
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 4, Number 2, pages 291–306, July 2014

Improving RTT Fairness on CUBIC TCP

Tomoki Kozu, Yuria Akiyama, Saneyasu Yamaguchi

Kogakuin University,1-24-2
Nishi-Shinjuku, Shinjuku-Ku, Tokyo, Japan

Received: February 15, 2014

Revised: May 6, 2014

Accepted: June 3, 2014

Communicated by Yoshiaki Kakuda

Abstract

CUBIC TPC is a congestion control algorithm for TCP. It is the current default TCP
algorithm in Linux. Because many Internet servers, such as web servers, are running on Linux
operating system, keeping throughput obtained with this TCP enough is quite important. Then,
many performance studies have been published. However, most of these studies have been based
on network simulators. Thus, evaluations using an actual TCP implementation and actual
network elements are important in addition to these existing studies. In this paper, we focus on
RTT (round trip time) fairness on CUBIC TCP, which is performance fairness among CUBIC
TCP connections with different network delay times. Firstly, we present RTT fairness evaluation
using actual TCP implementations and actual network elements and show that the fairness is
not enough. Secondly, we discuss the cause of the unfairness based on CUBIC TCP behaviors.
Thirdly, we propose a method for improving RTT fairness of CUBIC TCP. Unlike an existing
work, the proposed method is not based on heuristic optimization. Finally, we present evaluation
results and demonstrate that the proposed method provides better fairness than original CUBIC
TCP implementation.

Keywords: TCP, congestion control algorithm, CUBIC TCP, RTT fairness

1 Introduction

TCP (Transmission Control Protocol) is one of the core protocols of the Internet. Its implementa-
tions have congestion control algorithms and their behavior has strong impact on obtained through-
put. Classical TCP implementations and some current implementations have TCP Reno [1]. It has
been widely used, but it is pointed out that enough throughput cannot be obtained over current
long fat networks with this algorithm [2]. For this issue, several new congestion control algorithms
were proposed, such as TCP Vegas [3], BIC TCP [4], CUBIC TCP [5], and Compound TCP [6].
CUBIC TCP is considered one of the most suitable algorithms for current networks. Then, it is the
default TCP algorithm of current Linux operating system.

On TCP congestion control algorithms, their performance has been rigorously discussed using
network simulators, such as NS2 [7]. However, performance obtained with actual TCP implementa-
tions and actual network elements have not been studied enough. Especially, RTT fairness, which
is performance fairness between connections with different RTTs, has not been discussed.

291

Improving RTT Fairness on CUBIC TCP

In this paper, we focus on RTT fairness in CUBIC TCP. We evaluate RTT fairness of CUBIC
TCP connections and demonstrate that the fairness is not sufficient. Then, we discuss the cause of
unfairness. After the discussion, we propose a method for improving RTT fairness. CUBIC TCP
is one of the most important TCP congestion control algorithms because most Internet traffic is
sent from servers, such as web server processes, to client PCs and most of these server processes
are running on Linux operating system. Thus, we think improving RTT fairness of this TCP
implementation contributes many users of the Internet. We evaluate “fairness” with Fairness Index,
which will be described in section 3.1, and define our objective to improve this value.

The remainder of this paper is organized as follows. Section 2 gives related work. Section 3
provides evaluation results of RTT fairness on CUBIC TCP and demonstrates that the fairness is
not enough. After the evaluation, the section presents discussion on cause of the unfairness and
shows K of CUBIC TCP is the main cause. From these discussions, we propose a method for
improving RTT fairness of CUBIC TCP and evaluate the proposed method in section 4. Section 5
presents discussion and Section 6 gives conclusion.

2 Related Work

2.1 TCP Congestion Control Algorithms

In order to avoid network congestion, TCP implementations manage congestion window size and
control output speed. There are many TCP congestion control algorithms. These are classified into
three general groups, loss-based methods, delay-based methods, and hybrid methods.

Loss-based methods manage congestion window size based on packet losses. In usual cases,
congestion window size is increased every ACK packet receiving. When a packet loss is detected,
congestion window size is decreased significantly. TCP Reno [1], BIC TCP [4], and CUBIC TCP [5]
are loss-based methods.

