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Abstract

The goal of this paper is to analyze the impact of codec-

degraded speech on a state-of-the-art speaker recognition sys-

tem and propose mitigation techniques. Several acoustic fea-

tures are analyzed, including the standard Mel filterbank cep-

stral coefficients (MFCC), as well as the noise-robust medium

duration modulation cepstrum (MDMC) and power normalized

cepstral coefficients (PNCC), to determine whether robustness

to noise generalizes to audio compression. Using a speaker

recognition system based on i-vectors and probabilistic linear

discriminant analysis (PLDA), we compared four PLDA train-

ing scenarios. The first involves training PLDA on clean data,

the second included additional noisy and reverberant speech,

a third introduces transcoded data matched to the evaluation

conditions and the fourth, using codec-degraded speech mis-

matched to the evaluation conditions. We found that robust-

ness to compressed speech was marginally improved by ex-

posing PLDA to noisy and reverberant speech, with little im-

provement using trancoded speech in PLDA based on codecs

mismatched to the evaluation conditions. Noise-robust fea-

tures offered a degree of robustness to compressed speech while

more significant improvements occurred when PLDA had ob-

served the codec matching the evaluation conditions. Finally,

we tested i-vector fusion from the different features, which in-

creased overall system performance but did not improve robust-

ness to codec-degraded speech.

Index Terms: speaker recognition, speech coding, codec degra-

dation, speaker verification.

1. Introduction

Compressed audio plays a significant role in mobile com-

munications, Voice Over Internet Protocol (VOIP), voicemail,

archival audio storage, gaming communications, and internet

streaming audio. In most of these there is a widespread use of

lossy speech coders. The purpose of speech coders is to com-

press the speech signal by reducing the number of bits needed

for transmission while maintaining the intelligibility of speech

once decoded. The distortion introduced by speech coders may

have a significant impact on the performance of speaker recog-

nition systems. Of interest, therefore, is the analysis of codec-

related degradation and the development of robustness tech-

niques against this degradation. Not only the speaker recog-

nition research community can benefit from this analysis, but

also the communications, gaming, and forensics/law enforce-

ment industries.

The research by authors at SRI International was funded through a
development contract with Sandia National Laboratories (#DE-AC04-
94AL85000). The views herein are those of the authors and do not
necessarily represent the views of the funding agencies.

There have been a number of papers investigating the effect

of codecs on speaker recognition performance. In [1] and [2] the

effect of GSM coding is examined. Codec mismatch in model

training and testing is investigated in [3]. In [4], four standard

speech coding algorithms [GSM (12.2 kbps), G.729 (8 kbps),

G.723 (5.3 kbps) and MELP (2.4 kbps)] were used for testing

the mismatch influence for speaker recognition, and the effect

of score normalization was discussed. In [5], two approaches

were proposed to improve the performance of Gaussian mixture

model (GMM) speaker recognition which were obtained from

the G.729 resynthesized speech. The first one explicitly uses

G.729 spectral parameters as a feature vector, and the second

calculates Mel-filter bank energies of speech spectra built up

from G.729 parameters. In [1], the effect of the codec in GSM

cellular telephone networks was investigated, and performance

of the text-dependent speaker verification system trained with

A-law coded speech and tested with GSM coded speech and

that of the system trained with GSM coded speech and tested

with GSM coded speech were compared.

In this paper we analyzed the impact of speech degraded by

several widely used codecs on a state-of-the-art speaker identi-

fication system. The robustness of several acoustic features was

analyzed, including MFCC, PNCC, and the recent MDMC. The

latter two approaches were designed for noise robustness. We

analyzed the effect of codec distortion on the probabilistic linear

discriminant analysis (PLDA) compensation module. Finally,

we explored i-vector combination from the different feature sys-

tems as a way to increase robustness to codec distortions.

