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ABSTRACT Over the last years, the Internet of Things has fostered a growing interest in context-aware

mobile applications; this fact is mainly due to highly favoring information provision from multiple Internet-

connected devices. To identify user context, these applications collect information from the user and his/her

environment and typically filter app information, so that the user receives only the interesting and relevant

information. However, such a task usually implies further resource consumption on user mobile devices,

not only regarding battery usage but also in terms of network traffic. Accordingly, although context-aware

applications can improve user experiences in their daily lives, they must ensure the maintenance of low-

level resource consumption; otherwise, the applications are promptly replaced by less consuming ones, and

therefore, removed from the mobile market. In this paper, we evaluate and discuss several architectural

styles for context-aware mobile applications, as well as, providing a set of guidelines to decide on the

right architecture for a particular app depending on its characteristics. The use of such guidelines when

choosing the right architectural style can strongly influence the resource consumption of context-aware

mobile applications. Following these guidelines, user satisfaction of a context-aware mobile application

may be improved, thus guaranteeing the app success.

INDEX TERMS Context awareness, mobile computing, Internet computing, resource consumption.

I. INTRODUCTION

Nowadays, smartphones are undoubtedly omnipresent world-

wide and their success relies on several factors that have

evolved over the last decade: improvement of their hardware

capabilities, weight reduction, a decrease in mobile commu-

nications costs and higher speed Internet connection, among

others. However, unquestionably, the parallel evolution of

mobile software applications (apps) has been key to their

success: currently successful mobile applications consume

low resources and provide key functionalities to mobile users.

In this scenario, most people have replaced their laptops

The associate editor coordinating the review of this manuscript and
approving it for publication was Juan Liu.

by mobile phones for daily operations related to Internet

connection, such as browsing for information, using social

networks or additional apps which would have previously

been installed as desktop applications or accessed from their

laptops through HTML browsers.

Concurrently, the impressive evolution of Internet of

Things (IoT) over the last years has strongly favored the

provision of information by multiple sensors and other

devices connected to the Internet, as well as fostering inter-

est in context-aware applications [1]. These applications

gather users’ contexts in order to adapt their behavior to

their needs and circumstances. Whereas IoT systems usually

require interaction with a large number of devices and the

management of a lot of information from varying sources,
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context-aware applications can adapt and particularize the

aforementioned information and interactions to user contexts,

improving users’ experiences [2].

To identify user context, these apps collect information

from the user and their environment and the particular

app information is filtered accordingly, to only provide the

user with the relevant one to him/her; however, such a task

might imply further resource consumption [3], not only con-

cerning battery usage, but also network traffic. Nevertheless,

in order to be accepted by users, apps have to be efficient

and consume a reasonable amount of resources [4], [5]. The

user will have to weigh the functionalities offered by the

app against resource consumption, but if there are several

options available, they will probably choose the one that

consumes the least amount of resources.

Resource consumption depends on the functionalities and

the architectural design [6] being used. Whereas function-

alities are fixed in a particular app, the most appropriate

architectural style for the app can be decided upon. Currently,

for instance, context-aware apps may be developed following

a server-centric, a mobile-centric or a hybrid architectural

style. Server-centric architectures are those in which mobile

devices act as simple clients and most of the information

storage, processing, and communication tasks are relegated

to one or more servers, usually located in the cloud. Mobile-

centric ones are some emerging architectures inspired by

distributed processing that harness the current processing and

storage capabilities of mobile phones. Finally, hybrid archi-

tectures combine some information processing and storage

both in the server and client side. In this scope, server-centric

approaches [7], [8], mobile-centric [9]–[11] and hybrid archi-

tectural ones [12], have supporters and detractors, since they

all present some advantages and drawbacks in terms of

resource consumption.

The number of context-aware apps is increasing, but some

of them do not succeed due to difficulties in selecting a

suitable architecture to collect and filter the appropriate con-

textual information whilst keeping resource consumption rea-

sonably low [2]. This is why this paper aims at providing

the means to decide on the right architecture for a particular

app and, therefore, to improve its resource consumption,

guaranteeing user satisfaction and, therefore, the app success.

For this purpose, we will conduct an early analysis and an

experimental one for a real case study, whose results will

be instrumental in helping developers choose the appropriate

architecture for each specific context-aware app.

In particular, two of the authors of this paper

proposed CARED-SOA (Context-AwaRe Event-Driven

Service-Oriented Architecture) [13] in the past, a server-

centric architecture which facilitates the incorporation of

data coming from devices connected to IoT in order to

provide real-time notifications to users, mainly through a

mobile app. The architecture was particularized in the scope

of air quality and a server-centric app called Air4People

was provided. In this paper, we have considered the evo-

lution of CARED-SOA and Air4People to mobile-centric

and alternative hybrid architecture applications in order to

assess how to improve the app resource consumption and,

therefore, user satisfaction. To start with, we have made

use of an early analysis framework [6]—proposed by the

other two authors of this paper—to asses several architecture

alternatives for social applications. For the early analysis

we have considered three general alternatives: a server-

centric approach, a mobile-centric approach and a hybrid

architectural one, where the cost for primitive operations for

dynamic and static contexts have been taken into account.

After an early analysis of resource consumption, a mobile-

centric and a hybrid architecture have been implemented and

evaluated in comparison with the original server-centric one;

besides, we have compared and discussed the theoretical

results provided by the early analysis with those obtained

from the implementations. Afterwards, we have arguedwhich

one is the optimal architecture depending on the particular

case study and its context characteristics, validating the early

analysis frameworks and providing more detailed guidelines

to choose the right architectural style. Therefore, the main

aim and contribution of this paper is to provide generic

formulae, which may be used to follow an early analysis eval-

uation for different architectural implementations of context-

aware mobile applications. In particular, such formulae allow

developers to evaluate which architectural style —server-

centric, mobile-centric or hybrid architecture— provides

better performance with regards to data and battery consump-

tion of context awareness features. Such context features

have been classified, as later explained with more details,

as static or dynamic: static context features do not need to be

continuously monitored and dynamic context features might

require continuous monitoring. That differentiation clearly

influences the resource consumption of the application, for

this reason, the formulae provided in this paper consider

consumption levels for both types. The fact that our approach

focuses on the resource consumption of context features as

well as being able to discriminate consumption depending on

the type of context before actually implementing the app is

what differentiates our proposal from other existing ones.

We also provided a case study and an empiric evaluation

of more complex scenarios where several context features

are considered, which were compared to the early analysis’

theoretical evaluation so as to have a reference about how

both results may differ. Consequently, as a second contri-

bution, based on the results of the empirical and theoretical

evaluations, we provide guidelines and suggestions for the

most suitable architectural style according to the type of

context feature.

The rest of the paper is organized as follows. Section II

gives the motivation and case study that motivated this

research paper and Section III describes related work. Then,

Sections IV and V provide an early analysis of the dif-

ferent evaluated architectural styles in a generic way and

particularized for the case study, respectively. Afterwards,

Section VI explains how the selected architectural styles have

been implemented for the case study, as well as showing
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FIGURE 1. Air4People and CARED-SOA architecture.

the tests’ configuration and results. Section VII compares the

early analysis and the final evaluation results, and discusses

the results applied to the Air4People app, as well as how

these could be applied to other scenarios’ architectures and

apps. To end with, conclusions and future work are presented

in Section VIII.

II. MOTIVATION AND CASE STUDY

As previously mentioned, in the past we proposed the

context-aware server-centric architecture CARED-SOA.

CARED-SOA is composed of a set of key elements such as

an enterprise service bus, a set of REST services, a complex

event processing engine, a context broker and a mobile appli-

cation. Such elements and the full architecture functionality

are explained in [13], whose details are out of the scope of

this paper. In our present work, we are going to abstract from

the main elements which detect the IoT data and provide real

time notifications, to focus on the app context awareness and

resource consumption.

In [13], CARED-SOA is particularized for a case study

related to air quality; as a result, we obtained Air4People,

a system which facilitates air quality monitoring and user

notification. Its high-level architectural design, represented

in Fig. 1, is composed of the server infrastructure, a context-

aware client mobile application and Firebase support.

Fig. 1 represents CARED-SOA and Air4People, where we

have used gray for those elements which are not relevant to

this evaluation.

Air quality monitoring involves measuring several pol-

lutants, the most relevant ones being Particulate Matter

(PM2,5 and PM10), Carbon Monoxide (CO), Ozone (O3),

Nitrogen Dioxide (NO2) and Sulphur Dioxide (SO2)). Cur-

rently, Air4People server side is monitoring air quality in the

Spanish Andalusian region. The Andalusian Governmental

Department of Environment establishes ranks for each air

pollutant at four levels: good, acceptable, unhealthy and

very unhealthy. With the support of a pulmonologist,

we established a set of recommendations for citizens accord-

ing to the air quality level and the citizen’s context. For

instance, an acceptable value of Ozone—with no recom-

mendation for healthy people—would imply recommending

people with lung disease not to engage in any physical activity

outside. REST services in the architecture server-side allow

the client (1) to set their personal details and notification

subscription preferences, (2) to send contextual information

and (3) to check air quality values for a particular date, upon

request.