Delay based methods manage congestion window size based on RTT. These methods decrease
congestion windows size according to RTT increase, which implies increase of network routers’ load
and queue length. While loss-based methods decrease its congestion window size after congestion,
delay-based methods decrease it before congestion. Thus, obtained throughput is expected to be
stable. However, these methods have a performance issue. In case of sharing a network link with a
loss-based method, performance obtained by a delay-based method is much less than that of a loss-
based method, because a delay-based method decreases its congestion window size before congestion
and a loss-based method does not decrease it until a packet loss. TCP Vegas [3] is a delay-based
method.

Hybrid methods are methods adopting both loss-based policy and delay-based policy. Compound
TCP [6] is a hybrid method.

2.2 CUBIC TCP

CUBIC TCP [5] is an algorithm based on BIC TCP [4], so it has high scalability similar to BIC TCP.
Moreover, it has better TCP fairness and RTT fairness than BIC TCP. TCP fairness is performance
fairness among TCP algorithms. RTT fairness is performance fairness among connections with
different RTTs, as described above. CUBIC TCP uses the following cubic function, while BIC TCP
uses binary search.

cwnd = C(t−K)3 +Wmax (1)

K =
3

√

Wmaxβ

C
(2)

cwnd is congestion window size, t is time from the last packet loss, Wmax is congestion window size
at the last packet loss, C and β are parameters to tune increasing speed in usual state and dropping
ratio at packet losses, respectively. The larger C results in the faster increase. In most cases, C is
0.4 and β is 0.2. Because this function uses time from a packet loss and does not depend on ACK
receiving, it is expected to provide good RTT fairness and avoid too aggressive increasing over a

292

International Journal of Networking and Computing

short RTT network. As shown in formula (1), K is time to the inflection point and cwnd achieves
Wmax at time K. Therefore, we can understand K as time to recovery.

CUBIC TCP calculates congestion window size obtained by TCP Reno using the following func-
tion.

Wmax(1− β) + 3
β

2− β

1

RTT
(3)

If its current congestion window size is less than that obtained by TCP Reno, then CUBIC TCP
adopts this calculated size.

For giving enough network bandwidth to a new joining flow, CUBIC TCP has Fast Convergence
mechanism. If congestion window size at the last packet loss is less than that of the preceding packet
loss, then Wmax is determined by the following function. This mechanism decreases bandwidth of
the existing flows in order to increase performance of a new joining flow [8].

Wmax = cwnd
2 − β

2
(4)

2.3 Fairness on TCP

The following works are on RTT fairness of TCP. For achieving RTT fairness, Floyd et al. proposed
Constant-Rate window increase algorithms [9] [10], with which each connection increases its window
size by roughly a ∗ r2 packets each roundtrip time, for some fixed constant a, and for r the calcu-
lated average roundtrip time. Henderson et al. profoundly investigated RTT fairness and showed
Constant-Rate policy [9] could improve fairness dramatically [11].

Marfia et al. suggested that TCP’s RTT unfairness was caused by its ACK-based mechanism and
proposed a new TCP algorithm named TCP-Libra [12]. It increases congestion window size of large
RTT connections more quickly. Ogura et al. proposed a new TCP algorithm, which is named “HRF
(Hybrid RTT Fair)-TCP” for improving RTT fairness [13]. This work also presented analytical
models. They evaluated the proposed method with both a simulator and their implementation.

The works in [9], [10], and [11] were based on additive increase policies. Therefore, these works
are useful for classical TCP algorithms, such as TCP Reno, but are not directly effective for modern
fast TCP algorithms and modern operating systems. On the other hand, our work focuses on one
of the most important modern fast TCP algorithms and discusses with a practical TCP implemen-
tation. In addition, these methods do not have a target situation and do not have mechanism to
lead throughput close to fair one. On the contrary, our method has a mechanism with which perfor-
mance of insufficient and exceeds throughput connections are increased and decreased, respectively.
Performance comparison between Constant-Rate and our proposed method is presented in appendix
A. The methods in work [12] and [13] are pioneer ones, but their purposes are quite different from
that of our work. They discussed not for CUBIC TCP but for a novel TCP algorithm. TCP-Libra
increases its congestion window size based on ACK receiving unlike CUBIC TCP. On the other
hand, we focus on CUBIC TCP, which is currently widely used, and aim to improve it.

