
24Improving SDRAM Access Energy Efficiency
for Low-Power Embedded Systems

JELENA TRAJKOVIC, ALEXANDER V. VEIDENBAUM, AND ARUN KEJARIWAL

University of California, Irvine

DRAM (dynamic random-access memory) energy consumption in low-power embedded systems can
be very high, exceeding that of the data cache or even that of the processor. This paper presents and
evaluates a scheme for reducing the energy consumption of SDRAM (synchronous DRAM) memory
access by a combination of techniques that take advantage of SDRAM energy efficiencies in bank
and row access. This is achieved by using small, cachelike structures in the memory controller to
prefetch an additional cache block(s) on SDRAM reads and to combine block writes to the same
SDRAM row. The results quantify the SDRAM energy consumption of MiBench applications and
demonstrate significant savings in SDRAM energy consumption, 23%, on average, and reduction
in the energy-delay product, 44%, on average. The approach also improves performance: the CPI
is reduced by 26%, on average.

Categories and Subject Descriptors: C.3 [Application-based Systems]: Embedded Systems—
SDRAM design; B.3.2 [Memory Structures]: Design Styles

General Terms: Design, Performance

Additional Key Words and Phrases: SDRAM, fetch buffer, write-combining buffer, embedded pro-
cessors and low power

ACM Reference Format:

Trajkovic, J., Veidenbaum, A. V., and Kejariwal. A. 2008. Improving SDRAM access energy effi-
ciency for low-power embedded systems. ACM Trans. Embedd. Comput. Syst. 7, 3, Article 24 (April
2008), 21 pages. DOI = 10.1145/1347375.1347377 http://doi.acm.org/10.1145/1347375.1347377

1. INTRODUCTION

Many embedded applications are memory intensive, especially multimedia ap-
plications. In such applications, main memoryaccess constitutes a significant

This work was supported in part by the National Science Foundation under Grant No. NSF CCR-
0311738.
Author’s address: Jelena, Trajkovic, Alexander V. Veidenbaum, and Arun Kejariwal, Center for
Embedded Computer Systems, University of California, Irvine, California 92697; email: jelenat@
ics.uci.edu
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1539-9087/2008/04-ART24 $5.00 DOI 10.1145/1347375.1347377 http://doi.acm.org/
10.1145/1347375.1347377

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

24:2 • J. Trajkovic et al.

portion of the overall energy consumption [Barr and Asanovic 2003; Kim et al.
2003]. Thus in order to minimize the latter, it is critical to reduce the (DRAM)
main memory energy consumption. Most of the research in the area of low-
power systems has focused on reducing the energy consumption of the proces-
sor. On the contrary, this research studies the energy consumption of both the
processor and the DRAM main memory. It investigates an architectural ap-
proach for reducing the main memory energy consumption without sacrificing
overall performance.

Research in the area of low-power embedded processors, that is, processors
that are optimized for low energy consumption and cost and do not aim for
high performance, has identified the data and instruction caches [Wilkes 1965;
Smith 1982; 1991] as the major consumers of power in the processor. These
low-cost/low-power systems use only level-one (L1) caches and do not deploy a
level-2 cache (which is standard in high-performance processors). Thus, much
of the prior research to reduce the embedded processor energy consumption has
focused on L1 caches.

However a main memory composed of commodity DRAM consumes orders
of magnitude more energy per access than a cache access (see Tables II and
III). Even though an L1 cache significantly reduces the total number of access
to main memory, the total energy expended in accessing memory can be very
large. For instance, Barr and Asanovic [2003] showed that DRAM consumes
more energy than the processor in a PDA.

As will be shown below, in some embedded applications the total energy
of main memory accesses is an order of magnitude higher than the total data
cache energy consumption. Thus, it is very important to both study and optimize
DRAM access for energy consumption. Synchronous DRAM (SDRAM) memory
is one of the main types of DRAM used today. This research will, therefore, focus
on a system consisting of a low-power processor and a single SDRAM memory
IC (integrated circuit) to study main memory energy consumption. Some of
the techniques previously proposed for cache optimization can be adapted and
extended for this purpose.

The energy of an SDRAM access can be divided into two main components:
the energy of a bank/row activation (activate-precharge pair) and the energy of
a read or write access to an active bank/row. The activate-precharge pair con-
sumes over 60% of the total memory access energy (as per the manufacturer’s
data [Micron]), as shown in Figure 1. The figure quantifies energy components
of a 64 MB SDRAM memory [MicronDataSheet]. These were obtained using
Micron’s System Power Calculator [Micron]. Each bar on the graph shows the
activate-precharge and write components of the total energy. The figure shows
the total energy for writing 16 bytes of data (one cache line), two separate 16-
byte writes, and two 16-byte writes “combined” in one activation-precharge. For
separate writes, we assume that a bank/row is precharged after each access.
This mode is chosen because of the following: the energy of an “idle” state after
precharge is significantly smaller (6.6 mW) than the energy of an “idle” state
after activate command (82.5 mW). The figure also presents data for three and
four accesses, performed separately or combined. The read components of the
total energy follow a similar pattern.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

Improving SDRAM Access Energy Efficiency • 24:3

SDRAM Energy per memory access

0.00E+00

1.00E-08

2.00E-08

3.00E-08

4.00E-08

5.00E-08

6.00E-08

W
ri

te
 o

n
e

T
w

o
 t

im
e

s

w
ri

te
 o

n
e

W
ri

te
 t

w
o

"c
o

m
b

in
e

d
"

T
h

re
e

 t
im

e
s

w
ri

te
 o

n
e

W
ri

te
 t

h
re

e

"c
o

m
b

in
e

d
"

F
o

u
r

ti
m

e
s

w
ri

te
 o

n
e

W
ri

te
 f

o
u

r

"c
o

m
b

in
e

d
"

E
n

e
rg

y
 [

J
]

E(ACT-PRE) E(WR)

Fig. 1. Energy per memory access.

The SDRAM organization allows the bank/row to be left “on” after an ac-
cess, which permits additional read/write access to the corresponding bank/row
without incurring the activate/precharge cost on each access. Reading or writ-
ing twice the amount of data within the same activate-precharge cycle does not
double the energy consumption, but only increases it by approximately 32%.
This property of SDRAM is the key to the optimization techniques proposed in
this paper. However, if a bank/row is left in the “on” state, but not accessed,
extra energy is consumed as compared to the “idle” SDRAM state when little
energy is consumed. The SDRAM can even be put into a “sleep mode” (clock not
running), where only static energy, defined as the energy consumed when no
signal activity occurs (i.e., no switching), is consumed. Initiating a new access
to a “sleeping” SDRAM incurs additional delays. Thus any access energy op-
timization needs to take these different SDRAM characteristics into account.
The details of SDRAM energy consumption will be further discussed in Section
3. In this work, we take into account static and dynamic energy1 consumption
of SDRAM.

