
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

July 2019

Improving Resilience of Communication in Information Improving Resilience of Communication in Information

Dissemination for Time-Critical Applications Dissemination for Time-Critical Applications

Rajvardhan Somraj Deshmukh
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

 Part of the Systems and Communications Commons

Recommended Citation Recommended Citation

Deshmukh, Rajvardhan Somraj, "Improving Resilience of Communication in Information Dissemination for

Time-Critical Applications" (2019). Masters Theses. 768.

https://doi.org/10.7275/13963571 https://scholarworks.umass.edu/masters_theses_2/768

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/masters_theses_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F768&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F768&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/13963571
https://scholarworks.umass.edu/masters_theses_2/768?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F768&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

IMPROVING RESILIENCE OF COMMUNICATION IN
INFORMATION DISSEMINATION FOR

TIME-CRITICAL APPLICATIONS

A Thesis Presented

by

RAJVARDHAN.S.DESHMUKH

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

May 2019

Electrical and Computer Engineering

IMPROVING RESILIENCE OF COMMUNICATION IN
INFORMATION DISSEMINATION FOR

TIME-CRITICAL APPLICATIONS

A Thesis Presented

by

RAJVARDHAN.S.DESHMUKH

Approved as to style and content by:

Michael Zink, Chair

Lixin Gao, Member

David Irwin, Member

C.V.Hollot, Department Chair
Electrical and Computer Engineering

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my advisor, Professor Michael

Zink, who has inspired and encouraged me to go beyond and grow as a student as

well as a person. His valuable ideas, constructive feedback and right push has enabled

me to perform well in academics, research and extra-curricular as well. I definitely

look up to him as a life long mentor and I feel grateful to work with him and have

him as my advisor. I am heartily thankful to my committee members Professor Lixin

Gao and Professor David Irwin for their constructive advice and invaluable help in

my research and future career.

I also would like to acknowledge my labmates for the knowledge and experience they

have shared with me. In particular, I want to thank Thiago Teixeira and Divyashri

Bhat, who worked together with me on thoughtful projects and helped me put to-

gether the resources used in this thesis. A special thank you also goes out to everyone

in the Data Analytics Lab for the knowledge and experience they have shared with

me. Especially, Babak for his motivation, help and belief in me.

Finally, I appreciate all of the sincere support from my family and friends who have

always been there for me and continue to inspire and encourage me.

iii

ABSTRACT

IMPROVING RESILIENCE OF COMMUNICATION IN
INFORMATION DISSEMINATION FOR

TIME-CRITICAL APPLICATIONS

MAY 2019

RAJVARDHAN.S.DESHMUKH

B.Tech., VELLORE INSTITUTE OF TECHNOLOGY, INDIA

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Michael Zink

Severe weather impacts life and in this dire condition, people rely on communi-

cation, to organize relief and stay in touch with their loved ones. In such situations,

cellular network infrastructure1 might be affected due to power outage, link failures,

etc. This urges us to look at Ad-hoc mode of communication, to offload major traffic

partially or fully from the infrastructure, depending on the status of it.

We look into threefold approach, ranging from the case where the infrastructure

is completely unavailable, to where it has been replaced by make shift low capacity

mobile cellular base station, such as in [58] and [71].

First, we look into communication without infrastructure and timely, dissemina-

tion of weather alerts specific to geographical areas. We look into the specific case of

1We refer to cellular network infrastructure as infrastructure for the entirety of this document

iv

floods as they affect significant number of people 2. Due to the nature of the problem

we can utilize the properties of Information Centric Networking (ICN) in this context,

namely: i) Flexibility and high failure resistance: Any node in the network that has

the information can satisfy the query ii) Robust: Only sensor and car need to commu-

nicate iii) Fine grained geo-location specific information dissemination. We analyze

how message forwarding using ICN on top of Ad hoc network, approach compares

to the one based on infrastructure, that is less resilient in the case of disaster. In

addition, we compare the performance of different message forwarding strategies in

VANETs (Vehicular Adhoc Networks) using ICN. Our results show that ICN strat-

egy outperforms the infrastructure-based approach as it is 100 times faster for 63%

of total messages delivered.

Then we look into the case where we have the cellular network infrastructure, but

it is being pressured due to rapid increase in volume of network traffic (as seen during

a major event) or it has been replaced by low capacity mobile tower. In this case

we look at offloading as much traffic as possible from the infrastructure to device-

to-device communication. However, the host-oriented model of the TCP/IP-based

Internet poses challenges to this communication pattern. A scheme that uses an ICN

model to fetch content from nearby peers, increases the resiliency of the network in

cases of outages and disasters. We collected content popularity statistics from social

media to create a content request pattern and evaluate our approach through the

simulation of realistic urban scenarios. Additionally, we analyze the scenario of large

crowds in sports venues. Our simulation results show that we can offload traffic from

the backhaul network by up to 51.7%, suggesting an advantageous path to support

the surge in traffic while keeping complexity and cost for the network operator at

manageable levels.

2According to NWS statistics (http://www.nws.noaa.gov/om/hazstats.shtml) flood related death
are the highest amongst all weather fatalities

v

Finally, we look at adaptive bit-rate streaming (ABR) streaming, which has con-

tributed significantly to the reduction of video playout stalling, mainly in highly

variable bandwidth conditions. ABR clients continue to suffer from the variation

of bit rate qualities over the duration of a streaming session. Similar to stalling,

these variations in bit rate quality have a negative impact on the users’ Quality of

Experience (QoE). We use a trace from a large-scale CDN to show that such qual-

ity changes occur in a significant amount of streaming sessions and investigate an

ABR video segment retransmission approach to reduce the number of such quality

changes. As the new HTTP/2 standard is becoming increasingly popular, we also see

an increase in the usage of HTTP/2 as an alternative protocol for the transmission of

web traffic including video streaming. Using various network conditions, we conduct

a systematic comparison of existing transport layer approaches for HTTP/2 that is

best suited for ABR segment retransmissions. Since it is well known that both proto-

cols provide a series of improvements over HTTP/1.1, we perform experiments both

in controlled environments and over transcontinental links in the Internet and find

that these benefits also “trickle up” into the application layer when it comes to ABR

video streaming where HTTP/2 retransmissions can significantly improve the average

quality bitrate while simultaneously minimizing bit rate variations over the duration

of a streaming session. Taking inspiration from the first two approaches, we take into

account the resiliency of a multi-path approach and further look at a multi-path and

multi-stream approach to ABR streaming and demonstrate that losses on one path

have very little impact on the other from the same multi-path connection and this

increases throughput and resiliency of communication.

vi

CONTENTS

Page

ACKNOWLEDGMENTS . iii

ABSTRACT . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Contributions and Outlines . 1

2. BACKGROUND AND RELATED WORK . 3

2.1 Information Centric Networking . 3
2.2 D2D Communication and VANETs . 4
2.3 Transport layer for HTTP2 . 7
2.4 Multipath TCP . 10
2.5 ABR Streaming . 12

2.5.1 QoE Metrics . 13

2.5.1.1 Average Quality Bitrate (AQB) . 13
2.5.1.2 Number of Quality Switches (#QS) 14
2.5.1.3 Spectrum (H) [91] . 14
2.5.1.4 Rebuffering Ratio (RB) . 14

3. INFORMATION CENTRIC NETWORKING SYSTEM FOR
DISSEMINATING ALERTS IN VANETS . 15

3.1 Introduction . 15
3.2 Design . 17

vii

3.2.1 Prefix Naming . 19
3.2.2 Forwarding Strategy . 20
3.2.3 Security Concerns . 23

3.3 Simulation Setup . 23

3.3.1 Path Loss Model . 23
3.3.2 NDN approach . 24
3.3.3 IP based Approach . 25

3.4 Evaluation . 27
3.5 Discussion . 31
3.6 Conclusion . 33

4. TRAFFIC OFFLOADING VIA INFORMATION-CENTRIC
NETWORKING MOBILE CLOUD . 35

4.1 Introduction . 35
4.2 Model and implementation . 37

4.2.1 Urban Scenario . 40
4.2.2 Vehicular cloud . 41
4.2.3 Large crowds . 41

4.3 Simulation Results and Evaluation . 42
4.4 Conclusion . 47

5. IMPROVING QOE AND RESILIENCE OF ABR
STREAMING . 49

5.1 Improving QoE of ABR Streaming Sessions through QUIC
Retransmissions . 49

5.1.1 Introduction . 49
5.1.2 Segment retransmission scheduling . 50
5.1.3 Analysis of Gaps in Streaming Sessions . 52
5.1.4 Segment retransmisson over HTTP/2 . 54

5.1.4.1 Example . 55
5.1.4.2 Implementation . 56

5.1.5 Evaluation Design . 58

5.1.5.1 Testbed . 59
5.1.5.2 Internet . 64

5.1.6 Conclusion . 66

viii

5.2 Improving Resilience and QoE of ABR Streaming Sessions through
Retransmissions using Multipath Transport layer Protocols 67

5.2.1 Introduction . 67
5.2.2 Background . 67
5.2.3 Implementation . 70

5.2.3.1 SQUAD on MPTCP with HTTP/2 and
HTTP/1.1 . 71

5.2.4 Evaluation Design . 72

5.2.4.1 Testbed . 73

5.2.5 Conclusion . 76

6. CONCLUSION . 80

BIBLIOGRAPHY . 82

ix

LIST OF TABLES

Table Page

3.1 Simulation environment for NDN approach . 24

3.2 Simulation environment for IP approach . 24

4.1 Summary of simulation parameters for scenario I . 41

5.1 ABR Segment Retransmissions for three parallel QUIC clients 64

5.2 ABR Quality of Experience over the Internet: Amazon EC2 Oregon -
US East Coast . 67

5.3 MPTCP configuration . 69

x

LIST OF FIGURES

Figure Page

2.1 MPTCP connection establishment [1] . 10

2.2 Establishment of Additional Subflow [1] . 11

2.3 DASH flow diagram . 13

3.1 People driving through floods . 16

3.2 VANETs topology . 18

3.3 Interest propagation domains . 21

3.4 Real LTE TCP/IP based Architecture scenario . 26

3.5 10 nodes with 100 CS and 2000m domain . 29

3.6 100 nodes with 100 CS and 2000m domain . 30

3.7 190 nodes with 100 CS and 2000m domain . 30

3.8 10 nodes with 100 CS and 200m domain . 31

3.9 100 nodes with 1000 CS and 2000m domain . 31

3.10 Case of flooding with 100 CS and no domain limit 32

3.11 Case of LTE . 32

3.12 5 sensors and 100 nodes with 100 CS and 2000m domain 33

3.13 5 sensors and 10 nodes with 100 CS and 2000m domain 33

4.1 Manhattan-Grid mobility model. Nodes (cars and pedestrians) can
only move along the gray roads. 37

xi

4.2 NDN-Node block diagram with the modified blocks in gray. 38

4.3 Percentage of traffic offloaded via the MANET, illustrating the effect
of varying cache size and node density. 44

4.4 Percentage of traffic offloaded from the cellular network when the
consumer application retries to send Interest requests to the
MANET. The figure shows up to 4 transmissions of the same
Interest to the MANET for the 50-Node case. 45

4.5 Number of hops from successfully retrieved data packets. 46

4.6 Cumulative distribution function of latency for different node
densities. 46

4.7 Percentage of traffic offloaded by the vehicular cloud for different
node densities and cache sizes. 46

4.8 Percentage of traffic offloaded, video download completion (a), and
latency (b) for 200 nodes in sports events. 47

5.1 Example scenario for retransmissions. The QoE of this streaming
session can be improved if, e.g., segments 3, 8, 13, and 14 are
retransmitted in higher quality, assuming they arrive before their
scheduled playout. 51

5.2 Original transmission of video stream from one randomly selected
trace in the Akamai data set. The QoE of this video can be
improved if the highlighted segments are retransmitted in higher
quality, assuming they arrive before scheduled playout. 53

5.3 CDF for the number of sessions with one or more gaps for all sessions
(orange) and mobile sessions (blue) . 54

5.4 This figure shows a scenario of original and retransmitted segment
transmission in the case of HTTP/2 over TCP. The first of the
retransmitted TCP segments (red) is lost, which leads to HOL
blocking at the receiver. 56

5.5 This figure shows a scenario of original and retransmitted segment
transmission in the case of HTTP/2 over QUIC. In contrast to
Fig. 5.4, the loss of a retransmitted UDP datagram (red) does not
lead to HOL blocking and all original segments are delivered to
the video player buffer. 56

xii

5.6 Cloudlab topology used for controlled experiments 59

5.7 Single Client Measurements - Rate Limited with UDP-Staircase cross
traffic. QUIC has a significantly better overall Quality of
Experience compared to HTTP/1.1 and HTTP/2, which is
further improved by retransmissions. Note, subscript “R” denotes
ABR segment retransmissions. 60

5.8 Single Client Measurements - Rate Limited with UDP-W cross
traffic. QUIC has a significantly better overall QoE compared to
HTTP/1.1. Although HTTP/2 sessions appear to be having a
higher QoE, all clients experience 4% rebuffering. Note, subscript
“R” denotes ABR segment retransmissions. 62

5.9 Single Client Measurements - Re-ordering and Head-of-Line Blocking.
Re-ordering has an adverse effect on HTTP/2 causing significant
degradation of QoE metrics, especially with respect to rebuffering
which can be as high as 10% in spite of selecting lower quality
bitrates as seen from (a). Note, subscript “R” denotes ABR
segment retransmissions. 63

5.10 Parallel Client Measurements - Three QUIC Clients. Competing
QUIC clients show an unfair behavior where two clients
experience relatively similar QoE but one client has a significantly
better QoE than others. 65

5.11 Internet Measurements - ABR streaming is performed over
inter-continental links with the server at Amazon EC2 in India
and the client on the US East Coast. QUIC far outperforms
HTTP/1.1 and HTTP/2 in terms of QoE, i.e., provides significant
improvement in Average Quality Bitrate while providing
comparable reduction in the number of quality switches. 66

5.12 MPTCP architecture [62] . 68

5.13 Coupled Congestion control [1] . 68

5.14 Sequence numbers in MPTCP . 70

5.15 Protocol stack view . 70

5.16 Cloudlab topology used for controlled experiments 71

5.17 HTTP/2 streams with MPTCP subflows . 71

xiii

5.18 Flow diagram of the implemented code . 72

5.19 Single Client (TCP) Measurements - Rate Limited with UDP-W
cross traffic. HTTP/2 has similar Quality of Experience compared
to HTTP/1.1. Note, subscript “R” denotes ABR segment
retransmissions. 74

5.20 Single Client Measurements - Rate Limited with UDP-W cross
traffic. HTTP/2 has a significantly better overall Quality of
Experience compared to HTTP/1.1 , which is further improved by
retransmissions. Note, subscript “R” denotes ABR segment
retransmissions. 76

5.21 Single Client Measurements - Rate Limited with UDP-trace0 cross
traffic. HTTP/2 has a significantly better overall Quality of
Experience compared to HTTP/1.1 , which is further improved by
retransmissions. Note, subscript “R” denotes ABR segment
retransmissions. 77

5.22 Single Client Measurements - Rate Limited with UDP-Staircase cross
traffic. HTTP/1.1 has a marginally better Avg. bitrate, no.
switches and spectrum compared to HTTP/1.1 , which is further
improved by retransmissions. Note, subscript “R” denotes ABR
segment retransmissions. 78

xiv

CHAPTER 1

INTRODUCTION

1.1 Motivation

Reliable communication is important in general and it is even more crucial during

disasters. Be it sending alerts, trying to communicate with people or organizing

relief. As shown in [7], it is important for government and the telephone operators

to work together during recovery. Due to wide availability of mobile phones, [7]

they are an important, supplementary source of information dissemination, as other

infrastructure is vulnerable and widely affected in the aftermath of a disaster. As

infrastructure is vulnerable during these scenarios, it motivates us to look at ad-hoc

mode of communication, to be used independently or along with the infrastructure,

as a multipath approach.

1.2 Contributions and Outlines

This thesis includes six chapters. In Chapters 1-2, we provide general information

of this dissertation. Chapter 1 gives an overall introduction and motivation of this

thesis. Chapter 2 introduces the background information and provides explanations

of key concepts that will be commonly used in later parts of this thesis.

In Chapter 3, we compare the feasibility of using purely ad-hoc mode of communi-

cation with ICN on top of it as compared to the standard infrastructure based current

approach. We test it with an application that disseminates flood related alerts. ICN’s

prefix naming and caching properties remove the dependency on end-to-end paths as

compared to an ip based approach. Our timer based message forwarding strategy

1

which considers the geographical location and velocity of the devices reduce packet

collusions.

In Chapter 4, we propose a scheme that utilizes Device-to-Device (D2D) com-

munication and ICN to offload increasingly congested base stations, facilitating the

communication between peers when the infrastructure is impaired. Additionally, our

scheme considers energy saving measures and reduces content flooding in the MANET

by suppressing the propagation of requests when the energy on the node falls below

a certain threshold. Our solution successfully offloads traffic from the base station,

consequently reducing cost and complexity for the cellular network.

In Chapter 5, we begin by analyzing 5 million video streaming sessions that show

switches in quality representations which result in gaps almost 36% of all streaming

sessions. In the case of mobile clients this number increases to 50%. The overall

QoE of these sessions could benefit from retransmitting ABR video segments in a

higher quality. We make a systematic comparison of the multiplexing feature of

HTTP/2 for this case. Our evaluation results show that HTTP/2 retransmissions

can significantly improve the average quality bitrate while simultaneously minimizing

bit rate variations over the duration of a streaming session. We further look at using

multipath, as it increases the throughput and resilience.

In the last chapter, we conclude this thesis, and provide possible directions for

future research works.