The following works are on TCP fairness. Mo et al. evaluated fairness between TCP Reno and
TCP Vegas [3]. The work demonstrated that TCP Vegas reduced its performance while TCP Reno
monotonously increased, and their fairness was poor. The evaluation was executed with network
simulator (NS). Itsumi et al. showed that CUBIC TCP outperformed Compound TCP when they
shared network links [14]. In addition, they proposed a method to improve fairness by using RED
(Random Early Detection) [15], and demonstrated that the proposed method worked effectively.
The evaluation was executed with simulation. In [16], TCP fairness among modern fast TCPs
were evaluated with actual TCP implementations and several solutions for this issue were proposed.
These works are for TCP fairness, thus they are not directly useful for improving RTT fairness.

In work [17], a method for improving RTT fairness of CUBIC TCP was proposed. The proposed
method was evaluated with an actual TCP implementation and actual network elements. However,
the proposed method was based on a tuning function. Thus, achieved fairness depended on heuristic
optimization. On the contrary, the method proposed in this paper can improve RTT fairness of
CUBIC TCP without parameters tuning. The comparison between this existing method and the
proposed method in this paper will be described in appendix B.

293

Improving RTT Fairness on CUBIC TCP

3 RTT Fairness of CUBIC TCP

3.1 RTT Fairness Evaluation

In this subsection, we give RTT fairness evaluation between CUBIC TCP connections. We con-
structed the experimental network shown in Figure 1 and measured CUBIC TCP performance.

The executed experiments are as follows. We established two CUBIC TCP connections. One
was a connection between PC1 and PC3. The other was a connection between PC2 and PC3. These
connections were established by netperf [18], which was a network throughput benchmark software.
Packets were sent from PC1 and PC2 to PC3. The network delay times of these connections were
set independently. Both of the connections shared network elements between the emulator and PC3.
The network emulator was a network bridge which was able to emulate network delay. This emulator
was constructed by FreeBSD Dummynet [19]. All elements in this experimental network supported
1Gbps Ethernet. Specifications of the computers in this network are shown in Table 1. C and β of
CUBIC TCP were set 0.4 and 0.2, respectively. These are the standard settings [5] and the default
settings of the current Linux operating system. Advertise windows size was set 16MB.

The experimental results are shown in Figure 2 to Figure 4. In Figure 2, the network delay
time of one connection was always 2ms. The delay time of the other connection ranged from 2ms
to 128ms. The horizontal axes of these graphs represent RTTs of the two connections. The vertical
axis in the left graph shows the obtained throughput and the vertical axis of the right graph depicts
Jain’s Fairness Index [20]. For n flows, with flow i receiving a fraction bi on a giving link, the fairness
of the allocation is defined as:

Fairness Index =
(
∑n

i=1
bi)

2

n×
∑n

i=1
(b2i)

(5)

It ranges continuously in value from 1/n to 1, with 1 corresponding to equal allocation for all
connection [11]. The left graph indicates that the throughput obtained by the connection with the
smaller RTT is higher than that with larger RTT. These graphs indicate also that performance
difference grows and Fairness Index declines as RTT difference grows. In the case of RTT 2ms and
RTT 128ms, one connection obtained more than twice performance. From these, we can conclude
that RTT fairness of CUBIC TCP is not enough.

Figure 3 and Figure 4 show congestion window size of the experiment with RTT 2ms and
RTT 128ms, respectively. The average congestion windows size of connections with RTT 2ms
and RTT 128ms are 0.82MB and 2.83MB, respectively. Because obtained throughput is less than
WindowSize/RTT [21], connections with RTT 2ms and RTT 128ms should increase congestion
window size up to 100 KB and 6.4MB at least for getting 400 Mbps throughput, respectively. A
detailed explanation for these values is shown in appendix C. These figures indicate that the con-
nection with RTT 2ms grew its congestion window size enough. On the other hand, the congestion
window size of the connection with RTT 128ms was not always enough. This is the most important
cause of the unfairness and insufficient performance of the connection with larger RTT.

Next, we focus on K of CUBIC TCP, which is time of congestion window recovery. Transitions
of K are also shown in Figure 3 and Figure 4. In most time, K of RTT 128ms connection is larger
than that of RTT 2ms connection. This is the main reason of deficient congestion window size of
the connection with RTT 128ms. The reason why larger K prevents congestion window size from
growing enough will be described in the next subsection.

3.2 Cause of unfairness

In this subsection, we explain why different Ks result in unfair performance.
In case of a usual network, which is constructed of routers using drop tail, all connections

encounter congestion and a packet loss at the same time. This is called “global synchronization”.