Even simple embedded processors use a data cache and access memory only
on cache misses or write-backs. A write-back data cache is typically used to
reduce the write traffic and to aggregate writes into blocks. Thus, the mem-
ory is read/written in cache blocks (lines), one block at a time. However, read-
ing/writing multiple memory blocks (from the DRAM) at a time would be more
energy efficient within a single activate-precharge pair, but CPU cache con-
trollers do not do that. In such a case, it may be very advantageous to change

1Dynamic energy is defined as the energy consumed when signals are active (i.e., switching).

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

24:4 • J. Trajkovic et al.

the architecture to perform multiblock reads and writes from memory. We as-
sume that we cannot change the processor architecture to accomplish this and,
therefore, will add such a capability to the memory controller. Arguably, the
architectural extension will work even better if integrated into the processor.

As will be shown in Section 5.2, the aforementioned new capability will lead
to significant energy savings. Multiblock memory reads are similar to hardware
prefetching, especially to stream buffers [Jouppi 1990], which have been shown
to work very well. Multiblock writes are similar to write combining [Smith
1982], but, in our case, they combine multiple cache blocks (beyond individ-
ual words). These techniques in our case target energy reduction rather than
performance improvement. They are performed in our proposal in the memory
controller and do not involve the CPU cache. One can argue that an increase
in the cache line size can achieve the same reduction in energy consumption.
However, in Section 5.2.4, we show that doubling the line is not competitive
with the techniques proposed in this work. In the rest of this paper, we will
use the terms fetching/prefetching and write combining for describing DRAM
access in our system.

Accessing multiple lines outside of the processor requires intermediate stor-
age. This research proposes to use a small amount of such storage in the memory
controller. Additional lines will be fetched into this storage on each read. Writes
to the same SDRAM row will be buffered first and combined into a multiple-line
SDRAM write whenever possible.

The main contribution of this article is adapting both prefetching and write
combining for SDRAM energy reduction, in particular, combining multiple
cache line writes to the same SDRAM row. A second goal of this research is to
minimize performance degradation or even to improve execution time while sav-
ing energy. The small buffers (mentioned above) used for prefetching/combining
act as a “memory cache” and can significantly improve read performance, some-
thing similar to store-to-load forwarding [Hennessy and Patterson 2006]. “Reg-
ular” prefetching can sometimes degrade execution time by interfering with
“regular” memory access without supplying useful data. It can also (1) “pollute”
the cache; (2) require additional storage and CPU complexity, if not prefetched
in the cache. Prefetching at the memory controller avoids most of these problems
by overlapping a (reduced) delay of reading additional lines with the transfer
of the missed line to the CPU cache. Write buffering at the memory enables
the processor to continue execution and not wait for the SDRAM write access
to finish.

Numerous potential cache organizations, sometimes even configurable on a
per-page basis (e.g., ARM processors), especially with respect to write policy and
write buffering have been proposed in the past. For instance, a write-through
cache (or a write-back cache) that does not perform write-allocate may employ
a write-combining buffer that attempts to assemble a block from individual
writes rather than writing single words to memory. The reader is referred to
Zhang et al. [2005] for a list of popular embedded processors and their (different)
cache configurations. To be practical we had to choose one cache organization
to evaluate. Our choice, a write-back write-allocate L1 data cache [Smith 1982]
typically has a better performance than most other alternative organizations.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

Improving SDRAM Access Energy Efficiency • 24:5

This organization does not require post-L1 write buffering except perhaps to
perform a read miss fetch before completing the write, i.e., for performance
optimization. Such a “victim” buffer [Hennessy and Patterson 2006] does not
perform multiple-line writes to memory and is thus orthogonal to our approach
(although it will provide some performance improvement by reducing read miss
latency). Therefore, the baseline processor organization assumed in this article
has no post-L1 cache write buffer.

The rest of the article is organized as follows: Section 2 presents related work.
Section 3 describes the SDRAM energy components for read and write access.
Section 4 presents architectural modifications and describes the energy-saving
techniques of our approach. Experimental results demonstrating the benefits of
the approach are presented in Section 5. Conclusions are presented in Section 6.

2. RELATED WORK

There is a large body of prior work on prefetching, write buffers, and word-
level write combining buffers that is briefly summarized below. Techniques for
reducing energy consumption in main memory are also described. Many archi-
tectural approaches for reducing energy consumption in embedded processors
have been proposed. To the best of our knowledge architectural solutions for
SDRAM energy reduction have not been proposed so far. For a software-based
solution see Kim et al. [2003], for instance.

Numerous prefetching algorithms have been proposed for fetching cache
lines based on history driven prediction of future memory accesses. For in-
stance, a stream buffer [Jouppi 1990] prefetches consecutive lines triggered by
a miss. Prefetching schemes differ mainly in how they predict which block to
fetch rather than in how many blocks to fetch. A variable-length prefetching
mechanism proposed in Dahlgren et al. [1993] changes the number of blocks
prefetched based on their utilization. Macroblocks were proposed as a fixed-size
superline in Johnson et al. [1997]. A detection mechanism is used to identify
the use of multiple lines within a macroblock and fetch the entire macroblock
on future misses. However, superline detection requires a large hardware pre-
dictor to keep track of access history. An “adaptive line size” (ALS) cache was
proposed for predicting the line size for the next fetch upon a line replacement
in Veidenbaum et al. [1999]. Solihin et al. [2002] describe a method for prefetch-
ing based on correlation of memory addresses with an engine that resides in
L2 cache that gives significant performance gain even with a low hit rate in
the prefetch buffer. Since the engine is placed in L2 cache, it misses potential
correlations that may lead to better prefetching. All of the prior schemes (except
stream buffers) described above require a complex mechanism for detection and
prediction of the next fetch size. In contrast, our work uses a simple mechanism
and requires little hardware support. None of the prefetching proposals targets
energy reduction.

Adding a write buffer is a common optimization that allows the processor to
continue execution as soon as the data is written to the buffer. Thus, the major
part of memory update is done independent of the processor execution. Smith
[1979] gives a study of performance impact of write buffer and write merging.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

24:6 • J. Trajkovic et al.

Jouppi discusses write buffers and write caches and evaluates their perfor-
mance for both write-back and write-through schemes [Jouppi 1993; Farkas
et al. 1994]. Merging is introduced to improve performance of write buffers.
This approach combines incoming write request with requests already residing
in the write buffer, resulting in a more efficient bus and memory usage. The
techniques has been applied to architectures like Alpha 21164, UltraSparc III,
StrongARM, MIPS R4300i, and XScale. XScale allows combining requests for
four word-aligned addresses. None of these attempt to combine multiple line
write-backs to the memory.

Low-power mode is present in most state-of-the-art DRAMs. A significant
amount of energy can be saved by setting as many memory chips as possible
to sleep mode [Lebeck et al. 2000]. Likewise, efforts have been made in reduc-
ing memory energy consumption based on different compression techniques.
For instance, Abali and Franke [2000] describe and evaluate a computer sys-
tem that supports hardware main memory compression. Likewise, Ekman and
Stenström [2005] proposed a main-memory compression scheme. As the com-
pression ratio of applications dynamically changes, so does the real memory size
that is managed by the operating system (OS). For such systems, OS changes
are necessary to support main memory compression. These changes include
the management of the free pages pool as a function of the physical memory
utilization and the effective compression ratio, coupled with zeroing pages at
free time rather than at allocation time.

