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Improving RF-Based Partial Discharge Localization

via Machine Learning Ensemble Method
Ephraim Tersoo Iorkyase , Christos Tachtatzis , Ian A. Glover , Pavlos Lazaridis , David Upton ,

Bakhtiar Saeed , and Robert C. Atkinson

Abstract—Partial discharge (PD) is regarded as a precursor to
plant failure and therefore, an effective indication of plant condi-
tion. Locating the source of PD before failure is key to efficient
maintenance and improving reliability of power systems. This pa-
per presents a low cost, autonomous partial discharge radiolocation
mechanism to improve PD localization precision. The proposed ra-
dio frequency-based technique uses the wavelet packet transform
(WPT) and machine learning ensemble methods to locate PDs.
More specifically, the received signals are decomposed by the WPT
and analyzed in order to identify localized PD signal patterns in the
presence of noise. The regression tree algorithm, bootstrap aggre-
gating method, and regression random forest are used to develop
PD localization models based on the WPT-based PD features. The
proposed PD localization scheme has been found to successfully lo-
cate PD with negligible error. Additionally, the principle of the PD
location scheme has been validated using a separate test dataset.
Numerical results demonstrate that the WPT-random forest PD lo-
calization scheme produced superior performance as a result of its
robustness against noise.

Index Terms—Partial discharge, localization, wavelet packet
transform, bootstrap aggregating, random forest, regression tree.

I. INTRODUCTION

T
HE presence of partial discharge in electrical assets is in-

dicative of some defect in the insulation system of the de-

vice. These discharges can harm the insulation and might lead to

total breakdown of the asset over time with social and economic

consequences. The uninterrupted monitoring of these assets is

therefore paramount in the operation of the electric power sys-

tem. One of the leading candidates for effective condition mon-

itoring of electrical assets is partial discharge [1], [2]. PDs are

ionization processes that occur in void filled gases or liquids

inside insulation, in dielectric surfaces, and in the proximity of

Manuscript received June 29, 2018; revised December 21, 2018 and February
11, 2019; accepted March 17, 2019. Date of publication March 25, 2019; date
of current version July 23, 2019. This work was supported in part by the En-
gineering and Physical Sciences Research Council under Grant EP/J015873/1
and in part by the Tertiary Education Trust Fund (TETFund) Nigeria. Paper
no. TPWRD-00753-2018. (Corresponding author: Ephraim Tersoo Iorkyase.)

E. T. Iorkyase, C. Tachtatzis, and R. C. Atkinson are with the Depart-
ment of Electronic and Electrical Engineering, University of Strathclyde,
G1 1XW Glasgow, U.K. (e-mail:, ephraim.iorkyase@strath.ac.uk; christos.
tachtatzis@strath.ac.uk; robert.atkinson@strath.ac.uk).

I. A. Glover, P. Lazaridis, D. Upton, and B. Saeed are with the Depart-
ment of Engineering and Technology, University of Huddersfield, HD1 3DH
Huddersfield, U.K. (e-mail:, I.A.Glover@hud.ac.uk; p.lazaridis@hud.ac.uk;
D.W.Upton@hud.ac.uk; B.Saeed@hud.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPWRD.2019.2907154

sharp metallic objects [3]–[5]. PDs emit part of the energy they

produce as electromagnetic waves [6] and this has motivated

the use of radio sensors for detection and localization of the

discharge sources. Early detection of PD reduces the risks of

harm to insulation and can prevent sudden breakdown. Once

the occurrence of PD has been established, it is a matter of ur-

gency to locate the discharge source as quickly and accurately

as possible to enable corrective maintenance operation when

the maintenance activity is most cost effective and before the

equipment loses performance or suffers catastrophic failure.

RF-based PD location has been widely studied [7]–[11].

Given a model of radio signal propagation in a particular environ-

ment, the TDoA, AoA and/or RSS [5], [12]–[15] algorithm can

be used to estimate the distance from a source to a receiver and

thereby trilaterate the location of the PD. UHF antenna arrays

[8] have also been used to locate impulsive PDs in a substation.

In cables, time-domain reflectometry (TDR) [16] which is based

on the time difference of arrival is used to locate the source of

PD along a cable. The time-difference-of-arrival (TDoA) of the

received signals is established by cross-correlation and the loca-

tion of PD is found by multi-lateration [17]. Unfortunately, this

technique is uneconomical and complex requiring accurate syn-

chronization, and Line-of-Sight (LOS) propagation for accurate

location estimation. It also requires a detailed RF propagation

model for every environment in which this system is deployed

and this is not trivial to obtain. The environment in which PD is

expected is characterized by interference, multipath propagation

and presence of metallic obstacles leading to a complex spatial

radio environment, which is difficult to describe by ready-made

models.