Depending on the scope of the app, the context may

embrace different sets of characteristics [14]. The context

for Air4People will be the particular location, personal char-

acteristics and physical activity of the user in question,

as explained in the following paragraphs.

A. LOCATION CONTEXT

When the user logs in to the system, he or she can register

for a particular location or choose for his/her location to be

monitored: using the GPS, the mobile device will know the

user’s location and the systemwill receive continuous updates

on its location.

B. PHYSICAL CONTEXT

We have just mentioned that poor air quality affects people

doing physical exercise outside more seriously. Therefore,

it would be important to know if the user is, for instance,

running or making some sort of effort outdoors. For such pur-

poses we use Google Awareness: if the user is running or bik-

ing, lower level notifications should be submitted to such

users.

C. PERSONAL CONTEXT

This type of context consists of the following personal char-

acteristics, according to the official AQI technical assistance

document [15]:

• Lung diseases.

• Heart diseases.

• Children (including teenagers): everybody younger than

19 years old [16].

• Older people: we will regard everybody older than

60 years old as an older person [17].

• Genetic variants: there are several papers which link

genetic variants and poor air quality exposure to an

increase in certain illnesses ([18]).

• Diets limited in Omega-3 and vitamins. According to

several studies, it seems significant that Omega-3 and

certain vitamins are key to preventing health risks

derived from air pollution [19].

Such context characteristics can be classified, as shown

in Fig. 2, as static (they do not need to be continuously moni-

tored and, therefore, the user sends them to the system during

registration or occasionally updates his/her data) or dynamic

(they might require continuous monitoring). In particular:
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FIGURE 2. Context taxonomy for the case study.

• Location context can be obtained statically (the user

would set a fixed location) or dynamically (the GPS is

constantly monitoring user location).

• Physical context will mainly be obtained dynamically,

thus the app will constantly be checking user physical

activity.

• Personal context refers to illnesses or particular personal

features or conditions the user might have, therefore

these are static characteristics set once in the app, which

should not vary over time.

The Android application implemented to facilitate context-

aware air quality notifications to interested users provides two

main functionalities: (1) checking current or past air quality

values and (2) receiving notifications concerning current air

quality. In this paper, we focus on (2), since notification

reception is an activity which requires constant context moni-

toring. With the said app, the user sets his/her personal details

when he or she registers in the app. Then, they can initially

subscribe to alerts of interest (alerts for the four existing levels

of air quality conditions for each relevant pollutant). All these

data can be updated at any time. This information is sent to the

server side through the User/Alerts REST service invocation.

Such an application obtains the user’s context through

the mobile device, submits it to the server side through the

invocation of the User/Alert service, and receives context-

aware notifications sent from the server side by means of

Firebase [20]. Firebase is a Google platform which improves

Android applications significantly. Among other utilities,

it facilitates cloud storage and notifications to mobile devices

through a cloud manager. Besides, the Firebase platform

facilitates user secure login using REST services, and mobile

notifications, under subscription.

To summarize, Air4People mobile notifications are partic-

ularized depending on the user’s context; the said context

is classified as static or dynamic, as previously explained.

In particular, we monitored location and physical activity

dynamically and we took into account static particular user

features related to air quality issues, such as lung diseases.

Currently, all the static information is stored in the server side

and the mobile app is continuously sending the dynamically

monitored information to server-side databases. When an air

quality alert is detected in the server side, the databases are

checked to see which users might be affected by such an alert

depending on their current location, activity and personal

features, and only those are accordingly notified in their

mobile app.

Air4People was tested with real data coming from the sen-

sor stations the Andalusian regional government has all over

its territory, and we also performed load and stress tests with

an emulator. The results showed that the architecture is suit-

able for context-aware IoT applications but two limitations

were detected. On the one hand, continuously monitoring

and sending user location to the server side might consume

excessive battery and, on the other, when the number of

users increases it will be costly to continuously send user

contexts to the server, as well as searching which users have

to be notified whenever an alert is detected. These limitations

encourage us to examine alternative architectures in order to

improve performance and reduce resource consumption.

Please note that, for the sake of readability of this paper and

the comparison of the different architectural designs, we have

selected 2 context characteristics —a dynamic and a static

one—, since both types have different resource consumption

patterns. Nevertheless, the evaluation at the end of the paper

has been extended to additional context characteristics.

III. RELATED WORK

Mobile devices are constantly increasing their computing

and storage capabilities; however, their resources (especially

battery and data traffic) do not increase at the same pace and,

therefore, consumption is key to the success of any mobile

application [21]. Consequently, developers have to make a

trade-off between the capabilities to utilize in their apps and

the resulting resources that would be consumed in general,

and for context-aware applications in particular.

A. MOBILE DEVICE RESOURCE CONSUMPTION

Currently, there are a number of studies focused on mea-

suring the consumption of mobile devices or some of their

components. In [22], the authors present a characterization of

the different settings of a mobile device using crowdsourced

battery dischargemeasurements. This characterization allows

any user to fine-tune a mobile device in order to reduce bat-

tery consumption. Nevertheless, developers also need studies

to help them to identify how to implement the app or decide

on the architectural style to be selected in order to reduce

resource consumption.

Studies such as [23] and [24] compare consumption

information provided by the devices with measurements

obtained using an external power monitor. Others, such

as [25] and [26], go a step further, and obtain consumption

information from the device battery. These studies present

precise information on the device consumption. However,

they are complex to reproduce when the mobile device and

the app have mobility requirements. The methods presented

in this work provide accurate information on the consumption

with each architectural alternative and, in addition, can be

used in different environments.
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B. MOBILE APPLICATION RESOURCE CONSUMPTION

Other papers focus on the consumption of mobile applica-

tions. In [27], the authors propose a data-driven method to

estimate the discharge rates for all hardware components.

To that end, they analyze different reports from thousands of

users with information about the components used by each

application as well as battery discharge. They also reuse the

obtained models by using them to predict the app battery

use on specially instrumented devices. Nevertheless, these

models focus on the consumption of mobile apps, not on their

functionalities.

In [28], the authors analyze the interdependencies between

devices’ hardware and their applications in order to character-

ize the energy demand. This study allows the authors to pro-

pose an energy-aware operating system for mobile devices.

Although this is an important step that should be considered

by any operating system, it is still necessary to analyze and

improve the resource consumption of mobile apps in order to

obtain an even higher efficiency.

In this sense, the focus is on resource consumption within

specific applications in [29]. To that end, the authors measure

the energy spent by an application performing various tasks

such as rendering images on the device screen, or building

an internal database for the application. Even though this

information is quite important for any application, there is

still a lack of measurements related to the gathering and

management of contextual information. On the other hand,

other studies, such as [30] and [31], focused on identifying

the development languages which support a reduction in

resource consumption. In [32], the authors analyze currently

available cross-platform frameworks to measure how their

architecture impacts energy consumption. In addition, in [33],

the authors present a systematic literature review of different

methods, analyzing how consumption patterns impact on the

effectiveness of mobile applications.

C. CONTEXT-AWARE APPLICATIONS RESOURCE

CONSUMPTION

In the scope of context-aware systems and applications, rel-

evant challenges, such as context acquisition and characteri-

zation, have been faced by multiple frameworks over the last

years [14]. In particular, local versus centralized processing

and energy consumption are still major challenges [36], espe-

cially when dealing with mobile applications [5]; however,

most context-aware frameworks proposed in the past (such

as [37]–[41]) do not even provide a performance analysis of

resource consumption.

Paying special attention to the resource consumption of

contextual information gathering, in [34], the authors analyze

the consumption of the sensors deployed on mobile devices.

In addition, they propose a framework for managing the

sensing requirements of mobile applications. Nevertheless,

the computation of that information and its interaction with

other devices sharing it should also be taken into account

when measuring the consumption of context-aware apps.

Min et al. [35] indicate that continuous sensing apps introduce

non-trivial persistent battery drain and, more significantly,

some applications drain battery at different rates depending

on the user’s context. To face battery issues, they propose

a mobility-aware information advisor to help users man-

age remaining battery and schedule recharging patterns. The

mobility-aware battery model could also be used to reduce

battery consumption.

Resource consumption of context-aware mobile applica-

tions has also been thoroughly analyzed in Wireless Sen-

sor Networks (WSN). WSN consist of spatially distributed

autonomous sensor-equipped devices to monitor physical

or environmental conditions [42]. The sensing capabilities

of these devices are usually energy-constrained. To reduce

energy consumption in WSN, some works define new proto-

cols and optimization techniques, such as coverage protocols

for turning off some sensors [43]–[45]. Other works, such

as [46], introduce an active inference of data using dynamic

Gaussian Bayesian networks, able to identify when a specific

sensor should be pulled for a reading and when it ought to be

in power-saving mode, limiting battery consumption while

maximizing data accuracy. Some of these techniques could

be applied to identify when or how frequently specific mobile

phone sensors should be activated. Nevertheless, some guide-

lines helping developers to identify the less consuming archi-

tectural designs are also needed.