2. Speaker Identification System

A state-of-the-art speaker identification system based on a stan-

dard i-vector extraction process and PLDA modeling frame-

work was used for this study [6, 7]. A Universal Background

Model (UBM) with 512 diagonal covariance Gaussian com-

ponents was trained using the female speech data from the

PRISM dataset [8]. An i-vector extractor of 400 dimensions

was trained on the same data and i-vector dimensions were fur-

ther reduced to 250 by linear discriminant analysis (LDA), fol-

lowed by length normalization and PLDA.

The i-vector fusion [9] consists of concatenating each i-

vector from each stream into a single vector before employing

the PLDA backend. The i-vector dimensions are first reduced

using LDA, and only after concatenation does a second dimen-

sionality reduction shrink the total dimension to 200.

2.1. Codecs Description

We selected a number of codecs representative of those cur-

rently in widespread use. First, the codecs were chosen ac-

cording to what software was available, and would work for
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the 8 kHz data in our evaluation set. Codecs that operated only

with higher sampling rates were excluded as their assumptions

regarding higher frequency and any corresponding dependence

on this content for correct operation would have resulted in an

unfair comparison with the selected codecs. A variety of tools

was used to encode and decode (transcode) waveforms. For all

data, we first used the National Institute of Standards (NIST)

w decode tool to make sure that data was single channel pulse

coded modulation (PCM). Then we used sox (ver. 14.3.2) to

convert the waveforms from SPHERE format to the standard

WAV format. We use the following codecs in this paper.

Advanced Audio Coding (AAC) is a standardized, lossy com-

pression and encoding scheme. Designed to be the successor

to the MP3 format, AAC has been standardized as part of

the MPEG-2 and MPEG-4 specifications. It is widely used

in YouTube, iPhone, iOS, and Android-based phones. For

waveform transcoding we used neroAacEnc and neroAacDec

from http://www.nero.com to transcode AAC8 and AAC16.

The Adaptive Multi-Rate (AMR) audio codec is an audio

data compression scheme optimized for speech. AMR speech

codec consists of a multi-rate narrowband speech codec that

encodes narrowband signals at variable bit rates ranging from

4.75 to 12.2 kbps. For AMR transcoding, we used the GSM

AMR-NB speech codec (26073-800, 12/12/2001) encoder and

decoder programs from http://www.3gpp.org.

GSM (Global System for Mobile communications) 6.10 [10]

is a Regular-Pulse Excitation Long-Term Predictor (RPE-LTP)

based codec. It was designed for speech applications, and

compression is done based on signal prediction and signal

correlations. GSM is the standard for the vast majority of

cellular communications in the world and is optimized for

real-time compression. For transcoding, we used sox, which

can be found at http://sox.sourceforge.net.

MPEG-2 Audio Layer III (MP3) is a patented encoding for-

mat for digital audio that uses a form of lossy data compression.

It is a common format for consumer audio storage and for most

digital audio players. The compression works by reducing

accuracy of certain parts of sound based on psychoacoustic

criteria. For transcoding, we used http://lame.sourceforge.net.

RealAudio is a proprietary audio format developed by RealNet-

works, released in April 1995. It uses a variety of audio codecs,

ranging from low bit-rate formats for dialup modems, to high-

fidelity formats for music. We used http://www.ffmpeg.org for

transcoding to Real Audio.

Speex bases its compression on Code Excited Linear Prediction

(CELP) [11], which is a traditional technique first proposed

in 1985. By 1991, a U.S. Department of Defense standard

was established for very low bit-rate communications based

on CELP [12]. We used speexenc and speexdec from the

http://www.speex.org/software software package.

Windows Media Audio (WMA) is a compression technology

developed by Microsoft. We used http://www.ffmpeg.org for

transcoding WMA.