In previous work, we have adopted a pattern matching tech-

nique which uses features of the received radio signals to infer

PD location [14]. The pattern matching technique can be re-

garded as a low cost technique compared to those based on time

estimation [18]. It turns the frequency-selective multipath phe-

nomenon to surprisingly good use: by combining the multipath

pattern with other PD pulse characteristics, it creates unique RF

signatures representing different locations.

In this study, we propose to deploy a spatial array of low

cost off-the-shelf commercial radio sensors in form of wireless

sensor network in an electricity substation. The proposed solu-

tion allows a PD monitoring system to be permanently deployed

and thus monitor the substation uninterrupted in real-time and

at low cost. In this approach, the network autonomously creates

a spatial map of the RF characteristics of the radio signals and
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uses sophisticated machine learning techniques to estimate the

location of PD sources. In previous work we have used machine

learning algorithms to build a bespoke propagation model for

the radio environment from the perspective of each node [13].

Based on the relative received signal strength of a PD pulse at

each node, a multilateration approach can be deployed to infer

PD location. In this work, we go further by investigating the

temporal signatures of the received pulses to determine if they

are able to provide a more accurate estimation of location than

raw energies alone.

One approach, we have considered, in engineering PD fea-

tures for source localization is direct extraction from measured

time domain PD signals. These features infer the location where

PD originate and are referred to as location dependent parame-

ters. Features extracted from time domain signals for PD location

assume a single PD type scenario. However, localization of PD

using such features may not be sufficient in real electricity sub-

stations where different types of PD occur. Therefore, we adopt a

modified version of this approach by examining the time-domain

signatures from each pulse, but in multiple distinct frequency

bands. This technique adds another discriminatory dimension

to the problem and yields superior results. In the frequency do-

main, PDs of different types can be effectively characterized for

localization. Most of the frequency domain methods used in PD

signal analysis and localization are based on the well-known

Fast Fourier transform (FFT) techniques [16], [19]. However,

PD signals are stochastic and often demonstrate a nonstationary

and transient nature, carrying small yet informative components

embedded in larger repetitive signals [1]. This limits the appli-

cation of FFT based techniques for PD localization.

In this work, a low cost approach, which uses the Wavelet

Transform [20] to decompose RF PD signals into different fre-

quency bands and extract PD location dependent parameters for

robust PD localization is presented and evaluated in this paper. A

machine learning ensemble technique is employed for improved

PD localization.

II. FEATURE EXTRACTION

Feature extraction is one of the necessary preprocessing steps

of machine learning and pattern matching [21]. Its aim is to ex-

tract the most informative inputs (features) from raw PD signals.

Good features are highly correlated with the expected outputs

but have low correlation with each other. The extracted features

facilitate the subsequent learning and generalization steps, and

in some cases, lead to better interpretations.

Partial discharge (PD) RF pulses collected during the mea-

surement campaign are corrupted by noise due to external dis-

turbances. Extracting PD pulses from such noisy measurements

is therefore crucial. It is also important that this is done in

such a way that the features of the PD pulse are preserved as

much as possible. In this work, a multivariate de-noising method

[22]–[24] that combines wavelets and Principal Component

Analysis (PCA) is applied to the PD data in order to isolate

the PD signals from noise without assuming any a priori knowl-

edge of the PD features. This technique combines the decom-

position of information given by the wavelet transform with the

Fig. 1. Emulated PD pulse with noise.

ability to orthogonalize variables provided by PCA. The objec-

tive is to obtain de-noised PD data so as to extract meaningful

information for PD location. Samples of noise corrupted PD sig-

nals recorded are as shown in Fig. 1. PCA here is not used to

discover new variables which could be of interest, but to take

advantage of the deterministic links among the signals, offering
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an additional de-noising layer by omitting insignificant princi-

pal components. In parallel, PCA is performed on the wavelet

approximation coefficients to keep the most important features

of the PD signals. Kaiser’s rule [25] is used to automatically

select the minimum numbers of retained principal components

(components associated with eigenvalues exceeding the mean of

all eigenvalues). The Daubechies wavelet db14 with a 5th level

decomposition which has been used for PD de-noising [26] is

adopted in this work. Owing to the fact that only a few of the

wavelet coefficients describing PD waveform carry significant

information, hard-thresholding is employed. The PD de-noised

signal samples are shown in Fig. 2.