Kim et al. [2003] identify successive memory accesses to different rows and
banks as a source for increased latency and energy consumption in memory.
They use block-based layouts instead of a traditional one and determine the
best block size such that the number of requests to different rows or banks
is minimized. Rixner et al. [2000] proposed a memory-scheduling technique
for efficient use of the memory bandwidth. Similarly, Goossens et al. [2004]
proposed a technique for efficient exploitation of the bandwidth between the
SDRAM and the on-chip interconnect. However, the above do not address the
issue of minimization of power consumption of the SDRAM.

3. SDRAM ENERGY COMPONENTS

Let us first identify potential sources of energy saving in SDRAM memories
that are used in embedded devices. In order to access data from a SDRAM, a
row in a particular bank has to be activated. After activation and a specified
delay, a read or a write is performed. When the access is completed, a row
precharge operation is performed. Also, if access to data in a different row has
to be performed, the current row needs to be precharged before the new row
is activated. The total energy of an access consists of two main components:
energy consumed by activate-precharge pair and read or write access energy.

Figure 2 shows the current profile for the write (or read) operation in such
a memory (reproduced from [Micron]2). The first large peak on the left side of
the graph corresponds to the activation command. The middle plateau corre-
sponds to writing four words of data. Finally, a small peak can be noticed for

2Used with permission from c©2001 Micron Technology, Inc. All Rights Reserved.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

Improving SDRAM Access Energy Efficiency • 24:7

Fig. 2. Write current profile of Micron Technology, Inc. SDRAM (c©Micron Technology Inc.).

the precharge command. This shows that activation-precharge pair constitutes
a significant portion of the overall current and thus of the energy consumption.
From Figure 1, we see that activate-precharge pair contributes 65% to the total
access energy for this SDRAM.

The energy saving from combining two read or write accesses is 24%, com-
pared to the case where two accesses are performed one after another. Similarly,
savings are 34, and 38% for three and four combined accesses compared with
three and four accesses performed one after another, respectively. At the end
of an access, the row is precharged, assuming that it will not be accessed for
a while. However, it continues to consume static power. We account for this in
our experiments.

4. PROPOSED APPROACH

The memory subsystem of a typical embedded system is shown in Figure 3a.
The baseline configuration consists of a CPU with a single level of cache and
a main memory. The cache organization used is write-back, which is better
for performance as well as for power reasons. The memory latency is high,
therefore, the processor has to stall for many cycles waiting for the data to
arrive from memory on a cache miss.

As discussed earlier, it would be beneficial to fetch more than one line on each
cache miss in order to minimize the number of memory accesses. This not only
helps to achieve better performance, but also helps to save energy. However,
in the current context, prefetching has to be done under several constraints of
embedded system design, viz., reduced cost, energy, and low complexity. There-
fore, prefetching has to be precise, cannot use very complex logic, and cannot
use a large buffer memory. Thus, the approach chosen for this work is to use
a simple one-block lookahead [Smith 1982] or stream bufferlike [Jouppi 1990]
prefetching.

Combining of multiple line writes is used in this paper with a goal of en-
ergy reduction. For this, a different type of combining or coalescing write
buffer (WCB) is proposed for writes. The difference is that it should be able to

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

24:8 • J. Trajkovic et al.

CPU

cache
n

n

n n

Fetch

bufferRead

n
n

n

c

o

n

t

r

o

l

l

e

r

WCB

Fetch

buffer

nn

Memory

Memory

Memory

MemoryCPU

cache

CPU

cache

CPU

cache

a)

d)

b)

c)

n

c

o

n

t

r

o

l

l

e

r

c

o

n

t

r

o

l

l

e

r

c

o

n

t

r

o

l

l

e

r

WCB

Fig. 3. Memory subsystem architectures.

combine any two cache block/line writes to the same SDRAM row. To the best
of our knowledge, all previous work considers only combining of writes with
adjacent addresses within the same cache line, which is used primarily with
write-through caches. The write buffer also needs to be small and simple for
the same reasons, as discussed above for prefetching.

Let us first consider write and read combining separately so as to understand
the benefits and requirements of each of them. Next, the “combined” approach
will be investigated and the best mechanism is selected. In each case, the sizes
of buffers are studied as part of this research. For reasons that will become more
clear after the architecture of each separate buffer is studied, the combined ap-
proach will actually use separate buffers as opposed to a single “mini-L2 cache”
in the memory interface. While conceptually the same, the implementations
are quite different with separate buffers having an advantage.

4.1 Read Combining

The goal of read combining is to perform multiline SDRAM reads. Since there is
only one read miss at any given time in an embedded in-order single-issue pro-
cessor, there is nothing to combine it with. Thus, the only way to read-combine
is to generate an additional address speculatively via prediction. This is what
the aforementioned sequential prefetching mechanisms do. The difference is
that our prefetching is aimed at main memory energy reduction.

It is possible to prefetch nonadjacent lines within a same row, in a way similar
to write combining. This would, however, require a very sophisticated address
predictor that would be both large and complex (see Kumar and Wilkerson
[1998]). This is why only simple, sequential prefetching is considered here. It
is also referred to as read combining.

The memory subsystem architecture for read combining is shown in
Figure 3b. It fetches N additional cache lines on a read miss. The lines are
stored in a fetch buffer (FB): a small, cachelike structure with a tag on each
entry. Each cache read miss is checked against the FB. On a hit, the line from
FB is sent to the CPU cache. On FB miss, the line is read from the SDRAM

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

Improving SDRAM Access Energy Efficiency • 24:9

Fig. 4. Architecture of write-combine buffer for N = 1.

together with N additional lines which are all stored in the FB. The missed line
is read first and sent to the CPU cache. All N + 1 read accesses are performed
in the same activate-precharge cycle. The rest of this paper will primarily deal
with N = 1. Results for N = 2 and 3 can be found in Trajkovic and Veidenbaum
[2004], where it is shown that a larger N usually increases energy consumption
because many prefetched lines are not used.

As will be shown, a small, fully associative FB is sufficient to achieve sig-
nificant energy reduction. In addition, the performance is improved because of
FB’s prefetching effect and its lower access latency compared to the SDRAM.

4.2 Write Combining

The memory controller for write combining is shown in Figure 3c. Figure 4
shows the write-combining buffer (WCB) architecture for combining two write
requests. Each entry consists of a split tag, a valid bit, and data storage for
one cache line. Tag bits are divided into three groups: bits that determine the
bank address in the memory (tag bank), bits that determine the row address in
the memory (tag row), and the remaining tag bits that are part of the column
address (tag col).