2

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Information Centric Networking

In ICN, data is immutable and decoupled from its location, enabling a node to

fetch content from any other node in the network that has a cached copy of the

requested data. In-network caching is supported as part of the architecture. Fur-

thermore, ICN supports multipath communication and prevents loops. These char-

acteristics make ICN more tolerant to delay and disruptions than host-centric archi-

tectures. The work presented in Chapters 3 and 4 is based on Named-Data Net-

working (NDN) [89], one of the many flavors of ICN. NDN is a consumer driven

architecture, i.e., the consumer application initiates the communication by sending

Interest packets upstream to retrieve Data packets. Interest packets are generally

small packets (approximately 40 bytes) that are used by the consumer to express

interest in retrieving certain data. It does so by using a hierarchical naming scheme,

also called namespace (a set of named contents that begins with a certain prefix,

e.g., /edu/umass/home/version). Data packets contain the actual payload, with all

packets being signed by the originator. NDN also has a Negative-Acknowledgment

(NACK) packet type, used by the network nodes to express that a certain content is

not present or that it received a duplicate Interest request. Similar to IP networks,

packets are forwarded by intermediate nodes towards the destination. In NDN how-

ever, these nodes are augmented by the following data structures. A Content Store

(CS) that caches incoming Data packets. Upon receiving an Interest request, the

node verifies whether the requested data is cached, returning it if positive. Besides

3

reducing the amount of traffic that is sent upstream, this feature increases the toler-

ance to disruption (in the case of a disconnection, the content will be stored closer

to the client). A Pending Interest Table (PIT) keeps a record of Interest requests,

incoming and outgoing interfaces, aggregating similar requests, resulting in a stateful

data plane. Data packets follow the reverse Interest path. The PIT prevents loops

in the network, which is an important feature in ad-hoc networks. The Forwarding

Information Base (FIB) holds the information on which interface to forward a spe-

cific Interest packet. Another important part of the NDN architecture is the strategy

layer, that determines the behavior of a node when multiple paths exist. Moreover,

a node can apply different strategies to different namespaces.

2.2 D2D Communication and VANETs

In [46], the authors base their VANETs approach on a traditional TCP/IP ar-

chitecture. They analyze different types of routing protocols in the case of VANETs

and conclude that geographical (position based) routing is the best fit. They used

the following parameters: position of the current node, its distance from the desti-

nation (assuming it knows this) and link layer quality (SINR and MAC frame rate)

to assign weights to select the next hop nodes. They also implement the carry-and-

forward mechanism (use cache) for less dense networks. We are not concerned about

the link quality in particular, as we do not select a single next hop node and use

the NDN architecture’s implicit properties of Interest aggregation to tackle the prob-

lem of broadcast storms. In addition, we make us of in-network caching such that

intermediate nodes that have cached the data can satisfy the Interest.

In [85], the authors present a VANETs approach for rapid traffic information

dissemination that uses NDN. They identify collisions of packets in the network as

a major problem and implement a set of timers to minimize this. These timers are

designed to accommodate the idea that data has more value further away from the

4

point of origin. A source agnostic approach is used, i.e., the distance from the current

node to the source is not known, which is unlike to the approach presented in [46].

This increases the scalability of the approach. The topology in our case is such that

all the mobile nodes are data consumers and the producers are static. This is different

to the scenario described in [85], where single consumer nodes are placed at various

positions (e.g., start, middle, or end of the traffic queue). In our scenario, traffic is

multi-directional (see Fig. 3.2) and we also include the velocity of a vehicle as a factor

in the forwarding strategy. In addition, we use a naming convention that includes

location information which better supports Interest dissemination.

In [17], the authors have designed (Ad Hoc Dynamic Unicast) ADU, which adap-

tively switches between unicast and broadcast in case of link failures. Such link

failures are detected by the MAC layer. This approach employs the use of tables that

store the MAC address of the next hop in case of uni-cast. Location information as

used in our approach is not considered in this work, thus forwarding timers based on

distance from the source can not be realized. In addition, setting up a path during

provider discovery and switching to broadcast in case of link failure introduces too

much overhead in our scenario, where low volume flooding alert information has to

be transmitted reliably and with very low latency to cars in a certain region.

There have been a number of studies focused on using D2D communication to

offload cellular base stations in the TCP/IP domain. In fact, the authors in [69] sur-

vey the literature to classify existing offloading approaches into two main categories:

AP-based (where traffic is offloaded via IEEE 802.11 networks) and Terminal-to-

Terminal (or simply D2D communication). In the latter, we can further segment

the techniques into timer-based (where nodes delay forwarding to reduce collision)

[55, 16], geographical-based (where farther nodes re-broadcast first) [86, 35], random-

ized broadcasting (again to reduce collisions by making nodes re-broadcast at random

times) [16], contact-based (based on the number of neighbors (degree of a node) or

5

number of visited nodes) [19], and a combination of two or more approaches [47]. On

the contrary, there have been few studies to use ICN over LTE to take advantage of

in-network caching to decrease traffic in the backhaul network.

In [18], Lopes et al. developed an application whereby messages are stored in a

Content Manager module, much like a cache. In the case that the destination is not

in the vicinity of the sending node, the Routing module consults the Social Proximity

of the neighbors to decide which node to forward the packet to. This decision is based

on the frequency that each node meets the destination node (thus, social proximity).

Therefore, the sending node creates a socket-like connection via WiFi-Direct and

transfers the message to the node that will most likely meet the destination node in

the future. Every node can also carry other nodes’ messages (data muling). Although

this scheme implements concepts of ICN, it uses MAC addresses to route messages

instead of content names. Moreover, it does not support multicast, as only the node

that has seen the destination more often carries the request.

The authors in [34] expand an LTE-based architecture to include NDN routers,

which are co-located with eNBs to implement caches at the backhaul network, then

address the problem of content allocation optimization. In particular, the problem

of content allocation optimization is addressed by determining where, when, and

how content should be migrated. Their approach enhances the network response

to user mobility via a set of parameters derived from the LTE network. Among

the results, Gomes et al. found that latency can be reduced by using NDN default

caching strategies (e.g. LRU). In addition, considering the amount of free space at

the destination cache when placing content yields the most benefits. The authors,

however, do not consider D2D communication as part of their design. In our work,

we leave content migration to the LTE handover process (which was not considered

in [34]).

6

In the vehicular network domain, Navigo [35] proposes a location-based packet

forwarding mechanism to reduce disruption and path changes. The main idea is to

forward requests to geographical regions where the content might be located. The

location of contents is computed using a broadcast strategy, called exploration phase.

Navigo is purely ad hoc as it does not consider base stations in their topology. Our

approach is comprised of an ad hoc and infrastructure components. In [81], Vigneri

et al. propose an augmented architecture where public service vehicles serve as relay

points to offload traffic from the backhaul network. In this architecture, MNOs can

place content on these vehicles that can later be retrieved by end-users. This approach

showed improvements of up to 50% in the traffic offloaded from the backhaul network.

In contrast, our approach differs from previous works in the sense that we modify the

NDN protocol stack to develop a custom forwarding strategy to better take advantage

of D2D communication that improves the reliability of cellular networks, making it

more resilient to failures.

2.3 Transport layer for HTTP2

With the advent of QUIC there are now two options for the transport of HTTP/2

sessions between a web server and a browser. First, the original approach specifies

the use of HTTP/2 over TCP. The second approach involves QUIC as an additional

application layer protocol, which results in a HTTP/2 over QUIC over UDP solu-

tion [6].

TCP requires a 3-way handshake resulting in a 1.5 RTT before any data request

is received at the server. In the case of QUIC, the data request arrives after 0.5 RTT

at the server.

The default congestion control algorithm implemented in QUIC is similar to that

of TCP Cubic [37] with some important differences. In order to notify the sender

of the train of packets received, existing TCP mechanisms (including CUBIC) make

7

use of Selective Acknowledgements (SACK) that include a maximum of the 3 most

recent sequential packets that arrived successfully. The sender then retransmits the

lost packets with sequence numbers that lie within the range of the 3 SACKs received.

It is obvious that this approach imposes a heavy constraint on the number of TCP

retransmissions that can take place without response from the receiver. QUIC aims

to resolve this by including the use of NACKs and allows the receiver to send up

to 256 NACKs without waiting for a response from the sender. The use of NACKs

allows much faster loss recovery and can lead to asignificant reduction in rebuffering

at DASH clients.

A recent paper by Google [50] provides a detailed analysis of an Internet-scale

deployment of QUIC. They specifically look at latency and rebuffer rate in order to

understand the performance implications of QUIC for video streaming over YouTube.

Timmerer et al. [78] evaluate ABR streaming over QUIC for varying network laten-

cies and show that there is no significant benefit to QoE streaming with the use of

QUIC. In [77], a demonstration by Szabó et al. provides a new congestion control

mechanism for QUIC that aggressively varies download rate according to a buffer-

based priority level assigned by the ABR streaming client. Carlucci et al. [24] present

results that compare TCP and QUIC under varying network conditions and buffer

size. In [45], Kakhki et al. perform a detailed analysis of QUIC under varying net-

work conditions to investigate the benefits of using QUIC for applications such as

web browsing and video streaming over YouTube. The authors of [21] also compare

the performance of several rate adaptive DASH players including QUIC and conclude

that QUIC is more aggressive compared to TCP. The authors of [39] devise and deploy

an SDN approach to to improve the QoE of ABR streaming by monitoring MPTCP

retransmissions where their system dynamically switches between network paths and

protocols to mitigate re-ordering effects. While we similarly compare the performance

of TCP (using HTTP/1.1 and HTTP/2) with QUIC, our work is more focussed on

8

the potential benefits that QUIC can provide for video streaming especially with re-

spect to retransmitting video segments in higher qualities. Similar experiments are

performed by the authors of [41], where they use the multiplexing feature of HTTP/2

to simultaneously request multiple qualities of a segment. While retransmissions can

be regarded as an additional burden on the available bandwidth we note that recent

works such as [82] suggest different types of redundant transmission to provide higher

QoS. In contrast to [41] and [82], we only invoke retransmissions in a systematic

way, thereby guaranteeing an improvement in QoE while also minimizing the con-

sumption of additional bandwidth. Moreover, in order to analyze the implications of

specific network conditions that affect ABR video streaming, we design, develop and

prototype such a system in a nearly isolated, controlled testbed environment.

Legacy protocols that perform adaptive bitrate video streaming over UDP in-

clude systems such as Real-time Transport Protocol (RTP) [36] and Stream Control

Transport Protocol (SCTP) [76]. Similar to QUIC, SCTP also allows multiplexing of

multiple chunks into one packet and avoids HOL blocking, thus, allowing unordered

delivery to the application layer. Unlike QUIC, SCTP implements congestion control

according to the TCP NewReno specification which uses Selective Acknowledgement

(SACK) for loss recovery. Another example of an ABR protocol over UDP is the

Video Transport Protocol (VTP) which was designed and evaluated by Balk et al.

[22]. In this work, the authors employ a form of congestion avoidance where the

sending rate at the server is increased by a single packet for every RTT measurement.

This design is different from the AIMD congestion control employed by TCP and

QUIC since it eliminates the effect of slow start and attempts to provide an accurate

estimate of the available bandwidth in the network. Some drawbacks of this approach

are the requirement of two UDP sockets for every connection and the use of Berkeley

Packet Filters to collect timestamps at the server and client for every video stream,

thus, reducing both performance and scalability of the system. Although there are a

9

Figure 2.1: MPTCP connection establishment [1]

number of server push approaches such as [41] and [87] that have been proposed for

HTTP/2, adapting such systems for retransmissions would not scale since the com-

putation and storage overhead incurred on the server per individual client connection

would render such an approach infeasible.

2.4 Multipath TCP

Current networks have become more friendly to multipath and the availability of

multiple radio interfaces gives us the opportunity to harness multiple paths so as to

ensure reliability, as we can detect link failures immediately and switch all the traffic

to the other path. Furthermore, sending data simultaneously across more than one

path can balance load and pool resources.

Multipath TCP (MPTCP) [31] is a major modification to TCP that allows multi-

ple paths to be used simultaneously by a single transport connection. It distributes

data from one connection across both the paths and they are called subflows.

According to [67], MPTCP is negotiated via a new TCP options in the SYN pack-

ets and to later add new paths (subflows) to an existing connection, identifiers are

exchanged between end-points, as show in Figure 2.1. The 3-way handshake estab-

lishes the first TCP subflow over one interface. Figure 2.2 shows that, while adding a

subflow to an existing MPTCP connection the corresponding MPTCP connection is

10

Figure 2.2: Establishment of Additional Subflow [1]

uniquely identified on each end host, for this MPTCP assigns a locally unique token

to each connection. When a new subflow is added to existing connection, the token

of the associated connection is sent in the MP JOIN option of the SYN segment.

Subflows resemble TCP flows on the wire otherwise the middle-boxes can cause some

issues. These subflows share a single send and receive buffer at the end-points. To

detect losses and perform retransmissions, it uses per subflow sequence number and

to allow re-ordering at receiver, it uses connection level sequence number. Connection

level ACK’s are used to implement proper flow control.

As seen by [61], MPTCP can quickly recover from a WiFi loss in presence of a 3G

interface with only a small impact on the application delay and goodput. Nonethe-

less, one needs to be careful while configuring MPTCP parameters, as [28] show that

the performance depends on application specific MPTCP configurations. [66] Further

explore load balancing capabilities, and they use very short timescale distributed load

balancing, so as to make effective use of parallel paths, which results in higher per-

formance and better resilience to failure, by combining several high speed interfaces.

11

2.5 ABR Streaming

Many content providers have switched to ABR streaming as it ensures higher user

experience. Recent ABR streaming technologies are built on top of the Hyper Text

Transfer Protocol (HTTP) application layer.

As the worse cases in the ’wild’ internet consist of low network capacity or high

bandwidth fluctuation, clients can be exposed to frequent packet losses which leads

to stalled/interrupted playback experience. To tackle this issue, AVC based ABR

streaming approach transcodes single layer, high quality videos into multiple copies

with different bitrates, then for each bitrate quality, the video is encoded into smaller

segments with short duration, typically between 2 to 10 seconds, as per the implemen-

tation. This facilitates different client devices, varying from mobile phones to TV’s,

to request video segments of suitable bitrates from the same video server according

to their screen resolution, processor capabilities and network conditions.

Before the client begin downloading video content, they have to retrive the Media

Presentation Description (MPD) file containing a list of all video and audio bitrates

and segment available on the server. Depending on the client capabilities explained

above, it chooses a video segment of particular bitrate and requests it by sending

HTTP GET request to the appropriate server or cache, and, when it gets the video

segment in response, it’s stored in the client buffer. While downloading, the ABR

streaming algorithm continuously monitors the available network bandwidth, and

makes decision on the next bitrate request accordingly. In the case of network con-

gestion, instead of stalling the playback, the ABR streaming mechanism requests a

lower quality bitrate segment, and therefore can maintain a smooth playback experi-

ence for users.

MPEG’s Dynamic Streaming over HTTP (DASH) is a popular implementation of

ABR streaming, as i) DASH-format videos can be streamed from any kind of HTTP

server ii) The adaptation logic which decides the quality of the next segment to be

12

HTTP

MPD

Segment Segment

Time scale

Segment Segment

Quality scale

CONTENT PRESENTATION

ON HTTP SERVER
DASH CLIENT

Figure 2.3: DASH flow diagram

downloaded, resides in the client iii) It is an open standard. Fig. 2.3 depicts the

DASH streaming flow process. As mentioned in ABR, DASH gets the MPD and

depending on the available bandwidth and local buffer conditions, requests a suitable

quality video segment. Therefore, with the benefits of lightweight HTTP server, and

the flexibility of bitrate adaptation, DASH is able to provide high resilience to network

variations and smooth playback experience.

2.5.1 QoE Metrics

For the evaluation of the performance of ABR streaming applications we make

use of the following metrics, which are widely used in related work:

2.5.1.1 Average Quality Bitrate (AQB)

One of the objectives of quality adaptation algorithms is to maximize the average

quality bitrate of the streamed video. For a comprehensive QoE representation, we

need to combine this metric with the Number of Quality Switches which is explained

below.

13

2.5.1.2 Number of Quality Switches (#QS)

This metric is used together with AQB to draw quantitative conclusions about

the perceived quality (QoE). For example, for two streaming sessions having the same

AQB, the session with the lower #QS will be perceived better by the viewer [91].

2.5.1.3 Spectrum (H) [91]

The spectrum of a streamed video is a centralized measure for the variation of the

video quality bitrate around the AQB. A lower H indicates a better QoE.

2.5.1.4 Rebuffering Ratio (RB)

The average rebuffering ratio is given by the following equation:

RB = E

[

ta − te
te

]

, (2.1)

Where ta is the actual playback time and te is the video length in seconds, respectively.

It is well known that low rebuffering and high average quality bitrate are highly

desirable for an optimal QoE. In our previous work [84], we show that reducing quality

gaps through ABR segment retransmissions can contribute significantly to a higher

AQB. In the following, we present an analysis of actual quality gaps that occur in a

real-world trace.

14

CHAPTER 3

INFORMATION CENTRIC NETWORKING SYSTEM
FOR DISSEMINATING ALERTS IN VANETS

3.1 Introduction

Flooding events are amongst the most devastating disasters world-wide. Such

events cause a high number of casualties1 and significant damage of property. One

particular problem with (even smaller, localized) flooding events in urbanized areas

in the US is the fact that vehicles are driven into hazardous flood waters. Drivers

often underestimate the depth of the water and the strength of the current of the

flood waters, which is also shown in Fig. 3.1 2. To prevent such incidents, more

and more underpasses (and other flood prone road sections) are outfitted with gauges

that can measure water depth and flow. First generation systems were often coupled

to barrier and warning systems with the goal of preventing drivers to enter the un-

derpass in the case of flooding. Current, second generation systems, use the public

Internet to disseminate warning information directly to smart phones through apps

like Flood Alert [26]. While these second generation systems are a major improve-

ment, since they can reach out to a large audience and warn drivers significantly

ahead of the threat, they heavily rely on communication infrastructure. Especially

in severe weather events, which are one of the major causes for such flooding events,

infrastructure is highly susceptible to failure and an alert system might not be able

1According to NWS statistics (http://www.nws.noaa.gov/om/hazstats.shtml) flood related
death are the highest amongst all weather fatalities.