294

International Journal of Networking and Computing

PC1

PC3Network Emulator

PC2

1[Gbps]

1[Gbps]

1[Gbps]

Figure 1: Experimental Network

Table 1: Computer specifications
CPU Intel Celron CPU G530, 2.40GHz

Memory 2 [GB]
(PC1, PC2) Linux 2.6.32.27

OS (PC3) Linux 2.6.35.6
(Network Emulator) FreeBSD 8.2

NIC Intel PRO/1000 GT Desktop Adapter

0

100

200

300

400

500

600

700

800

2:2 2:4 2:8 2:16 2:32 2:64 2:128

T
h

ro
u

g
h

p
u

t[
M

b
p

s]

RTT[ms]

constant RTT(2ms,

standard CUBIC TCP)

variable RTT(2ms-128ms,

standard CUBIC TCP)

0.6

0.7

0.8

0.9

1

2:2 2:4 2:8 2:16 2:32 2:64 2:128

Fa
ir

n
e

ss
 I

n
d

e
x

RTT[ms]

Fairness Index(standard

CUBIC TCP)

Figure 2: Throughput and fairness (standard CUBIC TCP)

295

Improving RTT Fairness on CUBIC TCP

Figure 3: Transition of cwnd and K (RTT=2ms)

Figure 4: Transition of cwnd and K (RTT=128ms)

296

International Journal of Networking and Computing

0

0

co
n

g
e

s
o

n
 w

in
d

o
w

 s
iz

e

connec on L

connec on S

inflec on point

conges on me

timeA timeB

Figure 5: CUBIC TCP behavior

Figure 5 illustrates transitions of congestion window size of two connections with different Ks. We
call the connections with larger and smaller K “connection L” and “connection S”, respectively. KL

and KS in the figure are “K of connection L” and “K of connection S”, respectively. Congestion
and a packet loss occurred at timeA. Each connection sets its K according to its Wmax, as described
in section 2.2. Therefore, connection L and connection S set larger and smaller K, respectively.

The next congestion occurred at timeB. It was the time when sum of the both congestion
window sizes reached the sum at timeA. T imeB was between KL and KS . As a result, connection
L reached the next congestion before timeA+KL and its congestion window size at timeB is smaller
than Wmax of L at timeA. In other words, congestion window size of connection L was decreased.
On the contrary, connection S encountered the next congestion after timeA + KS. This indicates
that congestion window size of connection S was increased. From the both connections’ behavior,
we can say that congestion window size of a larger RTT connection will be decreased as congestion
avoidance phases will be repeated. That is to say, a connection with larger RTT requires a larger
congestion window size but the connection cannot keep larger congestion window size because larger
congestion window size results in larger K and decrease of congestion window size.

3.3 Effect of K

In order to discuss effect of K on performance, we measured performance of a connection with
large RTT and small K. The experimental results are shown in Figure 6. In the experiment, two
connections were established. One was connection with standard CUBIC TCP and its RTT was
always set 2ms. It is written as “constant RTT (2ms, standard CUBIC TCP)” in the figure. The
other was connection with the modified CUBIC TCP. Its K was always set 1000ms and its RTT
ranged from 2ms to 128ms. The constant K (1000ms) was much smaller than that of standard
CUBIC TCP. It is written as “variable RTT (2ms-128ms, K=1000)”. The figure indicates that the
connection with large RTT and small K significantly outperformed that with small RTT. From the
figure, we can say that adjusting K has large impact on CUBIC TCP performance when connections
share a network.

3.4 RTT Fairness of CUBIC TCP with constant K

In this section, we have shown that RTT fairness of CUBIC TCP has not been sufficient and the
main reason of unfairness has been K of CUBIC TCP. In this subsection, we discuss RTT fairness
with the same Ks (K=5000ms).

