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Abstract

The biochemistry of RNA-Seq library preparation results in cDNA fragments that are not uniformly distributed

within the transcripts they represent. This non-uniformity must be accounted for when estimating expression

levels, and we show how to perform the needed corrections using a likelihood based approach. We find

improvements in expression estimates as measured by correlation with independently performed qRT-PCR and

show that correction of bias leads to improved replicability of results across libraries and sequencing technologies.

Background

RNA-Seq technology offers the possibility of accurately

measuring transcript abundances in a sample of RNA by

sequencing of double stranded cDNA [1]. Unfortunately,

current technological limitations of sequencers require

that the cDNA molecules represent only partial frag-

ments of the RNA being probed. The cDNA fragments

are obtained by a series of steps, often including reverse

transcription primed by random hexamers (RH), or by

oligo (dT). Most protocols also include a fragmentation

step, typically RNA hydrolysis or nebulization, or alter-

natively cDNA fragmentation by DNase I treatment or

sonication. Many sequencing technologies also require

constrained cDNA lengths, so a final gel cutting step for

size selection may be included. Figure 1 shows how

some of these procedures are combined in a typical

experiment.

The randomness inherent in many of the preparation

steps for RNA-Seq leads to fragments whose starting

points (relative to the transcripts from which they were

sequenced) appear to be chosen approximately uni-

formly at random. This observation has been the basis

of assumptions underlying a number of RNA-Seq analy-

sis approaches that, in computer science terms, invert

the ‘reduction’ of transcriptome estimation to DNA

sequencing [2-6]. However, recent careful analysis has

revealed both positional [7] and sequence-specific [8,9]

biases in sequenced fragments. Positional bias refers to a

local effect in which fragments are preferentially located

towards either the beginning or end of transcripts.

Sequence-specific bias is a global effect where the

sequence surrounding the beginning or end of potential

fragments affects their likelihood of being selected for

sequencing. These biases can affect expression estimates

[10], and it is therefore important to correct for them

during RNA-Seq analysis.

Although many biases can be traced back to specifics

of the preparation protocols (see Figure 2 and [8]), it is

currently not possible to predict fragment distributions

directly from a protocol. This is due to many factors,

including uncertainty in the biochemistry of many steps

and the unknown shape and effect of RNA secondary

structure on certain procedures [10]. It is therefore

desirable to estimate the extent and nature of bias indir-

ectly by inferring it from the data (fragment alignments)

in an experiment. However, such inference is non-trivial

due to the fact that fragment abundances are propor-

tional to transcript abundances, so that the expression

levels of transcripts from which fragments originate

must be taken into account when estimating bias, as

Figure 2 demonstrates. At the same time, expression

estimates made without correcting for bias may lead to

the over- or under-representation of fragments. There-

fore the problems of bias estimation and expression esti-

mation are fundamentally linked, and must be solved

together. Likelihood based approaches are well suited to

resolving this difficulty, as the bias and abundance para-

meters can be estimated jointly by maximizing a likeli-

hood function for the data.
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1. fragmentation of RNA

2. random priming to make sscDNA
rst-strand synthesis)

3. construction of dscDNA
(second-strand synthesis)

4. size selection

5. sequencing

6. mapping

RNA molecules

RNA fragments

sscDNA

dscDNA

Gel cutout 

RNA sequence

paired-end read

sense

anti-sense

short long

Figure 1 Overview of a typical RNA-Seq experiment. RNA is initially fragmented (1) followed by first-strand synthesis priming (2), which

selects the 3’ fragment end (in transcript orientation), to make single stranded cDNA. Double stranded cDNA created during second-strand

synthesis (3), which selects the 5’ fragment end, is then size selected (4) resulting in fragments suitable for sequencing (5). Sequenced reads are

mapped to opposite strands of the genome (6), and in the case of known transcript or fragment strandedness, the read alignments reveal the 5’

and 3’ ends of the sequenced fragment (see Supplementary methods in Additional file 3). All arrows are directed 5’ to 3’ in transcript orientation.
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Our main result is the development of a likelihood