A. Wavelet Transform

The application of wavelet transformation in PD signal analy-

sis is a well-known technique which overcomes the problems of

other signal processing techniques such as the Fourier Transform

which can describe the frequency components contained within

a complex signal, but cannot indicate where in time those fre-

quencies reside. A wavelet-based approach permits isolation and

extraction of energies in both time and frequency. In any complex

radio environment, such as a substation, multipath propagation

will occur as a result of reflection and diffraction from various

obstacles and structures; this gives rise to many delayed and

attenuated versions of the emitted PD pulse. The superposition

of these received pulses produces a temporal signature (energy

versus time) from which higher order features can be extracted.

The shape of the pulse in the time-domain will be dependent

on the location of the source. Multipath effects are also known

to be frequency-selective in that the shape of the signature will

change based on the frequency of the pulse. Thus, the aggregated

PD pulse as seen by the receiver can be effectively band-pass

filtered to produce distinct time-energy signatures in each band.

In doing so, we can exploit the frequency-selective nature of

multipath propagation to generate more distinct features to aid

the localization algorithm. This filtering process is achieved via

a wavelet-based approach as follows.

Unlike spectral analysis that represents a signal as a sum

of sinusoidal functions, the wavelet transform decomposes the

signal into wavelets of various scales in the time-domain with

variable window sizes thus revealing the local structure in the

time-frequency domain. The continuous wavelet transform [27]

of a signal s(t), is given as:

Ws (a, b) =
1
√
a

∫ +∞

−∞
s (t)ψ∗

(

t− a

b

)

dt, (1)

where ψ(t) is the mother wavelet, a and b are the scale and shift

parameters respectively. The computational burden involved

in computing the many coefficients generated by continuous

wavelet transform for every scale and time is overwhelming. An

efficient alternative is to discretize a and b by replacing a = 2−j

and b = k2−j , where k and j are integers. This forms the discrete

version of wavelet transform. This is expressed as:

Ws (j, k) =

∫ +∞

−∞
s (t) 2j/2ψ∗

j,k

(

2jt− k
)

dt, (2)

Fig. 2. De-noised PD pulses.

The Discrete Wavelet Transform (DWT), which is one of

the popular methods in the wavelet transformation family has

been widely used in PD signal processing, classification and de-

noising [20], [28]–[31]. The DWT uses a cascade of low and high

pass filters to decompose the PD signal into two components:

detail coefficients (DCs), which contain the high frequency, low

scale information of the PD signal and approximation coeffi-

cients (ACs), which capture the low frequency, high scale infor-

mation of the PD signal. While the DCs remain unchanged at
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Fig. 3. General architecture of the WPT.

each level of decomposition, the ACs are further decomposed

into DC and AC subsets. This process continues until the fi-

nal decomposition level [32]. In this way, DWT decomposes

PD signals into different scales, generating multi-scale features

which reveal the local features of the PD signals. However, with

DWT some intrinsic characteristics of the signals in the high

frequency region are still buried in the DCs since only ACs are

decomposed in each level.

B. Wavelet Packet Transform

The Wavelet Packet Transform (WPT) [33]–[35] is viewed as

an extension of the DWT providing a level by level transforma-

tion of a signal from the time domain to the frequency domain.

The top or first level of the WPT is the time representation of

the PD signal. At every other level down the WP decomposition

tree, there is a decrease in temporal resolution and a correspond-

ing increase in frequency resolution. This helps capture the high

frequency information in the PD signals which are not normally

represented in DWT.

In other words, unlike the DWT, the WPT decomposes both

the DCs and the ACs simultaneously at every level. Therefore,

the WPT has the same frequency bandwidth in each resolution.

