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Improving Selfish Node Detection in MANETs
Using a Collaborative Watchdog

Enrique Hernández-Orallo, Manuel D. Serrat, Juan-CarlosCano, Carlos T. Calafate, Pietro Manzoni

Abstract—Mobile ad-hoc networks (MANETs) are composed
of mobile nodes connected by wireless links without using any
pre-existent infrastructure. MANET nodes rely on network coop-
eration schemes to properly work, forwarding traffic unrelated
to its own use. However, in the real world, most nodes may have
a selfish behavior, being unwilling to forward packets for others
in order to save resources. Therefore, detecting these nodes is
essential for network performance.

Watchdogs are used to detect selfish nodes in computer
networks. A way to reduce the detection time and to improve
the accuracy of watchdogs is the collaborative approach. This
paper proposes a collaborative watchdog based on contact
dissemination of the detected selfish nodes. Then, we introduce
an analytical model to evaluate the detection time and the
cost of this collaborative approach. Numerical results show that
our collaborative watchdog can dramatically reduce the overall
detection time with a reduced overhead.

Index Terms—MANET, Selfish nodes, Performance Evaluation

I. I NTRODUCTION

MANETs are used in various contexts like intelligent trans-
portation systems, mobile social networks, emergency deploy-
ment, etc. In a MANET, nodes can freely move around while
communicating with each other. These networks may under-
perform in the presence of nodes with a selfish behaviour,
particularly when operating under energy constraints. A selfish
node will typically not cooperate in the transmission of pack-
ets, seriously affecting network performance. Although less
frequent, nodes may also fail to cooperate either intentionally
(a malicious behaviour) or due to faulty software or hardware.

We consider that watchdogs are the appropriate mechanism
to detect these situations [1]. Essentially, watchdog systems
overhear wireless traffic and analyse it to decide if neighbour-
ing nodes are not cooperating. Several works have studied the
impact of node selfishness on MANETs proposing different
detection mechanisms [2]–[8]. In [1], a bayesian watchdog was
introduced, as a way to improve the accuracy of the detection.

II. A C OLLABORATIVE WATCHDOG

A way to reduce the detection time of selfish (or non-
cooperative) nodes in a network is thecollaborative watchdog.
Although some of the aforementioned papers ( [2], [4], [8])
introduced some degree of collaboration on their watchdog
schemes, the diffusion was very costly (usually based on
sending periodic messages).

This paper introduces an efficient approach to reduce the
detection time of selfish nodes based on contact dissemination.
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If one node has previously detected a selfish node using its
watchdog it can spread this information to other nodes when
a contact occurs. We say that a node has apositiveif it knows
the selfish node. The detection of contacts between nodes is
straightforward using the node’s watchdog. Notice that the
watchdog is overhearing the packets of the neighbourhood;
thus, when it starts receiving packets from a new node it is
assumed to be a new contact. Then, the node transmits one
message including all known positives it knows to this new
contacted node. The number of messages needed for this task
is the overhead of the collaborative watchdog.

Formally, we have a network ofN wireless mobile nodes,
with C collaborative nodes andS selfish nodes. Initially,
the collaborative nodes have no information about the selfish
nodes. A collaborative node can have a positive when a contact
occurs in the following way:

• Selfish contact: one of the nodes is the selfish node. Then,
the collaborative nodecan detect it using its watchdog
and have a positive about this selfish node. Nevertheless,
a contact does not always imply a detection. To model
this fact, we introduce a probability of detection (pd). This
probability depends on the effectiveness of the watchdog
and the type of contact (for example if the contact time is
very low, the watchdog does not have enough information
to evaluate if the node is selfish or not).

• Collaborative contact: both nodes are collaborative.
Then, if one of them has one or more positives, itcan
transmit this information to the other node; so, from
that moment, both nodes have these positives. As in the
selfish contactcase, a contact does not always imply
a collaboration. We model this with the probability of
collaboration (pc). The degree of collaboration is a global
parameter of the network to be evaluated. This value is
used to reflect that either a message with the information
about the selfish nodes is lost or that a node temporally
does not collaborate (for example, due to a failure or
simply because it is switched off). In real networks, full
collaboration (pc = 1) is almost impossible.