based approach for simultaneous estimation of bias para-

meters and expression levels using the likelihood frame-

work of [6]. This complements work of [8,10] where

corrections are developed based on another likelihood

model, and also extends their work by incorporating

simultaneous estimation and correction of positional

bias. We demonstrate that our method improves expres-

sion estimates in comparison with independently

obtained qRT-PCR on a benchmark dataset. Using the

same data, we also show that our method improves on

the approaches of [8,10]. RNA-Seq technology is chan-

ging rapidly, and this is evident in the development of

numerous preparation protocols (for a recent review see

[11]) and increasingly longer read lengths from sequen-

cing machines [12]. When assessing the impact of bias

correction, we have therefore included both early RNA-

Seq data of the type that many laboratories might be pro-

ducing with older machines, as well as newer data that

reflects recent protocol choices and demonstrates the

improvements in sequencing technologies. This has

required us to make our methods robust to both single-

and paired-end reads, strand specific and non-specific

protocols, and a variety of priming and fragmentation

methods. One of our main findings is that bias correction

improves the correlation of expression estimates obtained
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Figure 2 Nucleotide distribution surrounding fragment ends and calculation of bias weights. (a) Sequence logos showing the distribution

of nucleotides in a 23 bp window surrounding the ends of fragments from an experiment primed with ‘not not so random’ (NNSR) hexamers

[11]. The 3’ end sequences are complemented (but not reversed) to show the sequence of the primer during first-strand synthesis (see Figure 1).

The offset is calculated so that zero is the ‘first’ base of the end sequence and only non-negative values are internal to the fragment. Counts

were taken only from transcripts mapping to single-isoform genes. (b) Sequence logo showing normalized nucleotide frequencies after

reweighting by initial (not bias corrected) FPKM in order to account for differences in abundance. (c) The background distribution for the yeast

transcriptome, assuming uniform expression of all single-isoform genes. The difference in 5’ and 3’ distributions are due to the ends being

primed from opposite strands. Comparing (c) to (a) and (b) shows that while the bias is confounded with expression in (a), the abundance

normalization reveals the true bias to extend from 5 bp upstream to 5 bp downstream of the fragment end. Taking the ratio of the normalized

nucleotide frequencies (b) to the background (c) for the NNSR dataset gives bias weights (d), which further reveal that the bias is partially due

to selection for upstream sequences similar to the strand tags, namely TCCGATCTCT in first-strand synthesis (which selects the 5’ end) and

TCCGATCTGA in second-strand synthesis (which selects the 3’ end). Although the weights here are based on independent frequencies, we found

correlations among sites in the window and take these into account in our full model to produce more informative weights (see Supplementary

methods in Additional file 3). A similar figure to this for the standard Illumina Random Hexamer protocol and plots similar to (d) for all datasets

in the paper can be found in Figures S1 and S2 of Additional file 1 respectively.

Roberts et al. Genome Biology 2011, 12:R22

http://genomebiology.com/2011/12/3/R22

Page 3 of 14



from sequence data generated using different sample pre-

parations and different sequencing technologies.

Results and Discussion

Estimating fragment bias in existing protocols

Fragment counts in an RNA-Seq experiment are deter-

mined by two different phenomena: fragments originat-

ing from highly expressed transcripts will appear more

often in the data than those originating from lower-

expressed transcripts, and library preparations include

biases that may preferentially select some potential frag-

ments over others. By fragment bias we mean only the

over- or under-representation of fragments due to

sequence-specific or positional bias as discussed in the

Background. Because expression levels also affect frag-

ment abundances, it is necessary to jointly estimate

transcript abundances and bias parameters in order to

properly learn the bias directly from RNA-Seq data.

This issue is illustrated by example in Figure 2 where

the need for joint estimation of bias parameters and

expression values is evidenced by comparison of the

raw counts of bases at the starts/ends of fragments

(panel a) and the adjusted counts normalized by the

abundances of transcripts (panel b). The latter calcula-

tion is affected by the bias parameters, so that joint

estimation is required. We expanded the likelihood fra-

mework described in [6] in order to perform such

parameter estimation (see Materials and methods),

resulting in ‘learned’ bias weights (panel d Figure 2)

that were used to adjust expected fragment counts in

the computation of abundances using our likelihood

model. Figure 3 shows an example of how well these

bias estimates capture the over- and under-representa-

tions of reads at different positions of a transcript,

based on its sequence.

Validation by comparison to alternative expression assays

We emphasize that our goal was not to validate RNA-

Seq per se, but rather to show that bias correction

improves expression estimation. Therefore, in interpret-

ing the correlations throughout the paper, we focused

on improvements in correlation with bias correction

and not on the absolute value. In this regard, we report

most of our results as fraction discrepancy explained,

which we calculated by dividing the change in R2 after

bias correction by the difference of the initial R2 from 1

(a perfect correlation). Selected correlation plots can be

found in Figure S3 of Additional file 1 and all raw

expression data in Additional file 2. Furthermore, we

mention that we observed that correlation results were

sensitive to the extent of filtering of low abundance

fragments and we therefore attempted to eliminate fil-

tering in the experiments we performed (see Materials

and methods for more detail).