2Survey by Brenda Phillips, CASA

15

Figure 3.1: People driving through floods

to warn its users. In addition, users have to register with such systems and are often

only notified if an event in the region they specified as the “home” location occurs.

Thus a driver who is traveling, e.g., in a rental car during a trip many miles away

from his/her home might not receive an alert.

In this chapter, we investigate an approach that is based on the new principle of

Information Centric Networking (ICN), which does not rely on the end-to-end data

delivery principle [90] that exists in traditional IP-based networks. In ICN, informa-

tion can be transmitted from any node in the network that currently stores it, which

is particular interesting in a scenario where cars (or smartphones in cars) are part of

the communication infrastructure. Our approach makes use of this characteristic and

enables direct communication between the flooding sensor and vehicles in its vicinity.

In addition, information can also be exchanged in between cars. In comparison to the

second generation warning systems described above, this approach has the advantage

that a significant amount of the communication infrastructure can fail, while warn-

ings can still be transmitted to cars. We claim that only the sensor and the cars in a

16

certain vicinity of the sensor have to be able to communicate on an ad-hoc basis to

allow the reliable and prompt dissemination of warnings.

It is our main goal to evaluate the performance of an ICN-based road assistance

approach that alerts drivers in the case of flooding related road hazards. While our

work focuses on the hazard of flooded underpasses, we believe that this approach can

be easily applied to other road assistance systems as the ones that warn drivers of

icy roads. The initial evaluation we present in this chapter is based on simulations

and makes use of the Named Data Networking (NDN) [89] architecture which is an

instantiation of ICN. While we evaluate the basic NDN-based approach and compare

it with an approach that mimics a second generation system, we also study the per-

formance of different forwarding strategies within NDN. Instead of simple flooding as

strategy for the forwarding of data, we investigate approaches that take into account

information such as distance between sensor and cars or the velocity and direction of

a car.

Our simulation-based evaluation results, in which we investigate a typical traffic

scenario involving an underpass, show that the NDN-based approaches outperform a

traditional, infrastructure-based approach if node densities stay below a certain level.

Our results show that the timer based approaches outperforms the pure flooding

technique in at least 70% of the cases. In the case of an infrastructure based approach

with LTE, the NDN approach outperforms it in low-density cases while performing

equally in high-density cases.

3.2 Design

NDN [89] has the goal to build a future, ICN-based Internet architecture. In

NDN, when a consumer requests data it send and Interest packet to the network that

includes a name, which specifies the requested content. Once the Interest arrives at

an NDN router, the router checks its Content Store (CS, built-in cache) for matching

17

SENSOR SENSOR SENSOR

SENSOR

SENSOR

0

-10

-20

-200

-400

-1010

10

20

200

400

1010

-20-1010 -10 0 10 20 400 1010

Figure 3.2: VANETs topology

data. If the data are found in the CS the router returns a DATA packet to the

consumer. Otherwise, an entry in the Pending Interest Table (PIT) is created and the

Interest is forwarded towards a producer according to information in the Forwarding

Information Base (FIB). Should Interests for the same name arrive at the router, only

one is forwarded upstream towards the producer.

In our scenario (see Fig. 3.2), the sensor is the producer, while the cars take on the

role of both consumers and NDN routers. The cars send Interest packets to obtain

information about potential road hazards (e.g., a flooded underpass). These Interests

are forwarded according to the strategies described in Sect. 3.2.2. Since the cars also

act as NDN routers Data packets can be cached in the CS of each mobile node. Thus,

it is not necessary to forward an Interest all the way to the sender but it can also

be answered by a car that is on the path between the requesting consumer and the

18

sensor. With the use of NDN, no additional infrastructure than the sensor itself and

connected cars3 is required.

Our decision to use NDN as the basis for our approach, in comparison to alterna-

tive ICN approaches, is based on the fact that the project offers simulation tools [15]

and an actual implementation of the architecture that can be used by the research

community.

We also introduce an alternative, infrastructure-based architecture with which we

compare the NDN approach in our evaluation (see Sect. 5.1.5). In this architecture,

the mobile nodes (cars) and the sensor use LTE wireless technology to connect to

the public Internet. Here, the sensor periodically transmits sensed data to a web

server that is located somewhere in the Internet. Instead of requesting data directly

from the sensor, the mobile nodes send HTTP GET request to this server to obtain

flooding information.

3.2.1 Prefix Naming

Since our approach relies on forwarding based on location, direction, and velocity

of the consumer, we introduce the naming scheme used in our approach in this section.

First of all, we use named prefix [64] to maintain a hierarchical structure, for

example “/ndn/umass/WaterSensor”, and further use a uni-dimensional structure in

adding encoded geographical coordinates, for example “/ndn/umass/WaterSensor/9/8/0/2”

(we assume that the mobile nodes have a device that provides geographic location

information like GPS). This geographical information can be used in the forwarding

algorithm. The resulting naming scheme is used such that the data source irrespec-

tive of whether it is the original producer or an intermediate node that has cached

the content, can drop the Interest based on the location information in the name.

In addition, by adjusting the resolution of the encoded geographical coordinates, we

3For this initial work, we assume that cars are connected through the drivers’ smartphones

19

can ensure that nodes only reply to or forward Interests of customers in a certain

geographical region.

NDN names, although hierarchical, are uni-dimensional, therefore we use Cantor

pairing [64] to encode location information in the name. Let x and y be the two

coordinates that identify the location that we want to embed in the name. The

pairing function π is a primitive recursive bijection π : N x N → N. As the cantor

function only works for non-negative numbers, we shift the topology by a constant

CANTOR = 5000 (i.e., x and y have non negative values).

z = π(x, y) =
(x+ y)(x+ y + 1)

2
+ y (3.1)

Then, we place this value in the prefix generated by each mobile customer. The

location information of a node is updated in one second intervals and represented as,

e.g., “/ndn/umass/WaterSensor/z”.

Each digit in z is separated by “/ ”. For example, for z = 9802, the corresponding

prefix is : “/ndn/umass/WaterSensor/9/8/0/2”. This geographical location is used

to make forwarding decisions. We inverse z into x and y values according to [64] by:

w =

√
8z + 1

2
(3.2)

t =
w2 + w

2
(3.3)

y = z − t (3.4)

x = w − y (3.5)

3.2.2 Forwarding Strategy

The area in which Interests propagate is limited by the routing nodes. That is,

a node forwards an incoming Interest packet only if the prefix (generated depending

20

Figure 3.3: Interest propagation domains

on the customer node’s location) is within the same domain. Domains are structured

as shown in Fig. 3.3. As specified in Sect. 3.2.1, x and y have non negative values.

xprefix + yprefix
r

==
xcurrent + ycurrent

r
(3.6)

As shown in Fig. 3.3 B1 covers an area with radius r, B2 covers an area from

radius r to 2 ∗ r, B3 covers an area from radius 2 ∗ r to 3 ∗ r and so on. In the

evaluation of our approach (see Sect. 5.1.5) we use r = 200m, 2000m.

In our evaluation we use the following forwarding strategies:

1. Flooding Strategy: The flooding strategy broadcasts Interest to all nodes

within its communication range. The strategy does not check the area in which

the customer node is present and ignores the Interest propagation limit as shown

in Fig. 3.3. It also forwards an Interest that is already registered in the PIT.

2. WaitDist Strategy: In our scenario, data have more value further away from

their point of origin. At the same time we do not want to eliminate the possibil-

ity of a nearby mobile node to re-broadcast and to make at least some progress

in data forwarding [46]. We modify the flooding strategy to include the Interest

propagation limit as shown in Fig. 3.3 and induce a delay Tgap depending on

how far the node that generated the Interest is from the current node that has

received the Interest.

Dmax = 150m : approximate maximum range of radio transceiver

Tdist = 10µs : as per SIFS [25]

21

Dtransmitter : is the distance of the current node from the node that generated

the Interest

Tgap = Tdist.
Dmax −min(Dmax, Dtransmitter)

Dmax

(3.7)

3. WaitDistDrop Strategy: In this strategy, we first check if the incoming

Interest is already present in the PIT and if so, it is not forwarded but dropped.

Otherwise, the Interest is forwarded as described in the WaitDist forwarding

strategy.

4. WaitVel Strategy: This strategy looks at another parameter that could af-

fect/help in disseminating Interests quicker and further away from the point of

origin. This other parameter is the velocity of the mobile node. We reason that

the node that takes into account the WaitDist strategy and also has greater

velocity is much better suited to forward an Interest. (We assume that a node

with higher velocity that is already further away from the sensor will contribute

to quicker information dissemination.). Here the induced delay is Ttotal.

Vmax = 20m/s : speed of our fastest car

Tvel = Tdist = 10µs : as per SIFS [25]

Vtransmitter : is the velocity of the current car/node

T ′

gap = Tvel.
Vmax −min(Vmax, Vtransmitter)

Vmax

(3.8)

Ttotal = Tgap + T ′

gap (3.9)

5. WaitVelDrop Strategy: In this case, we first check if the incoming Interest is

already present in the PIT and if so, it is not forwarded but dropped. Otherwise,

forwarding according to the WaitVel strategy is performed.

22

3.2.3 Security Concerns

We look into 3 main security concerns:

1. Attacking the nodes for their details: i) To obtain a particular interest a potential

attacker has to be present in that region (in our case either 200 or 2000 meters) to

receive that Interest packet. ii) To obtain the geographical coordinates the inverse

function needs to be known. iii) Even if the geographical coordinates are obtained,

the customer cannot be identified.

2. False interest injection: As described in Sect. 3.2.2, we restrict the domain in which

an Interest packet with a certain prefix circulates. This requires that a potential

attacker be present in that region (in our case either 200 or 2000 meters).

3. False data injection and unauthorized data retrieval: Transmitting forged Data in

NDN can be detected by the customer through NDN’s inherent signature mechanism

and valid PKI keys are needed to decrypt the valid data.

3.3 Simulation Setup

In this section, we describe the simulation setup that we employ to evaluate our

approach and to compare it with a traditional infrastructure-based IP approach. Our

approach that is based on NDN is simulated using ndnSIM [52] which is based on ns3

[4]. The traditional IP approach is simulated using ns3 only.

3.3.1 Path Loss Model

To achieve a more realistic simulation of the wireless channels between the sensor

and the mobile nodes the Nakagami Propagation Loss model [2] is employed. This

model is a multi-path fading model and matches some empirical data better than

other models. This model is a multi-path fading model and well matches empirical

data.

23

Table 3.1: Simulation environment for NDN approach

Network Simulator NS3/ndnSIM
Simulation Time 100s
Simulation Area 2000 m x 2000 m
Number of Mobile Nodes 10, 40, 70, 100, 130, 160, 190
Number of Sensors 1, 5
Speed of Mobile Nodes -20, -10, 10, 20 (m/s)
Mobile Node Traffic Type Multi-lane Bi-directional
MAC Protocol 802.11p (DSRC)
Wireless Traffic Constant Rate 24Mbps OFDM
Loss Model Nakagami Propogation Loss Model
Content Store Policy Least Recently Used

Table 3.2: Simulation environment for IP approach

Network Simulator NS3
Simulation Time 100s
Simulation Area 2000 m x 2000 m
Number of Mobile Nodes 10, 40, 70, 100, 130, 160, 190
Number of Sensors 1, 5
Number of eNB’s 2
Number of PGW 1
Number of Server 1
Speed of Mobile Nodes -20, -10, 10, 20 (m/s)
Mobile Node Traffic Type Multi-lane Bi-directional
MAC Protocol LTE and RS232
Loss Model Nakagami Propagation Loss Model
Transport layer TCP

3.3.2 NDN approach

In our simulation setup for the NDN-based approaches the mobile nodes are ini-

tially equally distributed into ten groups and in each group the nodes are separated

by a distance of 20m or 40m (as per the 2 second rule4). These groups mimic the lane

and traffic regulations as stated in the US driving rule book. As shown in Fig. 3.2,

there are roads in east-west and north-south direction. For each of the four directions

4https://dmv.ny.gov/about-dmv/chapter-8-defensive-driving

24

there are two lanes. Nodes in the fast lane travel with a speed of 20m/s, while nodes

travel with a speed of 10m/s in the slow lane. The intersection is modeled as an

underpass and cars travel through that area without slowing down. The groups of

cars are arranged in a manner that allows us to observe three different communication

stages:

1. When nodes are in range of the sensor.

2. When nodes enter the range of the sensor node that can dissipate information.

3. When nodes are leaving the range of the sensor node that can dissipate infor-

mation.

We evaluate different node densities (10, 100, and 190 mobile nodes) in our simula-

tions. For better illustration, each block in Fig. 3.2 represents a group of cars. For

example, in the case of 100 nodes, one block contains 100
10

= 10 nodes.

We further evaluate a multiple sensors scenario as shown in Fig. 3.2. In this case,

we place 4 more sensors in 4 directions at a distance of 1010m as the cars move in all

4 directions and the slowest car covers 1000m in 100s.

3.3.3 IP based Approach

Currently the fastest and most popular method to disseminate environmental/traffic

data is by using cloud servers [88], to which the data is pushed from the sensor and

various clients pull the required data from one or more servers. In this scenario a

quite complex topology is employed. Both, the sensor and the mobile nodes have to

use wireless, cellular technology to communicate with base stations. In our scenario

we assume LTE [65] as the cellular wireless technology. We also assume that the

eNB’s are femtocells, since they provide better connectivity (e.g., the UE needs less

power to connect to the base station [33]). The eNB is connected to the Gateway

(PGW) through RS232 (point-to-point) links, which connect it to the Internet. Such

25

Figure 3.4: Real LTE TCP/IP based Architecture scenario

a setup usually results in 6-7 hops between PGW and the Cloud server. The overall

topology for that scenario is shown in Fig. 3.4. Compared to our NDN approach this

solution introduces significant delay and the fact that LTE requires a femtocell in

range of the end nodes poses a scalability and deployment issue.

For simplicity we have implemented the topology shown in Fig. 3.4 with a direct

link between the PGW and the Cloud server, since the exact number of routers

between the two is unknown. In our simulations, the delay on that link is set to

10ms. Therefore, the setup we have chosen for the LTE scenario represents the best

possible scenario. Thus, a data packet travels from the sensor via the LTE eNB to

the PGW. From there over the wired Internet to the cloud server. From the cloud

server it travels via the wired Internet to the PGW that serves the mobile node, and

from there over the LTE eNB to its final destination.

The topology at the end eNB which connects the multiple mobile clients, is similar

to the one we used in our NDN approach and, the eNB’s position can be considered

analogous to the one of the sensor, i.e. the nodes in the radio range of eNB can

establish a TCP connection to the Cloud server.

26

We make use of the TCP on-off helper (tcp connection on for 10 seconds then off

for 1 second) [52] to generate the traffic from the sensor to the cloud server and form

cloud server to the mobile clients.

3.4 Evaluation

The main goal of our evaluation is to investigate how quick the approaches pre-

sented in Sect. 3.2 disseminate warning information from a roadside sensor to a group

of vehicles in the vicinity of that sensor. We compare the time required for the Inter-

est to be satisfied (delay) for the strategies mentioned in Sect. 3.2 for node densities

of 10, 100, and 190.

In the case of LTE we are taking into consideration the best case scenario possible,

i.e., delay between packet transfer from sensor to cloud server and from cloud server to

mobile node, but ignore the delay introduced by intermediate routers and processing

at the web server. Whereas in the NDN case we have taken into account all possible

delays (accessing the cache, PIT, and FIB and the actual communication delays) as

provided by ndnSIM [52].

Figure 3.5 shows the case of 10 nodes with a CS size of 100 entries and a 2000m

domain, where just one node occupies each of the four lanes shown in Figure 3.2. In

this scenario, all of the timer-based forwarding approaches perform similar. Due to

the low mobile node density, Interests arriving at the nodes are not already logged in

the PIT and drop-based and non-drop-based strategies behave similar in this scenario.

Figure 3.5 shows that 63% of the vehicles have received the warning message after

∼ 5000µs in the case of WaitVelDrop. In the infrastructure-based LTE scenario it

takes ∼ 100 times longer to transmit the warning message to the same fraction of

nodes. For example, in the LTE cases 9.09% of the nodes have received the warning

message after a delay of .2045 seconds, whereas 33.75%, 65.1%, and 66% of the the

nodes have received the message in the case of flooding-, distance-, and velocity-based

27

NDN strategies. Note that the LTE case is much more vulnerable to failures in the

infrastructure (which is often a side effect in disaster scenarios), but such effects are

not regarded in our simulation study.

Comparing these results to scenarios with higher node densities (100 nodes shown

in Fig. 3.6 and 190 nodes shown in Fig. 3.7) shows a slightly better performance of

the drop-based strategies. As shown in Fig. 3.6, 1.98% of the nodes have received

the warning message in the LTE case after a delay of .177 seconds. In the case of

the NDN-based strategies, 26%, 38.5%, 40.8%, 43.6% and 45.5% of the nodes have

received the warning message in the same time span. For the case of 190 nodes

(Fig. 3.7), 5.23% of the nodes received the warning message in the LTE case after

.195 seconds. In the NDN case, 24.26%, 42%, 38.5%, 45.5% and 44% of the Interests

are satisfied for the strategies strategies presented in Sect. 3.2.2. This is caused by

the fact that entries in a mobile node’s PIT for arriving Interests might already exist.

In general, higher node densities result in increased message delivery delay due to

increased collisions and retransmission. Nevertheless, even in this high node density

scenarios the timer-based strategies outperform flooding and LTE.

A comparison with a much smaller domain of 200m (see Fig.3.8) shows a signif-

icantly reduced message propagation delay. In this scenario, nodes are much closer

to each other and an Interest send by one of the mobile nodes can be received by

multiple other mobile nodes leading to a faster Interest and also Data propagation.

Reducing the domain size has no significant impact on flooding and LTE. As shown

in Fig. 3.8, 9.09% of LTE packets are received after a delay of .2045 seconds, whereas

33.8%, 89% and 91% Interests are satisfied for flooding-, distance- and velocity-based

strategies in the same time interval.