3. Experimental Setup

As speech material we used a subset of female data from the

NIST Speaker Recognition Evaluation (SRE) 2008 and 2010

corpora. We transcoded the full waveforms by passing the

clean waveforms through a coding and decoding step. This

exposes the speech to the distortion effects of the codec. The

evaluation dataset was constructed from 24 SRE08 and 542

SRE10 segments to produce 559 target and 159,336 impostor

trials. Matched-codec trials are reported throughout (i.e., the

speaker is enrolled and tested on audio transcoded using the

same codec). Speaker models were enrolled using a single seg-

ment. The baseline system was trained using 30,675 clean seg-

ments from the PRISM data set [8]. PLDA exposed to noise

and reverb was trained to additionally include the correspond-

ing noise and reverb degraded data from the PRISM data set.

Transcoded data for PLDA retraining was sourced from a sub-

set of 479 and 103 microphone segments from the SRE08 and

SRE10 corpora, respectively.

Experiments were based on speech segments found by a

voice activity detector (VAD) time alignments extracted from

the clean speech and applied to the transcoded data. There-

fore, all the experiments, clean and transcoded, contained the

same sample durations. This process bypasses the problem of

speech detection in transcoded data to provide an unbiased view

of codec degradation on speaker recognition performance. It

should be noted that some codecs change the length of the file

during the encoding or decoding phase. We accommodated this

by cutting the waveform appropriately to minimize the offset in

speech segmentation and preliminary analysis revealed that this

did not pose a significant problem.

Three sets of acoustic features were extracted from the eval-

uation data. The features used in the experiments are the stan-

dard MFCC features, medium duration modulation cepstrum

(MDMC) and power normalized cepstral coefficients (PNCC),

both described below.

The MDMC feature is obtained using a modified version

of the algorithm presented in [13]. In MDMC feature genera-

tion, the digital speech signal is pre-emphasized (using a pre-

emphasis filter of coefficient 0.97) and then analyzed using a

51.2 ms Hamming window with a 10 ms frame rate. The win-

dowed speech signal is split into 34 channels using a gamma-

tone filterbank, spaced equally between 250 Hz and 3750 Hz in

the ERB scale. Amplitude Modulation (AM) signals are esti-

mated from the subband signals using Teagers nonlinear energy

operator. The AM power for each subband is estimated at a

100 Hz sampling rate. Medium duration power bias subtrac-

tion is performed on the resulting power signal, which is then

power normalized using 1/15th root. Discrete Cosine Transform

(DCT) was performed on the root compressed power signal and

the first 20 coefficients (including the C0) were retained. These

20 coefficients along with their deltas and double-deltas resulted

in a 60-dimension feature set.

PNCCs are a noise-robust acoustic feature based on work

by Kim and Stern [14]. In PNCC, the acoustic digital signal is

pre-emphasized (using a pre-emphasis coefficient of 0.97) and

then analyzed using a 25.6 ms Hamming window with 10 ms

frame rate. Then a short-time Fourier analysis is performed

over the Hamming windowed data, followed by gamma-tone

filtering in the spectral domain, using a 30-channel gamma-

tone filterbank with cut-off frequencies of 133 Hz and 4000

Hz, where the center frequencies of the gamma-tone bank are

spaced equally in the ERB scale. In this implementation of

PNCC, small power boosting is supported as explained in [15].

Short-term spectral powers were estimated by integrating the

squared gamma-tone responses, and the resultant was com-

pressed using 1/15th root. DCT was performed on the root-

compressed power signal, and the first 20 coefficients (includ-

ing the C0) were retained. These 20 coefficients along with their

△s and △2s resulted in a 60D PNCC feature set.
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Figure 1: Equal Error Rate (EER) of clean and codec-degraded

evaluation data using a clean speech PLDA model.

4. Results

We first analyzed the effect of codecs on speaker identifica-

tion performance. The main subject of investigation is how the

PLDA compensation system is affected when trained with clean

data, additional noisy and reverberated speech and finally addi-

tional transcoded speech. We evaluate the particular case where

the PLDA model is exposed to compression from codecs other

than the one being tested. The contribution of i-vector combi-

nation to robustness in the unseen codec case is also analyzed.