A major problem with validating RNA-Seq expression

estimates is that there is no clear ‘gold standard’ for

expression estimation. Comparison of RNA-Seq to

microarrays has suggested that the former technology is

more accurate than the latter [13]. We examined the

recently published NanoString nCounter gene expres-

sion system [14], but noticed many unexplainable out-

liers and high variance between technical replicates (see

Figure S4 of Additional file 1 and data in Additional file

2). Quantitative reverse transcription PCR (qRT-PCR)

has served as a benchmark in numerous studies but it is

not a perfect expression measurement assay [15], and it

is therefore a priori unclear which technology currently

produces the most accurate expression estimates. Never-

theless, at present we believe it to be the best measure

of expression aside from, perhaps, RNA-Seq itself. Due

to the previously demonstrated superiority of RNA-Seq

over microarrays, and the problems with NanoString,

we performed all our benchmarking with respect to

qRT-PCR.

We began by comparing the expression estimates on

the Microarray Quality Control (MAQC) Human Brain

Reference (HBR) dataset, which includes 907 transcripts

with uniquely mapping TaqMan qRT-PCR probes [16],

with RNA-Seq data from the same sample sequenced by

Illumina (SRA012427) [17] (Figure 4). We examined the

correlation of the Cufflinks output with the qRT-

PCR expression data and observed an increase of R2

from 0.753 before correction to 0.807 after correction.

We examined the basis for change in correlation by

further investigating, for each transcript, whether its

expression estimate increased or decreased after bias

correction, and by how much. The arrows in Figure 4

show the direction and extent of expression change with

correction, and the overall fold-change distribution.

Many fragments show large changes in expression with

a median absolute fold change of 1.5 (Figure 4b). To

establish the significance of the improvement in correla-

tion, we performed a permutation test where we chan-

ged the expression estimates of transcripts randomly

according to the fold change distribution in Figure 4b.

We obtained a P-value of 0.0007, meaning that the

improvement in R2 our correction accomplishes is

highly significant. Together, these results show that bias

correction may dramatically affect expression estimates

via both increases and decreases of expression values,

and that these changes provide an overall improvement

in abundance estimates.

Comparison with previous methods

In [8], a method for bias correction is proposed that is

based on correcting read counts for transcripts accord-

ing to the bias learned for patterns at the start of reads

(normalized using sequences in the interior of reads).
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This approach uses less information than our method,

as it is restricted to learning bias within the read

sequence, and cannot capture bias surrounding the start

site. Furthermore, count-based methods do not fully

exploit the information available in paired-end reads

which allow for the determination of fragment length.

Fragment length can help in assigning ambiguously

mapped fragments to transcripts and our method takes

advantage of this. On the other hand, since read counts

have been promoted as an acceptable way to measure

abundance [18], we compared the method to ours using

the MAQC qRT-PCR data from the previous section.

Figure 5 shows the results of the method of [8], both

before and after bias correction (R2 = 0.711 before and

R2 = 0.715 after correction). To obtain these results we

used the software package Genominator[8], following

the guidelines in the documentation, with the exception

that bias was learned separately for each chromosome,

as the software was not able to load an entire genome

into memory. More details are provided in the Materials

and methods section.

We also compared our approach to the mseq method

in [10]. We again used the MAQC HBR qRT-PCR data

and this time prepared the sequences and learned para-

meters for models following the suggested guidelines in

[10], that is we trained the parameters of a MART

model for bias by learning from the 100 most expressed

transcripts in the experiment, and then tested on the set

of 907 transcripts with uniquely mapping TaqMan

probes. In this case, we observed an uncorrected R2 =

0.730 and corrected R2 = 0.755. Note that the even

though the expression was again calculated using
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Offset from start of transcript

Figure 3 Bias correction within transcripts. An example showing the effect of bias correction on the read counts for human transcript

NM_004684. The top panel shows raw read counts (number of 3’ ends of fragments at each location), and the bottom panel shows the

product of the bias parameters (total bias weight defined in the Supplementary methods in Additional file 3) at the same locations. We correctly

identify bias at different positions and can therefore correct for the non-uniformity. Note that the bias parameters were learned from the entire

dataset excluding reads mapped to this transcript in order to cross-validate our results. The RNA-Seq for the experiment was performed with the

NSR protocol [21], which is why 3’ counts were used instead of 5’.