Finally, we were interested to what extent the CS size of the mobile nodes impact

the message propagation delay. For this evaluation we chose a scenario with 100

mobile nodes, a CS of 1000 (compared to 100 in the earlier simulations), and a

28

Figure 3.5: 10 nodes with 100 CS and 2000m domain

domain size of 2000m. Comparing the results shown in Fig. 3.9 with the ones in

Fig. 3.5 reveals that increasing the CS size does not shorten the message propagation

delay significantly. We conjecture that this is because only one type of message is

transmitted and we do not simulate any competing traffic. In future work, we plan

to perform simulations with cross-traffic to evaluate the impact of larger CSs. It can

also be observed that all timer-based strategies behave almost similar.

A comparison between various node densities that use the pure flooding approach,

as shown in Fig. 3.10, reveals that the delay proportionally increases with the node

density until 60% of the Interests are satisfied. We can see a significant difference

between the scenario which has 10 nodes (1 node per lane per direction) and the

others. The other node density scenarios perform quite similar.

Whereas in the LTE case as shown in Fig. 3.11 the delay to send all packets (to

achieve CDF 1) keeps increasing proportional to the density. The shape of the plots

for all densities is similar and the plots are only slightly shifted in time. This property

can be attributed to the fact that there is no in network caching and the cloud server

need to transfer packets to all the nodes.

29

Figure 3.6: 100 nodes with 100 CS and 2000m domain

Figure 3.7: 190 nodes with 100 CS and 2000m domain

We further explore a scenario with multiple sensors as described in Sec. 3.3.2. For

the LTE case, we calculate the delay by taking into account the TCP connections

from all the sensors to the cars as we want the cars to get the information about

the closest sensor (i.e., 5 in this scenario). Simulation results from this scenario are

shown in Fig. 3.12 (100 vehicles) and Fig. 3.13 (10 nodes). Both results show that

the LTE-based approach performs significantly worse than the ndn approach. By

the time 90% of the vehicles have received the warning messages in the ndn case

30

Figure 3.8: 10 nodes with 100 CS and 200m domain

Figure 3.9: 100 nodes with 1000 CS and 2000m domain

only 9% have received the messages in the LTE case. The delay in the LTE case

increases proportionally to the number of sensors. This demonstrates the scalability

of ndn-based approach.

3.5 Discussion

One significant point that is not shown as part of our simulation is the increased

resilience of our approach compared to an infrastructure-based approach. In our

31

Figure 3.10: Case of flooding with 100 CS and no domain limit

Figure 3.11: Case of LTE

NDN-based approach sensor node and mobile nodes can communicate without any

additional devices. Thus, only the failure of the sensor node will prevent the dis-

semination of warning messages. The failure of one or more mobile nodes will lead

to delayed message propagation but not the complete failure of warning message

dissemination.

32

Figure 3.12: 5 sensors and 100 nodes with 100 CS and 2000m domain

Figure 3.13: 5 sensors and 10 nodes with 100 CS and 2000m domain

This is quite different in scenarios that heavily rely on infrastructure like the one

based on LTE we used for comparison in our evaluation. Works like the one presented

by Schulman and Spring [72] have shown that disasters can significantly impact the

communication infrastructure.

3.6 Conclusion

In this chapter, we present a ICN-based approach for the dissemination of sensor

information in disaster scenarios to vehicles. We have chosen this approach since it

minimally relies on infrastructure. We present different forwarding strategies for In-

33

terests and Data forwarding between sensor and cars and evaluate their performance.

In addition, we compare this with an infrastructure-based LTE approach. Results we

obtained through simulations show that our approach performs in most cases better

than one that heavily relies on infrastructure. In addition, the timer based approaches

outperform if not equal the flooding technique. In future work, we plan on creating a

framework that will also be able to simulate infrastructure failures to further evaluate

the performance of our approach.

34

CHAPTER 4

TRAFFIC OFFLOADING VIA INFORMATION-CENTRIC
NETWORKING MOBILE CLOUD

4.1 Introduction

The ever increasing popularity of smartphones and other mobile devices allows

users to access a variety of services such as video on demand, online banking, and

social media virtually anywhere in the world. Smartphone technology and wireless

networks also play a key role in emergency and disaster scenarios, where first re-

sponders need to communicate among themselves, command posts, and the public to

perform emergency management tasks (e.g., to perform triage in the case of many sig-

nificant injuries). With the current infrastructure reaching its capacity limits in dense

urban scenarios, it is fundamental that communication in the case of an emergency

can be performed in a timely and reliable manner.

The evolution of Radio Access Networks (RAN) is mostly focused on increasing

capacity and reducing cost for network operators. For instance, the Third Generation

Partnership Project (3GPP), the body responsible for cellular network standards,

adopted carrier aggregation and multiple input multiple output (MIMO) technologies

in the LTE standard [11] that specifies data rates on the order of 300 Mbps. This

increase in capacity has the goal to cope with the rapid increase in demand from

users. This demand is predicted to increase 7-fold by 2021 on top of an 18-fold

increase from 2011 to 2016 [10]. Consequently, mobile network operators (MNO)

have been deploying more base stations and femtocells to accommodate this increase

in traffic, an approach that increases complexity, cost, and management for the MNO.

35

To alleviate the infrastructure, the 3GPP formalized in releases 13 and 14 the LTE

Licensed Assisted Access (LTE-U/LAA/eLAA), that allows the coexistence of LTE

in unlicensed 5 GHz ISM-bands to expand the capacity of current networks. While

these solutions increase network capacity in response to the rising user demand, their

increasing complexity makes them more vulnerable in the face of disasters. The

recent events in the aftermath of Hurricane Maria on the island of Puerto Rico have

demonstrated this in a shocking manner.

We believe that Device-to-Device (D2D) communication has the potential to ad-

dress the challenge in providing extra capacity to the edge of the network, while re-

ducing capacity requirements at the core. Moreover, it increases reliability in disaster

scenarios, where low-capacity networks are usually deployed to maintain a minimum

level of connectivity with emergency services. For instance, the authors in [32] ana-

lyzed network data during the 2014/2015 floods in Malaysia and Indonesia, finding

that the signal quality from the available base stations deteriorates while users tend

to use more WiFi networks when available. However, a reliable D2D communication

is challenging as nodes can enter and exit the communication range at any time,

breaking end-to-end paths and altering routing state. Additionally, in larger ad hoc

networks, nodes are subject to hidden terminal problems.

We present a scheme that combines Information-Centric Networking (ICN) [48, 42]

with D2D communication to offload traffic from cellular networks, allowing users

to communicate even without the aid of wireless infrastructure. In ICN, data is

immutable and decoupled from its location, enabling a node to fetch content from

any other node in the network that has a cached copy of the requested data. In-

network caching is supported as part of the architecture. Furthermore, ICN supports

multipath communication and prevents loops. These characteristics make ICN more

tolerant to delay and disruptions than host-centric architectures. The work presented

36

Figure 4.1: Manhattan-Grid mobility model. Nodes (cars and pedestrians) can only
move along the gray roads.

in this chapter is based on Named-Data Networking (NDN)[89], one of the many

flavors of ICN.

In this chapter, we assume that mobile nodes have two wireless interfaces (e.g.

Wi-Fi and cellular) which is the case for modern smartphones. Therefore, when a

node sends out a request to fetch data, it first queries nearby devices for a cached

copy. If the request times out, the request is retransmitted to the cellular network.

We evaluate our approach through simulations using NS-3 and ndnSIM [53].

4.2 Model and implementation

Our application scenario is focused on data dissemination in urban environments,

including pedestrian and vehicular nodes. We assume that all nodes have at least

two wireless interfaces, one WiFi and one LTE, and that they are willing to join the

MANET, and share storage space for collaborative caching.

In our first scenario, nodes move along a Manhattan grid (shown in Figure 4.1)

generated using BonnMotion [20], a widely used mobility generation tool. We im-

plement two other scenarios: the vehicular cloud proposed in [81] and a pedestrian

crowd (e.g., concerts or sports events). For evaluation, we use the ndnSIM simulator

[53], a NS-3 based NDN simulator.

37

Figure 4.2: NDN-Node block diagram with the modified blocks in gray.

We customized the NDN forwarder to meet our application scenarios as follows (a

complete view of the node structure and modified blocks is shown in Figure 4.2). First,

when a node sends out an Interest request to the network, it attaches a retransmission

tag (Retx tag) to the outgoing packet. The Retx tag informs the forwarder whether

the packet is a retransmission or not. I.e., if the desired content was not found in the

MANET within one timeout period, it sets the Retx tag. All retransmitted Interest

packets are forwarded directly to the cellular network. We use the hop count tag

(HopCount) to identify if a node is the originator or a forwarder. If a node is a

forwarder, it may drop packets based on its energy level, which we will described

next. This approach is motivated by the fact that energy might be scarce in disaster

scenarios due to power outages. In such a case, users might not be willing to deplete

there battery below a certain threshold.

Considering the energy consumption of the nodes, we create two thresholds where

nodes change their forwarding behavior based on the current energy level. The first

38

threshold, Eth1
, is at 35% battery level and the second threshold, Eth2

, is at 25%.

These thresholds were chosen based on a common Li-Ion battery discharge curve

[79]. At the beginning of each simulation, each node is randomly assigned an initial

energy level ranging from 5% to 100%. When the energy at a certain node falls under

Eth1
, it stops forwarding packets with hop count greater than three. In our initial

tests, we found that more than 90% of the packets retrieved from the MANET come

from a range of 3 hops or less. Therefore, this threshold aims at saving energy by

reducing a packet’s reachability while still being able to serve the majority of contents.

Furthermore, when the energy level falls below Eth2
, the node leaves the MANET by

forwarding all Interest packets to the cellular network. The described behavior is

formalized in Algorithm 1.

Algorithm 1: Modified behavior of NDN forwarder

Input : Interest packet
Output: Interface to forward

1 if HopCount = 0 then
2 if En ≤ Eth2

then
3 return LTE;
4 else
5 return WiFi;
6 end

7 else
8 if (En ≤ Eth1

and HopCount ≤ 3) or
9 (En > Eth1

and HopCount ≤ 6) then
10 return WiFi;
11 else
12 return Drop;
13 end

14 end

For the consumer application, we gathered real data from Twitter’s trending topics

in the United States to create our content request pattern.1 Through maximum

likelihood estimation, we found that the popularity in our dataset follows a Zipfian

1https://developer.twitter.com/en/docs/trends/locations-with-trending-topics/api-reference

39

distribution with α = 0.7 and q = 0.7, described by Equations 4.1 and 4.2. Other

works have characterized Internet content to follow the Zipfian distribution as well,

among them [14, 23]. The main assumption is that some tweets will reach more users

than others, which is the case with popular accounts from public figures (usually

millions of followers) and regular accounts (a couple dozen to hundreds of followers).

f(k;N, q, α) =
1/(k + q)α

HN,q,α

(4.1)

HN,q,α =
N
∑

i=1

1

(i+ q)α
(4.2)

Our content catalog (N) is composed of a total of 1,000 contents. Each node

requests an Interest every 20 ms, and can cache contents varying from 0.1% to 10%

of the content catalog. We simulate three scenarios where the infrastructure is being

challenged by the rapid increase in traffic and it would benefit from D2D communi-

cation in the case of a crisis.

4.2.1 Urban Scenario

This scenario resembles an urban environment where nodes can only move along

the grid (streets). Due to the large number of users, MNOs turned to small cell

densification to cope with the increase in network traffic. For our simulations, half of

the nodes are pedestrians (moving at 1 m/s) and half are vehicles (moving at 13 m/s).

Node count and simulation area were calculated using the framework in [49]. There

is one base station located at the center of the grid that is used only when end-users

cannot fetch the requested content from neighboring nodes. Table 4.1 summarizes

the simulation parameters.

40

Table 4.1: Summary of simulation parameters for scenario I

Parameter Value
Node count 25, 50, 100, 150

Area 500 x 500 m2

Access technology IEEE 802.11g and LTE
Communication range Wi-Fi: 100 m, LTE: To base station

Node cache (CS) 1, 5, 50, 100 kB
Cache Policy LRU
Data payload 1 kB
Total contents 1,000

4.2.2 Vehicular cloud

Following the findings in [81], we implemented the concept of a vehicular cloud

where utility or emergency vehicles serve as data mules to assist end-users in fetching

content. In our implementation, nodes move according to the Manhattan-Grid model.

First, the vehicular nodes randomly request contents from the backhaul network to fill

up their caches (i.e., a node will sequentially request as many contents as it can store

in its cache, with the first requested content being randomly selected), then consumer

nodes request contents from the vehicular cloud. If that request times out, pedestrians

retransmit to the cellular network. In this scenario, the only communication allowed

is device-to-vehicle and device-to-infrastructure. We vary the number of vehicles

from 25 to 100 nodes in increments of 25, while the number of pedestrians remains

static at 25 nodes. Moreover, we evaluate the effects that different cache sizes on

the vehicular node has on the network. The expectation is that as the number of

vehicular nodes increase, pedestrians will be able to fetch more contents from them.

Similarly, as vehicle cache size increases, the pool of contents available to pedestrians

will be greater.

4.2.3 Large crowds

Another possible application for our model is large crowds, where often the influx

of people exceeds the capacity of the infrastructure. In [56], the authors reported

that terabytes of data were transfered via cellular networks (AT&T, Verizon, and

Sprint) by in-stadium fans during the 2015 Superbowl. We develop a scenario where

41

spectators at an arena are able to watch on-demand replays, reducing the load on

the infrastructure. Our scenario comprises of 200 users in one section of a stadium.

Users can communicate with the LTE base station (in this case a femtocell) as well

as other users in the same stands to fetch contents. The replay videos have a total

duration of 20 seconds each, segmented into 2-second chunks (following the MPEG-

DASH standard [73]). The chunk size is 100 kB. We leave the question of fetching

different quality levels for future work. In total, five replay videos are requested by

all users, with the video segments being requested in order. However, each user will

start requesting the videos at a random time within a short interval (10 seconds).

The reason for this interval is two-fold: in reality, not all spectators request videos at

the same time; second, by using slightly different times, nodes can take advantage of

caching.

4.3 Simulation Results and Evaluation

We first analyze the Manhattan-Grid scenario (Section 4.2.1). Figure 4.3 shows the

average percentage of traffic that was successfully offloaded from the cellular network

with different node densities and different cache sizes (CS). The remaining requests

that could not be satisfied from the MANET were served by the cellular network. The

error bars are the standard deviation of ten runs. According to Figure 4.3, our model

can offload up to 51.7% of traffic from the infrastructure. We attribute this result to

the combination of inherent in-network caching in NDN (enabled by named-content)

and the Zipfian request pattern described earlier. We can also observe a higher

variation in lower density scenarios. This is due to the social proximity of the nodes,

i.e., in low densities, nodes are more susceptible to the presence of neighbors, as for

higher densities the pool of content from neighbor caches is greater. Additionally, we

see an increase in the traffic being offloaded as the density increases. This can also be

attributed to the higher social proximity in higher densities (more neighbors translate

42

to a greater set of contents to choose from). Figure 4.3 confirms our expectation that

the network performance increases as cache size increases.

In applications that are more tolerant to a higher latency (e.g., where the infras-

tructure is partly unavailable), the fraction of offloaded traffic can be improved by

increasing the number of retries injected in the MANET. Figure 4.4 shows the per-

centage of traffic that is offloaded when the consumer application rebroadcasts the

Interest request to the MANET, instead of sending it directly to the cellular network.

Our experiments show improvements of up to 16.61% (68.31% offload in total) when

resending up to four requests to neighboring nodes before sending it to the cellular

network.

Figure 4.5 depicts the PDF of data packets’ hop count in all node densities when

the cache size per node is 0.5% of the total content catalog. We can see that in all

cases, less than 5% of contents come from the nodes’ own cache, while the majority

of contents comes from nodes that are three hops away. It is important to note that

as MANET grows, the PDF becomes wider. We do not limit the propagation of

data packets (as we do with Interest packets); therefore, in some occasions, the data

packets travel multiple hops back to the consumer node before the Interest timeout

expires. Figure 4.6 shows the CDF for latency for different node densities. We

compute latency as the elapsed time from the first Interest requested by a node until

the data packet returns, either via the MANET or via the cellular network. We also

distinguish between vehicular and pedestrian nodes to study the effects of mobility on

latency; however, the graphs do not show a significant difference in latency between

pedestrian and vehicular nodes with both curves overlapping in most cases. Figure

4.6 also shows that in approximately 80% of the cases the latency is below 50 ms. The

retransmission timeout in NDN varies according to the number of satisfied (timeout

decreases) and lost requests (timeout increases); thus, the tail in the CDF in the

MANET cases. The LTE CDF shows the sum of the first timed-out request plus the

43

25 50 100 150
Number of nodes

0

10

20

30

40

50

60

70

%

Percentage of traffic offloaded from cellular network
CS=1
CS=5
CS=50
CS=100

Figure 4.3: Percentage of traffic offloaded via the MANET, illustrating the effect of
varying cache size and node density.

retransmitted request to the cellular network. Moreover, the shallower slope in the

LTE case reflects the variation of the Interest timeout in the MANET.

We also evaluated the energy consumption on the nodes. Our simulation results

showed that nodes below the first (25% < En 6 35%) and second (En 6 25%)

threshold consume 5.8% and 2.9% less energy than other nodes, respectively. Nodes

that are in the low power range have a steeper drop in the energy levels due to the

battery discharge curve. This energy saving approach provides a longer battery life

for mobile user equipment, which is specially important when the infrastructure is

impaired (e.g. power outages).

