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Abstract 

Application codes reliably achieve performance far less than the advertised capabilities of 
existing architectures, and this problem is worsening with increasingly-parallel machines. For 
large-scale numerical applications, stencil operations are often impose the greater part of the 
computational cost, and the primary sources of inefficiency are the costs of message passing 
and poor cache utilization. This paper proposes and demonstrates optimizations for stencil and 
stencil-like computations for both serial and parallel environments that ameliorate these sources 
of inefficiency. 

Achieving scalability, we believe. requires both algorithm design and  compile-time support. 
The optimizations we present are automatable because our stencil-like computations are imple- 
mented at a high level of abstraction using object-oriented parallel array class libraries. These 
optimizations, which are beyond the capabilities of today compilers, may be performed auto- 
matically by a preprocessor such as the one we are currently developing. 

1 Introduction 

Current initiatives in design and deployment of parallel supercomputers seek performance of one 

teraflop (ASCI Blue Mountain. ASCI Red, ASCI Blue Pacific). While the current machines. as 

designed. are in principle capable of significant performance, realized performance may be only a few 

percent of maximum theoretically sustainable performance. Achieving this maximum performance 

presumes the absence of a number of performance impediments, primarily: access of memory other 

than L1 cache; and secondly, inter-processor communication. Today we are have scalable machines. 

such as the SGI Origin 2000. Unfortunately, machine scalability does not induce scalability of the 

applications it may run. Any realistic parallel application will require the use of main niemory 

and inter-processor communication. The  route to scalability is the minimization of the primary 

performance impediments. Related, as will be shown, is the development of software to simplify 

both the development of large practical applications and simultaneously simplify the optimization 

of such applications. 

Our investigations are driven by the need to realize good performance from large-scale parallel 

object-oriented numerical frameworks such as OVERTURE' [l]. the performance of which is heav- 

'OVERTURE is available from http://a.rvw.c3.lanl.gov/cicl9/teams/napc/napc.shtml 
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ily impacted by that of the underlying parallel object-oriented array class library A++/P+f2  [ a ] .  
It has become clear that optimization of A++/P++ itself is insufficient; its use must also be opti- 

mized. This paper focusses on stencil-like computations because of their importance in numerical 

computation and their corresponding impact on performance on our parallel applications. 

The optimization techniques described are language- and library-independent, but we will argue 

that in the context of array-class libraries such as A++/P++ such optimization may be automated, 

much as a compiler performs lower-level optimizations. Much current work is devoted to this 

automation process, though this is not the subject of this paper. 

2 Parallel Stencil Operations 

The numerical algorithms used for solving partial differential equations (PDEs) are rich with stencil- 

based computational kernels. In most cases these impose the dominant computational cost of 

a numerical application. In the solution of PDEs both second- and fourth-order methods are 

commonly used with stencil widths of three and five. respectively; higher order methods are also 

used with correspondingly greater stencil widths. In numerical applications, and especially those 

w kh complex geometry, the distinguishing characteristic of stencil-like operations is the evaluation 

of expressions in which the operands are all of the elements within a given 'radius' of a given 

element of a singEe array. In  our applications scaling of the array operands (coefficents) is required 

because of the geometry of the grids on which the computation is performed. 
In this paper Jacobi relaxation is used as a canonical example. Such computations appear as 

parts of more sophisticated algorithms such as multigrid methods. A single iteration or sweep of 
the stencil computation is of the form 

for (int i=l; i ! =  1-1; i++) 

for (int j=1; j != J-1; j++> 

ACil Cjl = wI*BCi-ll Cjl + w2*BCi+ll Cjl + w3*BCil Cj-11 + w4*BCil Cj+lI 

where A and B are dimensioned [ O .  . I ,O . . J] . Typically several passes are made, with A and B 

swapping roles to avoid copying. 