Other approaches focus on Mobile Crowd Sensing (MCS)

to get information from users’ contexts and perform dis-

tributed sharing and computing of the gathered data. In MCS

systems, it is important to minimize energy consumption

on users’ mobile devices, since high energy consumption

severely reduces their willingness to participate. Therefore,

these approaches analyze the architectural design of the

applications to reduce battery consumption [47], as well as

analyzing different energy-aware techniques (such as task

assignment [48], reduction of data transferring [49] or data

aggregation [50]).

Finally, in [51], the authors analyze the most important

optimization techniques oriented to reducing battery con-

sumption. Some of these techniques are focused on off-

loading resource-consuming tasks to cloud environments.

In this scope, for instance, [36] and [37] the authors explore

the integration of mobile sensing with a cloud-based system

to store and obtain the sensed data. The gathered information

is further reused in order to tailor the behavior of a mobile

app. These approaches provide excellent results, beingwidely

used by commercial mobile applications. However, as men-

tioned before, not all tasks consume the same amount of

resources. A thorough analysis of the application’s function-

alities should be performed in order to identify under which

circumstances each task should be migrated to the cloud

environment or deployed on the mobile phone.

Even though context awareness has been an established

term for a couple of decades in the field of computer sci-

ence [54], it has been in the very last years when has taken

unprecedented relevance and this is why there is a lack

and clear need for guidelines and best-practice guidance for
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context-aware low consumption development in accordance

with current scenarios. Currently, mobile edge computing

is also taking great relevance, however the main reference

architectures refer to network related issues [55], whereas

we focus on end-user software implementation architectures.

Therefore, this paper presents a study and provides several

formulae and guidelines to facilitate the selection of the archi-

tectural style which permits reducing resource consumption

of context-aware mobile apps in the early stages of develop-

ment. In particular, this study analyzes resource consump-

tion depending on the number of contextual characteristics

to monitor and taking into account whether that contex-

tual information is static or dynamic. Such guidelines may

be complementary to guidelines for network-related issues,

on which most related works focus.

IV. RESOURCE CONSUMPTION GENERIC EARLY

ANALYSIS

Prior to the implementation and performance evaluation of

alternative architectures, we are going to follow a resource

consumption early analysis with the aim of discerning which

might be the most appropriate architecture and discarding

others.

In [6], a conceptual framework for the early analysis of

social apps was proposed. This framework details a set of

steps that should be followed to identify under which circum-

stances each architectural style is less resource consuming

or, even, how application evolution (in terms of success,

number of users, user interaction with the application etc.)

could lead to a change in resource consumption, therefore

demanding application redesign. The proposed steps are the

following:

• Define the different architectural designs to be analyzed.

• Select the set of resources that should be estimated.

• Identify the set of primitive operations. These are the

most common basic operations of mobile applications.

Thus, an application’s most important functionalities

can be composed of these primitive operations.

• Identify which use cases are relevant to the system and

especially affect consumption.

• Calculate resource consumption of each use case, as well

as the entire application’s consumption for each archi-

tectural design.

In general terms, we can consider three general alterna-

tives: a server-centric approach, a mobile-centric approach

and a hybrid architectural one (although, as later explained,

two hybrid architectural approaches will be analyzed), where

a dynamic context (DyC) and a static one (StC) have been

taken into account. Let A = {SC,MC,HA1,HA2} be the

set of architectural styles evaluated, C = {DyC, StC, null}

be the set of contextual information evaluated and R =

{Battery,Data} be the set of resources analyzed.

Let Opt be the set of primitive operations that can be used

to compose an application’s functionalities. For each Opt i,

i = 1, . . . , nopt , its resource consumption can be calculated

using formula (1):

Copti : C x R → R (1)

Finally, let UC be the set of functionalities or use cases of

an application {uc1, . . . , ucnuc}. For each uci, i = 1, . . . , nuc,

its resource consumption can be calculated using formula (2):

Cuci : A x C x R → R (2)

In order to facilitate the readability of the formulae we

will represent the consumption of each use case as follows

(formula (3)):

CucAi : C x R → R (3)

Let f be the frequency at which the opt primitive operation

is executed. This frequency highly depends on the specific

architectural design being applied and the contextual infor-

mation to be sensed or used to limit this frequency. Therefore,

this frequency can be calculated using formula (4):

f : A x Copt x C → R (4)

In order to improve the readability of the formula we will

represent the frequency as shown in formula (5):

f ACopt : C → R (5)

In Table 1, we have included a set of definitions for prim-

itive operations and frequencies to facilitate the reading of

the following sub-sections. In spite of this, all frequencies are

defined and explained in their first occurrence in the text.

Please note that battery consumption will be expressed in

µAh and data consumption in bytes.

A. SERVER-CENTRIC APPROACH

For dynamic contexts, in the server-centric approach, we

need to obtain the context in the mobile device at a par-

ticular frequency and submit it to the server-side. Then, let

f SCget (DyC) be the frequency at which we need to obtain

DyC value and f SCpost (DyC) theDyC context submission fre-

quency to the server. In order to obtain dynamic contextDyC,

battery consumption would be as shown in (6):

CucSCget(DyC,Battery)=Coptget(DyC,Battery)∗f SCget (DyC)

(6)

Posting context data to the server every time it is obtained

would consume battery and data in (7) and (8), respectively:

CucSCpost (DyC,Battery) = Coptpost (DyC,Battery)

∗ f SCpost (DyC) (7)

CucSCpost (DyC,Data) = Coptpost (DyC,Data)

∗ f SCpost (DyC) (8)

Receiving the relevant push notifications (filtered in

the server side according to contexts DyC and StC)

would also consume battery and data (see (9) and (10)),
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TABLE 1. Primitive operations and frequencies.

f SCpush (DyC ∧ StC) being the frequency at which notifications

meet both contexts:

CucSCpush (DyC ∧ StC,Battery) = Coptpush (null,Battery)

∗ f SCpush (DyC ∧ StC) (9)

CucSCpush (DyC ∧ StC,Data) = Coptpush (null,Data)

∗ f SCpush (DyC ∧ StC) (10)

As regards the static context, since it is not expected to vary

over time we have not considered resource consumption by

submitting it once.

B. MOBILE-CENTRIC APPROACH

For a mobile-centric application, we have to take into account

that the mobile phone receives all the push notifications

(f MCpush(null)) and discards those which the user is not sub-

scribed to: first, notifications based on static context StC are

discarded and afterwards, out of the remaining notifications,

those based on dynamic context DyC are also eliminated.

Gathering information from dynamic contexts would only

be required for those notifications that have been filtered

through static context. Therefore, this would consume battery

as shown in (11), where f MCget (StC) is the frequency at which

context DyC should be sensed in order to filter the push

notifications meeting context StC.

CucMCget (DyC ∧ StC,Battery) = Coptget (DyC,Battery)

∗ f MCget (StC) (11)

Since there is no need to post context data to the server,

resources are not consumed by this operation.

However, receiving frequent push notifications and reading

static context information (read) to discern whether a certain

notification needs to be shown to a particular user would

consume battery and data (see (12) and (13)):

CucMCpush (DyC ∧ StC,Battery)

= (Coptpush (DyC ∧ StC,Battery)

+Coptread (StC,Battery)) ∗ f MCpush(null)) (12)

CucMCpush (DyC ∧ StC,Data)

= (Coptpush (DyC ∧ StC,Data)

+Coptread (StC,Data)) ∗ f MCpush(null) (13)

Please, note that following this architectural style, it is

not necessary to post or store the obtained context DyC,

since once a push notification reaches the mobile device and

passes all the filters related to the static information, dynamic

context DyC is obtained in order to filter the remaining push

notifications.We need to take into account that we could have

filtered by dynamic context first and then by the static one,

both filters being on the mobile phone, but such a configura-

tion would consume considerably more resources, since the

dynamic context would have to be checked more frequently.

C. HYBRID ARCHITECTURAL APPROACHES

We considered two hybrid architectural approaches: Hybrid

Architecture 1 (HA1) frequently submits a dynamic context

DyC to the server-side, and it also filters received notifi-

cations according to a static context StC. In this scenario,

obtaining dynamic context DyC would consume the battery

in (14):

CucHA1get (DyC,Battery)=Coptget(DyC,Battery)∗f HA1get (DyC)

(14)

Posting context data to the server with a particular fre-

quency would consume battery and data in (15) and (16),

respectively:

CucHA1post (DyC,Battery) = Coptpost (DyC,Battery)

∗ f HA1post (DyC) (15)

CucHA1post (DyC,Data) = Coptpost (DyC,Data)

∗ f HA1post (DyC) (16)

However, only those notifications that passed the filters for

DyC (f HA1push (DyC)) would be sent to the smartphone to check

static context StC filters. This would also consume battery

and data (see (17) and (18)):

CucHA1push (DyC ∧ StC,Battery)

= (Coptpush (StC,Battery)

+Coptread (StC,Battery)) ∗ f HA1push (DyC) (17)

CucHA1push (DyC ∧ StC,Data)

= (Coptpush (StC,Data)

+Coptread (StC,Data)) ∗ f HA1push (DyC) (18)
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Hybrid Architecture 2 (HA2) would be the approach in

which the static context is sent to the server so that the latter

only submits notifications according to the user’s subscrip-

tion. Then, once a notification is received by the mobile

device, dynamic context DyC is obtained and only those

notifications related to the context in question are shown to

the user.