The vehicular cloud case (Section 4.2.2) is presented in Figure 4.7. The x-axis

represent the number of utility vehicles, while the bars show the average percentage

of traffic that was offloaded from the cellular network for different cache sizes used in

the simulation. The error-bars represent the standard deviation of ten runs. Figure

4.7 shows the effect of increasing the number of vehicles, increasing the cache size, and

a combination of both. As expected, increasing the number of vehicular nodes that

cache content for the MNO has a positive impact on the amount of traffic that can

be offloaded from the LTE network as more cache space becomes available. Similarly,

increasing the cache size on the available nodes also has a positive impact on the

44

1 2 3 4
Number of transmissions of the same Interest to the MANET

before switching to the LTE interface

0

10

20

30

40

50

60

70

80

90

100

%

Percentage of traffic offloaded from the cellular network
50-Nodes

Figure 4.4: Percentage of traffic offloaded from the cellular network when the con-
sumer application retries to send Interest requests to the MANET. The figure shows
up to 4 transmissions of the same Interest to the MANET for the 50-Node case.

offloaded traffic. It is important to note that increasing the number of vehicles is

more effective than increasing the cache size on the vehicles, suggesting that the

network benefits from more nodes joining the MANET, but without the necessity

of having large caches. This result can be explained because increasing the number

of vehicles increases cache diversity in the network, since end-users benefit from the

short contact time (when communication between vehicles and consumers happens)

with the utility vehicles. Furthermore, our simulation results are aligned with the

findings in [81], where the authors experienced an offload ratio of approximately 50%

in their vehicular cloud.

The third scenario (Section 4.2.3) focuses on large crowds, where spectators at

a sports event have the capability to watch instant replays at their mobile devices.

Figure 4.8 (a) shows the percentage of traffic offloaded by the MANET, as well as the

percentage of the video that was downloaded for different request rates. Figure 4.8 (b)

shows the average and standard deviation of latency to fetch one segment. According

to Figure 4.8 (a), 10.3% and 16.59% of traffic was offloaded by the MANET for

request rates of 1 and 5 Interest/s, respectively, showing that we can alleviate traffic

from the backhaul network. It is important to note that as we increase the request

45

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

PD
F

25-Nodes

0 5 10 15 20 25

50-Nodes

0 5 10 15 20 25

100-Nodes

0 5 10 15 20 25

150-Nodes

HopCount

Number of hops

Figure 4.5: Number of hops from successfully retrieved data packets.

0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

25-Nodes

0 5 10

50-Nodes

0 5 10

100-Nodes

0 5 10

150-Nodes

LTE
WiFi-Ped
WiFi-Veh

Latency (s)

Figure 4.6: Cumulative distribution function of latency for different node densities.

25 50 75 100
Number of vehicular nodes

0

10

20

30

40

50

%

Percentage of traffic offloaded by the vehicular cloud
CS=50
CS=100
CS=150
CS=200

Figure 4.7: Percentage of traffic offloaded by the vehicular cloud for different node
densities and cache sizes.

rate, the network saturates and we are no longer able to download the entire video,

leading to re-buffering. Moreover, we see a lower offload traffic compared to the two

urban scenarios, which reflects the sequential request pattern used in this case (as

opposed to the Zipfian pattern used previously). Figure 4.8 (b) shows the average and

standard deviation of latency for each 2-second video segment. In all cases the latency

remained under 1.2 seconds and decreases as the request rate increases, suggesting a

46

1 5
Interest/s

0

20

40

60

80

100

%

(a)

Offload
Download

1 5
Interest/s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
te
nc

y
(s
)

(b)
Latency

Figure 4.8: Percentage of traffic offloaded, video download completion (a), and latency
(b) for 200 nodes in sports events.

smooth playback for lower request rates. This decrease in latency reflects the variation

in the retransmission timeout (RTO), that reduces as more packets that are in flight

are served by the producer or neighbor caches.

All of the above results are also available at the project website.2

4.4 Conclusion

This work proposes and evaluates a custom ICN design tailored to environments

where the infrastructure is being pressured by the surge in traffic, while increasing

reliability in disaster scenarios. Our forwarding strategy seeks to empower D2D com-

munication so users can download contents directly from the MANET, easing the

burden on the wireless access network as well as the core. We assessed our model in

two urban scenarios using real data from social media to create our request pattern,

and one indoor in-stadium scenario where users can view on-demand replays directly

on their devices. Our simulation results showed an improvement of up to 51.7% in

traffic being offloaded from the cellular network in the urban scenario. Moreover,

our energy saving approach reduces the average consumption by up to 5.8% com-

2http://people.umass.edu/tteixeira/icn-adhoc.html

47

pared to the normal operation, despite the steeper decrease in the battery discharge

curve towards the end of its cycle. In the in-stadium scenario, our approach suc-

cessfully downloads 20-second replay videos where 10.3% of the contents are fetched

from nearby devices. We believe that offloading traffic from next-generation cellular

networks (5G and onwards) is a promising solution to accommodate the traffic gen-

erated from new applications without increasing the complexity and capacity for the

MNO. Additionally, an ICN D2D communication has the potential to play a key role

in disaster scenarios where the infrastructure is impaired.

48

CHAPTER 5

IMPROVING QOE AND RESILIENCE OF ABR
STREAMING

5.1 Improving QoE of ABR Streaming Sessions through QUIC

Retransmissions

5.1.1 Introduction

After two decades, the HyperText Transfer Protocol has undergone a significant

makeover resulting in the introduction of the HTTP/2 standard [75] gaining notable

popularity in the Internet, where it is currently used by 24.6% of all web sites [8].

HTTP/2 makes several improvements over its predecessor HTTP/1.1 [29]. These

improvements include a) multiplexing, where streams for multiple requests can be

sent over a single TCP session; b) header compression; and, c) an option where the

web server can push content to the client proactively. HTTP/2 has been specified

to use TCP as the underlying transport protocol. This combination of HTTP/2

and TCP has several performance issues, including a delay introduced by the 3-way

handshake for each connection setup (this is even higher if Transport Layer Security

(TLS) is used). In addition, the issue of head of line (HOL) blocking still exists. The

Quick UDP Internet Connections protocol (QUIC) [50] is a new approach designed

to combine the speed of UDP with the reliability of TCP and, thus overcome these

issues. QUIC has been specifically designed to reduce latency of web page loads and

mitigate rebuffers in video streaming clients.

Adaptive bitrate (ABR) streaming has become the de-facto streaming standard

for video on demand platforms such as Netflix [3] and Youtube [9]. With more

49

than 70% of the peak hour US Internet traffic [80], video streaming has become the

killer-application of today’s Internet. ABR video streaming solutions like Dynamic

Adaptive Streaming over HTTP (DASH) [74] are, however, stuck in an HTTP/TCP

setting that has been shown to possess substantial drawbacks with respect to Quality-

of-Experience (QoE) [40, 83].

Recently, we proposed a DASH-based ABR approach (SQUAD) [83] that has the

goal to improve QoE for viewers watching video streams over the Internet. One spe-

cific feature of SQUAD is the ability to retransmit segments1 in a higher quality than

they were originally transmitted in [84] to reduce frequent quality changes during a

streaming session. The drawback of implementing this approach on top of HTTP/1.1

is the inability to efficiently schedule such retransmissions. In the case of one TCP

session, retransmission requests2 have to be interleaved with requests for new original

segments, that have not been requested in the past. Parallel transmissions require

the setup of a new connection, which comes with the drawback of additional delay

due to the 3-way handshake. The use of HTTP/2 over TCP makes such retransmis-

sions more efficient, since they can be scheduled within the same TCP connection.

While HTTP/2 has the potential to improve the performance of SQUAD in the case

of retransmission, the impact of losses and the resulting HOL blocking has not been

studied. In addition, it has not been evaluated to what extent QUIC can further

improve SQUAD with retransmissions, since it eliminates the HOL blocking issue.

5.1.2 Segment retransmission scheduling

Traditional ABR approaches stream the ABR video segments in the order provided

by the MPD file. Looking closely at the segment qualities buffered at the client at

1In the remainder of this chapter, we use the word segments to denote ABR video segments
unless specified otherwise.

2In the remainder of this chapter, we use the word retransmissions to denote retransmissions of
a received video segment in a higher quality unless specified otherwise.

50

original

transmission

Quality level

151

buffer in # of

segments2 3

1

2

3

4

4

5 6 7 8 9 10 11 12 13 14

5

6

7

8

1

re-

transmission

2

3 4

Number indicates priority

of segments for

retransmission

Original gap

(1 segment length).

Need to retransmit

segment 3 (8) at quality

level 6 to closegap.

Original gap

(2 segment lengths).

Need to retransmit segments 13 & 14

at quality level 4 to close gap

Figure 5.1: Example scenario for retransmissions. The QoE of this streaming session
can be improved if, e.g., segments 3, 8, 13, and 14 are retransmitted in higher quality,
assuming they arrive before their scheduled playout.

any point in time SQUAD shows that these reflect the recent quality decisions made

by the adaptation algorithm, which, in turn, are based on the specific interpretation

of the measured download rate and the corresponding buffer filling. Looking at the

buffer filling in retrospect as in Fig. 5.1 (a) SQUAD identifies quality switches that

are denoted as quality “gaps”. The emergence of these quality gaps is complex as it

describes the instantaneous interaction of the adaptation algorithm with the buffer

filling state and the download rate. In the following, we illustrate how to improve

the QoE by filling some of these quality gaps. Fig. 5.1 shows a simplified example of

segment qualities inside the player buffer with different possible gaps. SQUAD defines

gaps as the downward variation from the quality level which negatively impact the

QoE [91].

SQUAD’s current approach is based on HTTP/1.1, which does not allow the

parallel transmission of original segments and the retransmission of segments in a

51

better quality. HTTP/2 over TCP allows this parallel transmission but does not

prevent HOL blocking to efficiently perform retransmissions. In contrast, HTTP/2

over QUIC does not suffer from such inefficiencies and gives the application maximum

control of individual streams and we show how this can be used to improve the QoE

of ABR streaming.

5.1.3 Analysis of Gaps in Streaming Sessions

Akamai [59] is the world’s largest CDN provider that delivers 15%–30% of global

Internet traffic. Its CDN contains over 150,000 edge servers distributed in 90+ coun-

tries and 1200 ISPs around the world. To motivate the retransmission of segments

as described in Sect. 5.1.2, we analyze an anonymized trace collected from Akamai’s

video CDN. This trace contains video streaming session information for a 3-day pe-

riod in June 2014. The ABR streaming traffic in this trace contains 5 million video

sessions originating from over 200,000 unique clients who were served by 1294 edge

servers around the world. For each streaming session, each individual segment re-

quest is logged, which allows us to reconstruct the quality of the segments received

at the client. Fig. 5.2 gives an example for one such streaming session we randomly

picked for better illustration. As shown in Fig. 5.2, this streaming session resulted in

a series of gaps. These gaps are potential candidates for segment retransmission that

could lead to less quality level changes and, thus, an improve QoE. In Fig. 5.2, we

indicate that a retransmission of the segments in the later part of the stream could

significantly impact the QoE.

In Fig. 5.3, we show the results of our analysis for the complete data set which has

approx. 5 million sessions, and for the a subset that only includes sessions for mobile

devices, which has approx. 0.1 million sessions. This figure shows the percentage of

sessions that have one or more gaps. Considering all sessions in the data set, 36.19%

of the sessions have at least one gap. These sessions could benefit from our segment

52

Figure 5.2: Original transmission of video stream from one randomly selected trace
in the Akamai data set. The QoE of this video can be improved if the highlighted
segments are retransmitted in higher quality, assuming they arrive before scheduled
playout.

53

0 10 20 30 40 50
Number of bitrate gaps in a session

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

mobile_sessions all_sessions

Figure 5.3: CDF for the number of sessions with one or more gaps for all sessions
(orange) and mobile sessions (blue)

retransmission approach. We also analyzed how many of the sessions with mobile

clients have at least one gap. As shown in Fig. 5.3, with 51.24% this ratio is even

higher. Obviously, this increase in sessions with at least one gap is not too surprising

since mobile/wireless clients are assumed to experience higher bandwidth fluctuations

than stationary/wired clients.

5.1.4 Segment retransmisson over HTTP/2

After introducing the basics of segment retransmission for ABR streaming and

outlining its drawbacks in the case of HTTP/1.1 in Sect. 5.1.2, we introduce the usage

of this approach in the case of HTTP/2 in this section. We first give an overview on

the advantages and disadvantages of using our retransmission approach in the case

of HTTP/2 over TCP and QUIC, respectively. This is followed by a description of

54

the implementation of our approach. Results from an evaluation of this approach are

presented in Sect. 5.1.5.

5.1.4.1 Example

In the following, we compare a segment retransmission approach that is based

on HTTP/2 over TCP (the current standard) with one that is based on HTTP/2

over QUIC. The TCP-based approach is shown in Fig. 5.4. Here, we show a specific

scenario of retransmissions for ABR streaming. In this scenario, HTTP/2 over TCP

allows the multiplexing of multiple requests within a single TCP connection. This

feature makes this approach more efficient than our existing HTTP/1.1 solution, since

original segment transmissions and retransmission can be performed in parallel. (In

the case of HTTP/1.1, segments can either only be transmitted sequentially or a new

TCP connection has to be established for the retransmissions). Despite the support

of multiplexing several requests over a single TCP connection, this approach has

several drawbacks. First of all, HOL blocking can lead to stalling. Such a case is

indicated in Fig. 5.4, where the first retransmitted TCP segment is lost. All of the

following (original and retransmitted) TCP segments will be blocked from delivery

to the application layer until the lost TCP segment is successfully received. This

HOL blocking, caused by a TCP segment retransmission, prevents original segments

from being delivered to the buffer of the video player. This can result in an incorrect

estimate of the segment download rate and consequently an unnecessary reduction

in bit rate quality for the download of future original segments. In the worst case,

this causes the drainage of the video player buffer, which in turn will stall the video

playout.

In contrast, an HTTP/2 over QUIC approach is not impacted by HOL blocking.

Fig. 5.5, shows the same segment transmission scenario as in Fig. 5.4. As opposed to

the scenario shown in Fig. 5.4, the QUIC-based approach does not prevent the original

55

datagrams from being delivered to the video player buffer if the first retransmitted

UDP datagram is lost. This should lead to a significant reduction in the risk of

stalling and misinterpretation of the download rate. In addition, the application can

decide if the lost retransmitted UDP datagram should be retrieved again or not. This

decision can be based on buffer fill level, position of the retransmitted segment in the

buffer, and observed download rate. With the use of QUIC, the application can also

determine at which rate segments should be downloaded. For example, pacing [5] can

be applied for the retransmission of segments to assure that such transmissions only

minimally interfere with the transmission of original segments.

Figure 5.4: This figure shows a scenario of original and retransmitted segment trans-
mission in the case of HTTP/2 over TCP. The first of the retransmitted TCP segments
(red) is lost, which leads to HOL blocking at the receiver.

Figure 5.5: This figure shows a scenario of original and retransmitted segment trans-
mission in the case of HTTP/2 over QUIC. In contrast to Fig. 5.4, the loss of a
retransmitted UDP datagram (red) does not lead to HOL blocking and all original
segments are delivered to the video player buffer.

5.1.4.2 Implementation

In this section, we give an overview of our implementation of ABR streaming that

is based on HTTP/2 over QUIC that enables retransmissions of segments that have

originally been transmitted in a low(er) quality (see Sect. 5.1.2).

56

5.1.4.2.1 SQUAD with HTTP/2 and HTTP/1.1 Since the multiplexing fea-

ture of HTTP/2 is unavailable in its predecessor, HTTP/1.1, the original version of

SQUAD implements retransmission scheduling as a series of GET requests where at

any given time there is only one outstanding request to the ABR streaming server.

Intuitively, such a sequential implementation stalls the application pipeline and can

lead to either conservative retransmission scheduling or a severe buffer drain. To pre-

vent stalling in case of a severe drop in measured download rate, SQUAD implements

retransmission abandonment, which cancels segment retransmission when we observe

that the segment will not be downloaded on time. Our HTTP/2 implementation con-

verts this sequential behavior into a parallel, multiplexed session of two simultaneous

GET requests, where, at any given time there are a maximum of two possible streams

active within a single connection. SQUAD is implemented as part of an open-source

Python-based DASH player emulator, AStream.3 For ease of integration, we use the

Python-based HTTP/2 library, hyper4, in order to implement two multiplexed GET

requests for original and retransmission segment downloads. Additionally, we im-

plement multithreading to allow transmissions on both HTTP/2 streams to proceed

independently. We note that HTTP/2 still uses the same TCP connection which

suffers from HOL blocking as explained in Sect. 5.1.4.1. and therefore, we also imple-

ment a SQUAD over QUIC approach which is introduced next. In order to make a

fair comparison, we also adapt the original implementation of SQUAD to use hyper

for making HTTP/1.1 requests.

5.1.4.2.2 SQUAD with QUIC Similar to the experiment above, we implement

multiplexed sessions for original and retransmitted segment downloads using QUIC.

However, we include the use of IPC message streams with minimal overhead to com-

3https://github.com/pari685/AStream

4https://github.com/Lukasa/hyper

57

municate between the QUIC client (implemented in C++) and the AStream player

(implemented in Python). Unlike HTTP/2 over TCP, QUIC does not suffer from

HOL blocking and is designed to deliver data to the application as soon as they ar-

rive at the receiver and a stream within a QUIC connection is not adversely affected

by events that cause delay or loss of packets on a parallel, ongoing stream. At the

time of this implementation, we used Chromium for Linux with QUIC version Q043.

In order to provide support for multiplexed streams for SQUAD, we perform the fol-

lowing modifications on the QUIC client5 code provided by Google: (i) we create

and synchronize simultaneous streams within a single connection, (ii) we introduce

IPC messaging not only to send commands between AStream and QUIC but also

to provide intermediate chunk download rate measurements to the SQUAD ABR

algorithm.

We note that this work does not focus on modifying SQUAD to perform optimally

with a protocol such as QUIC but is instead intended as a study to evaluate the

performance of SQUAD retransmissions over QUIC in order to determine if QoE can

be improved with such an approach.