In a parallel environment the arrays are typically distributed across multiple processors: we take 

as a concrete case I=J=lOO, with both arrays distributed along one dimension over two processors. 

conceptually A [O. .99 ,O. .491 on one, A [O. .99,50. .991 on the second, and similarly for B. In 

practice to avoid communication overhead for calculations near the boundaries of the segments of 

the the arrays. space is traded for time by creating ghost boundaries-read-only sections of the 

other processor's segment of the array. In this case. with stencil radius one, one processor stores 

A [ O .  . 99 ,0 .  .501. the other A [ O .  .99,49. .99],  and similarly for B, j ranges from 1 to 49 on the 

first processor and 50 to 98 on the second. Thus a single pass of the stencil operation over each half 

may be performed without any communication. After each pass inter-processor communication is 

required: A [ O  . .99,49] on the first processor is copied to A [O . -99,493 on the second processor. 

and A [O.  .99,50] on the second processor is copies to A CO. .99,501 on the first. This generalizes 

easily to more dimensions, more processors, and division of the arrays along more than one axis. 

It ihould be clear that in the parallel environment the communication phase at  the end of each 

iteration over array data is required for correctness and that the adjacent processor's data must be 

received before the subsequent iteration. 
The equivalent A++/P++ array statement is simply: 

A(1,J) = Wl*B(I-l,J) + W2*E(I+l,J) + W3*B(I,J-l) + W4*B(I,J+l); 

";\r+/P++ is available from http://w~~w.c3.la1il.$ov/cicl9/teams/napc/napc.shtml 
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In this form the array statement uses the P++ parallel array class library to encapsulate the 

parallelism and hide the message passing. While the transformations we detail are general, it is the 

array class library that we target for such optimizations. 

3 Reducing Communication Overhead 

Tests on a variety of multiprocessor configurations show that the cost (in time) of passing a message 

of size N is accurately modeled by the function L + C N ,  where L is a constant per-message latency, 

and C is a cost per word. This suggests that message aggregation can improve performance. 

In the context of stencil-like operations, message aggregation may be achieved by widening the 

ghost cell widths. In detail, if the ghost cell width is increased to three, using A and B as defined 

before, A C O .  .99,0. .521 resides on the first processor and ACO. .99,48. .991 on the second. To 

preserve the semantics of the stencil operation the second index on the first processor is 1 to 51 

on the first sweep, 1 to 50 on the second sweep, and 1 to 49 on the third sweep, and similarly on 

the second processor. Following three sweeps, three columns of A on the first processor must be 

updated from the second, and vice versa. This pattern of access is diagrammed in Figure 1. 

Oute 

nner 
teration # 

nner 
teration # 

nner 
teration # 

Iteration! 

ocessor N 

.. .................................... ., 
.......... 

Figure 1: Pattern of access and message passing for ghost boundary width three. The communication it is 

perforrried only every three iterations. Larger boundary are exchanged. The third iteration uses the same 
elements as had the ghost boundary been width one.. 

Cleariy there is a tradeoff of computation for communication overhead. In real-world applications 

the arrays are often numerous but small, with communication time exceeding computation time, 

and the constant time L of a message exceeding the linear time C N .  Experimental results for a 

range of problem sizes and number of processors is given in Figure 2. 

Additional gains may be obtained by using asynchronous (non-blocking) message passing, which 

allows computation to overlap communication. 
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Figure 2: Data collected on a 16 node SGI Origin 2000, showing the percentage of improvement obtained 
using message aggregation. Problem sizes are given in number of elements on a side of a square array. The 
improvement is the ratio between the time taken with message aggregation over the time taken without 
without message aggregation. Only data for the best aggregation factor are shown; improvement is achieved 
by almost all the factors but the best in all the cases is achieved using an aggregation factor betn-een 3 and 
6 .  The communication used in the testcode is implemented using synchronous message passing. 

Widening the ghost boundaries and so allowing multiple sweeps over the arrays without corn- 

rnunication decreases the ratio of communication time to  computation time. In particular, this 

technique increases the scalability of the code. Since the amount of communication is reduced. the 

amount of computation needed to balance the communication can be smaller and so the work can 

divided among more processors. 