Obtaining context DyC for each received push notification

would consume the battery in (19):

CucHA2get (DyC ∧ StC,Battery) = Coptget (DyC,Battery)

∗ f HA2push (StC) (19)

Since there is no need to post the context DyC data to the

server, resources are not consumed by this operation.

However, receiving the subscribed push notifications,

already filtered according to context StC, would consume

battery and data (see (20) and (21)):

CucHA2push (DyC ∧ StC,Battery) = Coptpush (DyC,Battery)

∗ f HA2push (StC) (20)

CucHA2push (DyC ∧ StC,Data) = Coptpush (DyC,Data)

∗ f HA2push (StC) (21)

As we can see, the formulae results may vary largely

depending on the particular frequency required for dynamic

context update for each architectural style, the amount of

push notifications received and the size of both the context

information to be submitted and the push notifications to be

received. This is why we proceed to particularize the early

analysis for our case study in the following section.

V. RESOURCE CONSUMPTION EARLY ANALYSIS

FOR THE CASE STUDY

As previously explained, we are going to evaluate four archi-

tectural designs: the already developed server-centric app,

a mobile-centric app where all features are monitored and

verified in the mobile side, and two alternative hybrid archi-

tecture apps where some of such features are monitored in the

mobile-side and others are checked in the server side. These

have been evaluated non-specifically in Section III and will

be particularized according to the case study context types

in the next subsections. A dynamic context —location—

and a static one —personal features—have been selected in

order to carry out the assessment. Therefore, the alternative

architectures, also represented in Fig. 3, are the following:

1. For the server-centric style, (i) the mobile phone sends

the personal features to the server once and (ii) the

mobile has to constantly check the GPS location and

immediately send it to the server. The server, once an

air quality alert is detected, checks which users are sub-

scribed to a certain type of alert and requests Firebase

to send them a notification. The mobile phone only

receives those push notifications which are relevant to

the user in question.

FIGURE 3. Evaluation of four alternative architectures in the early
analysis stage. (a) Server-centric architecture. (b) Mobile-centric
architecture. (c) Hybrid architecture 1. (d) Hybrid architecture 2.

2. For a mobile-centric application the mobile receives all

the push notifications corresponding to Andalusian air

quality alerts and (i) firstly, it has to filter the notifi-

cations according to the stored personal features, dis-

carding those not relevant to the user in question; and

(ii) secondly, it needs to obtain the GPS location

and filter the remaining notifications, only selecting

those which correspond to the user’s current location.

Note that personal features are stored in advance, usu-

ally only once when the app is installed and config-

ured; because of that, they have not been taken into

account when estimating resource consumption during

the app daily use.

3. The hybrid architecture application could have two

configurations:

i) To send the GPS location constantly and filter the

received notifications according to the personal

features (PFs) stored in the device.

ii) To send the static information to the server so

that it only sends notifications according to the

particular user’s features; then, once a notifica-

tion is received, the GPS location is obtained and

only those related to the location in question are

shown.

Secondly, in this analysis, our focus has been on bat-

tery and data traffic consumption since they are the two

resources that affect user satisfaction the most and, particu-

larly, to Air4People users.

Thirdly, according to [6], in mobile applications the

most relevant and resource-consuming primitive operations
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TABLE 2. Average resource consumption estimated for most relevant operations in Air4People.

are (a) storing data in the local memory, (b) posting data to

a server, (c) getting data from a server, (d) receiving a push

notification and (e) obtaining the GPS location. In our case

study, storing and obtaining data from a server are not used so

these primitives do not consume resources; we will therefore

base our analysis on the other three primitives.

For the performed analysis, we took into account the values

estimated in [6] for average resource consumption for most

relevant operations with the following particular considera-

tions in our app, as shown in Table 2: we took into account

the values estimated in [6] for average resource consumption

for most relevant operations; in our app, the following con-

siderations were also made:

• In all cases, we will keep the battery consumption esti-

mated in [6]. The reason is that, the length of the data

posted and received in our case study being rather close

to the one described in [6], it can be considered accurate

enough for an early estimation.

• Since we are posting location through Firebase services,

we will take into account the content length provided by

Firebase for the procedure.

• Also, Firebase provides us with the content length for

push notifications. We will have four types of push

notifications: the server-centric option only includes the

alert to be shown to the user; the hybrid architecture

1 option includes the alert to be shown to the user and

additional details to discern which type of alert has taken

place; the hybrid architecture 2 option includes the alert

to be shown to the user and the location where the alert

occurred; finally, the mobile-centric option includes the

alert to be shown to the user and additional details to

discern the location and type of alert which has occurred.

Even though data traffic poses different values for each

alternative, we theorized that battery consumption dif-

ferences would be insignificant, and therefore used the

value given in [6] for all of them.

• Finally, we have measured a new primitive opera-

tion not specified in the early analysis framework

and required by context-aware domains. This operation

focuses on reading information stored on the mobile

device. In this case study, it is used to estimate the

consumption of personal information reading in order to

know whether an alert needs to be shown to a particular

user.

Fourthly, for the analyzed system, we may consider three

use cases that directly affect resource consumption and on

which the success of the system largely depends. These use

cases focus on getting and updating the dynamic information

and sending user alerts:

• Getting the location. The mobile device activates the

GPS sensor in order to get the device longitude and

latitude.

• Posting the location. The obtained location is posted and

stored on a server.

• Getting an alert. The mobile device receives a push

notification warning the user about a possible air quality

alert.

In the following subsections, the resource consumption of

every use case for each architectural design is calculated.

To do that, the specific behavior of the use case is also
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detailed. Besides, in order to be able to estimate resource

consumption, we have taken into account that 72 sensor sta-

tions from the Andalusian region are currently active. Unfor-

tunately, not all stations measure the 6 relevant air quality

pollutants, but 60 of them do, thus providing measurements

from 360 sensors of our 6 relevant pollutants (bear in mind

that the 6 measurements are not necessarily taken at exactly

the same time, but the frequency is approximately the same).

Applying the required patterns to monitor air quality and

taking into account that each station submits information

every 20 minutes, we might have an average of 1080 noti-

fications per hour. Alerts are triggered for Good, Acceptable,

Unhealthyand Very Unhealthyair quality for every pollutant;

wemay not necessarily be interested in all of them. For testing

purposes, we estimated that the average user would subscribe

to one level of every pollutant; that is, to 6 different alerts.

We made these assumptions based on the AQI guide to air

quality and health [56] where all the referred pollutants are

relevant to everybody to a greater or lesser degree; depending

on the personal characteristic, he or she might be interested

in a higher or lower level for each pollutant, yet always in at

least one level per pollutant.

A. SERVER-CENTRIC APPROACH

As previously explained, the following aspects should be

considered in a server-centric application:

• The app has to constantly check the GPS location and

immediately send it to the server: to be as accurate

as a mobile-centric app, we evaluate the location in

which the GPS coordinates are obtained and sent every

10 seconds (i.e. frequencies f SCget (GPS) and f SCpost (GPS)

are 360 times in an hour).

• The mobile only receives those notifications which

are relevant to the user in question. Therefore, since

he or she is subscribed to 6 different pollutant alerts

(an alert per pollutant) and alerts can be received every

20 minutes (i.e. three times per hour), he or she can

receive from 0 to 18 alerts (f SCpush (GPS ∧ PFs)) per hour,

since the user is expected to be subscribed only to one

station.