This enables the WPT to preserve the information in the origi-

nal PD signals, resulting in robust features. The general archi-

tecture of the WPT decomposition is shown in Fig. 3. The tree

is typically a binary tree, where each node has both DCs (right

sub-node) and ACs (left sub-node). In practice, WPT decompo-

sition is achieved via a quadrature mirror filter pair (low-pass

and high-pass). Let the wavelet packet function be given by:

V n
j,k (t) = 2j/2Vn

(

2jt− k
)

(3)

where j is a scaling parameter,k andn are a translation and oscil-

lation parameters respectively. And the scaling and wavelet func-

tion represented byφ(t) and ψ(t) respectively, then the wavelet

filters can be constructed using the following expression [36]:

φ (t) =
√
2
∑

k

glφ (2t− k) (4)

ψ (t) =
√
2
∑

k

ghφ (2t− k) (5)

where gl and gh are the low-pass and the high-pass filters re-

spectively. The scaling and wavelet functions are equivalent to

the first two wavelet packet functions given as:

V 0
0,0 (t) = φ (t) (6)

V 1
0,0 (t) = ψ (t) (7)

This implies that forn = 0, 1, 2, . . . ., the wavelet packet func-

tions can be expressed as:

V 2n
j,k (t) =

√
2
∑

k

glV
n
j−1,k (2t− k) (8)

V 2n+1
j,k (t) =

√
2
∑

k

ghV
n
j−1,k (2t− k) (9)

Therefore, features can be extracted from both DCs and ACs

at different levels to obtain valuable information. In [37], the

WPT was used to decompose PD signals into multiple scales,

and extract PD features for PD classification. In this work, WPT

is used for locating PD sources.

C. Feature Extraction of PD Signals Using WPT

The Wavelet Packet Transform is introduced as an alterna-

tive method of extracting the desired location dependent fea-

tures from PD signals. First, the PD data is decomposed via the

WPT to extract the time-frequency-dependent information. Thus

sequenced-ordered wavelet packet coefficients for the wavelet

packet transform nodes at each level of decomposition are ob-

tained. The standard choice for depth of decomposition level is

specified as a positive integer: 4 or floor (log2 (length (signal))),

whichever is smaller [37]. In our case, the transform level is set

to 4 since the signal is long. The 4-level WPT decomposition

generates a tree with 16 terminal nodes, corresponding to the

frequency sub-bands. Features are defined based on the wavelet

packet node coefficients. For any function f , the wavelet packet

coefficient is given by:

vj,n,k (t) =
〈

f, V n
j,k

〉

=
〈

f, 2j/2V n
(

2j
)

〉

(10)

Each vj,n,k coefficient measures a specific sub-band fre-

quency content, controlled by the scaling parameter j and the

oscillation parameter n, of a signal around the time instant 2jt.
Unlike discrete wavelet transform, the filtering operations in

wavelet packet transform, are also applied to the wavelet, or de-

tail coefficients. The frequency-localised filter; Fejer-Korovkin

wavelet has been shown to be a good approximation [38]. The

result is that wavelet packets provide a sub-band filtering of the

input signal into progressively finer equal-width intervals. At

each level j, the frequency axis is divided into 2j sub-bands.

The sub-bands in Hertz at level j are approximately
[

nfs

2j+1
,
(n+ 1) fs

2j+1

)

(11)

where n = 0, 1, . . . , 2j − 1 and fs is the sampling frequency.

The wavelet packets have the added benefit of being an or-

thogonal transform, which means the energy in the signal is

preserved and partitioned among the sub-bands as mentioned
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Fig. 4. PD wavelet packet node energy distribution for the 4 de-noised pulses
in Fig. 2. (a) Pulse 1-position 1. (b) Pulse 2-position 1. (c) Pulse 3-position 2.
(d) Pulse 4-position 2.

earlier. Therefore, the wavelet packet node energy can represent

the characteristics of PD signals, and it is defined as

ej,n =
∑

k

v2j,n,k (12)

This measures the PD signal energy contained in each sub-

band indexed by parameters j and n. Here, we refer to each

(j, n) as a wavelet packet node. The sum of the energy over

all the packets nodes equals the total energy of the signal. ej,n
can be normalized over the total energy, representing the en-

ergy of each packet. However, in this work, our interest is in the

sub-band energy. As an illustration, Fig. 4 depicts the energy

Fig. 5. Normalized signal energy by node for (a) signals in Fig. 4(a)/(b) and
(b) signals in Fig. 4(c)/(d).

distribution computed based on all coefficients in each wavelet

packet node for four de-noised PD signals represented in Fig. 2.