Roberts et al. Genome Biology 2011, 12:R22

http://genomebiology.com/2011/12/3/R22

Page 5 of 14



counts, the initial correlation of mseq is better than that

of Genominator due to the fact that the implementa-

tion in [10] required us to remap the reads directly to

the transcript sequences, which is presumably more

accurate than relying on spliced mapping.

We suspect that the overall inferior results of both the

Genominator and mseq in comparison to Cuf-

flinks are due in part to the fact that the bias para-

meters cannot be learned from raw read counts, but

must be normalized by the expression values of the

transcripts from which the reads originate (Figure 2).

For example, in [10], bias parameters are learned from

what are estimated to be the most highly expressed

transcripts based on RPKM, but these are likely to also

be the most positively biased transcripts, and are there-

fore not representative in terms of their sequence con-

tent. We also believe that, as we argued in [6], it is

important to account for fragment lengths in estimating

expression, and read count based expression measures

do not use such information. Another issue affecting

Genominator is that instead of computing the

expected read count as is done in Cufflinks and

mseq, the observed read counts are adjusted. This

means that in positions lacking read alignments, there is

no correction of bias. We believe this may partially

explain the improved performance of mseq in compari-

son to Genominator.

Technical replicates

A recurring worry with RNA-Seq has been that repeated

experiments, possibly based on different libraries or per-

formed in different laboratories, may be variable due to

experimental ‘noise’. We investigated these effects start-

ing with an exploration of the correlation between

Normalized TaqMan expression

Log fold change
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Figure 4 Correlation between RNA-Seq and qRT-PCR. (a) Expression estimates before bias correction (tail of arrows) and after correction

(points of arrows) for the SRA012427 dataset compared to qRT-PCR values for the same transcripts. Red arrows show decrease in expression

after correction and blue an increase. Note that we have zoomed in on lower-expression transcripts (the majority) for clarity. (b) Distribution of

log-fold change in expression after bias correction.
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technical replicates before and after bias correction. We

define technical replicates to be the sequencing of two

different libraries that have been prepared using the

same protocol from a single sample. This differs slightly

from some previous uses; in particular, technical replica-

tion has also referred to two sequencing experiments

from the same library. Such replicates have already been

shown to exhibit very little variability [18,19].

We postulated that the differences between expression

estimates from two different libraries should be reduced

after bias correction. We tested this hypothesis in a ser-

ies of analyses whose results are shown in Figure 6.

First, we examined libraries prepared in two different

experiments from the same MAQC Universal Human

Reference (UHR) sample. In the first experiment [20],

which we will refer to by its accession SRA008403, the

sample was sequenced from one library preparation. In

the second experiment [19], which we will refer to as

SRA010153, the sample was sequenced in four separate

library preparations. Although the same protocol was

used in all five replicates, the learned bias weights differ

somewhat between the data produced by the two labs

(see Figure S2 in Additional file 1).

Figure 6 shows how correlations of the replicates with

qRT-PCR and each other were affected by bias correc-

tion. Although the method does improve the pairwise

correlations between different library preparations

within SRA010153, the initial correlation is already so

high (average R2 > 0.96) that we only show the average

pairwise correlations against qRT-PCR and the

SRA008403 dataset. The greater correlation among the

SRA010153 replicates as compared to the correlation

between them and SRA008403 further indicates that

bias is more similar when the protocol is carried out by

the same lab, presumably by the same person. Bias cor-

rection clearly recovers much of the differences in quan-

tification between the replicates introduced by sequence

and positional bias. Furthermore, as in the initial valida-

tion example, the correction brings both sets closer in

line with the qRT-PCR standard.

Library preparation methods

In Figure 7 we demonstrate our ability to correct bias spe-

cific to libraries prepared using different protocols. For

this experiment, we tried our method on several libraries

from a study comparing strand-specific protocols

(SRA020818) using the same yeast sample [11], as well as

a dataset generated using the ‘not so random’ (NSR) prim-

ing protocol on the human MAQC HBR sample [21]. We

compared all of these datasets with a standard Random

Hexamer (RH) control for the given sample. Note that

although the control (RH) and dUTP libraries have the

Genominator mseq Cufflinks

Corrected
Initial

R
2

0
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0
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0
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0
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1
.0

Figure 5 Comparison with previous methods. A comparison of

our method (Cufflinks) with Genominator[8] and mseq[10].

The y-axis shows the R2 value for the correlation between

uncorrected (green) and bias corrected (orange) RNA-Seq

expression estimates and qRT-PCR for the three methods.