The buffer is expected to be very small and thus full associativity is easily
implementable. An address of an incoming cache line write request is checked
against all tag bank/tag row entries. LRU (least recently used) or pseudo-LRU
replacement is used.

Figure 5 describes write request handling for the buffer that combines two
writes. If an incoming write hits into the WCB, and the matching entry is valid,
both new and the matched data are written to the memory. Once the writing
is finished, the “matched” entry is freed (valid bit = 0), so that it can be used
for the new incoming write request. Note that in case of a hit (“Write combine
check hit” in the figure) the incoming write is not stored into the WCB. If an
incoming write misses in the WCB, the data and the address corresponding
to that write request are stored into WCB to be potentially combined in the
future. The write miss can cause a replacement: a single line from the entry
selected for the replacement is written back in the SDRAM. This architecture
can be extended to combine more than two accesses. To combine N + 1 writes,
N tag col sub-tags, N valid bits, and N data store blocks are stored with each
tag bank/tag row entry. The entry contains a counter to show how many writes
to this SDRAM row are already present. An incoming write causes a write to

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

24:10 • J. Trajkovic et al.

Comparison

logic

datavtag_coltag_row

Read check

Write combine

check hit

Write

combine check

New Address

Read check hit

tag_bank

1

Matched

data
Matched

address

New Data

Memory write

Fig. 5. Write request handling (write-combine buffer for N = 1).

the memory on a hit if the entry counter has a value of N . On replacement, less
than N entries may be written to the memory, as specified by the counter value
and the valid bits.

To summarize, the WCB differs from the traditional write buffer or even a
coalescing write buffer, because it can merge cache block writes that is anywhere
in a given SDRAM row. As a result it writes data to the memory in units of
N +1 cache blocks or less. The goal is to write N +1 entries as often as possible.
A traditional write buffer, on the other hand, can only coalesce individual words
(or subwords) within a cache line and writes data to memory when the memory
is not busy servicing any other read or write request. A major advantage of this
new form of write combining is that it cannot incur any energy losses, as will be
shown later in Figure 9 in Section 5. The total number of writes is the same as in
the baseline case but those writes are potentially grouped in a different way. In
addition, the WCB reduces the processor CPI by allowing the CPU to continue
execution as soon as data are written to the WCB (as opposed to waiting for the
SDRAM write to complete).

The presence of the WCB creates a coherence problem on reads just like in
case of store-to-load forwarding [Hennessy and Patterson 2006]. It is solved
as follows: every read address is checked against the full line address (i.e.,
tag bank, tag row and tag col bits in Figure 4) of every line in the WCB. A read
hit implies the needed data is in the WCB and the matched line is sent to the
CPU cache. This results in read miss latency reduction. In the case when a read
access misses in the WCB, the miss latency overhead corresponds to the time
required to perform address comparison. Intuitively, one can expect that this
overhead would result in increased CPI. As our results show (see Figure 11 in
Section 5) the increase in miss latency does not cause performance degradation.

4.3 Read- and Write-Combining

Both write and read combining have their own advantages. They are largely
independent of each other and thus can be deployed together for an additive
energy reduction as well as performance improvement. However, the question

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

Improving SDRAM Access Energy Efficiency • 24:11

is what is the best architecture to perform the read and the write combining at
the same time.

For this, we propose a novel architecture as shown in Figure 3d. It inte-
grates the separate fetch buffer (FB) and write-combine buffer (WCB). While a
single, cachelike structure can be designed, it will have the following two major
disadvantages:

1. It will likely require that N , the number of cache lines to combine, be the
same for reads and writes. As will be shown later in Section 5, this is not
desirable from the perspective of minimizing the energy consumption (see
Figure 12).

2. More importantly, it may significantly increase hardware complexity. The
merged structure would need to have the same architecture as the WCB
architecture. The split-tag organization is not required for read combining
as it would increase required storage and per access energy. Searching the
coalesced structure would be different for read and write requests, which
would require additional hardware complexity.

Moreover, the replacement decisions would require more complex hardware,
which could potentially increase access time. In addition, there will be interfer-
ence and replacements of write lines by read prefetches and vice versa in the
case a single, cachelike structure.

Merging the WCB and FB designs is less difficult, since each will continue
to operate independently and has its own control. Thus, the write-combining
operation in the WCB remains the same and the read-combining (prefetch-
ing) operation in the FB remains the same. Recall that WCB was already
checked on each read miss and could supply data to the CPU cache. However,
there is one change that is required for the merged organization. Additional
coherency checks have to be performed between writes and prefetches. First,
prefetched data can be invalidated by an incoming write from the CPU cache.
Second, there is no point in prefetching lines already in the write-combining
buffer.

Briefly, the solution is twofold. First, any incoming data cache write request
is checked against both the FB and the WCB (in parallel). A matching FB
entry is invalidated. Second, every prefetch address is checked against the
WCB first, then sent to the DRAM only if there was no match. The small size
of the WCB guarantees that this additional fully associative search has low
energy overhead and does not cause slowdown. The coherency algorithm that
the controller implements can be found in Trajkovic and Veidenbaum [2004].

The only potential drawback of the combined approach is overutilizing
the limited memory bandwidth. A combination of write combining and read
prefetching can use up all of the available bandwidth. A read miss may thus be
delayed and cause a slowdown. The evaluation of access combining is presented
in the next section. It will show that the energy and/or performance loss can
be avoided in almost all cases. When it does happen, it can be minimized by a
proper choice of architectural parameters.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

24:12 • J. Trajkovic et al.

5. EVALUATION METHODOLOGY

The system modeled in this paper consists of an embedded, in-order processor
and a single, large SDRAM memory chip. One can think of a mobile phone as
an example of such a system. The processor is a single-issue, 32-bit embedded
processor resembling the MIPS R3000 processor [Kane 1988]. It has a 8 KB,
four-way set associative instruction and data caches with a 16-byte line and
a two cycle latency. Data cache implements a write-allocate, write-back policy.
The CPU operating frequency is 400 MHz. The CPU memory bus is a 100 MHz,
32-bit bus. The baseline cache miss latency is 36 processor cycles for the first
word to arrive and an additional four processor cycles for each consecutive
word.

The main memory with a modified controller has a latency of 40 processor
cycles for the delivery of the first word, and four cycles for each additional con-
secutive word. Both baseline and modified architectures use the same SDRAM
(see data sheet [MicronDataSheet]). The extra four cycles (10 ns) in the ac-
cess time to modified memory are because of FB and WCB access delays. The
SDRAM clock rate is 100 MHz (speed grade -6).

The timing evaluation is performed using the SimpleScalar 3.0/Wattch simu-
lator [Burger and Austin 1997; Wattch] executing PISA binaries. SimpleScalar’s
bus and memory model are modified to model the bus delays and to match this
architecture. Both FB and WCB are fully associative, with 16-byte lines, and
a latency of twelve processor cycles (from CACTI calculations). The WCB can
be configured to store N lines per entry. The performance is evaluated using
benchmarks from the MiBench suite [Guthaus et al. 2001], which models ap-
plications from a large variety of embedded domains. A brief description of the
benchmarks is given in Table I. All benchmarks are simulated using “large”
input sets.