Setting K constant can be considered to be the most straight-forward and simplest method for
avoiding the unfairness caused by difference of K. We measured performances obtained by CUBIC
TCP with constant K. The experimental results are shown in Figure 7. These graphs show that

297

Improving RTT Fairness on CUBIC TCP

0

100

200

300

400

500

600

700

800

900

2:2 2:4 2:8 2:16 2:32 2:64 2:128

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

RTT [ms]

constant RTT (2ms)

variable RTT (2ms-128ms)

constant RTT (2ms,

standard CUBIC TCP)

variable RTT (2ms-128ms,

K=1000)

Figure 6: Throughput (large RTT and small K)

0

100

200

300

400

500

600

700

800

900

2:2 2:4 2:8 2:16 2:32 2:64 2:128

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

RTT [ms]

constant RTT (2ms,

standard CUBIC TCP)

variable RTT (2-128ms,

standard CUBIC TCP)

constant RTT (2ms,

K=5000)

variable RTT (2-128ms,

K=5000)

0.6

0.7

0.8

0.9

1

2:2 2:4 2:8 2:16 2:32 2:64 2:128

Fa
ir

n
e

ss
 I

n
d

e
x

RTT [ms]

Fairness Index (standard

CUBIC TCP)

Fairness Index (K=5000)

Figure 7: Throughput and fairness (K=5000ms)

setting K constant improves RTT fairness of CUBIC TCP. However, their performances have some
difference and RTT fairness with constant K is not sufficient.

4 Proposal

4.1 Adjusting K

In this subsection, we propose a method for improving RTT fairness between CUBIC TCP connec-
tions. As described in section 3.2, large K of large RTT connections is the main reason of unfairness.
For solving this issue, we propose to adjust K according to RTT, with which K is adjusted with the
following formula.

K =
3

√

Wmaxβ

C
×

1
3
√
RTT

(6)

1
3
√
RTT

in formula (6) is determined based on the following discussion. An obtained throughput

is limited to WindowSize/RTT by window size (see also appendix C for a detailed explanation).
Thus, fairness is achieved when the all connections have the same WindowSize/RTT . In this case,
window size and Wmax are proportional to RTT. So, we have made this situation the target of our
proposed method, and we have concluded that our method should moves congestion window size
and Wmax close to this situation when these are not. If Wmax is exactly proportional to RTT,
performance fairness is achieved and K is the same for all connections with the proposed method.
In theory, the next congestion will occur after K and the all connections encounter packet losses at
their flexion point, then all connections keep their Wmax with the same K. However, this balance

298

International Journal of Networking and Computing

0

100

200

300

400

500

600

700

800

900

2:2 2:4 2:8 2:16 2:32 2:64 2:128

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

RTT [ms]

constant RTT (2ms,

standard CUBIC TCP)

variable RTT (2ms-

128ms, standard CUBIC

TCP)

constant RTT (RTT=2ms,

proposed method)

larger RTT (RTT=2ms-

128ms, proposed

method)
0.6

0.7

0.8

0.9

1

2:2 2:4 2:8 2:16 2:32 2:64 2:128

Fa
ir

n
e

ss
 I

n
d

e
x

RTT [ms]

Fairness Index (standard

CUBIC TCP)

Fairness Index (proposed

method)

Figure 8: Throughput and fairness (proposed method)

is not stable. As described in section 3.4, RTT fairness is not achieved with constant K. Thus, we
can say that adjusting window size and Wmax close to the target situation is required. With the
proposed method using formula (6), a larger RTT connection with insufficient Wmax gains smaller
K than other connections. Therefore, this connection can recover its congestion window faster. As
described in section 3.2, faster recovery results in increase of congestion window size. Similarly, a
connection with excess window size gains larger K then its window size is decreased. That is to
say, a connection with smaller Wmax, K, and performance than the target situation increases their
values and performance, and a connection with larger values decreases their values and performance.
Then, this mechanism leads a situation into a fair one.

4.2 Evaluation

We evaluated our proposed method with the network in Figure 1. The experimental setup is the
same as that in section 3.1. CUBIC TCP implementations were modified according to the proposed
method. Then, Ks in the implementations were determined with the formula (6).

The obtained performances are shown in Figure 8. This figure indicates that RTT fairness is
significantly improved by the proposed method. The congestion window size andK of the experiment
with RTT 2ms and 128ms are shown in Figure 9 and Figure 10, respectively. From these figures, we
can see that K of the larger RTT connection is smaller than that of the smaller RTT connection.
Then, the congestion window size of the larger RTT connection kept larger than that of the smaller
RTT connection. These figures demonstrate that the proposed method can adjust K suitably and
improves RTT fairness.