According to these assumptions, resource consumption per

hour for the server-centric approach would be as we explain

in the following paragraphs:

Obtaining GPS location every 10 seconds would consume

battery in (22):

CucSCgetLocation (GPS,Battery)

= Coptget (GPS,Battery) ∗ f SCget (GPS)

= 7.2 ∗ 360 = 2592 µAh (22)

Posting GPS data to the server every 10 seconds would

consume battery and data in (23) and (24), respectively:

CucSCpostLocation (GPS,Battery)

= Coptpost (GPS,Battery) ∗ f SCpost (GPS)

= 16.83 ∗ 360 = 6058.8 µAh (23)

CucSCpostLocation (GPS,Data)

= Coptpost (GPS,Data) ∗ f SCpost (GPS)

= 63 ∗ 360 = 22680 bytes (24)

Receiving the relevant push (0 ≤ f SCpush(GPS ∧PFs) ≤ 18)

notifications would also consume battery and data

(see (25) and (26)); with the server-centric approach, a small

number of notifications is received since alerts are sever-side

filtered according to location and subscription, so received

notifications only contain alerts for the user in question:

CucSCgetAlert (GPS ∧ PFs,Battery)

= Coptpush (null,Battery) ∗ f SCpush(GPS ∧ PFs)

= 18.36 ∗ f SCpush(GPS ∧ PFs) = {0, . . . , 330.48} µAh

(25)

CucSCgetAlert (GPS ∧ PFs,Data)

= Coptpush (null,Data) ∗ f SCpush(GPS ∧ PFs)

= 136 ∗ f SCpush(GPS ∧ PFs)

= {0, . . . , 2448} bytes (26)

Therefore, total battery and data consumption per hour

for the server-centric approach would be as shown in

formulae (27) and (28):

CappSC (GPS ∧ PFs,Battery)

= CucSCgetLocation (GPS,Battery)

+CucSCpostLocation (GPS,Battery)

+CucSCgetAlert (GPS ∧ PFs,Battery)

= {8650.8, . . . , 8981.28} µAh (27)

CappSC (GPS ∧ PFs,Data)

= CucSCpostLocation (GPS,Data)

+CucSCgetAlert (GPS ∧ PFs,Data)

= {22680, . . . , 25128} bytes (28)

In order to better illustrate the evolution of this consump-

tion depending on the number of received push notifications,

Fig. 4(a) and Fig. 4(b) show how battery and data traffic are

respectively affected when increasing this number.

As can be seen, battery and data consumption increase

per additional push notification is linear. Nevertheless, this

increase is minimal compared with the total consump-

tion. Particularly, every additional push notification entails

a 0.21% increase in battery consumption and a 0.59% data

traffic increase.

We could do the performance study with a wide variety of

frequencies for notifications, but since our goal is tominimize

consumption, our main concern is consumption when there

are more notifications. Therefore, to facilitate comparison

among approaches, we will always consider the worst case

scenario, making calculations for the maximum amount of

notifications (in this case, 18 per hour). Based on this assump-

tion, the total battery and data consumption would be the one
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FIGURE 4. Estimated evolution of battery and data consumption
depending on received notifications, in the server-centric approach.
(a) Battery consumption estimated evolution. (b) Data consumption
estimated evolution.

shown in (29) and (30):

CappSCAQI (GPS ∧ PFs,Battery) = 8981.28 µAh (29)

CappSCAQI (GPS ∧ PFs,Data) = 25128 bytes (30)

It should be noted that the user can make some choices

related to the frequency of notification; for instance, they

may choose not to be notified if the air quality level

for a given pollutant remains unchanged. We set our sys-

tem to a large number of notifications for evaluation

purposes.

B. MOBILE-CENTRIC APPROACH

For a mobile-centric application, we have to take into account

that:

• Themobile phone receives all the push notifications cor-

responding to Andalusian air quality alerts: 1080 alerts

per hour (f MCpush(null)).

• Once an alert is received, the app has to discard those

notifications which the user is not subscribed to, accord-

ing to information stored in the mobile phone. Then, for

the remaining alerts, the GPS location is obtained and

those alerts which are irrelevant to the current location

must be discarded.

Therefore, the GPS location would have to be obtained

more or less frequently depending on the number of

subscribed alert types (0 ≤ f MCget (PFs) ≤ 1080);

1080 would be our maximum number of notifications

if subscribed to all pollutant alerts. This consump-

tion highly depends on the number of subscribed alerts

(see (31)).

CucMCgetLocation (GPS ∧ PFs,Battery)

= Coptget (GPS,Battery) ∗ f MCget (PFs)

= 7.2 ∗ f MCget (PFs) = {0, . . . , 7776} µAh (31)

As there is no need to post the GPS data to the server,

resources are not consumed by this operation.

However, receiving 1080 push notifications would con-

sume battery and data (see (32) and (33)). In this case,

larger push notifications are received since alert location

information as well as the type of alert have to be included

in the message. This way, the mobile-centric app, reading

the personal information (read), can then discern if a certain

notification needs to be shown to this particular user:

CucMCgetAlert (GPS ∧ PFs,Battery)

= Coptpush (GPS ∧ PFs,Battery)

+Coptread (PFs,Battery)) ∗ f MCpush(null))

= (18.36 + 0.089) ∗ 1080 = 19924.92 µAh (32)

CucMCgetAlert (GPS ∧ PFs,Data)

= (Coptpush (GPS ∧ PFs,Data)

+Coptread (PFs,Data)) ∗ f MCpush(null))

= (370 + 0) ∗ 1080 = 399600 bytes (33)

Please, note that following this architectural style, it is not

necessary to post or store the obtained GPS location, since

once an alert reaches the mobile device and has been filtered

through all the static information (executing the GetAlert use

case), device location is obtained from the sensor in order to

also check that filter (executing theGetLocation use case).

Let us bear in mind that we could have filtered first by loca-

tion and then by subscription, both filters being in the mobile

phone, but such a configuration would consume much more

resources since checking the GPS location more frequently

would be required.

Therefore, battery and data consumption per hour for this

approach would be as shown in formulae (34) and (35),

respectively:

CappMC (GPS ∧ PFs,Battery)

= CucMCgetLocation (GPS ∧ PFs,Battery)

+CucMCgetAlert (GPS ∧ PFs,Battery)

= {19924.92, . . . , 27700.92} µAh (34)

CappMC (GPS ∧ PFs,Data)

= CucMCgetAlert (GPS ∧ PFs,Data)

= 399600 bytes (35)

Fig. 5(a) and Fig. 5(b) show the evolution of battery and

data consumption depending on the number of alerts the user

is subscribed to.

As Fig. 5(a) shows, the increase in battery consumption per

subscribed alert is linear, but this increase only entails 28%

of the total consumption in the worst case scenario (i.e., when
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FIGURE 5. Estimated evolution of battery and data consumption
depending on subscribed alerts, in the mobile-centric approach.
(a) Battery consumption estimated evolution. (b) Data consumption
estimated evolution.

the user is subscribed to all alerts).Most of the consumption is

due to the reception of push notifications and not to obtaining

the location. This makes sense, since getting a push notifica-

tion consumes 255% more than obtaining location.

Moreover, data consumption is stable. Only the reception

of push notifications consumes data, since the GPS location

does not need to be uploaded to the server.

In this case, taking us back to the worst case scenario,

we can assume that the user receives all possible notifica-

tions because the pollutant level is the one which the user

is subscribed to, so the app would receive notifications from

all 1080 sensors. Then, the particular battery and data con-

sumption of the application for this design would be as shown

in (36) and (37):

CappMCAQI (GPS ∧ PFs,Battery) = 27700.92 µAh (36)

CappMCAQI (GPS ∧ PFs,Data) = 399600 bytes (37)

C. HYBRID ARCHITECTURAL APPROACHES

We consider the two hybrid architecture approaches; let us

use Hybrid Architecture 1 for the system where GPS loca-

tion is constantly submitted and received notifications are

filtered according to the personal features stored in the device.

Bearing in mind the previous assumptions, location would be

submitted every 10 seconds (i.e. frequencies f HA1get (GPS) and

f HA1post (GPS) are 360 times in an hour) and we would receive

one alert per pollutant 3 times in an hour; that is, 18 alerts per

hour (f HA1push (GPS)). Please, note that the user would receive

all pollutant alerts regardless of whether he or she is sub-

scribed to them or not. This time, the filter is performed on

the mobile device. Obtaining GPS location every 10 seconds

would consume the battery in (38):

CucHA1getLocation (GPS,Battery)

= Coptget (GPS,Battery) ∗ f HA1get (GPS)

= 7.2 ∗ 360 = 2592 µAh (38)

Posting GPS data to the server every 10 seconds would

consume battery and data (see (39) and (40)):

CucHA1postLocation (GPS,Battery)

= Coptpost (GPS,Battery) ∗ f HA1post (GPS)

= 16.83 ∗ 360 = 6058.8 µAh (39)

CucHA1postLocation (GPS,Data)

= Coptpost (GPS,Data) ∗ f HA1post (GPS)

= 63 ∗ 360 = 22680 bytes (40)

Receiving 18 push notifications and checking the personal

information filters would also consume battery and data

(see (41) and (42)):

CucHA1getAlert (GPS ∧ PFs,Battery)

=
(

Coptpush (PFs,Battery)

+Coptread (PFs,Battery)) ∗ f HA1push (GPS)

= (18.36 + 0.089) ∗ 18 = 332.082 µAh (41)

CucHA1getAlert (GPS ∧ PFs,Data)

=
(

Coptpush (PFs,Data)

+Coptread (PFs,Data)) ∗ f HA1push (GPS)

= (232 + 0) ∗ 18 = 4176 bytes (42)

Therefore, total hourly battery and data consumption for

the Hybrid Architecture 1 approach would be as shown in

formulae (38) and (39):

CappHA1 (GPS ∧ PFs,Battery)

= CucHA1getLocation (GPS,Battery)

+CucHA1postLocation (GPS,Battery)

+CucHA1getAlert (GPS ∧ PFs,Battery) = 8982.882 µAh

(43)

CappHA1 (GPS ∧ PFs,Data)

= CucHA1postLocation (GPS,Data)

+CucHA1getAlert (GPS ∧ PFs,Data) = 26856 bytes (44)

Again, receiving the maximum number of notifications,

the total battery and data consumption would be as shown

in (45) and (46):

CappHA1AQI (GPS ∧ PFs,Battery) = 8982.882 µAh (45)

CappHA1AQI (GPS ∧ PFs,Data) = 26856 bytes (46)
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Since the battery and data consumption values for this

architectural style remain constant in the case study regard-

less of the number of alerts the user is subscribed to, we have

not represented them in a chart.

