
LA-UR I

Approved for public release;
distribution is unlimited

Title:

Aut ho r(s) :

Submitted to:

bos Alamos
National Laboratory

Improving Scalability with Loop Transformations and

Message Aggregation in Parallel Object-Oriented

Frameworks for Scientific Computing

Federico Bassetti
Kei Davis
Dan Quinlan

4th USENIX Conference on Object-Oriented

Technologies and Systems (COOTS)

Santa Fe, New Mexico
April 27-30, 1998

Los Alamos National Laboratory, an affirmative actiodequal opportunity employer, is operated by the University of California for the

U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S.
Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow
others to do so, for U S . Government purposes. Los Alamos National Laboratory requests that the publisher identify this article

as work performed under the auspices of the US. Department of Energy. The Los Alamos National Laboratory strongly supports
academic freedom and a researcher's nght to publish; as an institution, however, the Laboratory does not endorse the viewpoint
of a publication or guarantee its technical correctness.

Form 836 (10196)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spc-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, m m -
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible

in electronic image products. Images are

produced from the best available original

document.

Improving Scalability with Loop Transformations and Message

Aggregation in Parallel Object-Oriented Frameworks for Scientific

Computing

Federico Bassetti, Kei Davis. and Dan Quinlan
Scientific Computing Group CIC-19

Computing, Information, and Communications Division

Los -4lamos NM, 87545, USA
Tel: (503) 667-7492, Fax: (505) 667-1126

{ fede,kei,dquinlan}@lanl.gov

Abstract

Application codes reliably achieve performance far less than the advertised capabilities of
existing architectures, and this problem is worsening with increasingly-parallel machines. For
large-scale numerical applications, stencil operations are often impose the greater part of the
computational cost, and the primary sources of inefficiency are the costs of message passing
and poor cache utilization. This paper proposes and demonstrates optimizations for stencil and
stencil-like computations for both serial and parallel environments that ameliorate these sources
of inefficiency.

Achieving scalability, we believe. requires both algorithm design and compile-time support.
The optimizations we present are automatable because our stencil-like computations are imple-
mented at a high level of abstraction using object-oriented parallel array class libraries. These
optimizations, which are beyond the capabilities of today compilers, may be performed auto-
matically by a preprocessor such as the one we are currently developing.

1 Introduction

Current initiatives in design and deployment of parallel supercomputers seek performance of one

teraflop (ASCI Blue Mountain. ASCI Red, ASCI Blue Pacific). While the current machines. as

designed. are in principle capable of significant performance, realized performance may be only a few

percent of maximum theoretically sustainable performance. Achieving this maximum performance

presumes the absence of a number of performance impediments, primarily: access of memory other

than L1 cache; and secondly, inter-processor communication. Today we are have scalable machines.

such as the SGI Origin 2000. Unfortunately, machine scalability does not induce scalability of the

applications it may run. Any realistic parallel application will require the use of main niemory

and inter-processor communication. The route to scalability is the minimization of the primary

performance impediments. Related, as will be shown, is the development of software to simplify

both the development of large practical applications and simultaneously simplify the optimization

of such applications.

Our investigations are driven by the need to realize good performance from large-scale parallel

object-oriented numerical frameworks such as OVERTURE' [l]. the performance of which is heav-

'OVERTURE is available from http://a.rvw.c3.lanl.gov/cicl9/teams/napc/napc.shtml

1

mailto:fede,kei,dquinlan}@lanl.gov
http://a.rvw.c3.lanl.gov/cicl9/teams/napc/napc.shtml

ily impacted by that of the underlying parallel object-oriented array class library A++/P+f2 [a] .
It has become clear that optimization of A++/P++ itself is insufficient; its use must also be opti-

mized. This paper focusses on stencil-like computations because of their importance in numerical

computation and their corresponding impact on performance on our parallel applications.

The optimization techniques described are language- and library-independent, but we will argue

that in the context of array-class libraries such as A++/P++ such optimization may be automated,

much as a compiler performs lower-level optimizations. Much current work is devoted to this

automation process, though this is not the subject of this paper.

2 Parallel Stencil Operations

The numerical algorithms used for solving partial differential equations (PDEs) are rich with stencil-

based computational kernels. In most cases these impose the dominant computational cost of

a numerical application. In the solution of PDEs both second- and fourth-order methods are

commonly used with stencil widths of three and five. respectively; higher order methods are also

used with correspondingly greater stencil widths. In numerical applications, and especially those

w kh complex geometry, the distinguishing characteristic of stencil-like operations is the evaluation

of expressions in which the operands are all of the elements within a given 'radius' of a given

element of a singEe array. In our applications scaling of the array operands (coefficents) is required

because of the geometry of the grids on which the computation is performed.
In this paper Jacobi relaxation is used as a canonical example. Such computations appear as

parts of more sophisticated algorithms such as multigrid methods. A single iteration or sweep of
the stencil computation is of the form

for (int i=l; i ! = 1-1; i++)

for (int j=1; j != J-1; j++>

ACil Cjl = wI*BCi-ll Cjl + w2*BCi+ll Cjl + w3*BCil Cj-11 + w4*BCil Cj+lI

where A and B are dimensioned [O . . I ,O . . J] . Typically several passes are made, with A and B

swapping roles to avoid copying.