5 Discussion

5.1 Exponent of RTT in K

In the proposed method, we have used third root of RTT . As mentioned in section 4.1, third root
of RTT enables controlled throughput in theory and our evaluation have demonstrated that the
proposed method have improved fairness. However, the complete fairness has not obtained with
practical systems. Further fairness can be achieved by tuning exponent of RTT in K. If you got

deficient performance with larger RTT connection, you should use K = 3

√

Wmaxβ

C
× 1

3−α
√
RTT

, (α > 0)

instead of K = 3

√

Wmaxβ

C
× 1

3
√
RTT

. As you increase α, performance of a connection with larger RTT

increases.

299

Improving RTT Fairness on CUBIC TCP

Figure 9: Transition of cwnd and K (RTT=2ms, proposed method)

Figure 10: Transition of cwnd and K (RTT=128ms, proposed method)

300

International Journal of Networking and Computing

0

cwnd (standard CUBIC TCP)

cwnd (proposed method)

inflec"on point

Figure 11: ssthresh (proposed method)

0

cwnd (standard CUBIC TCP)

cwnd (proposed method with C')

inflec"on point

Figure 12: ssthresh (proposed method with C′)

5.2 C in the proposed method

In the original CUBIC TCP, K is determined using C and β as shown in section 2.2. ssthresh
(slow start threshold), which is a border of slow start phase and congestion avoidance phase, is set
Wmax(1− β). In many cases, β is set 0.2 and ssthresh is 0.8×Wmax. With the proposed method,
K is modified as shown in section 4.1. This modification changes ssthresh like Figure 11. This
change can be avoided by using C′ instead of C like Figure 12.

cwnd = C′ × (t−K)3 (7)

C′ = C ×RTT (8)

Because throughput is effected by congestion window size, performance using the formula (6) and
the formula (7) are different. However, we focus on controlling performance in this work. As
mentioned above, performance can be controlled by adjusting K, i.e. giving smaller and larger K
result in increase and decrease of throughput, respectively. So, we have discussed on adjusting K
with standard setup, with which C is 0.4 and β is 0.2. The evaluation results using formula (7) and
(8) are shown in appendix D.

301

Improving RTT Fairness on CUBIC TCP

6 Conclusion

In this paper, we presented RTT fairness evaluation of CUBIC TCP and demonstrated its insufficient
fairness. After the evaluation, we have proposed a method for improving RTT fairness of CUBIC
TCP by adjusting K according to RTT. Our evaluation has demonstrated that our proposed method
has been able to improve RTT fairness of CUBIC TCP.

We plan to evaluate fairness between the proposed method and other TCP congestion control
algorithms.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Numbers 24300034, 25280022, 26730040.

References

[1] W. Stevens, “TCP Congestion Control,” IETF RFC 2581, 1999.

[2] Dina Katabi, Mark Handley, and Charlie Rohrs, “Congestion Control for High Bandwidth-
Delay Product Networks,” SIGCOMM ’02. Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer communications, pp. 89-102, 2002.

[3] Jeonghoon Mo, Richard J. La, Venkat Anantharam, and Jean Walrand, “Analysis and Com-
parison of TCP Reno and Vegas,” INFOCOM ’99. Eighteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE, March 1999.

[4] L. Xu, K. Harfoush and I. Rhee, “Binary Increase Congestion Control (BIC) for Fast Long-
Distance Networks,” Proc. INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies, March 2004.

[5] Injong Rhee, and Lisong Xu, “CUBIC: A New TCP-Friendly High-Speed TCP Variant,” Proc.
Workshop on Protocols for Fast Long Distance Networks, 2005.

[6] Kun Tan, Jingmin Song, Qian Zhang, and Murari Sridharan, “A Compound TCP Approach
for High-speed and Long Distance Networks,” Proceedings 25th Conference on Computer Com-
munications (InfoCom 2006), April 2006.

[7] The Network Simulator-ns-2, http://www.isi.edu/nsnam/ns/

[8] SUZUKAWA Ryuji, and ADACHI Naotoshi, “Enhancing Fairness of Bandwidth Sharing for
CUBIC-TCP,” IEICE Technical Report NS2008-108, 2008 (in Japanese).

[9] Sally Floyd, “Connections with multiple congested gateways in packet-switched networks part
1: one-way traffic,” SIGCOMM Comput. Commun. Rev., Vol. 21, No. 5, pp. 30-47, Oct. 1991.