Although defining a reaction scheme is out of the scope of
this paper, there are basically two approaches in the literature:
isolation and incentivation. Isolation methods are intended to
keep the misbehaving nodes outside the network, excluding
them from all kinds of communication. Incentivation methods
try to convince the selfish nodes to change their behaviour,
and become collaborative instead of selfish, using a virtual
payment scheme or a similar mechanism.

III. PERFORMANCEMODEL

The goal of this section is to obtain a model to evaluate
the time and cost of detecting selfish nodes on a network
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with collaborative watchdogs. The network is modeled as a
set ofN wireless mobile nodes, withC collaborative nodes
and S selfish nodes (N = C + S). It is assumed that the
occurrence of contacts between two nodes follows a Poisson
distribution λ. This assumption has been shown to hold in
several mobility scenarios of both human and vehicles [9]–
[12]. For example, in [9] a useful expression is derived for
obtainingλ from the parameters of the random waypoint and
random direction models.

First, we derive a basic model forS = 1. In this case, a
collaborative node has 2 states: NOINFO, when the node has
no information about the selfish node, and POSITIVE when
the node knows who the selfish node is (it has a positive). All
nodes have an initial state of NOINFO and they can change
their initial state when a contact occurs. Using a contact rateλ

we can model the network using a Continuous Time Markov
Chain (CTMC) with statessi = (c), wherec represents the
number of collaborative nodes in the POSITIVE state. At
the beginning, all nodes are in NOINFO state. Then, when
a contact occurs,c can increase by one. The final (absorbing)
state is whenc = C. So, this can be modelled using a CTMC
with an initial states1 = (0), τ = C transient states, and one
(υ = 1) absorbing statesτ+1 = (C + 1). Then, the transition
matrix P in canonical form is:

P =

(

Q R

0 I

)

(1)

whereI is aυ×υ identity matrix (in this case 1),0 is aυ×τ

zero matrix,Q is aτ×τ matrix with elementspij denoting the
transition rate from transient statesi to transient statesj and
R is a τ × υ matrix with elementspij denoting the transition
rate from transient statesi to the absorbing statesj .

Now, we derive the transition ratespij . Given a statesi =
(c) the following transitions can occur:

• (c) to (c+1): This case takes place when a collaborative
node changes from NOINFO state to POSITIVE state.
The transition probability istc = (λpd + λpcc)(C − c).
The term λpd represents the probability of detection
of a selfish node (using the watchdog) andλpcc the
probability of transmission for the information of the
selfish node (it depends onc, so this probability is greater
if more nodes are in the POSITIVE state). Finally, factor
(C − c) represents the number of pending nodes.

• (c) to (c): This is the probability of no changes, and its
value ist0 = 1− tc.

Using the transition matrixP we can derive two different
expressions: one for the detection timeTd and another one for
the overall overhead (or cost)Md. We start with the detection
time. Using the fundamental matrixN = (I−Q)−1, we can
obtain a vectort of the expected time to absorption ast = Nv,
wherev is a column vector of ones (v = [1, 1, . . . , 1]T ). Each
entry ti of t represents the expected time to absorption from
state si. Since we only need the expected time from state
s1 = (0) to absorption, the detection timeTd, is:

Td = v1Nv (2)

wherev1 = [1, 0, . . . , 0].

For obtaining the overall overhead (or transmission cost)
we need to obtain the number of transmitted messages for
each statesi. During states1 no node is in the POSITIVE
state. In this state, no messages are transmitted andm1 = 0.
The second states2 starts when 1 node has a POSITIVE state
(that is, there is one sender). In this case, this POSITIVE can
be transmitted to all nodes (except itself) for the durationof
this state (denoted asf2) with a rateλ and probabilitypc.
Then, the expected number of messages can be obtained as
m2 = f2λ(C−1)pc. For states3, we have 2 possible senders,
so m3 = 2f3λ(C − 1)pc. Then, for statesi we have(i − 1)
senders, somi = (i − 1)fiλ(C − 1)pc. We can obtain the
duration of each state using the fundamental matrixN. By
definition, the elements of the first row ofN are the expected
times in each state starting from state 0. Then, the durationof
statesi is fi = N(1, i). Summing up, the cost of transmission
is:

Md = λ(C − 1)pc

τ
∑

i=1

Φ(si)N(1, i) (3)

whereΦ(si) = (i − 1) is the number of senders in statesi.
We can now extend the previous basic model to the case

of several selfish nodes (S > 1). The solution is based on
using a Continuous Time Markov Chain with S dimensions.
We start withS = 2, so we have a two-dimensions CTMC
(for short, a 2D-CTMC). Each statesi now has two values
(c2, c1), wherec1 is the number of collaborative nodes having
a POSITIVE for selfish node 1, andc2 is the same for selfish
node 2. At the beginning all nodes are in the NOINFO state.
Then, when a contact occurs,c1 and c2 can increase by one.
The final (absorbing) state is when(c2, c1) = (C,C). So, the
2D-CTMC has an initial states1 = (0, 0), sτ = (C + 1)2 − 1
transient states (froms1 = (0, 0) to sτ = (C − 1, C) state)
and υ = 1 absorbing statesτ+1 = (C,C). Now, we derive
the transition ratespij for the transition matrix. Given the
statesi = (c2, c1), the following transitions can occur:

• (c2, c1) to (c2, c1 + 1): the same that inS = 1 model,
replacingc by c1, tc1 = (λpd + λpcc1)(C − c1)

• (c2, c1) to (c2 + 1, c1): the same forc2, tc2 = (λpd +
λpcc2)(C − c2)

• (c, c) to (c, c): t0 = 1− tc1 − tc2

and, using equation 2, we can obtain the detection time (Td).
We can extend this model to the case ofS > 2. Then we
have τ = (C + 1)S − 1 transient states and, for each state
si = (cS , cS−1, . . . c2, c1), the transition rate fromcj to cj+1
is tcj = (λpd + λpccj)(C − cj).

For the overhead, we assume that a node transmits only
one message for all the positives it has. Then, the number
of messages in each state depends on the distribution of the
positives. Obtaining all the combinations whenS is high
can be very complex, but a simple approximation based on
bounding the value of senders can be used. It is easy to
see that the number of senders in each state is between
the maximum ofcj and the minimum between the sum of
cj and C. That is, max(si) ≤ Φ(si) ≤ min(sum(si), C)

wheremax(si) = maxSj=1 cj and sum(si) =
∑S

j=1
cj Then,

we estimate the number of sendersΦ(si) by calculating the
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mean of the lower and upper bounds. Finally, the number of
messages is obtained using equation 3.

Now, we briefly describe the validation process of the model
previously presented. This performance model obtains the time
and overhead (Td, Md) from the following set of inputs: the
rate of contacts (λ), the network (N , C, S) and the watchdog
(pc, pd) parameters. We used the ns-2setdestcommand to
create contact traces, which are used, on the one hand to fit
theλ value that is used in our performance model and on the
other hand to simulate the contacts to obtain the simulation
results. We validate our model using a set of 100 random tests.
The tests have different parameters values (N , C, S, pc, pd)
and mobility patterns (mean speed of nodesv, communication
ranger, sidel, etc.). For each test, we repeated the simulation
1000 times in order to obtain values with confidence intervals
for the detection time and the overhead. These values are
compared with the results of our model in order to obtain
the accuracy of our model. After running all the tests we
obtained the mean error (and 95% confidence intervals) forTd

andMd. For the detection time the mean relative error was
2.18% ([0.52, 3.95]) and for the overhead it was 2.86% ([0.77,
6.48]). These results confirms that the error of our model is
very low.

IV. EVALUATION RESULTS

This section is first devoted to evaluating the performance
of our collaborative watchdog using the performance model
detailed in section III. All the model were implement and eval-
uated using Matlab. For the following evaluations we consider
a contact rate of 0.0135 contacts/h,λv = 3.71×10−6s−1. This
value was calculated in [12] based on real motion traces from
about 2100 operational taxis for about one month in Shanghai
city.

The first evaluation shows the influence of the degree of
collaboration in a network with 50 nodes and one selfish node
(see figure 1a) with different detection probabilities values
(pd). We can see that increasing the degree of collaboration
from 0 to 0.2 reduces the detection time exponentially and
increases the overhead (cost) exponentially as well. This
reduction is quite significant for low detection probabilities
(pd = 0.1). For pc = 0 (no collaboration), the detection
time is 12 × 106s (about 3300 hours). This value can be
greatly reduced by using our collaborative watchdog. Thus,
if all nodes implement the collaborative approach (pc = 1)
the detection time is reduced to 30 hours. Even for a low
collaboration rate (pc = 0.2) the time is reduced to 78 hours.
For both cases, the overhead is approximately of 210 messages
(less than 7 messages by hour, a very reduced cost). We
can also see that increasing the probability of collaboration
(from 0.4 to 1) has low impact on both the detection time
and the overhead, which emphasizes on the resilience of our
collaborative approach.

