algorithm was tested on the
19x50 dataset. In addition, we had a senior analyst at
Science Applications International Corporation (SAIC)
trace the same dataset using the latest version of
SuperTracePlus™, the requirements tracing tool discussed
in [12] and [17] in Section 2.1. The results are shown in
Table 2. We show two sets of recall and precision
measures. The average recall and precision metrics
represent the respective means of precision and recall
values for the 19 individual requirements. The overall
precision and recall are computed as the fractions of the
total number of correctly found matches to the total
numbers of supplied answers and correct links,
respectively.

Table 2. Results of enhanced algorithms
compared to SuperTracePlus.

 SuperTracePlus
Tool

Analyst Retrieval with
thesaurus
algorithm

Correct links 41 41 41

Correct links
found

26 18 35

Total number
of candidates

67 39 86

Missed
requirements

3 6 4

Average recall 69.37%

53.30%

71.69%

Average
precision

56.48%

53.55%

32.76%

Overall recall 63.41%

43.9%

85.36%

Overall
precision

38.80%

46.15%

40.69%

Performance
(hours)

N/A – included in
analyst

performance

9 Seconds for
algorithm,
0.33 for

thesaurus
building

 The 19x50 dataset included a number of high-level
requirements with no matching low-level requirements.
For the purposes of evaluation, we considered precision
and recall for these requirements to be 100% if no
candidates were produced and 0% otherwise. This is
accounted for in the average recall and precision measures
but not in the overall recall and precision because the
latter measures look only at the total number of correct
links retrieved.
 Note that the retrieval with thesaurus algorithm achieved
recall of over 85% with 40.6% precision on a dataset that
is only 19x50. The recall outperforms SuperTracePlus™
by 22% and the analyst by a whopping 42%. The
algorithm’s average recall also outperformed the analyst
by 18% and the SuperTracePlus™ tool by 2%. The
analyst outperformed the retrieval with thesaurus
algorithm in precision per requirement by 21% and in
overall precision by 5%. The SuperTracePlus™ tool
outperformed the algorithm only in precision per
requirement, by 24%. It should be noted that it took the
analyst 13 hours to perform the trace. Nine of the thirteen
hours were spent on building a link library (keyword
assignment, two hours) and tracing and data review
(examining links and interactively searching for others,
seven hours). Our thesaurus was built in less than 20
minutes by cutting and pasting from the data dictionary
and other appendices of the document.

 .

 Taking a closer look, we see that our algorithm only
missed 6 links while SuperTracePlus™ missed 15 and the
analyst missed 17. We found that there were three high
level requirements that did have low level links for which
SuperTracePlus™ found no match, four such
requirements that were missed by our retrieval with
thesaurus algorithm, while the analyst’s count was six (see
“missed requirements” row of Table 3). Two of the
requirements that SuperTracePlus™ missed were caught
by our algorithm. One of the requirements that our
algorithm missed was found by SuperTracePlus™. There
were three requirements that both SuperTracePlus™ and
the thesaurus retrieval algorithm missed. As part of our
future work, we will examine these three requirements
carefully to understand how our algorithms might be
improved.
 The SAIC analyst made a number of observations
during the tracing activity:

§ It was difficult to do some of the tracing because the
two documents were incomplete. Section titles would
have helped. Also, some requirement text was
incomplete and ambiguous. For example, some
sentences were incomplete sentences, did not have a
subject, or in one case said "Deleted."

§ Not knowing acronyms hindered the linking process.

§ The linking of parent and child requirements does not
take into account the analyst-assigned status. For
example, I might have selected a link or several links,
but selected a status of "Partial."

 The first observation is accurate. The requirements
were extracted from the RTM of the documents and the
section headings were not repeated with the requirement
text. We also found the second observation to be true as
we verified the trace and also as we interviewed the two
analysts who manually traced the 10x10 dataset. The final
comment is also valuable. Basically the analyst is saying
that (s)he may not have been convinced that a high level
requirement was satisfied. But the analyst could not find
any more links for it, so had to leave it. The analyst
therefore would have noted that requirement as only
partially satisfied. Our study did not allow for collection
of that information. We will consider this for improving
our future studies.
 Analysis of our retrieval algorithms showed the presence
of many false positives. We also noticed that many of
these were returned with very low relevance. In order to
analyze the true effectiveness of our algorithms, we chose
to implement various thresholds to trim the lists of
candidate links. Decreasing the size of the lists this way
allows us to improve precision at a potential cost to recall.
We have decided upon four thresholds: Top 4 candidates,
any candidates with similarity above 0.25, and any

candidates with similarity within 0.33 and 0.50 of the
similarity of the top candidate.
 Table 3 shows how overall recall ([R]) and precision
([P]) for all three of our algorithms change for different
trimming thresholds. Note that Above 25% trimming
yields the highest results for the first two algorithms, but
not for the retrieval with thesaurus algorithm.