Correlation plots for these data can be found in Figure S3 of

Additional file 1.
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Figure 6 Variable technical replicates. Results of correlation tests

showing improvement after bias correction for technical replicates.

Fraction Explained Discrepancy was calculated by dividing the

change in R2 after bias correction by the difference of the initial R2

from one (a perfect correlation). Note that when two RNA-Seq

datasets are compared, the correction in the legend was applied to

both. The pairwise correlations of the four SRA010153 replicates

versus qRT-PCR and SRA008403, respectively, were averaged for the

figure. Even though the same RH priming protocol was used in

both labs, the bias differs slightly (see Figure S2 of Additional file 1)

between the preps, which is why our correction method was able

to improve the correlation.
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same sequence bias (see Figure S2 in Additional file 1) and

near-perfect initial correlation (R2 > 0.99), the remaining

discrepancy is reduced by positional bias correction.

Because the NSR dataset was sequenced from the

MAQC HBR sample, we were also able to compare it to

the qRT-PCR standard. We found that our method

explained 33.5% of the discrepancy between an initial

estimation and qRT-PCR.

Sequencing platforms

Previous studies on bias in RNA-Seq have focused

on experiments performed with Illumina sequencers.

To investigate whether bias persists with other prep and

sequencing technologies, we examined bias in a SOLiD

experiment that sequenced both MAQC samples using

the standard whole transcriptome (WT) protocol. We

saw clear signs of both sequence-specific and positional

bias that differed from the other protocols we had

examined (see Figure S2 of Additional le 1).

We next compared the expression estimates for the

SOLiD dataset with one from Illumina (accession

SRA012427) before and after bias correction. In order to

illustrate that our improvement in correlation does not

come solely from correcting bias in the Illumina dataset,

we tested whether there was some improvement from

correcting one dataset at a time, as compared to

simultaneous correction for both platforms. We found

an increase of R2 from 0.74 to 0.88 (Illumina correction)

and 0.85 (SOLiD correction) compared to 0.94 for both.

These results are summarized in Figure 8. While one

cannot draw general conclusions based on a single

experiment, we note that our approach to quantifying

bias should be useful in future studies that aim to quan-

titatively compare the bias among different sequencing

platforms.

Conclusions

Bias correction improves expression estimates

Our results confirm that bias correction improves

expression estimates and should be used to correct bias

introduced in library preparations and by sequencing

technologies. We note that there is great variability in

the extent of bias among protocols, and bias correction

can dramatically affect expression estimates even in pro-

tocols of choice (for example the dUTP protocol cur-

rently favored by the Broad Institute [11]).

Implications for differential expression

It is particularly important to consider bias correction in

the context of differential expression analysis. This can

refer to the comparison of expression levels among tran-

scripts in a single experiment (for example alternative

isoforms of a gene), to the agglomeration of data pro-

duced by different laboratories, or to the comparison of

expression among biological replicates.

We have shown that bias varies between library preps,

even when the same protocol is used. However, our

results indicate that this variance is much greater when

either different protocols or technologies are used.

Therefore, while bias correction can be expected to

show small improvements in the former case, it is cru-

cial in modern experiments that seek to combine and

compare output from multiple library preps using the

same or different protocols. For example, in the Droso-

phila modENCODE transcriptome experiment described

in [22], both SOLiD and Illumina libraries were used at

multiple time points during development. To estimate

the improvement that could have been gained in the

modENCODE experiment by using our correction, we

ran Cuffdiff (the differential expression analysis tool

packaged with Cufflinks) on the same samples used

above to compare bias in the Illumina and SOLiD tech-

nologies. We found a 46% decrease in the number of

differentially expressed transcripts output by Cuffdiff

when bias correction was enabled.

Choice of model

We have developed a bias correction procedure based

on a fragment model for RNA-Seq [6], in contrast with

the site model of [10]. We note that our choice is based
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Figure 7 Variable library preparations. Results of correlation tests

showing improvement after bias correction of datasets generated

using different library prep methods, all of which are strand-specific.

The first four protocols are described in [11] and the final in [21]. All

datasets were compared against a control that was generated using

the standard Illumina RH protocol. The first four datasets used the

control from [11] with the same yeast sample. The last dataset (NSR)

was compared against the HBR dataset from SRA010153 since it is

also consists of single-end reads.
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partly on the observation in [10] that even after bias

correction, variability in the counts of reads at individual

sites differ considerably from the variance estimate

obtained from the binomial model. Thus, it may be that

the model of [10] is not robust in multiple isoform

genes where few sites may distinguish isoforms. It is

likely, however, that as RNA-Seq protocols improve and

are better understood, site models will be preferable due

to their improved resolution.