[10] S. Floyd and V. Jacobson, “On Traffic Phase Effects in Packet-Switched Gateways,” Computer
Communication Review (ACM), Vol. 21, No. 2, 1991.

[11] Thomas R. Henderson, Emile Sahouria, Steven Mccanne, and Y H. Katz, “On Improving
the Fairness of TCP Congestion Avoidance,” Global Telecommunications Conference, 1998.
GLOBECOM 1998. The Bridge to Global Integration. IEEE, vol.1, pp. 539-544, 1998.

[12] G. Marfia, C. E. Palazzi, G. Pau, M. Gerla M. Y. Sanadidi, and M. Roccetti, “Balancing Video
on Demand Flows over Links with Heterogeneous Delays,” Proceedings of the 3rd international
conference on Mobile multimedia communications, pp. 1-6, 2007.

[13] Kazumine OGURA, Yohei NEMOTO, Zhou SU, and Jiro KATTO, “A New TCP Conges-
tion Control Supporting RTT-Fairness,” IEICE TRANSACTIONS on Information and Systems
Vol.E95-D No.2 pp.523-531, 2012.

302

International Journal of Networking and Computing

0

100

200

300

400

500

600

700

800

900

2:2 2:4 2:8 2:16 2:32 2:64 2:128

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

RTT [ms]

constant RTT (2ms,standard

TCP Reno)

variable RTT (2ms-

128ms,standard TCP Reno)

constant RTT (2ms,

Constant-Rate TCP Reno)

variable RTT(2ms-128ms,

Constant-Rate TCP Reno)

0.6

0.7

0.8

0.9

1

2:2 2:4 2:8 2:16 2:32 2:64 2:128

Fa
ir

n
e

ss
 I

n
d

e
x

RTT [ms]

Fairness Index (standard

TCP Reno)

Fairness Index (Constant-

Rate TCP Reno)

Fairness Index (standard

CUBIC TCP)

Fairness Index (proposed

method)

Figure 13: Throughput and fairness (Constant-Rate)

[14] Hayato Itsumi, and Miki Yamamoto, “Improving Fairness between CUBIC and Compound
TCP,” IEICE Technical Report NS2010-160, pp. 103-108, 2010 (in Japanese).

[15] Sally Floyd and Van Jacobson, “Random Early Detection Gateways for Congestion Avoidance,”
IEEE/ACM Transactions on Networking, V.1 N.4, pp. 397-413, August 1993.

[16] Ryo Oura and Saneyasu Yamaguchi, “Fairness Comparisons among Modern TCP Implementa-
tions,” Proceedings of the 26th International Conference on Advanced Information Networking
and Applications Workshops, pp. 909-914, 2012.

[17] Tomoki Kozu, Yuria Akiyama and Saneyasu Yamaguchi, “Improving RTT Fairness on CUBIC
TCP,” The First International Symposium on Computing and Networking, 2013.

[18] netperf homepage, http://www.netperf.org/netperf/

[19] Luigi Rizzo, “Dummynet: a simple approach to the evaluation of network protocols,” ACM
SIGCOMM Computer Communication Review, Volume 27 Issue 1, pp. 31-41, Jan. 1997.

[20] D. Chiu and R. Jain, “Analysis of the increase and decrease algorithms for congestion avoidance
in computer networks,” Computer Networks and ISDN Systems, Volume 17, Issue 1, pp. 1-14,
1989.

[21] Kevin R. Fall, W. Richard Stevens, “TCP/IP Illustrated, Volume 1 Second Edition,” Addison-
Wesley, pp. 729-730, 2012.

A Comparing with Constant-Rate

In [9], [10], and [11], it is suggested that Constant-Rate window increase improves RTT fairness.
This method is not for modern fast TCP, such as CUBIC TCP, but for classical TCP, such as TCP
Reno. Thus, exact comparison cannot be conducted but we introduce evaluation results as a guide.
We have modified TCP Reno implementation according to Constant-Rate [9]. It has a parameter
a as described in section 2.3. Then, we used a = 4, which was introduced in the original work [9].
Figure 13 shows performance and fairness of standard TCP Reno, Constant-Rate TCP Reno, and
our proposed method. Comparing the figure with Figure 2 and Figure 8, we can see that RTT
fairness of TCP Reno is much worse than that of CUBIC TCP. Figure 13 indicates that Constant-
Rate method can improve RTT fairness of TCP Reno. However, fairness obtained by Constant-Rate
with default setting is not comparable with those of CUBIC TCP and the proposed method.