5.1.5 Evaluation Design

In this section, we describe a series of experiments, which are specifically designed

to study the QoE performance of using QUIC and HTTP/2 for ABR video streaming

with a focus on segment retransmission. We compare the results of these experi-

ments with the baseline approach that uses HTTP/1.1. The server nodes (denoted as

Server1 - Server4 in Fig. 5.6) run a Caddy server (version=0.10.10) [13] with the ex-

perimental QUIC mode enabled such that the clients can stream DASH videos either

over TCP or QUIC. We chose the Caddy server as it is a production server which is

capable of simultaneously supporting QUIC, HTTP1.1, and HTTP/2 over TCP with

5https://www.chromium.org/quic/playing-with-quic

58

Figure 5.6: Cloudlab topology used for controlled experiments

TLS1.2. All experiments use an excerpt of the BigBuckBunny dataset [51] (unless

stated otherwise) that comprises a 300s-long video with a 2s segment duration and

the corresponding MPD file. We extended the MPD file by providing the size of each

segment in each of the available quality levels.6 The quality bitrates available in this

MPD file are the following: {0.09, 0.13, 0.18, 0.22, 0.26, 0.33, 0.59, 0.79, 1.03, 1.24,

1.54, 2.48, 3.52, 4.21}Mbps. The client nodes run the SQUAD ABR algorithm [84]

described above, which is implemented in a Python-based DASH player [44].

5.1.5.1 Testbed

For our controlled experiments, we use Cloudlab [70] which is a geographically

distributed testbed for the development, deployment, and validation of cloud-based

services. The CloudLab infrastructure consists of several different racks of varying

compute and storage resources designed to provide isolated performance. The topol-

6We use segment sizes in the MPD file since this was introduced in AStreamer. This can easily
be replaced by using byte ranges, which are available in real-world, ABR streaming solutions.

59

3.5 3.6 3.7 3.8 3.9 4 4.1 4.2

Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

HTTP1

HTTP1
R

HTTP2

HTTP2
R

QUIC

QUIC
R

(a)

0 5 10 15 20 25

Nr of quality switches

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP1

HTTP1
R

HTTP2

HTTP2
R

QUIC

QUIC
R

(b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Spectrum

0

0.2

0.4

0.6

0.8

1

C
C
D
F

HTTP1

HTTP1
R

HTTP2

HTTP2
R

QUIC

QUIC
R

(c)

Figure 5.7: Single Client Measurements - Rate Limited with UDP-Staircase cross
traffic. QUIC has a significantly better overall Quality of Experience compared to
HTTP/1.1 and HTTP/2, which is further improved by retransmissions. Note, sub-
script “R” denotes ABR segment retransmissions.

ogy shown in Fig. 5.6 consists of four clients and four servers connected by two paths

P1 and P2 with the default set to P1 unless stated otherwise. All nodes run vanilla

Ubuntu 14.04 where all TCP related experiments use TCP Cubic. In order to account

for statistical variance, every experiment in the controlled environment is repeated 30

times. For the single client experiments, we use Client1 and Server1 as the default

pair and include other server and client pairs for parallel client cases.

5.1.5.1.1 Single Client: Rate Limiting with UDP In order to systematically

compare the performance of HTTP/1.1, HTTP/2 and QUIC in a controlled environ-

ment, we use the Iperf7 application to generate competing UDP traffic (denoted

cross traffic) of varying amplitudes. The first set of experiments consists of repeating

7https://iperf.fr/iperf-doc.php

60

a stepwise variation of cross traffic where the duration of each step is 11s and varies

as follows: {0-11s: 0Mbps, 12-23s: 3Mbps, 24-35s: 6Mbps, 36-55s: 9Mbps, 56-67s:

6Mbps, 68-79s: 3Mbps, 80-91s: 0Mbps} (then the pattern repeats until t=300s).

Fig. 5.7 shows the CDF and CCDF along with 95% confidence intervals for upper

and lower bounds of the QoE metrics described at the beginning of this section. In

Fig. 5.7(a), we observe that QUIC clients have the highest average quality bitrate or

AQB when compared to both HTTP/1.1 and HTTP/2. It is also worth noting that

other QoE metrics such as number of quality changes (#QS) and the Spectrum, H,

are significantly improved with the use of QUIC retransmissions. Figure 5.8 shows

results for the ”W” cross traffic case where we use the Iperf application to generate

competing UDP cross traffic that creates a ”W” shaped bottleneck bandwidth and

varies as follows: {0-20s: 9Mbps, 21-40s: 5Mbps, 41-60s: 9Mbps, 61-80s: 0Mbps}

(then the pattern repeats until t=300s). Although, in terms of AQB, #QS and H,

HTTP/2 clients appear to experience the best QoE, we observed that the clients also

experience a relatively high rebuffering ratio, RB, of 4% while using HTTP/2 for

ABR streaming. Since it is well known that the foremost objective of any ABR client

streaming algorithm is to eliminate or reduce rebuffering, we conclude that QUIC,

especially with the use of segment retransmissions, also performs significantly better

than HTTP/1.1 and HTTP/2 for the ”W” cross traffic case.

5.1.5.1.2 Single Client: Re-ordering and HOL Since packet reordering in

the Internet is not uncommon [43], protocols for ABR streaming should be robust in

the face of such reordering. Here, we study the ability of HTTP1.1, HTTP/2, and

QUIC to recover from re-ordering of packets. This is the only experiment where we

use the second path (denoted P2 in Fig. 5.6) to carry video streams. In order to

induce re-ordering of packets, we switch between a low latency, low loss path, P1,

and a high latency, high loss path, P2, every second using SDN, namely the Open-

Flow [54] implementation, which provides fine-grained, dynamic traffic engineering

61

3.5 3.6 3.7 3.8 3.9 4 4.1 4.2

Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

HTTP1

HTTP1
R

HTTP2

HTTP2
R

QUIC

QUIC
R

(a)

0 5 10 15 20 25

Nr of quality switches

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP1

HTTP1
R

HTTP2

HTTP2
R

QUIC

QUIC
R

(b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Spectrum

0

0.2

0.4

0.6

0.8

1

C
C
D
F

HTTP1

HTTP1
R

HTTP2

HTTP2
R

QUIC

QUIC
R

(c)

Figure 5.8: Single Client Measurements - Rate Limited with UDP-W cross traf-
fic. QUIC has a significantly better overall QoE compared to HTTP/1.1. Although
HTTP/2 sessions appear to be having a higher QoE, all clients experience 4% re-
buffering. Note, subscript “R” denotes ABR segment retransmissions.

for application packets. As shown in Fig. 5.6, P2 is characterized by 1% loss and

10ms delay implemented using tc8 and netem9 utilities. For the experiments pre-

sented in Sect. 5.1.5.1.1, we find that HTTP/2 is either comparable or marginally

worse than HTTP/1.1 and QUIC. In the case of packet reordering (shown in Figure

5.9), we see that HTTP/2 performs significantly worse than QUIC and HTTP/1.1

. Not only is the AQB significantly lower with a high variation between runs, but

also the rebuffering is as high as 10% where over 60% of clients experience an RB

of 2.5%. Further analysis using the tshark10 utility reveals that a HTTP/2 session

experiences 9.5% fast TCP retransmits. In comparison, HTTP/1.1 experiences 7.1%,

and QUIC sessions experience no UDP retransmissions since they use NACKs (c.f.

8http://lartc.org/manpages/tc.txt

9http://man7.org/linux/man-pages/man8/tc-netem.8.html

10https://www.wireshark.org/docs/man-pages/tshark.html

62

2 2.5 3 3.5 4

Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

HTTP1

HTTP1
R

HTTP2

HTTP2
R

QUIC

QUIC
R

(a)

0 5 10 15 20 25 30 35 40

Nr of quality switches

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP1

HTTP1
R

HTTP2

HTTP2
R

QUIC

QUIC
R

(b)

0 5 10 15 20 25 30

Rebuffering Ratio [%]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
C

D
F

HTTP1

HTTP1
R

HTTP2

HTTP2
R

QUIC

QUIC
R

(c)
Figure 5.9: Single Client Measurements - Re-ordering and Head-of-Line Blocking.
Re-ordering has an adverse effect on HTTP/2 causing significant degradation of QoE
metrics, especially with respect to rebuffering which can be as high as 10% in spite of
selecting lower quality bitrates as seen from (a). Note, subscript “R” denotes ABR
segment retransmissions.

Sect. 2.3). More details on the tshark data can be found in [30] Additionally, QUIC

uses a higher initial congestion window size=32 (the Linux default for TCP is 10) and

also grows the window more aggressively, thus, allowing more unacknowledged bytes

in flight. This results in a more reliable download rate measurement and a stable

buffer level for the ABR client and consequently, a reduction in the quality variations

#QS as observed in Fig. 5.9(b).

5.1.5.1.3 Parallel Clients: Competing Traffic For this experiment we use the

additional client and server pairs (denoted as Client2/Server2 and Client3/Server3

in Figure 5.6) to initiate three simultaneous sessions of QUIC-based SQUAD clients.

Although all three clients enjoy a smooth playback experience without rebuffering as

shown in Figure 5.10, we note that the bandwidth sharing can result in unfair behav-

63

ior in the case of ABR streaming sessions. This is contrary to the analysis presented

by the authors of [45] where they observe that QUIC flows are fair to each other

but only unfair to TCP flows when downloading a file. While we similarly observe

that QUIC does tend to ”starve out” TCP flows, we note that ABR streaming over

QUIC with the use of retransmissions can result in unfair behavior for competing

ABR streams since multiplexing due to retransmissions can occur at different points

throughout the streaming session. In order to corroborate this analysis, we present

the percentage of retransmissions in Table 5.1, which shows that the three clients

experience varying number of ABR segment retransmissions per run. Since these re-

transmissions occur asynchronously, the clients observe different buffer levels and rate

measurements throughout a streaming session. We also perform similar experiments

with three HTTP/2 clients and observe that HTTP/2 shows a nearly equal distri-

bution of AQB and closer inspection reveals that the AQB of Client1 is 0.5Mbps

higher on average as compared to the other two clients. Since TCP is more conserva-

tive about setting the initial congestion window size and has a less aggressive window

growth it enables all three clients to have a ”fair” share of the bottleneck bandwidth.

Further details on the TCP-based experiments can be found in [30].

Table 5.1: ABR Segment Retransmissions for three parallel QUIC clients

Client1 Client2 Client3

Average %Retransmissions 0.8±1.3 1.7±1.3 1.0±0.9

5.1.5.2 Internet

For the Internet measurements, we use Amazon EC2 virtual machines in Mumbai,

India and Oregon, USA as servers and a client in the UMass Amherst campus network

to perform inter-continental and intra-continental measurements, respectively. Here,

we repeat each experiment 60 times to account for increased network variations in

an uncontrolled environment. Since the bottleneck bandwidth during off-peak hours

64

2 2.5 3 3.5 4

Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

HTTP2
1

HTTP2
1R

HTTP2
2

HTTP2
2R

HTTP2
3

HTTP2
3R

(a)

0 5 10 15 20 25 30

Nr of quality switches

0

0.2

0.4

0.6

0.8

1

C
C

D
F

QUIC1

QUIC1
R

QUIC2

QUIC2
R

QUIC3

QUIC3
R

(b)

0 1000 2000 3000 4000 5000

Spectrum

0

0.2

0.4

0.6

0.8

1

C
C
D
F

QUIC1

QUIC1
R

QUIC2

QUIC2
R

QUIC3

QUIC3
R

(c)

Figure 5.10: Parallel Client Measurements - Three QUIC Clients. Competing QUIC
clients show an unfair behavior where two clients experience relatively similar QoE
but one client has a significantly better QoE than others.

can be high, we use a different video dataset with higher qualities, RedBull [51], and

modify the MPD to contain the following bitrates {0.10, 0.15, 0.20, 0.25, 0.30, 0.40,

0.50, 0.70, 0.90, 1.20, 1.50, 2.00, 2.50, 3.00, 4.00, 5.00, 6.00}Mbps for a video duration

of 300s and a segment duration of 2s. Figure 5.11 presents results for measurements

”in the wild” over inter-continental links from an EC2 web server located in India. The

average quality bitrate (in Fig. 5.11(a)) is significantly higher for QUIC than HTTP/2

and HTTP/1.1. Fig. 5.11(b) shows that #QS is also reduced with the use of QUIC

and HTTP/1.1 retransmissions indicating an overall high QoE. Table 5.2 shows QoE

metrics for similar measurements conducted with the server located at EC2 in Oregon.

Here, it is worth mentioning that all QoE metrics are comparable for HTTP/1.1

and QUIC where QUIC is marginally better than HTTP/1.1, but are significantly

improved over HTTP/2 (for example, the average bitrate AQB is less than half of

that obtained with HTTP/1.1 and QUIC). Since Internet traffic is predominantly

65

0 1 2 3 4 5 6

Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

HTTP1

HTTP1
R

HTTP2

HTTP2
R

QUIC

QUIC
R

(a)

0 5 10 15 20 25

Nr of quality switches

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP1

HTTP1
R

HTTP2

HTTP2
R

QUIC

QUIC
R

(b)

0 500 1000 1500 2000 2500

Spectrum

0

0.2

0.4

0.6

0.8

1

C
C
D
F

HTTP1

HTTP1
R

HTTP2

HTTP2
R

QUIC

QUIC
R

(c)

Figure 5.11: Internet Measurements - ABR streaming is performed over inter-
continental links with the server at Amazon EC2 in India and the client on the US
East Coast. QUIC far outperforms HTTP/1.1 and HTTP/2 in terms of QoE, i.e.,
provides significant improvement in Average Quality Bitrate while providing compa-
rable reduction in the number of quality switches.

comprised of TCP flows, these results further reinforce the observations made in

Sect. 5.1.5.1.2 for high delay, high loss paths with competing TCP traffic. Our results

show that the use of QUIC results in better QoE in the case of inter-continental as

well as intra-continental links, while the advantage compared to HTTP/1.1 is more

significant in case of the former.

5.1.6 Conclusion

In this work, we conduct systematic experiments to analyze the performance im-

plications of various HTTP/2 transport layer candidates on ABR streaming systems,

particularly with respect to ABR segment retransmissions. We leverage the mul-

tiplexing feature of QUIC and HTTP/2 in order to efficiently implement parallel

retransmissions in a higher quality with the objective of maximizing average quality

bitrate while also minimizing bitrate variations throughout the duration of a stream-

66

Table 5.2: ABR Quality of Experience over the Internet: Amazon EC2 Oregon - US
East Coast

Internet: HTTP/1.1 Internet: HTTP/2 Internet: QUIC
AQB (Mbps) 5.31±0.1 2.12±0.6 5.31±1.9
AQBR (Mbps) 5.66±0.1 2.13±0.6 5.44±0.2
#QS 8.48±1.4 9.09±2.6 7.91±1.8
#QSR 3.82±2.1 6.98±2.5 5.81±1.7
H 490±213 552±280 445±299
HR 242±312 447±255 351±273
RBR(%) 0 0±10.8 0

ing session. We use a nearly isolated testbed setup in CloudLab and measurements

”in the wild” to show that QUIC retransmissions provide a significantly better QoE

than TCP in high latency, high loss networks while exhibiting comparable QoE in

low latency, low loss networks.

5.2 Improving Resilience and QoE of ABR Streaming Ses-

sions through Retransmissions using Multipath Trans-

port layer Protocols

5.2.1 Introduction

We propose on extending our work on the multiple streams into multipath, to

increase its resiliency and throughput, so as to account for link failure, for example

due to severe weather/emergency, which we observed in the case of first two parts of

the thesis.

5.2.2 Background

The MPTCP Linux kernel implementation [60] consists of 4 main blocks 1) the

meta socket, which is the central abstraction of each MPTCP connection 2) the path

manager, that decides on creation and removal of subflows 3) the congestion control,

to insure TCP friendliness on shared bottleneck links, and finally 4) the scheduler,

67

Figure 5.12: MPTCP architecture [62]

Figure 5.13: Coupled Congestion control [1]

which decides the subflow to be used for a packet. As seen from Figure.5.12, these

blocks are closely tied and the latency depends on all of them.

Figure 5.13 shows us that, to insure fairness and responsiveness of MPTCP to

other kind of traffic we use coupled congestion control as it can reduce the traffic sent

over the bad link and increase the traffic over the better link to improve performance

as shown in [57]. We focus on [68] BALIA (Balanced Linked Adaptation) as they

found it to be better [63] than other coupled algorithms like OLIA and LIA. BALIA

is only used in congestion avoidance part of the AIDM phase. The other phases like

slow start, fast retransmit/recovery algorithms are the same as in TCP. BALIA is

summarized as follows. Each source s has a set of routes r and each route r maintains

68

Table 5.3: MPTCP configuration

Parameter Value
Congestion control BALIA
Number of subflows 2 (1 on each path)
Path Manager Full Mesh
Scheduler Default (Low-RTT-First)

a congestion window wr and measures its round-trip time τr. The adaptation for each

ACK on router rǫs is eq 5.1 and for each packet loss on route rǫs is eq 5.2,

wr ← wr +

(

xr

τr(Σxk)2

)(

1 + αr

2

)(

4 + αr

5

)

, (5.1)

wr ← wr −
wr

2
min

{

αr, 1.5
}

(5.2)

A the scheduler decides which subflow a packet is transmitted. Improper schedul-

ing can introduce head-of-line-blocking or receive-window limitation, especially while

using heterogeneous paths (which is the case in most real-world situations). This

impacts performance and quality of experience [62]. Three types of schedulers are

implemented as plug-able modules in MPTCP kernel: 1) Lowest-RTT-First(Default):

This is the one that gives maximum end-to-end throughput, and is currently used in

our experiments. It achieves this by sending data on the subflow with the lowest

RTT until its congestion window is full. Then it transmits on the subflows with

the next higher RTT. 2) Round-Robin: Selects one subflow after the other, using

them in equal portioned time slices and in a circular order and without any priority.