Hybrid Architecture 2 would be the approach in which

personal features are sent to the server so that the latter only

submits notifications according to the types of alert the user is

subscribed to (0 ≤ f HA2push (PFs) ≤ 1080), where the maximum

number of alerts per hour is 1080, as previously explained.

Then, once a notification is received by the mobile device,

the GPS location is obtained and the user is only shown

notifications related to his or her location.

Obtaining GPS location for subscribed alerts would con-

sume the battery in (47):

CucHA2getLocation (GPS ∧ PFs,Battery)

= Coptget (GPS,Battery) ∗ f HA2push (PFs) = 7.2 ∗ f HA2push (PFs)

= {0, . . . , 7776} µAh (47)

Since there is no need to post the GPS data to the server,

resources are not consumed by this operation.

However, receiving the push notifications would consume

battery and data (see (48) and (49)):

CoHA2getAlert (GPS ∧ PFs,Battery)

= Coptpush (GPS,Battery) ∗ f HA2push (PFs)

= 8.36 ∗ f HA2push (PFs)={0, . . . , 19828.8} µAh (48)

CoHA2getAlert (GPS ∧ PFs,Data)

= Coptpush (GPS,Data) ∗ f HA2push (PFs) = 285 ∗ f HA2push (PFs)

= 285 + f HA2push (StC) = {0, . . . , 307800} bytes (49)

Consumption of battery and data per hour for this approach

would be as shown in (50) and (51), respectively:

CappHA2 (GPS ∧ PFs,Battery)

= CucHA2getLocation (GPS ∧ PFs,Battery)

+CucHA2getAlert (GPS ∧ PFs,Battery)

= {0, . . . , 27604.8} µAh (50)

CappHA2 (GPS ∧ PFs,Data)

= CucHA2getAlert (GPS ∧ PFs,Data)

= {0, . . . , 307800} bytes (51)

In order to better illustrate the evolution of this consump-

tion depending on the number of subscribed alerts, Fig. 6(a)

and Fig. 6(b) show how battery and data traffic are respec-

tively affected as the amount increases.

As Fig. 6(a) and Fig. 6(b) show, each subscribed alert

entails a linear increase in battery and data consumption.

Consumption only depends on the number of received alerts;

therefore, users only subscribed to a few alerts would con-

sume much fewer resources than those subscribed to many.

Once more, we decided to take into account the maximum

number of subscribed pollutants and received alerts in order

to evaluate the architecture’s resource consumption. Then,

FIGURE 6. Estimated evolution of battery and data consumption
depending on subscribed alerts, in the hybrid architecture 2 approach.
(a) Battery consumption estimated evolution. (b) Data consumption
estimated evolution.

total battery and data consumption of the application using

this architectural style would be as shown in (52) and (53),

respectively:

CappHA2AQI (GPS ∧ PFs,Battery) = 27604.8 µAh (52)

CappHA2AQI (GPS ∧ PFs,Data) = 307800 bytes (53)

D. DATA ANALYSIS

In Table 3, we can see the data obtained for the early anal-

ysis. If we represent the total battery and data consump-

tion expected for each configuration (see Fig. 7) we can

see that, in this scenario, the most appropriate architectures

from a resource consumption point of view would be the

server-centric and hybrid architecture 1 approaches. How-

ever, the mobile-centric architecture would be satisfactory

in order not to overload the server side when we have a

large number of users. Hybrid architecture 2 consumes as

much as the mobile-centric system but does not provide any

advantage regarding not overloading the server since (1) both

for mobile-centric system and hybrid architecture 2 we need

to receive all the notifications and filter according to dynamic

context in the mobile and (2) for server-centric system and

hybrid architecture 2 we need to filter according to static

context in the server side; therefore, we will dismiss this

option for the remainder of this paper.

We need to take into account that, in the server-centric

and hybrid architecture 1 approaches, GPS consumption was

pushed to the limit; therefore, these values will not increase in

any case study implementation (they will probably decrease,

not requiring 10 second accuracy for location), but data traffic

due to push notifications can increase or decrease depending
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TABLE 3. Summary of early analysis data.

FIGURE 7. Total battery consumption and data traffic obtained in the
early analysis for all alternative architectures. (a) Battery consumption in
the early analysis. (b) Data consumption in the early analysis.

on the case study. Therefore, we are discarding the hybrid

architecture 2 option and we will proceed to implement the

server-centric, mobile-centric and hybrid architecture 1 con-

figurations to verify the theoretical study and to measure

additional features.

VI. EXPERIMENTAL SETUPS AND RESULTS

In the following subsections, we first of all explain how

the three selected alternatives were implemented; secondly,

we describe how the tests were performed and what the

measured features are and, finally, obtained results are shown.

A. AIR4PEOPLE ALTERNATIVE ARCHITECTURE

IMPLEMENTATION

For the experiment’s conduction we have implemented the

three previously mentioned configurations for CARED-SOA

architecture and Air4People app, as represented in Fig. 8 and

explained in the following paragraphs.

1) SERVER-CENTRIC IMPLEMENTATION

In this case, all user subscriptions’ information and GPS

location will be sent to the server through the REST API.

For testing purposes, we have used Firebase to store such

data. Therefore, Firebase will store all the data in the cloud

and the server will be in charge of filtering the messages

based on user location and alert subscription according to

personal features, only sending relevant notifications to the

particular user. Thus, with such a configuration, the mobile

is not involved in any filtering, all taking place on the server

side.

2) MOBILE-CENTRIC IMPLEMENTATION

In this case, personal subscription data are stored in the

device and the user’s GPS location is also filtered in it. For

this purpose, we have used Nimbees (http://nimbees.com).

NimBees is a commercial mobile push notification platform

supporting mobile-centric architectural styles. The platform

is composed of an API for mobile applications, which stores

users’ profiles and allows applications to receive segmented

push notifications, and a backend, in charge of managing

sent notifications. Once the push notification is sent and

has reached the mobile device (through the internal use of

Firebase), the API based on the stored profile decides if the

owner is an appropriate recipient for that message. Only when

the owner is selected as a recipient is the push notification

shown in themobile device, otherwise all notifications remain

transparent.

This way, all notifications are sent to the device where it

checks whether the user is subscribed to the said alert type,

and only then device location is obtained and, if it is within

the area of the received notification air quality station, then

the notification is shown in the mobile device.

3) HYBRID ARCHITECTURE IMPLEMENTATION

Finally, the hybrid architecture implementation is constantly

sending the GPS location to the server and storing it through

the use of Firebase; the server filters users by location

and only sends notifications to those near the air quality

station in question. Subscription data are stored in the mobile
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FIGURE 8. Three implemented Air4People app architectural styles. (a) Server-centric architecture. (b) Hybrid architecture.
(c) Mobile-centric architecture.

device and Nimbees is used to filter the received notifications

according to user subscriptions. From now on, the term hybrid

architecture will be used to refer to the previously called

hybrid architecture 1 approach.

B. TESTS CONFIGURATION

We have made performance tests with each configuration,

location being activated all the time. The test consisted of

monitoring the resources consumed by each architecture’s

application separately once they had been working for an

hour. We also tested the system with the three applications

at the same time for one hour, to verify relative battery con-

sumption. All tests were carried out first of all in the following

handset: a Huawei Honor 6x with a HiSilicon Kirin 655 Octa-

core (4x2.1 GHz Cortex-A53 & 4x1.7 GHz Cortex-A53)

processor, 3GB of RAMmemory and 3340 mAh battery with

Android 7.0 (Nougat) as operating system.

During the first five minutes, user personal features and

subscriptions were actively changed. Then, the one-hour test

was performed. The following data were collected:
• Battery consumption

• GPS usage

• Data posted to the server (after initial configuration)

• Data received through push notifications

• Background system activation
Such data were obtained thanks to several Android

applications—GSam Battery Monitor [57], Ampere Meter

Pro [58] and Data Usage [59]—, and using Firebase perfor-

mance utilities [60].

We tested the system in the vicinity of the town

of San Fernando air quality station in Spain (current

information about San Fernando air quality can be chec-

ked at http://airservices.uca.es/Air4People/moteCurrentQAir

TABLE 4. Battery consumption and GPS use of the compared
implementations.

English/San_Fernando). Through the mobile application,

we subscribed to Good CO, Very Unhealthy SO, Acceptable

NO2, Unhealthy O3, and Very Unhealthy PM10 and PM2.5

alerts.