4.1. Analysis of Codec-Degraded Speech

The first system can be considered the baseline. Here the PLDA

model was trained with clean speech data. Results are presented

in Figure 1 in terms of Equal Error Rate (EER) when speech is

degraded using each codec. Results are presented for each of

the three features described in Section 3. From Figure 1 we can

conclude that several codecs result in significant EER degrada-

tion relative to clean conditions. Specifically, AAC8 and real

audio 144 reduce performance by an order of magnitude. Com-

pared to the standard MFCC features, the noise-robust MDMC

and PNCC features offer some robustness to codec degrada-

tion in the more extreme cases (GSM, AAC8, Real 144, am-

rMR475 and wmav2 24k), while the opposite trends were ob-

served when codec degradation was less severe (AAC16 and

speex for instance). The difference between features can be

summarized by the average EERs from transcoded evaluation

data MFCC (3.06%), MDMC (2.63%) and PNCC (2.76%).

4.2. Exposing PLDA to Noise and Reverb

We re-trained the PLDA model with the aforementioned clean

data and additional noisy and reverberated data. Around 3,000

segments were used for each condition. Noisy data is from bab-

ble noise degraded speech at 8, 15, and 20 dB SNRs. The RT60

reverberation time parameters were 0.3, 0.5 and 0.7. The goal of

this experiment is to analyze whether a PLDA model exposed

to noisy and reverberated speech is more robust to codec dis-

tortions than one trained only with clean speech. Results are

presented in Figure 2 using the noise and reverb PLDA model.

For ease of comparison, results are overlaid on the EERs from

the clean PLDA model represented as dashed bars in the Figure.

Figure 2 indicates that a general downward trend in EER

can be observed by introducing noisy and reverberated data in

the PLDA model. One exception was the Real Audio codec

Figure 2: EER of clean and codec-degraded evaluation data

using a PLDA model trained on clean, noisy and reverberated

speech (overlaid on EER from Figure 1).

Figure 3: EER of clean and codec-degraded evaluation data us-

ing a PLDA models trained on clean, noisy, reverberated, and

codec-degraded speech except the evaluated codec (overlaid on

EER from Figure 2).

for which the noise and reverb PLDA model degraded perfor-

mance with respect to the clean model. The average EER from

transcoded speech in Figure 2 for MFCC is 2.93%, for MDMC

is 2.50% and for PNCC is 2.61%. We found similar feature

rank ordering compared to the clean system and therefore it can

be concluded that including noisy and reverberated speech in

the PLDA model provided some additional system robustness

to codec-degraded speech.

4.3. Unseen Codec Experiments

To observe the benefit of re-training the noise and reverb PLDA

model along with codec-degraded data, we included in the train-

ing set 582 segments transcoded with each codec except the

codec used for the test. The goal is to analyze if a PLDA

model exposed to multiple codec degradations other than the

one used in the testing case is more robust than a PLDA training

set without codec-degraded speech. Specifically we grouped

the codecs by classes: aac, amr, mp3, GSM, real, wmav and

speex. The codec group from which the enrollment and testing

came was excluded during PLDA re-training. Figure 3 illus-

trates the results from these trials overlaid on the EERs from

the noise and reverb PLDA model (represented as dashed bars

in the Figure). Despite expectations of additional robustness to

compressed speech, it can be seen that including compressed
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Figure 4: EER of clean and codec-degraded evaluation data us-

ing a PLDA model trained on clean, noisy, reverberated, and

codec-degraded speech (overlaid on EER from Figure 3).

speech in the PLDA model provided no significant improve-

ment over the noise and reverb PLDA model.