In a parallel environment the arrays are typically distributed across multiple processors: we take

as a concrete case I=J=lOO, with both arrays distributed along one dimension over two processors.

conceptually A [O. .99 ,O. .491 on one, A [O. .99,50. .991 on the second, and similarly for B. In

practice to avoid communication overhead for calculations near the boundaries of the segments of

the the arrays. space is traded for time by creating ghost boundaries-read-only sections of the

other processor's segment of the array. In this case. with stencil radius one, one processor stores

A [O . . 99 ,0 . .501. the other A [O . .99,49. .99], and similarly for B, j ranges from 1 to 49 on the

first processor and 50 to 98 on the second. Thus a single pass of the stencil operation over each half

may be performed without any communication. After each pass inter-processor communication is

required: A [O . .99,49] on the first processor is copied to A [O . -99,493 on the second processor.

and A [O. .99,50] on the second processor is copies to A CO. .99,501 on the first. This generalizes

easily to more dimensions, more processors, and division of the arrays along more than one axis.

It ihould be clear that in the parallel environment the communication phase at the end of each

iteration over array data is required for correctness and that the adjacent processor's data must be

received before the subsequent iteration.
The equivalent A++/P++ array statement is simply:

A(1,J) = Wl*B(I-l,J) + W2*E(I+l,J) + W3*B(I,J-l) + W4*B(I,J+l);

";\r+/P++ is available from http://w~~w.c3.la1il.$ov/cicl9/teams/napc/napc.shtml

2

In this form the array statement uses the P++ parallel array class library to encapsulate the

parallelism and hide the message passing. While the transformations we detail are general, it is the

array class library that we target for such optimizations.

3 Reducing Communication Overhead

Tests on a variety of multiprocessor configurations show that the cost (in time) of passing a message

of size N is accurately modeled by the function L + C N , where L is a constant per-message latency,

and C is a cost per word. This suggests that message aggregation can improve performance.

In the context of stencil-like operations, message aggregation may be achieved by widening the

ghost cell widths. In detail, if the ghost cell width is increased to three, using A and B as defined

before, A C O . .99,0. .521 resides on the first processor and ACO. .99,48. .991 on the second. To

preserve the semantics of the stencil operation the second index on the first processor is 1 to 51

on the first sweep, 1 to 50 on the second sweep, and 1 to 49 on the third sweep, and similarly on

the second processor. Following three sweeps, three columns of A on the first processor must be

updated from the second, and vice versa. This pattern of access is diagrammed in Figure 1.

Oute

nner
teration #

nner
teration #

nner
teration #

Iteration!

ocessor N

..,
..........

Figure 1: Pattern of access and message passing for ghost boundary width three. The communication it is

perforrried only every three iterations. Larger boundary are exchanged. The third iteration uses the same
elements as had the ghost boundary been width one..

Cleariy there is a tradeoff of computation for communication overhead. In real-world applications

the arrays are often numerous but small, with communication time exceeding computation time,

and the constant time L of a message exceeding the linear time C N . Experimental results for a

range of problem sizes and number of processors is given in Figure 2.

Additional gains may be obtained by using asynchronous (non-blocking) message passing, which

allows computation to overlap communication.

3

35

30 -

25 -

i o -

5 -

-+- 2 Processors
3 Processors

--t 4 Processors
6 Proc:essors
8 Processors

4- 10 Processors

0 1

50 66 70 80 90 i 00 i

Problem Size

IO

Figure 2: Data collected on a 16 node SGI Origin 2000, showing the percentage of improvement obtained
using message aggregation. Problem sizes are given in number of elements on a side of a square array. The
improvement is the ratio between the time taken with message aggregation over the time taken without
without message aggregation. Only data for the best aggregation factor are shown; improvement is achieved
by almost all the factors but the best in all the cases is achieved using an aggregation factor betn-een 3 and
6 . The communication used in the testcode is implemented using synchronous message passing.

Widening the ghost boundaries and so allowing multiple sweeps over the arrays without corn-

rnunication decreases the ratio of communication time to computation time. In particular, this

technique increases the scalability of the code. Since the amount of communication is reduced. the

amount of computation needed to balance the communication can be smaller and so the work can

divided among more processors.