C. RESULTS

In this sub-section, we explain the results of the evaluation

carried out on the three implementations. As we will see,

we have been able to obtain additional information which had

not been anticipated by the early analysis.

1) BATTERY CONSUMPTION AND GPS USE

Table 4 shows battery consumption in µ Ah and using per-

centages as well as GPS use in seconds. As we can see in the

table, the mobile-centric implementation shows considerably

higher battery consumption. In order to rule out higher battery

consumption being due to any unexpected process being

executed in the system, we verified this result by executing

the three applications at the same time, and each application’s

battery consumption levels were checked and comparedwhen

executing them. The results showed again higher battery
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TABLE 5. Data consumption of the compared implementations.

TABLE 6. System information of the compared implementations.

consumption percentage for the mobile-centric implementa-

tion than for the other two.

Regarding GPS use, we can see that the mobile-centric

implementation only uses it for 6 seconds, only requiring

it when a notification for this particular user’s profile is

received; however, with the other two applications, the GPS is

used for 33 seconds, as location is constantly beingmonitored

and submitted to the server side. Thus, the GPS use is equal

between the server-centric and the hybrid architecture, being

in both cases much higher than in the mobile centric.

2) DATA TRAFFIC CONSUMPTION

We have two sources of data traffic consumption: location

data posted by the application and push notifications received

by it. Table 5 shows both types of data traffic for each imple-

mentation.

To understand these data, we need to bear inmind that there

were 1 034 air quality alerts over the Andalusian territory

during the hour the system was tested; out of these, only

10were for the San Fernando town area and only 3 conformed

to the user’s personal subscriptions. In the table we can see

that posting the location consumes a larger amount of data for

server-centric and hybrid architectures, but in terms of getting

alerts (receiving notifications), the mobile-centric implemen-

tation consumesmuchmore than the other two and the server-

centric is clearly defined with the lowest consumption.

3) SYSTEM INFORMATION

As complementary information, we have analyzed additional

data obtained from the system: we measured (1) overall CPU

usage and only in background (in seconds) and (2) the total

time the mobile phone remained awaken (in seconds) and

the number of times it awakened. The results are shown

in Table 6.

TABLE 7. Additional information on the compared implementations’
mobile awakenings.

As can be seen in Table 6, CPU use is quite similar in all

of the approaches, but in the mobile-centric approach half of

the time it is used in background. Consequently, in such an

implementation the amount of time the mobile was awaken

is lower, despite awakening times being higher; this is due to

receiving all notifications without a previous filter from the

server side.

We have shown additional data on the processes waking up

our Android device in Table 7 to have a better understanding

of mobile awakenings.

We can see that, in the mobile-centric implementation, the

system wakes up every time a message is received, since

all message filtering takes place in the device; awakening

time is high compared to the other two configurations; more

particularly, out of the 3 107 awakenings, 589 times it was

due to GOOGLE_C2DM (used by Google in some notifi-

cation reception-related tasks) and 1034 times it was caused

by Firebase (message reception). Another 1034 times were

due to Nimbees (message filtering, that is, checking which

messages need to be shown to this particular user). Do bear

in mind that even though COOGLE_C2DM has been depre-

cated and replaced byGCM, there are some internal processes

in Nimbees which still use this terminology. The full awak-

ening number decreases to 485 times in the sever-centric-

based implementation, and to 520 in the hybrid architectural

one. The main process waking up the device now is Loca-

tionManagerService, in charge of obtaining device location;

messaging services are now used rather less.

Let us note that we repeated the tests with a different

handset: a BQ Aquaris V with Qualcomm Snapdragon 435

(octa-core at 1.4 GHz) processor, 4G of RAM memory and
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TABLE 8. Battery consumption with a different handset.

3100 mAh battery with Android 7.1.2 (Nougat). The results

for both handsets, as expected, were quite similar: the BQ

device showed slightly better battery behavior, a completely

negligible difference (see Table 8). Besides, we also followed

longer period tests; in particular, each implementation was

tested for 24 hours. Data and battery consumption were

proportional; the amount of data increased proportionally

24 times and battery consumption remained low, as shown

in Table 8. It should be noted that each test was repeated

three times in order to verify the validity of the obtained

results; Table 8 shows the average values for all tests, which

display really similar figures. As a result, we might conclude

that the selection of the correct architectural design is key to

save battery and data consumption. There are two different

requirements that are crucial for making this decision, how

often the dynamic data varies and the frequency at which

such data will be consumed. If an application does not require

updated data, but it is frequently consumed, a server-centric

style would be more efficient. Instead, if it requires updated

data that is consumed occasionally, a mobile-centric style

would have a lower resource consumption. This guideline

could also be applied to the specific features of the application

in order to design and evaluate a hybrid approach.

VII. DISCUSSION

In this section, first of all, we compare the theoretical results

provided by our early analysis with those obtained from

the implementations; secondly, the obtained results are dis-

cussed with regards to the three implemented architectures

for Air4People; finally, we discuss how the results may be

applied to other case studies.

A. COMPARISON OF EARLY ANALYSIS WITH

EXPERIMENTAL RESULTS

Fig. 9 and Fig. 10 show how the experimental results are

rather similar to those obtained in the early analysis; even

though there are large differences for the obtained battery

consumption (see Fig. 9), the important issue is that it has

been verified that the estimated resource consumption for

the three approaches is reliable. This difference may be

due to the use of additional APIs and frameworks (such

as Nimbees, and Firebase) that overload the mobile phone.

We can say that, for this case study, battery consumption

is similar in the server-centric and the hybrid architecture

approaches, increasing considerably in the mobile-centric

FIGURE 9. Battery consumption comparative study for early analysis and
experimental results.

approach. However, it must be taken into account that the

actual battery consumption depends on the final device; the

relevant fact is to know which approach will consume more

and whether the differences are considerable or trivial.

The same observation can be made regarding data traffic

(see Fig. 10). We can see that the mobile-centric option con-

sumes more data due to push notifications, whereas the other

two approaches present lower (and similar) data consump-

tion, that being mainly due to the GPS location submission to

the server side. Still, what is relevant is that the tendency high-

lighted by the early analysis is confirmed by the experimental

results. The similarity between the estimated and the exper-

imental resource consumption shows us that the divergence

in battery consumption may be due to the use of specific

frameworks and a greater use of the screen (being this what

most impacts the battery consumption). The consumption of

the primitive operations for the conceptual framework was

obtained with the device screen completely off. In contrast,

many devices when they receive a push notification turn the

screen on. This may be one of the reasons for the divergence,

since the biggest difference was found in the architecture that

receives the higher number of notifications.

Therefore, we can conclude that our early analysis is reli-

able and, therefore, additional results for further case studies

and characteristics may be estimated.

B. DISCUSSING THE RESULTS FOR AIR4PEOPLE

As we have already mentioned, the mobile-centric approach

shows high data traffic. We also mentioned that GPS location

submission is not bound to increase in other case studies

(we do not expect to require a higher accuracy than 10 sec-

onds); however, it might be the case that push notifications

increase or decrease. In order to evaluate which is the better

architecture for the case study, we would need to roughly

estimate the number of expected notifications. In any case,

the above result confirms that, as stated in Section 4.1.2 in [6],

whenever the application mainly focuses on getting content

rather than posting it, the server-centric option might prove

more efficient, always depending on the balance between

sending and receiving information. We can therefore state

that for the Air4People app, the mobile-centric option is not

a solution, but what about the hybrid architecture one?
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FIGURE 10. Battery consumption comparative study for early analysis and experimental results.

In Fig. 7, Fig. 9 and Fig. 10, as well as Table 4 and

Table 5, we could see how, although the results obtained in the

server-centric and hybrid architecture solutions were similar,

the server-centric solution still obtained better results. Nev-

ertheless, since the difference is rather small, the developer

could take into account other aspects that might influence

his/her decision. For instance, if sensitive data are used for

filtering notifications, we could decide to keep such data in

the mobile phones, as might be the case of the respiratory

conditions the user might have in relation to air quality noti-

fications.

Furthermore, Air4People has additional features to be

taken into account (such as the physical activity being carried

out). If we had to monitor and post the data concerning

the physical activity or other personal contexts acquired in

the smartphone, data traffic would definitely increase. For

the sake of simplicity, we will assume that posting such

information will consume the same data traffic as posting

location data. Sending such data every minute (we chose

a one-minute frequency but, again, this will depend on the

particular case study) would imply the extra battery and data

consumption shown in Table 9 (for instance, when calculating

battery consumption for posting the extra feature, since it is

being posted 60 times in an hour, we multiply 60∗16.83—see

Table 2—).

As we can see, the hybrid architecture implementation

is still overtaking the server-centric one. However, the best

option will still depend on the number of received notifica-

tions and the number of context features to be checked; not

only that, also on the overhead we may avoid in the server

side when checking a particular user’s context features in

the client side. This, together with the advantages of keeping

TABLE 9. Additional battery and data consumption per hour when
posting one additional context feature every minute.

sensitive data in the smartphone, makes us still lean towards

supporting the hybrid architecture solution for Air4People.