5.1 Energy Calculation

Dynamic energy consumption of the cache, WCB, and FB is modeled using
modified CACTI 3.2 [Shivakumar and Jouppi 1990] for 0.18-µm technology.
One of the main changes are in the sense amplifier energy model, which was
overestimated in the original model. Main memory energy is computed using
Micron’s system power calculator [Micron]. The energy per access for the mem-
ory (Emem), L1 data cache (Edl1), fetch buffer (EFB), and the write-combining
buffer (EWCB) is given in Table II. Note that the memory is accessed in a single
16- or 32-byte transaction, in “burst” mode.

The FB and WCB sizes were limited to avoid overhead and reduce cost. As a
result, the FB consumes 0.75% and WCB consumes 4% of the data cache energy
when both buffers are at full capacity (worst case scenario) and assuming a
0.18-µm process technology. The energy overhead of FB and WCB is included

in memory energy.
Total memory energy is computed using the given per-access value and the

number of accesses counted during the simulation. Total L1 data cache energy
is obtained by simulation via Wattch. It is a function of per-access energy of tag
and data access, as well as the number of accesses because of cache hits, misses

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

Improving SDRAM Access Energy Efficiency • 24:13

Table I. Description of Benchmarks in MiBench Suite.

Class Benchmark Lines of
code

Language Description

Automotive
qsort 100 C Qsort algorithm
susan 2122 C Smallest univalue segment assimilat-

ing nucleus (image processing)

Consumer
jpeg 33717 C Jpeg compression
lame 18612 C LAME Ain’t an MP3 encoder
tiff-v3.5.4 45066 C Tag(ged) image file format

Networking
dijkstra 351 C Dijkstra’s algorithm
patricia 599 C Trie implementation

Office ghostscript 197528 C Ghostscript 5.0

Security
blowfish 2302 C A keyed, symmetric block cipher
rijandel 1788 C Advanced encryption standard
sha 269 C Secure hash algorithm

Telecom
FFT 469 C Fast fourier transform
gsm 5473 C GSM 06.10 13 kbit/s RPE/LTP speech

compression

Table II. Energy per Access for the Memory, L1 Data
Cache, Fetch Buffer, and Write-Combining Buffer

Emem (16 B) 15.3 nJ

Edl1 307.4 pJ

EFB 152.4 pJ (tag: 98.6 pJ, data: 53.8 pJ)

EWCB 111.5 pJ (tag: 63.6 pJ, data: 47.9 pJ)

and writebacks. Similarly, the total energy of fetch and write combining buffer
is obtained by simulations, where total number of tag and data accesses have
been counted.

5.2 Results

The impact of the proposed architecture is evaluated by comparing the memory
energy consumption, energy-delay product, and CPI relative to the baseline
configuration. The following legend is used:

— “FetchN M” for read fetch of N lines with a buffer of M lines (N − 1 lines
are prefetched);

— “WCB P” for write combining of two accesses with a buffer of P lines;

— “WCB PxQ” for write-combining of (Q+1) accesses with a buffer of P entries
x Q lines;

— “FetchN M+WCB PxQ” for a hybrid configuration.

Table III shows memory energy per benchmark relative to the data cache
memory consumption for the baseline model. These large ratios were observed
inspite of the fact that the average cache miss rate for the entire suite was
3.5%. Montagnaro et al. [1996] showed that the data cache consumes 16% of the
overall processor energy. For MiBench benchmarks the main memory consumes
an average of 2.6 times the energy of the data cache that is quantified. This
demonstrates that the DRAM energy optimization is more important than that

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

24:14 • J. Trajkovic et al.

Table III. Memory Energy Relative to the Energy of Data
Cache

Benchmark
Emem relative

Benchmark
Emem relative

to Ecache [%] to Ecache [%]

tiff2rgba 1487.34 dijkstra 120.21
tiff2bw 867.42 d FFT 118.39
tiffmedian 614.28 d rijndael 72.83
lame 416.22 e rijndael 70.39
tiffdither 234.03 e susan 60.50
d jpeg 219.58 ghostscript 46.90
qsort 187.47 patricia 31.99
c jpeg 167.82 d blowfish 30.11
sha 154.80 e blowfish 30.10
i FFT 123.39 AVG 265.99

Fetch 2

-10

-5

0

5

10

15

20

25

q
s
o

rt

e
_
s
u

s
a
n

la
m

e

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
e
r

ti
ff

m
e
d

ia
n

c
_
jp

e
g

d
_
jp

e
g

d
ij
k
s
tr

a

p
a
tr

ic
ia

g
h

o
s
ts

c
ri

p
t

s
h

a

d
_
b

lo
w

fi
s
h

d
_
ri

jn
d

a
e
l

e
_
b

lo
w

fi
s
h

e
_
ri

jn
d

a
e
l

d
_
F

F
T

i_
F

F
T

A
V

G

E
im

p
ro

v
e
m

e
n

t
[%

]

Fetch2_16 Fetch2_32 Fetch2_64 Fetch2_128

Fig. 6. Memory energy reduction for read combining for different buffer sizes.

of the data cache. The worst-case difference is 15×, which means that the DRAM
consumes approximately twice the energy used by the processor.

5.2.1 Read Prefetch: The Effect of Fetch and Buffer Size. First, let us eval-
uate read combining and its effect on memory energy consumption. Figure 6
shows energy reduction for different fetch buffer sizes relative to the baseline
configuration. Buffer sizes of 16, 32, 64, and 128 entries are used, fetching two
16-byte blocks. The average memory energy savings are 12–17%. The smallest
buffer already obtains a significant reduction, with each doubling of the size
producing a small (1–2%) increase. Two benchmarks d rijndael and e rijndael

have a noticeable increase in memory energy consumption for a 16-entry FB.
For these two benchmarks, accesses to the data in the consecutive cache lines
are so far apart in time, that for FB with 16 entries over 50% of prefetched
data get replaced before being used. With 32 entries, there are basically no
energy increases, making it a good choice. Note that the energy penalty for un-
necessary/unused prefetches is 35%, while latency reduction for hit in the FB
is over 65%, resulting in significant CPI improvement even for d rijndael and
e rijndael.