4 Loop Transformations for Exploiting Cache

Single array cornpiitations often require space greater than cache size, even when distributed over

multiple processors (at some point increasingly distributing data increases communication cost

be,yond the gains of' increased processing power and available caches). For stencil-like computations

in which entire arrays are swept over repeatedly. if the array or working set of arrays exceeds the

size of cache a thrashing effect occurs.
We first present this transformation as a simple loop exchange that many compilers currently

perform. wherein the code fragment

f o r (int ,n=O; n != N ; n++>

for (i n t i=O; i != I; i++)

f o r (i n t j = O ; j != J ; j++>

ALil [jl = BCil [jl ;

becomes

4

f o r (i n t i=O; i != I; i += BLOCK-I)
f o r (i n t j = O ; j != J; j += BLOCK-J)

f o r (i n t n=O; n != N ; n++>

for (i n t x=O; x != BLOCK-I; x++>

for (i n t y=O; y ..!= BLOCK-J; y++)

A [i+x] [j+yl =' B h + x I [j+y l ;

In other words, compilers can fragment repeated operations on large segments of arrays into smaller

segments that are cache-resident over several iterations. Such a transformation relies critically on

the absence of data-dependence, which does not hold for stencil computations.

Increasing ghost cell width to allow multiple passes without communication or copying enables

blocking-breaking up the array on a single processor such that each piece fits in cache. Multiple

passes are then made on entirely cache-resident blocks, so that the cache misses associated with

the initial load of the array(s) are amortized over all iterations. In the parallel case this benefit is

in addition to the benefits of message aggregation. Experimental results are shown in Table 1.

~

NB

NB
B

NB
B

XB

size Iterations
1000 10

1000 10
1000 100
1000 100
200 10
200 10
200 100
200 100
50 10
50 10
50 100
50 100

Cycles
110000000
580000000
892817000
5858870000

3573410
5268710
34312800
52409200
235242
264745
2234740
2563220

Loads
50237700
49830300
502319000
498293000

1979660
1961460

~ 19784000
19605000'
118309
116247
1173820
1153960

Stores H1
19932500 0.989
19920300 0.856
199269000 0.996
199201000 0.856

784816 0.988
784305 0.855
7843790 0.995
7841300 0.855
46381 0.989
46305 0.927
461461 0.995
461295 0.930

H2
0.834
0.751
0.947
0.750
0.997
0.999
0.999
0.999
0.999
0.999
0.999
0.999

Hm
0.165897
0.248975
0.052415
0.249505
0.002194
0.000143
0.000482
0.000008

0.000566
0.000085
0.000433
0.000026

Table 1: Data was collected on a MIPS RlOOOO with a 2MB L2 cache. The particular problem sizes are

representative of problems that, respectively, fit in L1, fit in L2, and are larger than L2. The number of
iterations is varied so that the amount of reuse is varied. Cycles, loads, and stores were measured using

hardware counters. H1, H2, and Hm represent the hit ratios for each level of memory present on this

architecture. L1 and L2 misses were also measured using hardware counters. Here B denotes blocking, S B
non- blocking.

5 Automating Optimization

In the context of parallel object-oriented array class libraries we are developing an automated

solution. the optimizing preprocessor ROSE3, which takes as input and produces as output C + t
code. This approach is practically possible because the preprocessor is hardwired with (and in time

will be parameterized by) information about the array class library semantics; this information could

not be reasonably determined or acted upon by a compiler. Importantly, because the preprocessor

is semantics-preserving, its use is optional.

'ROSE++ \Veb Site: http://www.c3.lanl.gov/ROSE/

http://www.c3.lanl.gov/ROSE

6 Conclusions

For stencil-like codes we have demonstrated Optimizations that significantly reduce the two greatest

sources of inefficiency in parallel environments: message-passing latency and poor cache utilization.

The justification for the use 06 object-oriented frameworks has traditionally been to allow faster

dtevelopment of more portable applications, accepting the loss of performance relative to carefully

crafted and tuned lower-level, but machine-specific, code. We have argued that in addition to the

recognized benefits, use of object-oriented numerical frameworks makes practicable. in the form of

a preprocessor. automatic optimization that could not be performed by a compiler. The high level

of abstraction at which complex large scale applications, such as Overture, are built has provided

us with enough knowledge to design a class of optimizations that are more specific and performance

effective than for a lower-level paradigm (C- or Fortran-like). As a consequence, these larger codes

are more scalable than their predecessors.

Fte fe r e nc es

[I] David Brown, Geoff Chesshire, William Henshaw, and Dan Quinlan. Overture: An object-

oriented software system for solving partial differential equations in serial and parallel environ-

ments. In Proceedings of the SIAM Parallel Conference, Minneapolis. MN, March 1997.

[2] Dan Quinlan and Rebecca Parsons. A++/p++ array classes for architecture independent

finite difference computations. In Proceedings of the Second Annual Object-Oriented Numerics

Conference. April 1994.

6