In the following section, we perform a further analysis for

additional scenarios.

C. EXTENDING THE RESULTS AND PROVIDING

GUIDELINES TO OTHER SCENARIOS

If we try to extend the results to other scenarios, we must

insist on the fact that every scenario and application have dif-

ferent requirements and an early analysis would be advisable

in any case, in order to evaluate what the best option might

be for them.

However, we need to bear in mind that context-aware apps,

which are themain focus of this paper, have one relevant char-

acteristic to consider, that the context is taken into account;

such contexts can be dynamic or static. In the case of a static

context (personal features in our case study), it will probably

be more efficient to keep such a context in the server side

since it is occasionally submitted from the mobile to the
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server. However, if we are dealing with sensitive data we

might consider a hybrid architecture solution (depending on

the expected number of notifications to be discarded). In the

case of a dynamic context –obtained in the mobile device-,

we have to bear in mind that posting it might consume more

resources and we have to evaluate how many push notifi-

cations we can save if we post such a context to the server

(depending on the expected number of notifications to be

discarded).

In order to extend the results to scenarios with a higher

number of context characteristics (for instance, if we want

to include physical activity in the evaluated scenario), a vari-

able regarding the number of additional context features has

been considered. In particular, we have included NDyCǫN,

the domain of natural numbers, dynamic contexts and

NStCǫN, static ones. For the sake of simplicity, we are going

to assume that all context features require the same frequency

for dynamic context submission and the same number and

length of received push notifications (varying notification

frequencies and lengths would change the obtained result but

the consumption trend would remain unchanged).

Let NDyC be the set of dynamic contextual information of

an application {DyC1, . . . ,DyCndyc} andNStC the set of static

contextual information of an application {StC1, . . . , StCnstc}.

In a server-centric approach, if we extend the formulae in

Section IV.A with additional features, final battery and data

consumption for NDyC dynamic contexts and NStC static

ones would be those shown in (54) and (55), respectively:

As a guideline, we can see how both battery and data con-

sumption increase linearly with additional dynamic contexts,

but are not affected by static ones. However, consumption

highly depends on the required frequency for dynamic con-

text update and the number of received push notifications.

CappSCmultipleContexts (NDyC ∧ NStC,Battery)

=

i=ndyc
∑

i=1

[

CucSCget
(

DyC i,Battery
)

+CucSCpost
(

DyC i,Battery
)

]

+CucSCpush (NDyC ∧ NStC,Battery) (54)

CappSCmultipleContexts (NDyC ∧ NStC,Data)

=

i=ndyc
∑

i=1

[

CucSCpost
(

DyC i,Data
)

]

+CucSCpush (NDyC ∧ NStC,Data) (55)

In a mobile-centric approach, according to the formulae in

Section IV.B, final battery and data consumption for NDyC

dynamic contexts and NStC static ones would be as shown in

formulae (56) and (57), respectively:

CappMCmultipleContexts (NDyC ∧ NStC,Battery)

=

i=ndyc
∑

i=1

[

CucMCget
(

DyC i ∧ NStC,Battery
)

]

+ (

j=nstc
∑

j=1

[

Coptread
(

StC j,Battery
)]

+Coptpush (NDyC ∧ NStC,Battery)) ∗ f MCpush (null)

(56)

CappMCmultipleContexts (NDyC ∧ NStC,Data)

=

j=nstc
∑

j=1

[

Coptread
(

StC j,Data
)]

+Coptpush (NDyC ∧ NStC,Data) ∗ f MCpush (null) (57)

In this approach, we should take into account as a guide-

line that consumption apparently does not increase that

much when adding dynamic contexts. However, not filtering

dynamic contexts in the server side might imply receiving

a huge number of notifications. In this case, static context

increase leads to further battery consumption for reading the

static context from the local memory, however such a reading

operation requires very low consumption.

In a hybrid architecture approach, according to the for-

mulae in Section IV.C, final battery and data consumption

for NDyC dynamic contexts and NStC static ones for hybrid

architecture 1 would be as shown in (58) and (59):

CappHA1multipleContexts (NDyC ∧ NStC,Battery)

=

i=ndyc
∑

i=1

[CucHA1get

(

DyC i,Battery
)

+CucHA1post

(

DyC i,Battery
)

]

+ (

j=nstc
∑

j=1

[

Coptread
(

StC j,Battery
)]

+Coptpush (NStC,Battery)) ∗ f HA1push (NDyC) (58)

CappHA1multipleContexts (NDyC ∧ NStC,Data)

=

i=ndyc
∑

i=1

[CucHA1post

(

DyC i,Data
)

]

+ (

j=nstc
∑

j=1

[

Coptread
(

StC j,Data
)]

+Coptpush (NStC,Data)) ∗ f HA1push (NDyC)) (59)

In this case, the hybrid architectural approach entails a

linear increase of both battery and data consumptions, since

the sensed information needs to be constantly gathered and

posted to the server. Similarly, to the server-centric approach,

this consumption highly depends on the frequency at which

the data are sensed. In addition, every received push noti-

fication requires reading the static context, which, although

minimal, is a further consumption effort.

As can be seen, each architecture provides advantages and

disadvantages and may reduce consumption of the mobile

application under specific circumstances. This is why we

need to guide developers, through the analysis of resource

consumption, to select the most appropriate architecture that

65246 VOLUME 7, 2019



G. Ortiz et al.: Improving Resource Consumption in Context-Aware Mobile Applications

FIGURE 11. Estimated battery and data consumption evolution when
increasing dynamic context features. (a) Battery consumption when
increasing dynamic contexts. (b) Data consumption when increasing
dynamic contexts.

consumes fewer resources. For instance, in our case study,

taking into account additional contexts does not vary the

amount of received notifications significantly (for example,

when you are running you might receive some additional

alerts concerning air quality, but it might be 3-4 more every

hour).

To illustrate how additional contexts may affect resource

consumption, we estimated some additional values through

the early analysis procedure. Fig. 11 and Fig. 12 show how

battery and data consumption are affected when increas-

ing the number of dynamic and static context features,

respectively— from 1 to 10 additional features (with the same

number of notifications).

The hybrid architecture approach seems to be the most

efficient one in this case. Please, recall that increasing the

number of features does not imply reducing the number of

notifications (even though it might be the case for some case

studies), but it might mean having different or more person-

alized notifications according to the context. Analogously,

Fig. 13 shows how reducing the total amount of push notifica-

tions received by the app —from 100% to 10%— drastically

reduces data and battery consumption in the mobile-centric

architecture.

The analysis and estimations presented in this work con-

firm that resource consumption of context-aware applica-

tions highly depends on the monitored contextual infor-

mation and on the selected architectural style. Therefore,

FIGURE 12. Estimated battery and data consumption evolution when
increasing static context features. (a) Battery consumption when
increasing static contexts. (b) Data consumption when
increasing static contexts.

FIGURE 13. Estimated battery and data consumption evolution when
decreasing push notifications. (a) Battery consumption when decreasing
push notifications. (b) Data consumption when decreasing push
notifications.

before starting to implement the application, it is advisable

to carefully analyze which architectural style would be more

appropriate.
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VIII. CONCLUSION

The state of the art has revealed that, even though context

awareness has taken unprecedented relevance over recent

years, there is an outstanding lack of guidelines and best-

practice guidance for context-aware low consumption devel-

opment in accordance with current scenarios.

After a preliminary generic resource consumption eval-

uation of several alternative architectures (server-centric,

mobile-centric and hybrid architectures) together with a spe-

cific case study’s early analysis and later implementation

of the said architectural styles, we can conclude that the

best architecture for context-aware mobile applications will

mainly depend on two factors: the number of notifications or

communications required by the app —a higher number of

possible notifications to be filtered depending on the context

will balance toward server-centric applications— and the

type of features to be monitored in the context —a con-

text obtained dynamically in the mobile calls for a mobile-

centric application; hybrid architecture applications are also

perfect choices when trying to avoid personal context data

travelling outside the smartphone. Such statements have been

confirmed through an extension and discussion of the generic

formulae to a varying number of context features.We can also

affirm that the early analysis according to [6] provides a reli-

able estimation of the app resource consumption; therefore,

it is highly recommended to perform it before deciding which

is the most appropriate architecture for a particular context-

aware app.With regards to CARED-SOA, since we are taking

more than one context feature into account, we settle for

migrating the initial server-centric implementation to a hybrid

architecture one.

One of our current lines of research focuses on the

development of an Internet of Things RandOm GENerator

(nITROGEN) data emulator to test the functionality and per-

formance of applications for the IoT. In our future work,

we hope to condition this emulator to give further support to

developers for consumption estimations. In addition, another

important part of context-aware applications is the infrastruc-

ture cost. Currently, we also work on estimating the economic

cost of deploying a context aware application in a cloud

environment. This cost could also be evaluated, together with

the resource consumption, in order to identify which archi-

tecture has a correct balance between the mobile resource

consumption and the operational cost.
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