The energy-delay (ED) product is shown in Figure 7. ED product is reduced
by 68%, in the best case (tiff2rgba), and by 38%, on average, with buffer size
having almost no impact in majority of the benchmarks (i.e., smallest size is
good enough). It can be seen, that even the two benchmarks that have en-
ergy increase, viz., (d rijndael and e rijndael), obtain significant ED product
savings. The energy delay product reduction largely results from an improved

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

Improving SDRAM Access Energy Efficiency • 24:15

Fetch 2

0

10

20

30

40

50

60

70

q
s
o

rt

e
_
s
u

s
a
n

la
m

e

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
e
r

ti
ff

m
e
d

ia
n

c
_
jp

e
g

d
_
jp

e
g

d
ij
k
s
tr

a

p
a
tr

ic
ia

g
h

o
s
ts

c
ri

p
t

s
h

a

d
_
b

lo
w

fi
s
h

d
_
ri

jn
d

a
e
l

e
_
b

lo
w

fi
s
h

e
_
ri

jn
d

a
e
l

d
_
F

F
T

i_
F

F
T

A
V

G

E
D

im
p

ro
v
e
m

e
n

t
[%

]

Fetch2_16 Fetch2_32 Fetch2_64 Fetch2_128

Fig. 7. Memory ED product reduction for read combining for different buffer sizes.

Fetch 2

0

10

20

30

40

50

60

q
s
o

rt

e
_
s
u

s
a
n

la
m

e

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
e
r

ti
ff

m
e
d

ia
n

c
_
jp

e
g

d
_
jp

e
g

d
ij
k
s
tr

a

p
a
tr

ic
ia

g
h

o
s
ts

c
ri

p
t

s
h

a

d
_
b

lo
w

fi
s
h

d
_
ri

jn
d

a
e
l

e
_
b

lo
w

fi
s
h

e
_
ri

jn
d

a
e
l

d
_
F

F
T

i_
F

F
T

A
V

G

C
P

I
re

d
u

c
ti

o
n

[%
]

Fetch2_16 Fetch2_32 Fetch2_64 Fetch2_128

Fig. 8. CPI improvement for read combining for different buffer sizes.

Write combine configurations: combine 2, 3, 4

0

2

4

6

8

10

12

14

16

18

q
s
o

rt

e
_
s
u

s
a
n

la
m

e

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
e
r

ti
ff

m
e
d

ia
n

c
_
jp

e
g

d
_
jp

e
g

d
ij
k
s
tr

a

p
a
tr

ic
ia

g
h

o
s
ts

c
ri

p
t

s
h

a

d
_
b

lo
w

fi
s
h

d
_
ri

jn
d

a
e
l

e
_
b

lo
w

fi
s
h

e
_
ri

jn
d

a
e
l

d
_
F

F
T

i_
F

F
T

A
V

G

E
im

p
ro

v
e
m

e
n

t
[%

]

WCB_2 WCB_4 WCB_8 WCB_4x2 WCB_2x3

Fig. 9. Memory energy reduction for different write combining and buffer sizes.

average memory latency. The effect of latency reduction can be seen in the
CPI improvement shown in Figure 8. CPI is also insensitive to the buffer size
change. Read-combining technique reduces CPI by as much as 59 and by 27%,
on average.

If we consider energy as the main factor, the smallest buffer that provides
savings with no overhead is one with 32 entries. On the other hand, if we con-
sider ED product, it is the buffer with 16 entries that brings the same savings
as the largest buffer in the majority of cases. We also note that only two bench-
marks, viz., d rijndael and e rijndael, have significant difference in ED product
saving (15%) from a larger buffer size. Therefore, for the combined technique
we use a read-combining buffer with 16 entries.

5.2.2 Write Combining: the Effect of Combining and Buffer Size. Figure 9
shows the memory energy reduction achieved via write combining. Buffer sizes
of 2, 4, and 8 entries are used, with 2-, 3-, and 4-line combining. The buffer
configurations are chosen to have approximately the same size in all cases. On
average, per configuration, the improvement ranges from 8 to 11%; it is smaller
than for read combining. This is, in part, because of the fact that writes are less

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

24:16 • J. Trajkovic et al.

Write combine configurations: combine 2, 3, 4

0

10

20

30

40

50

60

70

80

q
s
o

rt

e
_
s
u

s
a
n

la
m

e

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
e
r

ti
ff

m
e
d

ia
n

c
_
jp

e
g

d
_
jp

e
g

d
ij
k
s
tr

a

p
a
tr

ic
ia

g
h

o
s
ts

c
ri

p
t

s
h

a

d
_
b

lo
w

fi
s
h

d
_
ri

jn
d

a
e
l

e
_
b

lo
w

fi
s
h

e
_
ri

jn
d

a
e
l

d
_
F

F
T

i_
F

F
T

A
V

G

E
D

im
p

ro
v
e
m

e
n

t
[%

]

WCB_2 WCB_4 WCB_8 WCB_4x2 WCB_2x3

Fig. 10. Memory ED product reduction for different write combining and buffer sizes.

Write combine configurations: combine 2, 3, 4

0

10

20

30

40

50

60

70

80

q
s
o

rt

e
_
s
u

s
a
n

la
m

e

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
e
r

ti
ff

m
e
d

ia
n

c
_
jp

e
g

d
_
jp

e
g

d
ij
k
s
tr

a

p
a
tr

ic
ia

g
h

o
s
ts

c
ri

p
t

s
h

a

d
_
b

lo
w

fi
s
h

d
_
ri

jn
d

a
e
l

e
_
b

lo
w

fi
s
h

e
_
ri

jn
d

a
e
l

d
_
F

F
T

i_
F

F
T

A
V

G

C
P

I
re

d
u

c
ti

o
n

[%
]

WCB_2 WCB_4 WCB_8 WCB_4x2 WCB_2x3

Fig. 11. CPI improvement for different write combining and buffer sizes.

frequent than reads and, in part, because of a smaller buffer size. Buffer size has
little impact, (the left three bars), in most cases, but additional energy savings
are obtained when combining three or four lines. Write combining achieves up to
80% reduction of ED product (see Figure 10), with a 40% average. CPI savings
(see Figure 11) are not affected by size or by configuration. Write combining
achieves CPI improvement up to 76%, with a 33% average. The main reason
for CPI improvement is a reduction in read-miss penalty on replacement of
“dirty” lines; also, reads can hit in the WCB, which helps in achieving higher
performance. However, this improvement will disappear if the CPU implements
a victim buffer [Hennessy and Patterson 2006].

5.2.3 Hybrid Configurations. Figure 12 shows the effect of both write and
read combining. The fetch buffer with 16 entries is used together with a write-
combining buffer with 8 entries, configured to combine either 2, 3, or 4 writes.
The results show that combining three lines is the best configuration. On aver-
age 21.5–23.5% energy savings are obtained. From Figures 13 and 14, we see
that the difference in ED product and CPI savings for different configurations
is not more than 2%. ED product is reduced by a maximum of 71 and by 44%,
on average. CPI is improved by up to 56%, with a 26% average.