The second evaluation shows the impact of the number of
nodes ranging from 0 to 100 (see figure 1b). Three different
sets of values forpc andpd were used. The first set (1, 0.8) is a
full collaborative network with a high probability of detection,
the second set has a reduced degree of collaboration (0.7), and
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Fig. 1: Evaluation forS = 1. a) depending onpc b) depending on N.

finally the last set has a low probability of detection (0.3).
We observe that, in general, the greater the number of nodes,
the lesser the detection time and the greater the number of
messages. As expected, reduced values of collaboration and
detection probabilities imply greater detection times.

Figure 2 shows the influence of the number of selfish nodes
S for N = 50. As expected, the detection time increases
when the number of selfish nodes is higher. Regarding the
overhead, we can see that the number of messages increases
exponentially for low values ofS, and then it decreases slowly,
for S > 10. The reason is that, when the number of selfish
nodes is high, the collaborative nodes are reduced and they
can transmit fewer messages.

More experiments were performed using differentλ values,
for example with a contact rate of 0.101 contacts/h, obtained
from human mobility traces [7], and the results obtained were
similar to those presented here.

Now we proceed to compare our collaborative watchdog
approach with previous cooperative approaches that use peri-
odic messages for the diffusion of information about positives
detections. If a node has information about a positive, it will
periodically broadcast a message with a given periodP . This
message will be received by all nodes that are within the
communication range of the sender. The performance of this
protocol clearly depends on the periodP . A short period
will reduce the detection time, but the number of messages
transmitted (the overhead) will be high. A large period will
increase the detection time by reducing the overhead. The
comparison of both protocols was based on simulations. We
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Fig. 3: Detection time and overhead depending on periodP for the periodic
approach. The main parameters for the mobility model are mean-speed =
5m/s, side-area = 1000 m, pause-interval = 1s, range = 100m

implemented the periodic diffusion protocol, as describedin
the previous paragraph. By using the ns-2setdestcommand
we generate mobility scenarios that are used to simulate both
approaches.

Figure 3 shows the detection time and overhead forP

ranging from 1 to 30s for the periodic diffusion protocol
with three different number of nodes. The results confirms
that increasing the periodP implies that the detection time
is increased and the overhead reduced. We can compare these
results with the detection time and overhead values for our
collaborative watchdog (that are in the legend of the plot).
For example, forN = 40, the periodic diffusion for periods
below 15s has a shorter detection time than our model but with
a higher overhead. For example, forP = 5s, the detection
time is 295s (a reduction of 15% ) and the overhead is 1253
messages (an increment of 526%). ForP = 15s, the detection
time is similar to our approach, and the overhead is 483
messages (205% higher). We conclude that, although using
periodic diffusion can reduce the detection time slightly,this
implies a large overhead.

V. CONCLUSIONS

In this paper we have proposed and evaluated a new collabo-
rative watchdog approach. We modelled its performance using
a Continuous Time Markov Chain with two parameters to

indicate the degree of collaboration and detection of the watch-
dog. Numerical results show that a collaborative watchdog can
reduce the overall detection time with a reduced cost in term
of message overhead. This reduction is very significant when
the watchdog detection effectiveness is low. Furthermore,this
reduction can be obtained even with a moderate degree of
collaboration.

As future work, we plan to extend this model to evaluate
the effect of false positives and false negatives. Such extension
poses several problems: first, a node needs to transmit not
only the positives but also the negatives, so it will increase the
overhead; second, when a node receives this information about
positives and negatives, conflicts with previous information
may appear (for example, when a node has a negative about
a given node and it receives a positive). So, an updating
strategy may be needed. We also plan to evaluate the case of
malicious or cheating behavior by introducing some kind of
reputation scheme. Finally, we are also planning to implement
this collaborative watchdog in a testbed.
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