Fig. 2 shows the temporal signature of four distinct PD pulses

at two different locations. And will be explained more fully in

Section III. Specifically, Fig. 4 a/b depicts the energy profile

of two distinct pulses transmitted from the same location (lo-

cation 1), and Fig. 4 c/d depicts the energy profile of another

two pulses transmitted from a second location (location 2). By

examination of packet nodes 1 to 3 (first three bars in Fig. 4), it

is evident that subplots a and b are very similar, these are dis-

tinct signals from the same location. Likewise, subplots c and d

are very similar, these represent two distinct pulses from a sec-

ond location. However, the signals from a or b are distinct from

those of c or d. Thus, the wavelet packet node energy distribu-

tion represents an excellent set of features for PD localization

because it is (i) time invariant, and (ii) location dependent. It is

important to identify the frequency bands that contain most of

the PD pulse energy. PD signals are known to have a very short

duration (nanosecond), which implies a high frequency content.

However, there are always dominant frequency bands that con-

tain greater pulse energy in the entire spectrum. The relative

energy by node shown in Fig. 5 reveals the nodes with higher

percentage of pulse energy, indicating 3 frequency passbands

of interest. The resulting passbands emphasize frequencies be-

tween 62.5–250 MHz, which contains large portions of the PD

signal energy. The lower and upper frequencies of each wavelet

packet frequency band are presented in Table I. In the presence

of noise the PD energy will be buried in noise in some frequency
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TABLE I
WPT-BASED EXTRACTED PD FREQUENCY BANDS

bands making it a challenge to find where PDs lie. The significant

advantage of the proposed WPT technique lies in its ability to

identify these frequency bands even in noisy PD signals. Given

noisy PD signals as shown in Fig. 1, it has been demonstrated

that the wavelet packet transform identifies the frequency bands

with most of the PD pulse energy as wavelet packet nodes at

the terminal level using (12). The energy distribution of these

noisy signals in the frequency bands after transformation is as

shown in Fig. 6. This demonstrates the robustness of the pro-

posed technique in the presence of noise. In this work, each node

energy equivalent to energy in a frequency passband, represents

an individual PD feature component.

This work is based on the assumption that all PD features

extracted using the WPT provide meaningful information for

inferring the PD location. To demonstrate that this is a reason-

able assumption, Fig. 7(a-c) shows how the maps of the PD

features at each of the 3 antennas vary with location. The effect

of multipath and signal distortions add to the unique signature

created at different locations.

III. EXPERIMENTAL PROCEDURE

In order to evaluate the feasibility of using the WPT-based

frequency domain PD features in conjunction with machine

learning ensembles to locate a PD source, an experiment was

conducted in the laboratory at the University of Strathclyde with

approximate dimensions of 19.2 m × 8.4 m. This environment

is characterized by multipath propagation which is a result of

cluttered objects including metallic ones. Although the radio

environment within the laboratory cannot be expected to ap-

proximate that within an electrical substation, it is sufficiently

complex to enable evaluation of the PD localisation techniques

being investigated. The floor map is shown in Fig. 8. On the map,

three receiver sensors indicated by antennas are positioned at

random with considerable distance between them whereas ref-

erence (training) and test locations represented as (blue) circles

and (red) diamond marks respectively are defined on a grid.

These training and test locations simulate PD sources and are

so called given that they represent different sets of data to be

used in this work. At every training and test location, PD em-

ulated signals are generated and recorded. A pulse signal gen-

erator was used to emulate PD signals in this experiment. The

pulse generator is capable of generating sub-nanosecond cur-

rent pulse which was fed to a monopole antenna. The radiating

monopole antenna therefore represents an artificial PD source.

Commercial-off-the-shelf Omni-directional antennas operating

at 173 MHz were used to capture the generated PD signals. The

frequency response of the antennas is depicted in Fig. 9.

Fig. 6. PD wavelet packet node energy distribution for the four noisy pulses
in Fig. 1. (a) Pulse 1-position 1. (b) Pulse 2-position 1. (c) Pulse 3-position 2.
(d) Pulse 4-position 2.

These sensors were connected to a multichannel digital os-

cilloscope where the PD pulse traces were recorded for further

analysis. 20 samples of PD signals were generated and collected

for each of the 144 reference (training) locations (blue circles)
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Fig. 7. Spatial representation of WPT-based PD energy in band 1.

Fig. 8. PD measurement grid.

to build a training database. The training points were separated

by 1 m on a uniform grid. For testing the PD localization scheme

developed in this paper, 20 PD signal measurements were

collected at each of the 32 distinct test locations (red diamonds)

on the same grid in Fig. 8. The spacing between the test points

is 2.5 m. This setup ensures that the 20 × 144 training and 20 ×
32 testing samples are disjoint enough to provide realistic re-

sults. A sample of the PD emulated pulse and the received pulse

captured by the sensors is as shown in Fig. 10.