5.2.4 Comparison with a Double-Size Cache Line. One can argue that an
increase in cache line size can achieve the same in results/benefits as the tech-
niques proposed in this paper. To address this, the baseline was compared with
a cache 32-byte line. Figure 15 shows the data cache energy consumption when
using 32-byte cache lines relative to the baseline configuration (16-byte cache
line). The cache with doubled line size has the same capacity and, therefore,
has one-half less the number of lines. The values for energy are as reported by

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

Improving SDRAM Access Energy Efficiency • 24:17

Fetch 2 (16) & WCB configurations (2,3,4)

-10

0

10

20

30

q
s
o

rt

e
_
s
u

s
a
n

la
m

e

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
e
r

ti
ff

m
e
d

ia
n

c
_
jp

e
g

d
_
jp

e
g

d
ij
k
s
tr

a

p
a
tr

ic
ia

g
h

o
s
ts

c
ri

p
t

s
h

a

d
_
b

lo
w

fi
s
h

d
_
ri

jn
d

a
e
l

e
_
b

lo
w

fi
s
h

e
_
ri

jn
d

a
e
l

d
_
F

F
T

i_
F

F
T

A
V

G

E
im

p
ro

v
e
m

e
n

t
[%

]

Fetch2_16+WCB_8 Fetch2_16+WCb_4x2 Fetch2_16+WCB_2x3

Fig. 12. Memory energy reduction for different combined configurations, for 16-entry FB.

Fetch 2 (32) & WCB configurations (2,3,4)

0

10

20

30

40

50

60

70

80

q
s
o

rt

e
_
s
u

s
a
n

la
m

e

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
e
r

ti
ff

m
e
d

ia
n

c
_
jp

e
g

d
_
jp

e
g

d
ij
k
s
tr

a

p
a
tr

ic
ia

g
h

o
s
ts

c
ri

p
t

s
h

a

d
_
b

lo
w

fi
s
h

d
_
ri

jn
d

a
e
l

e
_
b

lo
w

fi
s
h

e
_
ri

jn
d

a
e
l

d
_
F

F
T

i_
F

F
T

A
V

G

E
D

im
p

ro
v
e
m

e
n

t
[%

]

Fetch2_32+WCB_8 Fetch2_32+WC_4x2 Fetch_2_32+WC_2x3

Fig. 13. Memory ED product reduction for different combined configurations, for 16-entry FB.

Fig. 14. CPI improvement for different combined configurations, for 16-entry FB.

SimpleScalar/Wattch. From the figure, we see that the data cache consumes
more energy with a 32-byte cache line for all benchmarks, with an average
of 13.6%. Even though the 32-byte cache line configuration has fewer cache
misses, energy of each access is higher, thereby resulting in higher energy con-
sumption. Further, the energy consumed for replacing a line is higher because
of increased number of words per line. From above we conclude that it is not
desirable to increase the cache line size beyond 16 bytes.

Figure 16 shows the memory energy consumption for 32-byte cache line
size relative to the baseline configuration. From the figure we see that all the
benchmarks, except tiff2bw and dijkstra, consume more memory energy in the
32-byte cache line configuration. Even though the 32-byte line configuration
has fewer number of memory accesses, energy of each access is higher, thereby
resulting in higher energy consumption. This results in an increase in the
total memory energy consumption. The high increase in the memory energy
consumption in patricia is because of a 1.5× increase in the number of mem-
ory accesses with the 32-byte line configuration.The increase in the number of

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

24:18 • J. Trajkovic et al.

0

5

10

15

20

q
s
o

rt

e
_
s
u

s
a
n

la
m

e

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
e
r

ti
ff

m
e
d

ia
n

c
_

jp
e

g

d
_
jp

e
g

d
ij
k
s
tr

a

p
a
tr

ic
ia

g
h

o
s
ts

c
ri

p
t

s
h

a

d
_
b

lo
w

fi
s
h

d
_
ri

jn
d

a
e
l

e
_
b

lo
w

fi
s
h

e
_
ri

jn
d

a
e
l

d
_
F

F
T

i_
F

F
T

A
V

G

[E
d

l1
(3

2
B

)-
E

d
l1

(1
6
B

)]
/E

d
l1

(1
6
B

)
[%

]

Fig. 15. Data cache energy consumption with 32-byte relative to 16-byte cache line.

-50

0

50

100

150

200

250

300

q
s
o

rt

e
_
s
u

s
a
n

la
m

e

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
e
r

ti
ff

m
e
d

ia
n

c
_
jp

e
g

d
_
jp

e
g

d
ij
k
s
tr

a

p
a
tr

ic
ia

g
h

o
s
ts

c
ri

p
t

s
h

a

d
_
b

lo
w

fi
s
h

d
_
ri

jn
d

a
e
l

e
_
b

lo
w

fi
s
h

e
_
ri

jn
d

a
e
l

d
_
F

F
T

i_
F

F
T

A
V

G[E
m

e
m

(3
2
B

)-
E

m
e
m

(1
6
B

)]
/E

m
e
m

(1
6
B

)
[%

]

Fig. 16. Memory energy consumption with 32-byte line relative to 16-byte line.

accesses can be attributed to the increase in the number of misses and replace-
ments. On the other hand, both tiff2bw and dijkstra have significant decrease
in number of memory accesses, thereby resulting in energy savings of 0.6 and
23.5%, respectively. On average, the memory energy consumption increased by
39.3%. Thus doubling the line is not competitive with the techniques proposed
in this article.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

Improving SDRAM Access Energy Efficiency • 24:19

6. CONCLUSIONS

In this article, a novel approach for reducing energy consumption for SDRAM
memory access in embedded systems was proposed. It was shown that SDRAM
energy consumption is, on average, 2.66× higher than that of a data cache
for a low-power low-cost embedded processor making DRAM energy consump-
tion minimization very important. We introduced architectural additions to
the memory controller of a fully parameterizable unit that consists of a small
high-speed fetch buffer and a write-combine buffer. This allowed DRAM read
prefetching and combined write access to the main memory. Since prefetched
data resides in a fast and small cachelike fetch buffer, an access to it is sig-
nificantly cheaper, both in terms of time and energy consumption. Combining
multiple cache-line write accesses leads to gains without any penalty. Writes
are buffered in a small (eight entries) fully associative buffer waiting to be com-
bined with any subsequent access to the same SDRAM row. Separate buffers
are advocated for simultaneous use of read and write combining.

The results demonstrate that a significant reduction in memory energy con-
sumption and delays can be achieved by read prefetching and write combining.
The latter also reduces the overall execution time, which, in turn, minimizes
the static energy consumption. Even with small size buffers, 256 byte/512 byte
for prefetching and 128 byte for write combining, an average 23% DRAM en-
ergy reduction is achieved. The DRAM energy-delay (ED) product is improved,
on average, by over 40%. The CPI is reduced by 26%, on average. Further re-
duction in ED and CPI can be obtained if the proposed buffers were integrated
in the CPU.

Prefetching or write combining can be powered down individually to better
tune them to a given application. In order to utilize power down, compiler anal-
ysis, profiling or user directives could be used. The proposed technique can be
applied to programs regions, such as loops or functions, where it is profitable and
turned off in other program regions. For instance, the technique would not be ef-
fective for accesses with long strides, such as reading an array A[33i+7] in a loop.