Table 3. Algorithm results after trimming.

 Vanilla
algorithm

(10x10)

[R,P]

Retrieval w/key
phrases
algorithm
(10x10)

[R,P]

Retrieval
w/thesaurus
algorithm
(19x50)

[R,P]

No
trimming

[23%,17.6%] [27.2%,5.2%] [85.4%,40.6%]

Top 4 [23%,17.6%] [27.2%,8.3%] [36.5%,30.6%]

Above
25

[23%,75%] [27.2%,25%] [9.7%,40%]

Within
33

[23%,23%] [27.2%,15.7%] [48.7%,44.4%]

Within
50

[23%,20%] [27.2%,15.7%] [58.5%,42.1%]

5. Conclusions and future work

 In this paper, we have studied a method for improving
candidate link generation by applying IR techniques.
We started with a classical vector space model algorithm,
the vanilla vector algorithm. We found that this algorithm
does not outperform analysts or existing tools in terms of
recall or precision, but that it does perform faster and with
no keyword assignment required of analysts. Next, we
developed two extensions to this algorithm. The first uses
a simple key-phrase list, one that can be easily pulled from
the definitions or acronym section of a requirement
document. The retrieval with key-phrases algorithm
resulted in improved recall but with decreased precision.
Next, we added a simple thesaurus. We found this
information to be readily available in the definition list
and the data dictionary in the appendix of the traced
documents. Testing the thesaurus-based retrieval
algorithm on the 19x50 dataset, we found that recall
improved to 85% and that precision moved up to 40%.
 Evaluation of the algorithms against a comparable
keyword-based tool and analysts showed that the retrieval
with thesaurus algorithm outperforms all in terms of recall
and sometimes - in terms of precision.

 .

 Note that the techniques have been evaluated using a
forward trace process. However, these techniques can just
as easily be applied to back tracing and lateral tracing.
 We found that a number of things pose problems for
analysts: incomplete or ambiguous requirement
documents; undefined acronyms; lack of intimate domain
area or project knowledge; and different lingo in which
the high- and low-level documents are written.
 We note that the methods studied in this paper address
the problem of automating the candidate link generation.
It is imperative to have the analyst examine the final
candidate list to effectively complete requirements tracing.
By improving the candidate link lists, we reduce the
burden on the analyst. In addition to that, using feedback-
based retrieval techniques, we can make this last stage of
the process more efficient. We are currently in the
process of developing such a feedback agent for our
candidate link generator software. Another interesting
area for future research is using IR techniques to predict
the coverage or satisfaction of traced requirements by
their lower level requirements.
 The initial results are promising and indicate that
additional work is warranted. The results, however, are
limited and the effectiveness of our IR models on a
broader scale remains to be seen. A much larger scale
study is required before any broad conclusions can be
reached. We have secured agreement from the
International Space Station to allow use to use their
documents for tracing studies. This will allow us to trace
several thousand high-level requirements to tens of
thousands of low-level elements. We are confident that
our algorithms will only perform better as the document
collection size increases.

6. Acknowledgments

Our work is funded by NASA under grant NAG5-
11732. Our thanks to Ken McGill, Tim Menzies,
Stephanie Ferguson, Pete Cerna, Mike Norris, Bill
Gerstenmaier, Bill Panter, the International Space Station
project, and the MODIS project for maintaining their
website that provides such useful data. We thank Hua
Shao for assistance with the vanilla retrieval algorithm and
K.S. Senthil for his assistance with evaluation.

7. References

[1] Abrahams, M. and Barkley, J., "RTL Verification
Strategies," IEEE WESCON/98, 15 - 17 September 1998,
pp. 130-134.

[2] Anezin, D., "Process and Methods for Requirements
Tracing (Software Development Life Cycle)," Dissertation,
George Mason University, 1994.