4 Loop Transformations for Exploiting Cache 

Single array cornpiitations often require space greater than cache size, even when distributed over 

multiple processors (at some point increasingly distributing data increases communication cost 

be,yond the gains of' increased processing power and available caches). For stencil-like computations 

in which entire arrays are swept over repeatedly. if the array or working set of arrays exceeds the 

size of cache a thrashing effect occurs. 
We first present this transformation as a simple loop exchange that many compilers currently 

perform. wherein the code fragment 

f o r  ( int ,n=O; n != N ; n++> 

for ( i n t  i=O; i != I; i++) 

f o r  ( i n t  j = O ;  j != J ;  j++> 

ALil [jl = BCil [jl ; 

becomes 
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f o r  ( i n t  i=O; i != I; i += BLOCK-I) 
f o r  ( i n t  j = O ;  j != J; j += BLOCK-J) 

f o r  ( i n t  n=O; n != N ;  n++> 

for ( i n t  x=O; x != BLOCK-I; x++> 

for ( i n t  y=O; y ..!= BLOCK-J; y++) 

A [i+x] [ j+yl  =' B h + x I  [ j+y l ;  

In other words, compilers can fragment repeated operations on large segments of arrays into smaller 

segments that are cache-resident over several iterations. Such a transformation relies critically on 

the absence of data-dependence, which does not hold for stencil computations. 

Increasing ghost cell width to allow multiple passes without communication or copying enables 

blocking-breaking up the array on a single processor such that each piece fits in cache. Multiple 

passes are then made on entirely cache-resident blocks, so that the cache misses associated with 

the initial load of the array(s) are amortized over all iterations. In the parallel case this benefit is 

in addition to the benefits of message aggregation. Experimental results are shown in Table 1. 

~ 

NB 

NB 
B 

NB 
B 

XB 

size Iterations 
1000 10 

1000 10 
1000 100 
1000 100 
200 10 
200 10 
200 100 
200 100 
50 10 
50 10 
50 100 
50 100 

Cycles 
110000000 
580000000 
892817000 
5858870000 

3573410 
5268710 
34312800 
52409200 
235242 
264745 
2234740 
2563220 

Loads 
50237700 
49830300 
502319000 
498293000 

1979660 
1961460 

~ 19784000 
19605000' 
118309 
116247 
1173820 
1153960 

Stores H1 
19932500 0.989 
19920300 0.856 
199269000 0.996 
199201000 0.856 

784816 0.988 
784305 0.855 
7843790 0.995 
7841300 0.855 
46381 0.989 
46305 0.927 
461461 0.995 
461295 0.930 

H2 
0.834 
0.751 
0.947 
0.750 
0.997 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 

Hm 
0.165897 
0.248975 
0.052415 
0.249505 
0.002194 
0.000143 
0.000482 
0.000008 

0.000566 
0.000085 
0.000433 
0.000026 

Table 1: Data was collected on a MIPS RlOOOO with a 2MB L2 cache. The particular problem sizes are 

representative of problems that, respectively, fit in L1, fit in L2, and are larger than L2. The number of 
iterations is varied so that the amount of reuse is varied. Cycles, loads, and stores were measured using 

hardware counters. H1, H2, and Hm represent the hit ratios for each level of memory present on this 

architecture. L1 and L2 misses were also measured using hardware counters. Here B denotes blocking, S B  
non- blocking. 

5 Automating Optimization 

In the context of parallel object-oriented array class libraries we are developing an automated 

solution. the optimizing preprocessor ROSE3, which takes as input and produces as output C + t  
code. This approach is practically possible because the preprocessor is hardwired with (and in time 

will be parameterized by) information about the array class library semantics; this information could 

not be reasonably determined or acted upon by a compiler. Importantly, because the preprocessor 

is semantics-preserving, its use is optional. 

'ROSE++ \Veb Site: http://www.c3.lanl.gov/ROSE/ 

http://www.c3.lanl.gov/ROSE


6 Conclusions 

For stencil-like codes we have demonstrated Optimizations that significantly reduce the two greatest 

sources of inefficiency in parallel environments: message-passing latency and poor cache utilization. 

The justification for the use 06 object-oriented frameworks has traditionally been to allow faster 

dtevelopment of more portable applications, accepting the loss of performance relative to carefully 

crafted and tuned lower-level, but machine-specific, code. We have argued that in addition to the 

recognized benefits, use of object-oriented numerical frameworks makes practicable. in the form of 

a preprocessor. automatic optimization that could not be performed by a compiler. The high level 

of abstraction at  which complex large scale applications, such as Overture, are built has provided 

us with enough knowledge to design a class of optimizations that are more specific and performance 

effective than for a lower-level paradigm (C- or Fortran-like). As a consequence, these larger codes 

are more scalable than their predecessors. 
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