This is easy to implement and starvation-free. But,this causes high application delay

in application-limited flows. Such delays have significant impact on delay-sensitive

applications, as to mitigate delay-spikes they have to maintain large buffers which

could cause buffer-bloat. 3) Redundant Scheduler: Redundantly sends packets on all

available subflows. This approach trades throughput for latency. mp aware ABR [38]

69

Figure 5.14: Sequence numbers in MPTCP

Application

Transport

Network

Datalink

Physical

HTTP/1.1

Socket

MPTCP

TCP 1 TCP 2

HTTP/2

stream 1 stream2

Scheduler

Figure 5.15: Protocol stack view

proposed and demonstrated MP-DASH framework for optimizing video delivery over

WiFi.

To be compatible with the middle boxes, each subflow needs to have TCP segment

numbering, so to facilitate the use of multiple interfaces MPTCP segment sequence

numbers are used, as shown in Figure. 5.14.

5.2.3 Implementation

In this section we give an overview of our implementation of ABR streaming over

MPTCP that is based on HTTP/2 that enables retransmissions of segments that

have originally been transmitted in lower quality. Our implementation of the various

protocols is shown in the Figure. 5.15.

70

Client Server

Routerc_wi✁

Routerc_lte

Routers_wi✁

Routerc_lte

All links on this LTE path: 2Mbps

All links on this Wi path: 7MbpsX-tra c X-tra c

Streaming Flow direction

Cross-tra c Flow direction

Figure 5.16: Cloudlab topology used for controlled experiments

Figure 5.17: HTTP/2 streams with MPTCP subflows

5.2.3.1 SQUAD on MPTCP with HTTP/2 and HTTP/1.1

We use the settings as described in table 5.3.

Our settings facilitate us to realize the following design in Figure. 5.17. The

settings required, are described below.

Although, we use the Full Mesh path manager, which creates flows between each

ip-pair involved. We disable IP FORWARDING and configure routes in the kernel

routing table such that, we have 1 subflow on each path shown in figure 5.16. As dis-

cussed in the above section 5.1.4.2, HTTP/1.1 doesn’t allow out of order concurrent

sessions on the same connection and this forces us to have the retransmission in the

same pipeline, whereas HTTP/2 allows us to have multiplexed sessions where we use

two simultaneous streams (one for the original segments and the other for retrans-

71

ASTREAMER

ABR

ENGINE

LIBCURL
BASED

CLIENT

NGINX
SERVER

[1] retx/orig URL string

via IPC

via IPC

CLIENT

[2] request URL[3] video data in chunks

[4] chunk measurements

Figure 5.18: Flow diagram of the implemented code

missions). With the Python-based HTTP/2 library, hyper, we saw lower throughput

performance as compared to HTTP/1.1, so we switched to an open-source, widely

used library libcurl11 based client (implemented in C++) for both HTTP/1.1 and

HTTP/2. We show the flow of the code in Figure.5.18, which uses IPC message

streams with minimal overhead to communicate intermediate chunk download rate

measurements between the libcurl based client and the Astream player (implemented

in Python).

5.2.4 Evaluation Design

In this section, we describe a series of experiments, which are specifically designed

to study the QoE performance of using HTTP1/1.1 and HTTP/2 over MPTCP for

ABR video streaming with a focus on segment retransmission. The server node in

Fig. 5.16 run a nginx server (version=1.15.7) [12] HTTP/1.1 AND HTTP/2 enabled

such that the clients can stream DASH videos. We chose the nginx server as it

is a production server which is capable of simultaneously supporting HTTP1.1, and

HTTP/2 over TCP with TLS1.2. All experiments use an excerpt of the BigBuckBunny

11http://curl.haxx.se/download/curl-7.63.0.tar.bz2

72

dataset [51] (unless stated otherwise) that comprises a 300s-long video with a 2s

segment duration and the corresponding MPD file. We extended the MPD file by

providing the size of each segment in each of the available quality levels.12 The quality

bitrates available in this MPD file are the following: {0.09, 0.13, 0.18, 0.22, 0.26, 0.33,

0.59, 0.79, 1.03, 1.24, 1.54, 2.48, 3.52, 4.21}Mbps. The client nodes run the SQUAD

ABR algorithm [84] described above, which is implemented in a Python-based DASH

player [44].

5.2.4.1 Testbed

For our controlled experiments, we use Cloudlab [70] which is a geographically

distributed testbed for the development, deployment, and validation of cloud-based

services. The CloudLab infrastructure consists of several different racks of varying

compute and storage resources designed to provide isolated performance. The topol-

ogy shown in Figure. 5.16 consists of two clients and two servers connected by two

paths. All nodes run vanilla Ubuntu 14.04. In order to account for statistical variance,

every experiment in the controlled environment is repeated 10 times.

To motivate the need to use multi-path, we look at the experiment in which we

use tcp with a single path and throttle the bandwidth with cross-traffic abruptly. We

use only the WiFi path (not the LTE path) in the Figure. 5.16 .

In order to systematically compare the performance of HTTP/1.1 and HTTP/2

in a controlled environment, we use the Iperf13 application to generate competing

UDP traffic (denoted cross traffic) of varying amplitudes.

5.2.4.1.1 Single Client (TCP): Abrupt Limiting with UDP Figure.5.19

shows results for more abrupt ”W” cross traffic case where we use the Iperf applica-

12We use segment sizes in the MPD file since this was introduced in AStreamer. This can easily
be replaced by using byte ranges, which are available in real-world, ABR streaming solutions.

13https://iperf.fr/iperf-doc.php

73

2 2.5 3 3.5 4

Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(a)

0 5 10 15 20 25 30

Nr of quality switches

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(b)

0 1000 2000 3000 4000 5000

Spectrum

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(c)

15 20 25 30 35 40

Rebuffering Ratio [%]

0

0.2

0.4

0.6

0.8

C
C

D
F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(d)

Figure 5.19: Single Client (TCP) Measurements - Rate Limited with UDP-W cross
traffic. HTTP/2 has similar Quality of Experience compared to HTTP/1.1. Note,
subscript “R” denotes ABR segment retransmissions.

tion to generate competing UDP cross traffic that creates a ”W” shaped bottleneck

bandwidth and varies as follows: {0-20s: 7Mbps, 21-40s: 5Mbps, 41-60s: 7Mbps,

61-80s: 0Mbps} (then the pattern repeats until t=300s). We see 20-30% rebuffering,

which defeats the purpose of giving uninterrupted experience using ABR streaming.

In terms of AQB, #QS and H, HTTP/2 client performs similarly HTTP/1.1.

Now, as we have seen that abrupt traffic on single path causes high rebuffering,

we look into utilizing additional path and use both the WiFi and the LTE path in

Figure. 5.16 by using MPTCP. We generate the cross-traffic only across the WiFi

interface.

74

5.2.4.1.2 Single Client: Abrupt Limiting with UDP Figure.5.20 shows re-

sults for more abrupt ”W” cross traffic case where we use the Iperf application to

generate competing UDP cross traffic that creates the same ”W” shaped bottleneck

bandwidth as in the above mentioned single path experiment. Compared to single

path experiment where we saw 20-30% rebuffering, we see no rebuffering in case of

HTTP/2 and ≈ 0.1% rebuffering in 2 runs of HTTP/1.1, and we also see significant

improvement in terms of AQB, #QS and H. When comparing MPTCP experiments

HTTP/2 client performs significantly better than HTTP/1.1 for the ”W” cross traffic.

Figure 5.21 shows results for a bursty cross traffic (which we call ”trace0”) that

throttles the WiFi interface and it varies as follows: {0-15s:0M, 15-17s: 7Mbps,

17-25s: 0Mbps, 25-36s: 7Mbps, 36-45s: 0Mbps, 45-46s: 7Mbps, 46-47s: 0Mbps,

47-48s: 7Mbps, 48-51s:0M, 51-62s: 7Mbps, 62-66s: 0Mbps, 66-83s: 7Mbps, 83-96s:

0Mbps, 96-105s: 7Mbps, 105-111s: 0Mbps, 111-121s: 7Mbps, 121-128s: 0Mbps, 128-

137s: 7Mbps, 137-152s:0M, 152-154s: 7Mbps, 154-164s: 0Mbps, 164-189s: 7Mbps,

189-192s: 0Mbps, 192-209s: 7Mbps, 209-216s: 0Mbps, 216-232s: 7Mbps, 232-257s:

0Mbps, 257-278s: 7Mbps, 278-281s: 0Mbps, 281-291s: 7Mbps, 291-302s: 0Mbps,

302-304s: 7Mbps, 304-318s: 0Mbps, 318-334s: 7Mbps, 334-344s: 0Mbps, 344-348s:

7Mbps, 348-362s: 0Mbps }. In terms of AQB, #QS and H, HTTP/2 client performs

significantly better than HTTP/1.1 for the ”trace0” cross traffic case as well.

5.2.4.1.3 Single Client: Gradual Rate Limiting with UDP The first set of

experiments consists of repeating a more gradual stepwise variation of cross traffic

as follows: {0-15s: 0Mbps, 15-26s: 3Mbps, 26-37s: 5Mbps, 37-56s: 7Mbps, 56-67s:

5Mbps, 68-79s: 3Mbps, 80-91s: 0Mbps} (then the pattern repeats until t=300s).

Figure.5.22 shows the CDF and CCDF along with 95% confidence intervals for upper

and lower bounds of the QoE metrics described at the beginning of this section. In

Figure.5.22(a), we observe that HTTP/1.1 clients have marginally high QoE metrics

such as avg. bitrate, number of quality changes (#QS) and the Spectrum, H, are

75

2 2.5 3 3.5 4

Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(a)

0 5 10 15 20 25 30

Nr of quality switches

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(b)

0 1000 2000 3000 4000 5000

Spectrum

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(c)

0 5 10 15

Average Buffer Length [#Segments]

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(d)

Figure 5.20: Single Client Measurements - Rate Limited with UDP-W cross traf-
fic. HTTP/2 has a significantly better overall Quality of Experience compared to
HTTP/1.1 , which is further improved by retransmissions. Note, subscript “R” de-
notes ABR segment retransmissions.

significantly improved with the use of retransmissions. But the avg. buffer length is

higher for HTTP/2 as retransmissions happen in parallel and this is faster than the

case of HTTP/1.1 where they occur serially.

5.2.5 Conclusion

In this work, we conduct systematic experiments to analyze the performance impli-

cations of HTTP/2 vs HTTP/1.1 over multipath-transport layer protocol MPTCP on

ABR streaming systems, particularly with respect to ABR segment retransmissions.

We leverage the multiplexing feature of HTTP/2 in order to efficiently implement

76

2 2.5 3 3.5 4

Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(a)

0 5 10 15 20 25 30

Nr of quality switches

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(b)

0 1000 2000 3000 4000 5000

Spectrum

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(c)

0 5 10 15

Average Buffer Length [#Segments]

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(d)

Figure 5.21: Single Client Measurements - Rate Limited with UDP-trace0 cross traf-
fic. HTTP/2 has a significantly better overall Quality of Experience compared to
HTTP/1.1 , which is further improved by retransmissions. Note, subscript “R” de-
notes ABR segment retransmissions.

77

2 2.5 3 3.5 4

Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(a)

0 5 10 15 20 25 30

Nr of quality switches

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(b)

0 1000 2000 3000 4000 5000

Spectrum

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(c)

0 5 10 15

Average Buffer Length [#Segments]

0

0.2

0.4

0.6

0.8

1

C
C

D
F

HTTP2
IPC

HTTP2
IPC-R

HTTP1
IPC

HTTP1
IPC-R

(d)

Figure 5.22: Single Client Measurements - Rate Limited with UDP-Staircase cross
traffic. HTTP/1.1 has a marginally better Avg. bitrate, no. switches and spec-
trum compared to HTTP/1.1 , which is further improved by retransmissions. Note,
subscript “R” denotes ABR segment retransmissions.

78

parallel retransmissions in a higher quality with the objective of maximizing average

quality bitrate while also minimizing bitrate variations throughout the duration of a

streaming session. We use a nearly isolated testbed setup in CloudLab and observed

that HTTP/2 performs better in case of abrupt cross-traffic (which is generally seen

in the ”wild” internet) and is almost close to performance of HTTP/1.1 in case of

a more gradual cross-traffic. But in all cases it has a higher avg. buffer attributing

it to the use of parallel retransmissions. And in general retransmissions provide a

significantly better QoE in low latency, low loss networks.

79

CHAPTER 6

CONCLUSION

In our work we analyzed a threefold approach, going from the case in which

the infrastructure is totally down, to where it has been replaced by make shift low

capacity mobile cellular base station. In the first part, we looked at dissemination of

weather alerts specific to geographical areas. We compared an ICN based approach

to an infrastructure-based approach that is less resilient in the case of disaster. In

addition, we compared the performance of different message forwarding strategies in

VANETs (Vehicular Adhoc Networks) using ICN. Our results show that ICN strategy

outperforms the infrastructure-based approach as its 100 times faster for 63% of total

messages delivered.

Then we looked at offloading as much traffic as possible from the mobile base

stations, using device-to-device communication with a well fit ICN approach to fetch

contents from nearby peers, increases the resiliency of the network in cases of outages

and disasters. We were able to offload traffic from the backhaul network by up to

51.7%, suggesting an advantageous path to support the surge in traffic while keeping

complexity and cost for the network operator at manageable levels.

Finally, we looked at ABR streaming with HTTP/2 and the two transport layer

candidates, especially with respect to video segment retransmissions. It’s multiplex-

ing feature enabled use to successfully implement parallel retransmissions in higher

quality with objective of improving QoE. Our results show that QUIC retransmissions

provide a significantly better QoE than TCP in high latency. We further investigated

the use of Multipath TCP with HTTP/1.1 and HTTP/2 and found that retransmis-

80

sions provide significantly better QoE and that, using parallel retransmissions keeps

the average buffer level higher and gives us better performance in abrupt competing-

traffic.

As potential for future work, we know that MPTCP does not differentiate between

the data it receives from the application layer .i.e. between the HTTP/2 logical

streams, it has no control over which interface the data passed using these streams

is sent. MPQUIC [27] is a smarter candidate that can differentiate between these

streams, hence giving us more control over how to schedule packets related to these

streams should be handles. Thus, this could allow an implementation for smart

scheduling.

81

BIBLIOGRAPHY

[1] Decoupled from ip, tcp is at last able to support multihomed hosts.
http://delivery.acm.org/10.1145/2600000/2591369/p40-paasch.pdf?

ip = 128 . 119 . 202 . 171 & id = 2591369 & acc = OPEN & key = 73B3886B1AEFC4BB %

2E0404F0890BAA435B%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__=

1547654113_c4fb38db40173442e31208186b1b7313. Accessed: 2019-01-16.

[2] Nakagami-m fast fading propagation loss model. https://www.nsnam.org/

doxygen/classns3_1_1_nakagami_propagation_loss_model.html\

#details. Accessed: 2017-07-17.

[3] NetFlix. http://www.netflix.com. Accessed: 2018-03-10.

[4] ns-3. https://www.nsnam.org/. Accessed: 2017-07-17.

[5] Packet Pacing in QUIC. https://groups.google.com/a/chromium.org/

forum/#!topic/proto-quic/fRk0I98VSMk. Accessed: 2018-03-10.

[6] QUIC, a multiplexed stream transport over UDP. https://www.chromium.org/
quic. Accessed: 2018-03-10.

[7] The role of mobiles in disasters and emergencies. http://braddye.com/gsm\

_disaster_relief_report.pdf. Accessed online: August 23, 2018.

[8] Usage of http/2 for websites. https://w3techs.com/technologies/details/
ce-http2/all/all. Accessed: 2018-03-10.

[9] YouTube. https://www.youtube.com. Accessed: 2018-03-10.

[10] Cisco visual networking index: Global mobile data traffic forecast update, 2016-
2021. february, 2017, February 2018.

[11] Lte standard, July 2018.

[12] nginx web server. https://www.nginx.com/, Accessed 3-12-2018.

[13] Caddy web server. https://caddyserver.com/, Accessed 3-9-2017.

[14] Adamic, Lada A, and Huberman, Bernardo A. Zipf’s law and the internet.

[15] Afanasyev, Alexander, Moiseenko, Ilya, and Zhang, Lixia. ndnSIM: NDN simu-
lator for NS-3. Technical Report NDN-0005, NDN, October 2012.

82

[16] Amadeo, Marica, Campolo, Claudia, and Molinaro, Antonella. Forwarding
strategies in named data wireless ad hoc networks. J. Netw. Comput. Appl.
50, C (Apr. 2015), 148–158.

[17] Amadeo, Marica, Campolo, Claudia, and Molinaro, Antonella. A novel hybrid
forwarding strategy for content delivery in wireless information-centric networks.
Computer Communications 109 (2017), 104 – 116.

[18] Amaral, L., Sofia, R., Mendes, P., and Moreira, W. Oi! - opportunistic data
transmission based on wi-fi direct. In 2016 IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS) (April 2016), pp. 578–579.

[19] Angius, Fabio, Gerla, Mario, and Pau, Giovanni. Bloogo: Bloom filter based
gossip algorithm for wireless ndn. In Proceedings of the 1st ACM Workshop on
Emerging Name-Oriented Mobile Networking Design - Architecture, Algorithms,
and Applications (New York, NY, USA, 2012), NoM ’12, ACM, pp. 25–30.

[20] Aschenbruck, Nils, Ernst, Raphael, Gerhards-Padilla, Elmar, and Schwamborn,
Matthias. Bonnmotion: A mobility scenario generation and analysis tool. In
Proceedings of the 3rd International ICST Conference on Simulation Tools and
Techniques (ICST, Brussels, Belgium, Belgium, 2010), SIMUTools ’10, ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), pp. 51:1–51:10.

[21] Ayad, Ibrahim, Im, Youngbin, Keller, Eric, and Ha, Sangtae. A practical evalu-
ation of rate adaptation algorithms in http-based adaptive streaming. Computer
Networks 133 (2018), 90 – 103.

[22] Balk, A, Gerla, M, Sanadidi, M, and Maggiorini, D. Adaptive mpeg-4 video
streaming with bandwidth estimation: Journal version. vol 44 (2003), 415–439.