4.4. PLDA Using All Codecs

Here, we explore the case where the PLDA model is exposed

to all available codec-degraded speech along with noisy and re-

verberate speech. This can be considered an optimistic case

where the PLDA system has been exposed to multiple codecs

including the one used in the enrollment and testing audio. Re-

sults when using the codec-aware PLDA model are are over-

laid on EERs from the noise and reverb PLDA model (repre-

sented by dashed bars) in Figure 4. Figure 4 indicates that in-

cluding in the PLDA training data speech compressed with the

same codec as used for model enrollment and testing signifi-

cantly lowered EERs. The average EER of transcoded speech

for MFCC is 1.74%, for MDMC is 2.02% and for PNCC is

1.88%. Interestingly, the noise-robust features no longer im-

prove over MFCC. In fact, the order of feature performance was

reversed, with MFCC improving on PNCC and PNCC improv-

ing on MDMC. As previously observed, however, the noise-

robust features provided improved performance over MFCC in

the high EER codecs: AAC8 and Real Audio. These results in-

dicate that, unless the codec used to transcode enrollment and

test data has been observed during PLDA training, the system

will offer limited robustness to the degradation that transcoding

imparts to the speech.

4.5. I-vector Fusion System

Finally, we explored combining the three feature-specific sys-

tems. System combination was performed by combining the

i-vectors from the MFCC, MDMC, and PNCC systems per Sec-

tion 3. To summarize the benefit of i-vector fusion, Table 1 de-

tails the average EER across codecs for the individual features

and i-vector fusion under the four PLDA modeling conditions.

In each case, it can be observed that i-vector fusion provides

a relative improvement of 10-14% over the best single system.

Robustness to compression from unseen codecs, however, was

on average not improved by i-vector fusion, as the noise and un-

seen PLDA results are comparable and far from the oracle codec

PLDA. The improvements of i-vector fusion over the individual

features are illustrated for individual codecs in Figure 5 when

the test codec was not observed during PLDA training.

The lack of system robustness to unseen codecs provides

Table 1: Comparing Average EERs of features and i-vector fu-

sion across codecs for different PLDA training strategies.

PLDA MFCC MDMC PNCC ivFusion

Clean 3.06% 2.63% 2.76% 2.37%

Noise & Reverb 2.93% 2.50% 2.61% 2.16%

Unseen Codecs 2.97% 2.63% 2.51% 2.17%

All Codecs 1.81% 2.08% 1.95% 1.56%

Figure 5: EER of i-vector fusion system overlaid on individual

feature EER when including codec training data in the PLDA

model that is mismatched to the evaluation codec.

motivation for research into techniques tailored to dealing with

codec robustness in state-of-the-art speaker recognition sys-

tems. Future research will investigate how codec detection can

be utilized to improve robustness through metadata information

for system calibration, selecting a pre-trained PLDA model that

has observed codecs with similar characteristics during training

and tailoring features to better deal with compressed speech.

5. Conclusion

We analyzed the impact of codec-degraded speech on a state-

of-the-art PLDA-based speaker identification system and pro-

posed mitigation techniques. Baseline MFCC and noise-robust

MDMC and PNCC features were analyzed. We compared four

PLDA modeling regimes: one trained only on clean data, addi-

tionally including noisy and reverberant speech, the inclusion of

all codec data including the codec used to degrade enrollment

and test speech, and all aforementioned data except speech from

the codec used in evaluation. It was found that including noise

and reverberant speech in the PLDA model added some robust-

ness to codec-degraded speech with no advantage coming from

adding transcoded speech from codecs not used for enrollment

and test speech. The optimal solution was to include codec data

in the PLDA model that matched the evaluation conditions. The

noise-robust MDMC and PNCC features were found to general-

ize well to codec-degraded speech when the codec used on eval-

uation data had not been observed during PLDA model train-

ing. Finally, we tested i-vector level combination of the differ-

ent feature subsystems, which improved overall performance of

the system by as much as 14% relative but failed to improve

robustness to codec-degraded speech.
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