303

Improving RTT Fairness on CUBIC TCP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 20 200

x

RTT[ms]

x(RTT)

Figure 14: x(RTT)

0

100

200

300

400

500

600

700

800

900

2:2 2:4 2:8 2:16 2:32 2:64 2:128

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

RTT[ms]

constant RTT (2ms, standard

CUBIC TCP)

variable RTT (2ms-128ms,

standard CUBIC TCP)

constant RTT RTT=2ms,

Exi!ng method

variable RTT RTT=2-

128ms, exi!ng method

constant RTT RTT=2ms,

proposed method

variable RTT RTT=2-128ms,

proposed method

0.6

0.7

0.8

0.9

1

2:2 2:4 2:8 2:16 2:32 2:64 2:128

Fa
ir

n
e

ss
 I

n
d

e
x

RTT [ms]

Fairness Index standard

CUBIC TCP

Fairness Index (exi!ng

method)

Fairness Index proposed

method

Figure 15: Throughput and fairness (existing method)

B Comparison with the existing method

In [17], a method for improving RTT fairness based on heuristic optimization was proposed. In
this section, we present comparison between this existing method and the proposed method in this
paper. In the existing method, K is adjusted using the following formula

K =
3

√

Wmaxβ

C
× x(RTT) (9)

x(RTT) is a function of RTT. x(RTT) monotonically decreases as RTT increases. x(RTT) is
shown in Figure 14. Comparison of the existing method and the proposed method are shown in
Figure 15. These graphs indicate that the proposed method can provide fairness comparable to the
existing method without introducing an additional control parameter. In addition, we can see that
fairness of the proposed method is stable.

C Bandwidth-Delay Product

In this section, we explain the reason why obtained throughput is less than WindowSize/RTT . If
window size is not enough, the transmission is executed like Figure 16. A sender can send window size
of data at largest without receiving an ACK packet. Thus, sending is suspended until receiving the

304

International Journal of Networking and Computing

Sender Receiver

Window Size
RTT

Figure 16: Bandwidth-Delay Product

next ACK. After receiving ACK, the sender can send window size of data and sending is suspended
until receiving ACK. The next ACK will be received after RTT. In this case, window size of data
can be sent every RTT. Hence, the obtained throughput is WindowSize/RTT .

In the case of RTT 2ms, 100 KB window size is required for getting 400 Mbps because of the
following formula.

100× 103[bytes]× 8[bits/byte]/(2× 10−3[sec]) = 400× 106[bps] = 400[Mbps] (10)

Similarly, 6.4MB of window size is required for getting 400 Mbps with RTT 128ms because of the
following formula.

6.4× 106[bytes]× 8[bits/byte]/(128× 10−3[sec]) = 400× 106[bps] = 400[Mbps] (11)

D Performance Evaluation using C ′

In this section, we introduce performance evaluation of the proposed method using C′, formula (7)
and formula (8). The performance is shown in Figure 17. The figure has demonstrated that using C′

provides better fairness in some cases but the fairness with C′ is not stable. As shown in Figure 12,
using C′ increases congestion window size more aggressively with large RTT. Thus, we can expect
that this method may afford more network bandwidth for connections with large RTT but it may
also cause increase of congestions without tuning it. In this work, we applied standard C setting,
which is C=0.4 [5]. With our approach, tuning C is not required.

305

Improving RTT Fairness on CUBIC TCP

0

100

200

300

400

500

600

700

800

900

2:2 2:4 2:8 2:16 2:32 2:64 2:128

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

RTT [ms]

constant RTT (2ms, standard

CUBIC TCP)

variable RTT (2ms-128ms,

standard CUBIC TCP)

constant RTT 2ms,

proposed method with C'

variable RTT 2-128ms,

proposed method with C'

constant RTT 2ms,

proposed method

variable RTT 2-128ms,

proposed method

0.6

0.7

0.8

0.9

1

2:2 2:4 2:8 2:16 2:32 2:64 2:128

Fa
ir

n
e

ss
 I

n
d

e
x

RTT [ms]

Fairness Index standard

CUBIC TCP

Fairness Index (proposed

method with C')

Fairness Index proposed

method

Figure 17: Throughput and fairness (proposed method using C′)

306