Fig. 9. Antenna frequency response.

Fig. 10. Response of the receiver sensor and the emulated PD pulse.

IV. MACHINE LEARNING-BASED PD LOCALIZATION METHODS

A. Regression Tree-Based PD Localization Method

The Regression Tree is one of the most efficient machine

learning algorithms used for predictions [39]–[41]. It is con-

sidered a variant of a binary decision tree model composed of

linear regression functions at the leaf nodes. In this work, it is

designed to learn and approximate the nonlinear function (PD

locations/WPT-based PD features) by piecewise linear functions

at the leaf nodes. In other words, the nonlinear mapping of PD

features to PD location coordinates is handled by splitting the

problem into a set of smaller problems addressed with simple

linear predictors. Fig. 11 shows the architecture of a regression

tree. Each node in the tree is designed to split the data so as to

form clusters where accurate predictions can be performed with

simple models. During training, a PD regression tree model is

built top-down from the root node through binary recursive par-

titioning, which is an iterative process that splits the PD train-

ing data (PD features/location) into subsets that contain features

with similar values. The parameters of the tree such as number of

splits are optimized during training. A sum of squares reduction

criterion is used in partitioning the data.



IORKYASE et al.: IMPROVING RF-BASED PARTIAL DISCHARGE LOCALIZATION VIA MACHINE LEARNING ENSEMBLE METHOD 1485

Fig. 11. General architecture of a regression tree.

The algorithm selects the split at each node that minimizes;

SS =
∑

R

((x, y)i − (x, y)R)
2 +

∑

L

((x, y)i − (x, y)L)
2

(13)

where (x, y)R and (x, y)L are the estimated values for

the right and left nodes respectively. This process contin-

ues until it reaches the terminal (leaf) node. The terminal

nodes of the tree which represents a cell of the partition,

store the models that approximate the best desired out-

put. Suppose the training points at the terminal node are

(ri, (x, y)i), (r2, (x, y)i), . . . (rn, (x, y)n), then the local

model for the terminal node is

(x̂, ŷ) =
1

n

n
∑

i=1

(x, y)i (14)

In the localization phase, the location coordinate of any PD

sample (features) can be estimated by following through the

branches of the obtained tree model. Despite the simplicity that

comes with the implementation of regression trees, the issue of

overfitting affects its performance. When fully grown, it may

lose some generalization capability.

B. Bootstrap Aggregating Method for PD Localization

Bootstrap aggregating [42]–[44], also known as bagging is

a machine learning ensemble algorithm that combines a mul-

titude of decision trees in order to improve performance. For

PD localization, bagging is used to model the non-linear rela-

tionship between WPT-PD features and PD location. Instead of

growing a single tree from the complete data set during training,

bagging grows many trees using bootstrap (equiprobable sam-

pling with replacement) samples of the PD data. Each sample

is different from the original data set, yet resembles it in distri-

bution and variability as a result of random sampling. Different

tree models are grown for each bootstrap sample. Mathemati-

cally, given a training input set R = r1,...,rn and correspond-

ing training output set (X,Y ) = (x, y)i, . . . ,(x, y)n, bagging

repeatedly (M times) selects subsets (randomly sample with

replacement) of these training set and builds trees with each

subset. For m = 1, . . . ., M : bagging builds tm models. After

training, the location estimate for unseen sample r′ can be taken

as the average estimates of all the individual tree models on r′

given as;

t̂ =
1

M

M
∑

m=1

tm (r′) (15)

The performance of bagging is affected by the particular boot-

strap sample size used. Therefore, Bayesian optimization is used

to tune the model parameters. PD location is then determined

by taking the average of the outputs from all the trees. Random

sampling helps overcome the problem of overfitting in regres-

sion trees and improves predictions. However, there exist high

correlations in prediction among some of the PD localization

subtrees, limiting the performance of the bagging regression

trees. This motivates the use of a robust PD localization algo-

rithm: random forest.