The choice of model has an important implication for

the impact of positional bias correction: In our fragment

model, positional bias correction without sequence-

specific correction does not affect relative expression

estimates. However, positional bias correction in

Figure 8 Bias in different sequence technologies. Results of correlation tests showing improvement after bias correction of datasets

generated using different sequencing technologies. The Illumina dataset is SRA012427 (x-axes) and the SOLiD data is SOLiD4_ HBR_PE_50x25 (y-

axes). Both used the same MAQC HBR sample. Red axes and lines denote uncorrected FPKM values and blue corrected, while purple regression

lines denote a comparison between corrected and uncorrected values. Both datasets are being corrected for different biases, which causes their

expression estimates to become more correlated. Note that the plot is zoomed in on the lower abundance transcripts for clarity but captures

over 98% of those in the experiment.
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multiple isoform genes, or when coupled with sequence-

specific correction, can affect relative expression

estimates (Figure 9). Validation of the improvement in

expression estimates in multiple isoform genes when

taking positional bias into account is complicated by the

difficulty in selecting isoform specific primers, and is

beyond the scope of this paper. It is important to note

that in the site model, positional bias correction can

affect relative expression estimates even in single iso-

form genes because the location of fragments within

transcripts directly affects the likelihood function.

GC content and bias

Previous RNA-Seq investigations have revealed correla-

tions between expression levels and GC content, and cor-

rections have been proposed to ‘normalize’ the data with

respect to this effect [23]. When examining the

sequence-specific bias profiles (see Figure S2 of Addi-

tional file 1) we noticed GC effects in the estimated para-

meters and so we investigated the relationship between

sequence-specific bias correction and GC content.

To make the comparison, we defined the bias of a

transcript to be the log fold change in effective length,

which is a direct measure of the extent of correction of

expression estimate in single isoform genes when incor-

porating bias correction.

Figure 10 shows the relationship between transcript

bias and GC content in two different experiments. In

panel a, an example from human RNA-Seq (SRA012427)

the correlation is very strong, and shows that GC correc-

tions may be proxies for sequence-specific bias correc-

tion. On the other hand, GC content may not always be

an effective marker for bias, as shown in panel b from

yeast (SRA020818_RH).

1.0

0.5

Single isoform
Multiple isoforms

D
e

n
s
it
y

Log effective length fold change

Figure 9 Positional bias correction effect on expression. This

figure shows the effective length fold change due to positional bias

correction for the SRA012427 dataset. So that the parameters would

be consistent for all transcripts, we have limited the analysis to

transcripts with length greater than 2,433, which is the largest of the

5 length bins we use for measuring positional bias. As expected, all

single isoform genes are adjusted in the same way, whereas isoform

deconvolution is altered based on the difference in relative position

within a transcript for a read that maps to multiple isoforms.

Figure 10 Correlation of GC content with measured bias. Panel a shows an example from human and panel b from yeast. Since the log fold

change in effective length does not capture the full bias measurement for multiple isoform genes, the plots are limited to those with single

isoforms. GC content appears to be correlated with our sequence bias measurements in some datasets, but not in others. GC content alone is

not always a good proxy for fragment end bias.
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We concluded that although normalization of expres-

sion values by GC content may be a simple way to

remove some bias, it may well be a proxy for other

effects rather than of inherent significance.

Implementation

RNA-Seq data processing pipelines require multiple steps

that include read mapping, transcript assembly, expression

estimation and differential expression analysis. A difficulty

with analysis is that many of these steps are closely related,

and improvements in one area can be leveraged in another

only if properly integrated. We have shown that in the

case of bias correction, estimation of parameters together

with abundances can improve expression estimates, and

these can in turn affect differential expression analyses,

mapping probabilities, and even assemblies.

In order to maximize the benefits of bias correction

throughout the RNA-Seq analysis pipeline, we have

incorporated it into the Cufflinks RNA-Seq analysis

suite [6], and have pre-configured the software for speci-

fic protocols so that users can reap the benefits of bias

correction for both stranded and unstranded protocols,

as well as single- and paired-end reads. The software is

freely available [24] and is distributed open source

under the Boost Software License, version 1.0.