The proposed approach requires simple hardware suitable to embedded sys-
tems. In a resource constrained environment of embedded systems running
multimedia or other type of applications, these energy savings provide a sig-
nificant benefit. As future work, we plan to evaluate the impact of technology
scaling on the efficacy of the proposed apporach.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their comments/
suggestions which helped to improve the article.

REFERENCES

ABALI, B. AND FRANKE, H. 2000. Operating system support for fast hardware compression of main
memory contents. In Memory Wall Workshop, the 27th Annual International Symposium on Com-

puter Architecture.
BARR, K. AND ASANOVIC, K. 2003. Energy aware lossless data compression. In Proceedings of the

First International Conference on Mobile Systems, Applications, and Services, San Francisco,
CA.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

24:20 • J. Trajkovic et al.

BURGER, D. AND AUSTIN, T. 1997. The simplescalar tool set, version 2.0. Technical Rep. TR-97-1342,
Computer Science Department, University of Wisconsin-Madison.

DAHLGREN, F., DUBOIS, M., AND STENSTROM, P. 1993. Fixed and adaptive sequential prefetching
in shared-memory multiprocessors. In Proceedings of the International Conference on Parallel

Processing. 56–63.
EKMAN, M. AND STENSTRÖM, P. 2005. A robust main-memory compression scheme. In Proceedings

of the 32nd Annual International Symposium on Computer Architecture, Madison, Wisconsin.
74–85.

FARKAS, K., JOUPPI, N. P., AND CHOW, P. 1994. How useful are non-blocking loads, stream buffers,
and speculative execution in muliple issue processors. Technical Rep. 94/8, Digital Western Re-
search Laboratory (Dec.)

GOOSSENS, K., GANGWAL, O. P., RÖVER, J., AND NIRANJAN, A. P. 2004. Interconnect and memory
organization in SoCs for advanced set-top boxes and TV — Evolution, analysis and trends. http:
//www.homepages.inf.ed.ac.uk/kgoossen/2004-interconnectcentric-chap15.pdf.

GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN, T. M., MUDGE, T., AND BROWN, R. B. 2001.
Mibench: A free, commercially representative embedded benchmark suite. In Proceedings of the

IEEE 4th Annual Workshop on Workload Characterization. 83–94.
HENNESSY, J. AND PATTERSON, D. 2006. Computer Architecture A Quantitative Approach.
JOHNSON, T. L., MERTEN, M. C., AND HWU, W. W. 1997. Run-time adaptive cache hierarchy manage-

ment via reference analysis. In Proceedings of the 24th International Symposium on Computer

Architecture, Denver, CO. 315–326.
JOUPPI, N. P. 1990. Improving direct-mapped cache performance by the addition of a small fully-

associative cache and prefetch buffers. In Proceedings of the 17th Annual International Sympo-

sium on Computer Architecture, Seattle, WA. 364–373.
JOUPPI, N. P. 1993. Cache write policies and performance. In Proceedings of the 20th International

Symposium on Computer Architecture, San Diego, CA.
KANE, G. 1988. MIPS RISC Architecture. Prentice-Hall, Englewood Cleffs, NJ.
KIM, H. S., VIJAYKRISHNAN, N., KANDEMIR, M., BROCKMEYER, E., CATTHOOR, F., AND IRWIN, M. J. 2003.

Estimating influence of data layout optimizations on SDRAM energy consumption. In Proceed-

ings of the 2003 International Symposium on Low Power Electronics and Design, Seoul, Korea.
40–43.

KUMAR, S. AND WILKERSON, C. 1998. Exploiting spatial locality in data cache using spatial foot-
print. In Proceedings of the International Symposium on Computer Architecture.

LEBECK, A. R., FAN, X., ZENG, H., AND ELLIS, C. 2000. Power aware page allocation. In Proceedings

of the 9th International Conference on Architectural Support for Programming Languages and

Operating Systems, Cambridge, MA. 105–116.
Micron. The Micron System-Power Calculator http://www.micron.com/products/dram/syscalc.

html.
MicronDataSheet. The Micron: Synchronous DRAM 64Mb x32 Part number: MT48LC2M32B2
http://download.micron.com/pdf/datasheets/dram/sdram/64MSDRAMx32.pdf.

MONTANARO, J., WITEK, R. T., ANNE, K., BLACK, A. J., COOPER, E. M., DOBBERPUHL, D. W., DONAHUE,
P. M., ENO, J., HOEPPNER, G. W., KRUCKEMYER, D., LEE, T. H., LIN, P. C. M., MADDEN, L., MURRAY,
D., PEARCE, M. H., SANTHANAM, S., SNYDER, K. J., STEPHANY, R., AND THIERAUF, S. C. 1996. A
160–MHz, 32–b, 0.5–W CMOS RISC microprocessor. IEEE J. Solid-State Circuits 31, 11, 1703–
1714.

SHIVAKUMAR, P. AND JOUPPI, N. 1990. Cacti 3.0: An integrated cache timing, power, and area model.
Tech. rep., Digital Equipment Corporation, COMPAQ Western Research Lab.

RIXNER, S., DALLY, W. J., KAPASI, U. J., MATTSON, P., AND OWENS, J. D. 2000. Memory access schedul-
ing. In Proceedings of the 27th Annual International Symposium on Computer Architecture, Van-
couver, British Columbia, Canada. 128–138.

SMITH, A. J. 1979. Characterizing the storage process and its effect on the update of main memory
by write through. J. ACM 26, 1, 6–27.

SMITH, A. J. 1982. Cache memories. ACM Comput. Surv. 14, 3, 473–530.
SMITH, A. J. 1991. Second bibliography on cache memories. SIGARCH Comput. Architecture

News 19, 4, 154–182.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

Improving SDRAM Access Energy Efficiency • 24:21

SOLIHIN, Y., TORRELLAS, J., AND LEE, J. 2002. Using a user-level memory thread for correlation
prefetching. In Proceedings of 29th Annual International Symposium on Computer Architecture

(May), Anchorage, Alaska. 171–182.
TRAJKOVIC, J. AND VEIDENBAUM, A. 2004. Intelligent memory controller for reducing power con-

sumption in embedded systems. Technical Rep. ICS-TR-04-02, School of Information and Com-
puter Science, University of California at Irvine.

VEIDENBAUM, A., TANG, W., GUPTA, R., NICOLAU, A., AND JI, X. 1999. Adapting cache line size to
application behavior. In International Conference on Supercomputing, Rhodes, Greece. 145–154.

Wattch. Wattch Version 1.02 http://www.eecs.harvard.edu/~dbrooks/sim-wattch-1.02.tar.gz.
WILKES, M. V. 1965. Slave memories and dynamic storage allocation. IEEE Trans. Electronic

Comput. EC-14, 4, 270–271.
ZHANG, C., VAHID, F., AND NAJJAR, W. 2005. A highly configurable cache for low energy embedded

systems. Trans. Embedded Comput. Sys. 4, 2, 363–387.

Received November 2004; revised June 2006 and September 2006; accepted December 2006

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 24, Publication date: April 2008.