C. Random Regression Forest PD Localization Method

Random Regression Forest (RRF) is an ensemble of different

regression trees widely used in prediction [45]–[47]. The main

idea of RRF is to grow many regression trees based on some ran-

domly selected features (sub-spacing) from randomly selected

samples with bootstrap strategy. In the context of PD localiza-

tion, each tree is regarded as a function approximation problem

consisting of a non-linear mapping of the PD input features onto

the x-y coordinates representing PD location. The nonlinearity

is achieved by dividing up the original PD localization problem

into smaller ones, solvable with simple models. A multivari-

ate RRF model is developed to locate PD source to its x and y

coordinate.

The RRF-PD localization technique consists of two phases:

a training phase and a location estimation phase. In the train-

ing phase, RRF grows multiple regression trees from bootstrap

samples of the training data. Each sample subset comprises PD

features and associated ground-truth locations. At each split or

node, only a random subset of the PD features is considered. The

size of the forest is fixed and all the trees are trained in parallel.

During training, the parameters of the model are optimized.

In the location estimation phase, each previously unseen PD

features sample is given as an input to each tree in the forest start-

ing at the root and the corresponding sequence of tests applied.

Each tree gives an estimate of the location coordinate and the

final prediction is taken as the average of the trees predictions.

The flowchart of the RRF framework is as shown in Fig. 12. The

selection of random samples of features at each split produces

uncorrelated subtree predictions. Combining multiple decorre-

lated PD-tree models increases robustness to variance and re-

duces overall sensitivity to noise. This is demonstrated by the

results obtained.

V. LOCALIZATION RESULTS AND DISCUSSION

This section provides empirical evaluation of the performance

of the PD localization methods described in Section III. The PD

data used for testing is taken from a set of 32 different grid



1486 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 34, NO. 4, AUGUST 2019

Fig. 12. Flowchart for Random Forest PD Localization.

locations, independent of the training set, but obtained with the

same procedure.

A. Evaluating Localization Accuracy

Localization errors for each PD location model developed are

shown in Table II. The x and y coordinate error columns repre-

sent the error in the x and y direction respectively, however, these

columns may not correspond to the same physical location. For

example, for RT-best the x-error is 0 for one location but has a

non-zero y value. Similarly, for a different location y is 0 but

has a non-zero error. Errors in x and y coordinates are defined

as absolute differences between predicted and true locations.

Column 3 represents the overall localization error (Euclidean

distance between the predicted and true locations). Despite the

data variability and the area covered, a mean error of 1.9 m ob-

tained is sufficient for PD location. The models are trained on

2880 PD data measurements and tested on 640 PD data mea-

surements. The normalized WPT-based features extracted from

the 2880 measurements with corresponding locations are used

as input to the models for training. The maximum number of

PD features used at each split is 1/3 of the total number of fea-

tures. In this work, 1000 trees are grown. This optimal number

is estimated internally during the computations.

Fig. 13 shows the estimated PD source location (red diamond)

with the lowest localization error for each model using WPT-

based features. The blue dot represents the actual PD source

position. The black squares represent emulated sensor node po-

sitions. The results show that the minimum location error is

superior when ensemble methods are applied on the WPT-based

features. Regression tree can locate the exact x or y coordinates

with zero error in some instances as shown in Table II but fails

TABLE II
STATISTICS OF PD LOCATION ERROR FOR EACH METHOD

to provide a robust model, with worst location error as high as

8.9 m. This is shown in Fig. 14.

Fig. 15 further illustrates the difference in accuracy among

the three models by comparing the cumulative density functions

(CDFs) of location errors. It can be observed that random for-

est increased the overall confidence probability of errors within

3 m to 91% which is significantly larger than the probability of

70% achieved by regression tree. This is however unsurprising

as the regression tree is a weak learner. Random forest has also

reduced the mean of location errors by 29% compared to regres-

sion tree. Given that the spacing between test locations is 2.5 m,

the proportion of test data with a localization error below this

value is also evaluated. For the regression tree method, 68% of

test points were below 2.5 m. For the bagging algorithm, 75%

are below, and for the random forest 78% are below.