Materials and methods

Parameter estimation and inference

Due to the added sensitivity in our model to the location

of fragment ends, we now rely on an empirical fragment

length distribution whenever possible, as opposed to the

Gaussian approximation in [6]. The fragment length distri-

bution is estimated in one of several ways, depending on

what information is provided. If an annotation and paired-

end read mappings are given, fragment mappings to single

isoform genes are used to determine an empirical distribu-

tion. If no annotation is provided, but paired-end read

mappings are provided, sufficiently large (≥ 1,000 bp)

ranges are found where no fragments have spliced map-

pings. The mappings in these ranges are used to determine

an empirical distribution. If no paired-end fragments are

available or not enough are found in these ranges, we use

a truncated Gaussian where all lengths less than the mini-

mum read length in the dataset are set to zero probability

and the remaining distribution is renormalized. The mean

and standard deviation are set according to the distribu-

tion specified by the SRA entry, or to 200 and 80, respec-

tively, if the information is unavailable.

The likelihood in our model is a function of the rela-

tive transcript abundances (r), consisting of the abun-

dances for individual transcripts rt such that
∑

t∈T ρt = 1

(here T denotes the set of all transcripts). In order to

simplify computations, we estimate the relative abun-

dances for overlapping sets of transcripts instead of

directly estimating the parameters rt. We define a locus

to be a genomic region containing a set of overlapping

transcripts (typically isoforms of a gene) and then write

the transcript abundance as rt = bggt where bg is the

relative abundance of the locus g in which t is con-

tained, and is multiplied by a factor gt that determines

the proportion of each transcript within the locus. We

denote the set of all loci by G (for more details see the

Supplementary methods of [6]). Our updated likelihood

model, whose full derivation is given in the Supplemen-

tary methods in Additional file 3 is then given by:

L(ρ|F) =

⎛

⎝

∏

g∈G

β
Xg

g

⎞

⎠

⎛

⎝

∏

g∈G

⎛

⎝

∏

f∈F:f∈g

∑

t∈g

γt · D(t, f ) ·
b(t, e5′ (t, f ), e3′ (t, f ))

B(t, It(f ))

⎞

⎠

⎞

⎠

where F is the set of fragments, Xg is the number of

fragments with alignments to locus g, It(f ) is the implied

length of a fragment f assuming it originated from a

transcript t (this is needed because only the ends of

fragments are sequenced), D(t , f ) is the probability of

observing a fragment of length It( f ) at a known position

in a transcript, and the term
b(t, e5′ (t, f ), e3′ (t, f ))

B(t, It(f ))
is the

probability of selecting a fragment of a specific length

within a given transcript, based on the bias weights at

its 5’ and 3’ end points.

The bias weight b(t, i, j) factors as

bs
5′ (t, i) · bs

3′ (t, j) · b
p
5′ (t, i) · b

p
3′ (t, j) where i and j are the 5’

and 3’ endpoints, respectively, of a fragment mapped to

transcript t. The bs
5′ and bs

3′ weights measure sequence-

specific bias and are found by calculating the ratio of

the probability of the sequence surrounding the frag-

ment end under the biased model to the uniform (null)

model. Note that we model both ends separately due to

the differences in sequence selectivity between the prim-

ing steps during first- and second-strand synthesis. In

our method, these probabilities are actually learned

from the data using a variable length Markov model

[25] to capture dependencies between positions in the

sequence. Complete details are in the Supplementary

methods in Additional file 3.

The b
p
5′ and b

p
3′ weights measure the 5’ and 3’ positional

biases, respectively. In [7] it was shown that positional

effects depend on transcript length, so we modeled posi-

tional effects using 100 = 20 × 5 parameters, with 5 sets

of parameters for different transcript lengths (see Figure

S2 of Additional file 1). For each range of transcript

lengths, the length is divided into 20 windows, each with

its own parameter that reflects the probability that the 5’

or 3’ end of a fragment lies there as opposed to elsewhere

on the transcript. The ratio of these probabilities under

the biased model to the uniform (null) model is repre-

sented by b
p
5′ and b

p
3′, respectively.
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The parameters that need to be estimated in the

likelihood function are the abundances r and the bias

parameters described above. We estimate the para-

meters using coordinate ascent. The model is linear in

the r parameters for fixed bias parameters, and we

maximize them as in [6]. For fixed r, the bias para-

meters can be maximized as described in the Supple-

mentary methods in Additional file 3. Therefore, we

employ an iterative coordinate ascent procedure that,

in effect, jointly maximizes all parameters. We found,

however, that the gains in likelihood after the first

iteration do not justify the time requirements, and we

therefore limit all experiments to a single iteration. An

initial r0 estimation with uniform bias weights seeds

the maximization of the bias parameters. r is then

maximized using these bias parameters, and is used as

the final abundance estimate.