[23] Breslau, L., Cao, Pei, Fan, Li, Phillips, G., and Shenker, S. Web caching and
zipf-like distributions: evidence and implications. In INFOCOM ’99. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE (Mar 1999), vol. 1, pp. 126–134 vol.1.

[24] Carlucci, Gaetano, De Cicco, Luca, and Mascolo, Saverio. Http over udp: An
experimental investigation of quic. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing (New York, NY, USA, 2015), SAC ’15, ACM,
pp. 609–614.

[25] Crow, B. P., Widjaja, I., Kim, L. G., and Sakai, P. T. Ieee 802.11 wireless local
area networks. Comm. Mag. 35, 9 (Sept. 1997), 116–126.

[26] d. S. Junior, D., Cardoso, I. F., and Momo, M. R. Tool-based mobile application
applied to the monitoring system and flood alert. In 2015 Ninth International
Conference on Complex, Intelligent, and Software Intensive Systems (July 2015),
pp. 348–351.

83

[27] De Coninck, Quentin, and Bonaventure, Olivier. Multipath quic: Design and
evaluation. In Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies (2017), ACM, pp. 160–166.

[28] Deng, Shuo, Netravali, Ravi, Sivaraman, Anirudh, and Balakrishnan, Hari. Wifi,
lte, or both? measuring multi-homed wireless internet performance. In Internet
Measurement Conference 2014 (Vancouver, Canada, November 2014).

[29] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and
Berners-Lee, T. Hypertext transfer protocol – http/1.1, 1999.

[30] for double-blind review, Anonymized. TR - Improving QoE of ABR Streaming
Sessions through QUIC Retransmissions. https://drive.google.com/open?

id=1E8PfspsHTTNMfRgA5iuY_SsiiOi53iio, 2018.

[31] Ford, Alan, Raiciu, Costin, Handley, Mark, Barre, Sebastien, and Iyengar, Ja-
nardhan. Architectural guidelines for multipath tcp development. Tech. rep.,
2011.

[32] Gilani, Z., Sathiaseelan, A., Crowcroft, J., and Pejović, V. Inferring network
infrastructural behaviour during disasters. In 2016 13th IEEE Annual Consumer
Communications Networking Conference (CCNC) (Jan 2016), pp. 642–645.

[33] Golaup, A., Mustapha, M., and Patanapongpibul, L. B. Femtocell access control
strategy in umts and lte. IEEE Communications Magazine 47, 9 (September
2009), 117–123.

[34] Gomes, A., Braun, T., and Monteiro, E. Enhanced caching strategies at the edge
of lte mobile networks. In 2016 IFIP Networking Conference (IFIP Networking)
and Workshops (May 2016), pp. 341–349.

[35] Grassi, G., Pesavento, D., Pau, G., Zhang, L., and Fdida, S. Navigo: Interest
forwarding by geolocations in vehicular named data networking. In 2015 IEEE
16th International Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM) (June 2015), pp. 1–10.

[36] H. Schulzrinne, S. Casner, R. Frederick, and Jacobson, V. RTP: A Transport
Protocol for Real-Time Applications, 2017.

[37] Ha, Sangtae, Rhee, Injong, and Xu, Lisong. Cubic: a new tcp-friendly high-speed
tcp variant. ACM SIGOPS Operating Systems Review 42, 5 (2008), 64–74.

[38] Han, Bo, Qian, Feng, Ji, Lusheng, and Gopalakrishnan, Vijay. Mp-dash: Adap-
tive video streaming over preference-aware multipath. In Proceedings of the 12th
International on Conference on emerging Networking EXperiments and Tech-
nologies (2016), ACM, pp. 129–143.

84

[39] Hayes, B., Chang, Y., and Riley, G. Omnidirectional adaptive bitrate media
delivery using mptcp/quic over an sdn architecture. In GLOBECOM 2017 -
2017 IEEE Global Communications Conference (Dec 2017), pp. 1–6.

[40] Huang, T., Handigol, N., Heller, B., McKeown, N., and Johari, R. Confused,
timid, and unstable: Picking a video streaming rate is hard. In Proc. of IMC
(2012), pp. 225–238.

[41] Huysegems, Rafael, van der Hooft, Jeroen, Bostoen, Tom, Rondao Alface,
Patrice, Petrangeli, Stefano, Wauters, Tim, and De Turck, Filip. Http/2-based
methods to improve the live experience of adaptive streaming. In Proceedings of
the 23rd ACM international conference on Multimedia (2015), ACM, pp. 541–
550.

[42] Jacobson, Van, Smetters, Diana K., Thornton, James D., Plass, Michael F.,
Briggs, Nicholas H., and Braynard, Rebecca L. Networking named content. In
Proceedings of the 5th International Conference on Emerging Networking Ex-
periments and Technologies (New York, NY, USA, 2009), CoNEXT ’09, ACM,
pp. 1–12.

[43] Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., and Towsley, D. Measurement
and classification of out-of-sequence packets in a tier-1 ip backbone. IEEE/ACM
Transactions on Networking 15, 1 (Feb 2007), 54–66.

[44] Juluri, Parikshit, Tamarapalli, Venkatesh, and Medhi, Deep. SARA: Segment-
aware Rate Adaptation Algorithm for Dynamic Adaptive Streaming over HTTP.
In IEEE ICC QoE-FI Workshop (2015).

[45] Kakhki, Arash Molavi, Jero, Samuel, Choffnes, David, Nita-Rotaru, Cristina,
and Mislove, Alan. Taking a long look at quic: An approach for rigorous evalua-
tion of rapidly evolving transport protocols. In Proceedings of the 2017 Internet
Measurement Conference (New York, NY, USA, 2017), IMC ’17, ACM, pp. 290–
303.

[46] Katsaros, K., Dianati, M., Tafazolli, R., and Kernchen, R. Clwpr – a novel
cross-layer optimized position based routing protocol for vanets. In 2011 IEEE
Vehicular Networking Conference (VNC) (Nov 2011), pp. 139–146.

[47] Katsaros, K., Dianati, M., Tafazolli, R., and Kernchen, R. Clwpr — a novel
cross-layer optimized position based routing protocol for vanets. In 2011 IEEE
Vehicular Networking Conference (VNC) (Nov 2011), pp. 139–146.

[48] Koponen, Teemu, Chawla, Mohit, Chun, Byung-Gon, Ermolinskiy, Andrey, Kim,
Kye Hyun, Shenker, Scott, and Stoica, Ion. A data-oriented (and beyond) net-
work architecture. In Proceedings of the 2007 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications (New York,
NY, USA, 2007), SIGCOMM ’07, ACM, pp. 181–192.

85

[49] Kurkowski, S., Navidi, W., and Camp, T. Constructing manet simulation sce-
narios that meet standards. In 2007 IEEE International Conference on Mobile
Adhoc and Sensor Systems (Oct 2007), pp. 1–9.

[50] Langley, Adam, Riddoch, Alistair, Wilk, Alyssa, Vicente, Antonio, Krasic,
Charles, Zhang, Dan, Yang, Fan, Kouranov, Fedor, Swett, Ian, Iyengar, Janard-
han, Bailey, Jeff, Dorfman, Jeremy, Roskind, Jim, Kulik, Joanna, Westin, Patrik,
Tenneti, Raman, Shade, Robbie, Hamilton, Ryan, Vasiliev, Victor, Chang, Wan-
Teh, and Shi, Zhongyi. The quic transport protocol: Design and internet-scale
deployment. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (New York, NY, USA, 2017), SIGCOMM ’17, ACM,
pp. 183–196.

[51] Lederer, Stefan, Müller, Christopher, and Timmerer, Christian. Dynamic adap-
tive streaming over HTTP dataset. In ACM MMSys (2012), pp. 89–94.

[52] Mastorakis, Spyridon, Afanasyev, Alexander, Moiseenkox, Ilya, and Zhang,
Lixia. Ndn technical report ndn-0028. Technical Report NDN-0028, NDN, Jan-
uary 2015.

[53] Mastorakis, Spyridon, Afanasyev, Alexander, and Zhang, Lixia. On the evolu-
tion of ndnsim: An open-source simulator for ndn experimentation. SIGCOMM
Comput. Commun. Rev. 47, 3 (Sept. 2017), 19–33.

[54] McKeown, Nick, Anderson, Tom, Balakrishnan, Hari, Parulkar, Guru, Peter-
son, Larry, Rexford, Jennifer, Shenker, Scott, and Turner, Jonathan. Openflow:
enabling innovation in campus networks. ACM SIGCOMM Computer Commu-
nication Review 38, 2 (2008), 69–74.

[55] Meisel, Michael, Pappas, Vasileios, and Zhang, Lixia. Listen first, broadcast
later: Topology-agnostic forwarding under high dynamics. In Annual conference
of international technology alliance in network and information science (2010),
p. 8.

[56] Narasimhan, Priya, Drolia, Utsav, Tan, Jiaqi, Mickulicz, Nathan D., and Gandhi,
Rajeev. The next-generation in-stadium experience (keynote). SIGPLAN Not.
51, 3 (Oct. 2015), 1–10.

[57] Nguyen, Sinh Chung, and Nguyen, Thi Mai Trang. Evaluation of multipath tcp
load sharing with coupled congestion control option in heterogeneous networks.
In Global Information Infrastructure Symposium (GIIS), 2011 (2011), IEEE,
pp. 1–5.

[58] NTT, Tokyo, Japan (February 2013). Great east japan earthquake and re-
search and development for network resilience and recovery. itu workshop on
e-health services in low-resource settings: Requirements and itu role. https:

//www.nttdocomo.co.jp/english/corporate/ir/binary/pdf/library/

presentation/110330/notice_110330-1_e.pdf. Accessed online: August
23, 2018.

86

[59] Nygren, Erik, Sitaraman, Ramesh K., and Sun, Jennifer. The Akamai network:
A platform for high-performance internet applications. SIGOPS Oper. Syst. Rev.
44, 3 (Aug. 2010), 2–19.

[60] Paasch, Christoph, Barre, Sebastien, et al. Multipath tcp implementation in the
linux kernel. Available from http://www.multipath-tcp.org.

[61] Paasch, Christoph, Detal, Gregory, Duchene, Fabien, Raiciu, Costin, and
Bonaventure, Olivier. Exploring mobile/wifi handover with multipath tcp. In
Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: oper-
ations, challenges, and future design (2012), ACM, pp. 31–36.

[62] Paasch, Christoph, Ferlin, Simone, Alay, Ozgu, and Bonaventure, Olivier. Exper-
imental evaluation of multipath tcp schedulers. In Proceedings of the 2014 ACM
SIGCOMM workshop on Capacity sharing workshop (2014), ACM, pp. 27–32.

[63] Peng, Qiuyu, Walid, Anwar, Hwang, Jaehyun, and Low, Steven H. Multipath
tcp: Analysis, design, and implementation. IEEE/ACM Transactions on Net-
working (ToN) 24, 1 (2016), 596–609.

[64] Pesavento, D., Grassi, G., Palazzi, C. E., and Pau, G. A naming scheme to
represent geographic areas in ndn. In 2013 IFIP Wireless Days (WD) (Nov
2013), pp. 1–3.

[65] Piro, Giuseppe, Baldo, Nicola, and Miozzo, Marco. An lte module for the ns-
3 network simulator. In Proceedings of the 4th International ICST Conference
on Simulation Tools and Techniques (ICST, Brussels, Belgium, Belgium, 2011),
SIMUTools ’11, ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), pp. 415–422.

[66] Raiciu, Costin, Barre, Sebastien, Pluntke, Christopher, Greenhalgh, Adam, Wis-
chik, Damon, and Handley, Mark. Improving datacenter performance and ro-
bustness with multipath tcp. In ACM SIGCOMM Computer Communication
Review (2011), vol. 41, ACM, pp. 266–277.

[67] Raiciu, Costin, Paasch, Christoph, Barre, Sebastien, Ford, Alan, Honda, Michio,
Duchene, Fabien, Bonaventure, Olivier, and Handley, Mark. How hard can it
be? designing and implementing a deployable multipath tcp. In Proceedings of
the 9th USENIX conference on Networked Systems Design and Implementation
(2012), USENIX Association, pp. 29–29.

[68] Raiciu, C., Handley M. Wischik D. Coupled multipath-aware congestion control.
internet draft, internet engineering task force (january 2016).

[69] Rebecchi, F., de Amorim, M. Dias, Conan, V., Passarella, A., Bruno, R., and
Conti, M. Data offloading techniques in cellular networks: A survey. IEEE
Communications Surveys Tutorials 17, 2 (Secondquarter 2015), 580–603.

87

[70] Ricci, Robert, Eide, Eric, and The CloudLab Team. Introducing Cloud-
Lab: Scientific infrastructure for advancing cloud architectures and applications.
USENIX ;login: 39, 6 (Dec. 2014).

[71] Saito, Hiroshi. Spatial design of physical network robust against earthquakes. J.
Lightwave Technol. 33, 2 (Jan 2015), 443–458.

[72] Schulman, Aaron, and Spring, Neil. Pingin’ in the rain. In Proceedings of the
2011 ACM SIGCOMM Conference on Internet Measurement Conference (New
York, NY, USA, 2011), IMC ’11, ACM, pp. 19–28.

[73] Sodagar, I. The mpeg-dash standard for multimedia streaming over the internet.
IEEE MultiMedia 18, 4 (April 2011), 62–67.

[74] Sodagar, I. The MPEG-DASH Standard for Multimedia Streaming Over the
Internet. IEEE MultiMedia 18, 4 (April 2011), 62–67.

[75] Stenberg, Daniel. Http2 explained. SIGCOMM Comput. Commun. Rev. 44, 3
(July 2014), 120–128.

[76] Stewart, R., Xie, Q., Morneault, K., Schwarzbauer, H., Taylor, T., Rytina, I.,
Kalla, M., Zhang, L., and Paxson, V. Stream Control Transmission Protocol,
2017.

[77] Szabó, Géza, Rácz, Sándor, Bezzera, Daniel, Nogueira, Igor, and Sadok, Djamel.
Media qoe enhancement with quic. In Computer Communications Workshops
(INFOCOM WKSHPS), 2016 IEEE Conference on (2016), IEEE, pp. 219–220.

[78] Timmerer, Christian, and Bertoni, Alan. Advanced transport options for the
dynamic adaptive streaming over http. arXiv preprint arXiv:1606.00264 (2016).

[79] Tremblay, O., Dessaint, L. A., and Dekkiche, A. I. A generic battery model for
the dynamic simulation of hybrid electric vehicles. In 2007 IEEE Vehicle Power
and Propulsion Conference (Sept 2007), pp. 284–289.

[80] ULC, Sandvine Incorporated. Global Internet phenomena report 2016, 2016.

[81] Vigneri, Luigi, Spyropoulos, Thrasyvoulos, and Barakat, Chadi. Streaming con-
tent from a vehicular cloud. In Proceedings of the Eleventh ACM Workshop on
Challenged Networks (New York, NY, USA, 2016), CHANTS ’16, ACM, pp. 39–
44.

[82] Vulimiri, Ashish, Godfrey, Philip Brighten, Mittal, Radhika, Sherry, Justine,
Ratnasamy, Sylvia, and Shenker, Scott. Low latency via redundancy. In Proc.
of CoNEXT (2013), pp. 283–294.

[83] Wang, C., Rizk, A., and Zink, M. SQUAD: A Spectrum-based Quality Adapta-
tion for Dynamic Adaptive Streaming over HTTP. In Proc. of MMSys (2016),
ACM, pp. 1:1–1:12.

88

[84] Wang, Cong, Bhat, Divyashri, Rizk, Amr, and Zink, Michael. Design and analy-
sis of qoe-aware quality adaptation for dash: A spectrum-based approach. ACM
Trans. Multimedia Comput. Commun. Appl. 13, 3s (July 2017), 45:1–45:24.

[85] Wang, Lucas, Afanasyev, Alexander, Kuntz, Romain, Vuyyuru, Rama,
Wakikawa, Ryuji, and Zhang, Lixia. Rapid traffic information dissemination
using named data. In Proceedings of the 1st ACM Workshop on Emerging Name-
Oriented Mobile Networking Design - Architecture, Algorithms, and Applications
(New York, NY, USA, 2012), NoM ’12, ACM, pp. 7–12.

[86] Wang, Lucas, Afanasyev, Alexander, Kuntz, Romain, Vuyyuru, Rama,
Wakikawa, Ryuji, and Zhang, Lixia. Rapid traffic information dissemination
using named data. In Proceedings of the 1st ACM Workshop on Emerging Name-
Oriented Mobile Networking Design - Architecture, Algorithms, and Applications
(New York, NY, USA, 2012), NoM ’12, ACM, pp. 7–12.

[87] Xiao, Mengbai, Swaminathan, Viswanathan, Wei, Sheng, and Chen, Songqing.
Evaluating and improving push based video streaming with http/2. In Pro-
ceedings of the 26th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (2016), ACM, p. 3.

[88] Yuriyama, M., and Kushida, T. Sensor-cloud infrastructure - physical sensor
management with virtualized sensors on cloud computing. In 2010 13th Interna-
tional Conference on Network-Based Information Systems (Sept 2010), pp. 1–8.

[89] Zhang, Lixia, Afanasyev, Alexander, Burke, Jeffrey, Jacobson, Van, claffy, kc,
Crowley, Patrick, Papadopoulos, Christos, Wang, Lan, and Zhang, Beichuan.
Named data networking. SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014),
66–73.

[90] Zhang, Lixia, Estrin, Deborah, and Burke, Jeffrey. Ndn technical report ndn-
0001. Technical Report TR001ndn, NDN, November 2011.

[91] Zink, M., Schmitt, J., and Steinmetz, R. Layer-encoded video in scalable adap-
tive streaming. IEEE Transactions on Multimedia 7, 1 (Feb 2005), 75–84.

89

	Improving Resilience of Communication in Information Dissemination for Time-Critical Applications
	Recommended Citation

	tmp.1554272279.pdf.66ppL