B. Evaluating Model Robustness

Another key aspect of the proposed PD location scheme is its

robustness. By comparing the location accuracy in x and y coor-

dinates and the overall precision, the ensemble methods provide

more robust models for PD localization. Furthermore, Fig. 16

shows the variance in location error of the models using train-

ing and testing datasets. Random forest, in particular, showed a

much lower variance between training and testing predictions,

making it more robust compared to regression tree and boot-

strap aggregating models. Fig. 17 shows PD localization results

from 3 random locations. Each discrete point corresponds to a

single location estimate of a radio measurement. Also shown

for the three PD localization models is the confidence ellipse

that contains 95% of the estimates for each location. For point

(2.5, 1.5) the regression tree estimates fall on a straight line. This

means that the covariance in the y-direction is zero. Therefore,

the width of the ellipse is zero in that direction. The size of the

ellipse is an indication of the precision of the estimate. Random

forest shows a more precise estimate with a smaller confidence

ellipse. The large ellipses of Regression Tree indicates a less
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Fig. 13. PD best location estimates. (a) Random Forest. (b) Bagging.
(c) Regression tree.

Fig. 14. Regression tree PD worst location estimate.

Fig. 15. CDF of location errors in (a) x-coordinate, (b) –coordinate, (c) overall.

Fig. 16. Variance of location error.

precise location estimate. This further demonstrates the robust-

ness of the proposed WPT-based Random Forest PD localization

scheme.
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Fig. 17. PD location results for 3 different points.

C. Comparison With Related Works

There are other substation-wide PD localization schemes in

literature that are worth comparing with our proposed solution.

In [48], the authors developed a Software Defined Radio (SDR)

PD localization system based on received signal strength to infer

PD location. However, they presented results for a single loca-

tion estimate which we assumed to be the best location estimate;

this approach yielded a location error of 1.3 m. Another RSS-

based PD localization system was proposed in [49]. Here, the

system involves estimating the path loss exponent and convert-

ing the RSS into distance. Two scenarios were created in terms of

the number of receiving sensors used for capturing PD signals;

seven sensors for scenario 1 and eight sensors for scenario 2.

The test site was an 18 m × 18 m empty room. For the nine test

locations, the best estimated location error for scenario 1 and

scenario 2 are 0.78 and 1.06 m respectively. In another work

[50], a PD localization scheme based on RSS fingerprint was

proposed for a 24 m2 test bed with grid spacing of 1 m × 1 m.

The localization phase includes two stages of processing: a pre-

liminary localization stage where particle swarm optimization

and back propagation neural network are used, and a more accu-

rate localization stage where compressive sensing is employed

for accurate localization. Their result shows an average localiza-

tion error of 0.89 m with maximum error 3.61 m. However, this

result comes at an extra cost of two stages of computation in the

localization phase. A probability based technique for PD source

localization was proposed in [51]. Time difference of arrival

(TDoA) was used as PD feature. A test of three PD sources was

carried out and the result indicates localization errors of 0.56 m,

1.59 m and 0.18 m for the three sources. In [52], an automated

system for PD detection and localization based on Gaussian

mixture model was presented. Time delay of arrival was used

to locate PD sources. This work presented result for eight lo-

cation estimate with minimum error of 0.5 m and an average

location error of 1.4 m. Authors in [53] proposed an RSS-based

PD localization method to locate power equipment in substation

with potential insulation defect. This involves two stages of lo-

calization: a preliminary localization by cluster recognition and

compressed sensing algorithm. The test site used for this exper-

iment measured 24 m × 24 m with 625 grid points (1 m × 1 m).

Their result indicates that the proportion of estimated location

errors within 3m is 89.6%. Our proposed solution, WPT-based

RRF PD localization scheme is a simple and low-cost solution

for PD localization with best estimated location error of 0.31 m.

Our result also indicates that 91% of the PD sources were located

with error less than 3 m.

VI. CONCLUSION

A robust PD localization scheme based on the wavelet packet

transform and the ensemble learning method has been consid-

ered. The scheme utilizes the PD measurements captured with

sensors placed in the vicinity of the discharge source, as follows.

1) The measured PD signals are first decomposed using WPT

decomposition to extract PD location dependent features.

The WPT selects the frequency bands with equal band-

width where the energy of the noisy PD signal is con-

centrated through a transformation such that the retained

signal information is maximized in order to ensure high

accuracy.

2) The WPT-based PD features are then used to build the

ensemble models.

3) PD location is obtained via a multivariate regression for-

est algorithm which provides a more robust and accurate

approach compared to regression tree and bootstrap ag-

gregating methods.

In this study, regression forest increased the overall confi-

dence probability of errors within 3 m to 91% compared to 70%

achieved by regression tree; an improved accuracy of 29%. The

results suggest that the proposed PD localization method de-

scribed in this paper represents a practical approach to PD lo-

calization. The simplicity and robustness of the technique makes

it worth considering in future implementations of the smart grid.
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