NanoString experiment

Cell culture/RNA prep and NanoString: Mouse embryo-

nic stem cells (V6.5) were co-cultured with irradiated

mouse embryonic broblasts as described in [26]. mESCs

were passaged once on gelatin alone before RNA extrac-

tion. Total RNA was extracted from mESCs using the

protocol specified in the RNeasy kit (Qiagen). 100 ng of

total RNA was hybridized for 17 hours with lincRNA

codeset in technical triplicate. The hybridized material

was loaded into the nCounter prep station followed by

quantification on the nCounter Digital Analyzer as out-

lined by NanoString Technologies in their Total RNA

Gene Expression nCounter protocol.

RNA-Seq data

All accession numbers refer to data available from the

short read archive (SRA) [27]. The SOLiD data was

downloaded from [28]. The NSR data was provided by

the authors of [21].

Mapping and annotation

To allow for consistent comparison across datasets, all

read mapping was carried out using TopHat 1.1.0 [29]

with supplied annotations and the –no-novel-juncs

option set, except for the SOLiD datasets, which were

only available in a pre-aligned form with mapping by

BioScope 1.2.1. All expression estimation and bias

correction were done using Cufflinks 0.9.3 with the

same annotation and reference sequence as TopHat. In

the case of strand-specific libraries, the correct

–library-type option was used as per the Cuf-

flinks manual. For the mouse dataset in the Nano-

String experiment, the RefSeq refGene annotation for

assembly NCBI37/mm9 was used, and was downloaded

from the UCSC Genome Browser. For all human data-

sets, the RefSeq refGene annotation for assembly

NCBI36/hg18 [30] was used, and was downloaded from

the UCSC Genome Browser. The only filtering was to

remove non-chromosomal and ‘random’ contigs. After

quanti cation with Cufflinks, the subset of tran-

scripts with 1-to-1 mappings to the TaqMan qRT-PCR

probes were selected (as listed in the supplement to

[16]) to be used in the correlation tests. All yeast data-

sets used the Ensembl Saccharomyces cerevisiae annota-

tion, release 59, which was downloaded from the

Ensembl website [31]. Mitochondrial, non-coding, and

ribosomal RNA sites were masked in the annotation.

All remaining transcripts were used in our correlation

tests.

Comparison with previous methods

Genominator

We downloaded the Genominator package version

1.4.0 using Bioconductor. We then followed the instruc-

tors provided with the Genominator for ‘Working

with the ShortRead Package’. We used the same annota-

tions as in our Cufflinks experiment to define the

ranges and transcript lengths for the RPKM calculations.

We also used the same read mapping as was used for

Cufflinks. Due to memory limitations of the soft-

ware, we were forced to learn the weights separately for

each chromosome.

mseq

We downloaded the mseq package version 1.1 from the

Comprehensive R Archive Network (CRAN). Due to the

specific mseq input format requirements, we remapped

the reads using Bowtie version 0.12.5 [32] with the

–best option and default parameters otherwise. The

mapping was then converted to the mseq input format

using a custom Python script we wrote and that is pro-

vided in Additional file 4. We followed the instructions

of [10] and trained the MART model with suggested

parameters on the top 100 expressed transcripts, which

we determined by computing the RPKM for every tran-

script. The UTR regions and an additional 100 bases on

the ends of transcripts were excluded from the training.

The surrounding sequence window was set to be 8

bases before and 12 bases after the first nucleotide in

the read, which matches the window of our variable

length Markov model and is where we observed bias for

the dataset. The resulting sequence preferences were

used to find the corrected RPKMs.

Statistical analysis

All correlation tests used least squares linear regression,

as implemented in the R programming language. We

found the P-value in Section 2.2 by sampling (with repla-

cement) from the empirical distribution of fold changes

50,000 times for each transcript in order to generate

50,000 randomly adjusted sets of expression values.
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Of these, only 35 showed correlations better than the

values that were corrected by our method (R2 = 0.81).

Additional material

Additional file 1: Supplementary figures. Additional figures referred to

in the text.

Additional file 2: Raw expression data. Raw expression estimates used

in comparisons, including the NanoString expression measurements.

Additional file 3: Supplementary methods. More detail on the

likelihood model.

Additional file 4: Script for mseq format conversion. Python script

that converts standard SAM and FASTA input into the mseq input

format.
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