[3] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E. Recovering Traceability Links between Code and
Documentation. IEEE Transactions on Software
Engineering, Volume 28, No. 10, October 2002, 970-983.

[4] Bohner, S., "A Graph Traceability Approach for Software
Change Impact Analysis," Dissertation, George Mason
University, 1995.

[5] Brouse, P., "A Process for Use of Multimedia Information
in Requirements Identification and Traceability,"
Dissertation, George Mason University, 1992.

[6] Capability Maturity Model,
http://www.sei.cmu.edu/cmm/cmms/cmms.html

[7] Casotto, A.. Run-time requirement tracing, Proceedings of
the IEEE/ACM International Conference on Computer-
aided Design, Santa Clara, CA, 1993.

[8] Cleland-Huang, J., Chang, C.K., Sethi, G., Javvaji, K.; Hu,
H., Xia, J. (2002) Automating speculative queries through
event-based requirements traceability. Proceedings of the
IEEE Joint International Requirements Engineering
Conference (RE'02), Essex, Germany, 9-13 September,
2002, pages: 289- 296.

[9] Dag, J., Regnell, B., Carlshamre, P., Andersson, M.,
Karlsson, J. A feasibility study of automated natural
language requirements analysis in market-driven
development, Requirements Engineering, Vol. 7, Issue 1,
p.20, June 2002.

[10] Daeza-Yates, R. and Ribeiro-Neto, B. Modern Information
Retrieval, Addison-Wesley, 1999.

[11] W. Frakes, R. Baeza-Yates (Eds.), Information Retrieval:
Data Structures and Algorithms, Prentice Hall, 1992.

[12] Hayes, J. Huffman. Risk reduction through requirements
tracing. In The Conference Proceedings of Software
Quality Week 1990, San Francisco, California, May 1990.

[13] Holagent Corporation product RDD-100,
http://www.holagent.com/new/products/modules.html

[14] ISO 9000-3:1997 Quality management and quality
assurance standards -- Part 3: Guidelines for the application
of ISO 9001:1994 to the development, supply, installation
and maintenance of computer software, http://www.iso.ch/

[15] Level 1A (L1A) and Geolocation Processing Software
Requirements Specification, SDST-059A, GSFC SBRS,
September 11, 1997.

[16] MODIS Science Data Processing Software Requirements
Specification Version 2, SDST-089, GSFC SBRS,
November 10, 1997.

[17] Mundie, T. and Hallsworth, F. Requirements analysis
using SuperTrace PC. In Proceedings of theAmerican
Society of Mechanical Engineers (ASME) for the
Computers in Engineering Symposium at the Energy &
Environmental Expo 1995, Houston, Texas.

[18] Pierce, R. A requirements tracing tool, Proceedings of the
Software Quality Assurance Workshop on Functional and
Performance Issues, 1978.

 .

[19] Ramesh, B., "Factors Influencing Requirements
Traceability Practice," Communications of the ACM,
December 1998, Volume 41, No. 12 pp. 37-44.

[20] Ramesh, B.; Jarke, M. Toward reference models for
requirements traceability; IEEE Transactions on Software
Engineering, Volume 27, Issue 1, January 2001,
page(s): 58 –93.

[21] Rational RequisitePro,
http://www.rational.com/products/reqpro/index.jsp

[22] Savvidis, I. "A Multistrategy Framework for Analyzing
System Requirements (Software Development),"
Dissertation, George Mason University, 1995.

[23] Sparck Jones, K. and Willet, P. Readings in Information
Retrieva,l Morgan Kaufmann Series in Multimedia
Information and Systems, Morgan Kaufmann, 1997.

[24] Team Software Process and Personal Software Process,
http://www.sei.cmu.edu/tsp/

[25] Telelogic product DOORS,
http://www.telelogic.com/products/doorsers/doors/index.cf
m

[26] Tsumaki, T. and Morisawa, Y. "A Framework of
Requirements Tracing using UML," Proceedings of the
Seventh Asia-Pacific Software Engineering Conference
2000, 5 - 8 December 2000, pp. 206 - 213.

[27] Watkins, R. and Neal, M. "Why and How of Requirements
Tracing," IEEE Software, Volume 11, Issue 4, July 1994,
pp. 104-106.

