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ABSTRACT

CT-Scanner devices produce three-dimensional images of the

internal structure of the body. In this paper, we propose a

method that is based on the analysis of sensor noise to identify

the CT-Scanner device. For each CT-scanner we built a refer-

ence pattern noise and a correlation map from its slices. Fi-

nally, we can correlate any test slice with the reference pattern

noise of each device according to its correlation map. This

correlation map gives a weighting for each pixel regarding its

position in the reference pattern noise. We used a wavelet-

based Wiener filter and an edge detection method to extract

the noise from a slice. Experiments were applied on three

CT-Scanners with 40 3D images, including 3600 slices, and

we demonstrate that we are able to identify each CT-Scanner

separately.

Index Terms— Digital forensics, medical image foren-

sics, authentication, device identification, noise pattern, sen-

sor noise, denoise filtering, edge detection, wavelet transfor-

mation.

1. INTRODUCTION

Medical imaging is considered an important part of the medi-

cal world, this refers to the process and technique used to ob-

tain an internal visualization of the human body. Computed

tomography [1] or what is called CT-Scanners provide high

quality images. These images are produced by integrating

a series of X-ray views from many different angles to build

cross-sectional images. Unlike other imaging techniques, CT-

Scanners provide detailed images of many types of tissue, in-

cluding bone, lung tissue, soft tissue and blood vessels. It

is used to build an internal representation of almost all body

parts.

Medical images are stored in general as DICOM files [2].

A DICOM file is consisted of two parts, meta-data and the

image content. Meta-data is a readable file, it contains all the

information about the acquisition device, the acquisition sys-

tem and the image parameters. Meta-data files may be modi-

fied, become corrupted or even lost. Consequently, it is very

important to be able to retrieve as much information as possi-

ble from the image part only. In particular, in the absence of

meta-data, or if they are not authenticated, we would like to

identify the CT-Scanner device from raw images and this is

exactly the objective of image forensics [3]. Image forensics

is an important research area, its basic concern is to authenti-

cate the images by retrieving information about their source in

case of unauthenticated device or image modification. These

techniques are based on the images themselves without any

prior information [4].

When we talk about image forensics, two basic prob-

lems are raised: forgery tracing and device identification. In

forgery tracing, much work already exists on digital photog-

raphy [5], but on the medical side, very few research has

been conducted. In [6] the authors present research about

the digital blind forensics, they propose a method for detect-

ing the forged images. Regarding the device identification,

in [7–9] the authors propose a method for digital camera

identification, it is based on the sensor noise analysis, they

present a denoising method and build a Reference Pattern

Noise, this RPN has served as a unique fingerprint for each

camera, this work was carried out on the digital images. But

in the medical domain, very few works exist. In [10], the

authors compared the noise characteristics between two CT-

Scanners from different manufacturers, then they linked the

reconstruction core between two devices from Siemens and

General Electric. In [11], the authors proposed a method for

device identification, but only for the primitive 2D images of

X-ray radiography.

Looking in greater detail at CT-Scanner identification, we

proposed in [12] a first analysis of this problem. We used a

wavelet-based denoising algorithm based on the method pro-

posed in [7] to extract the noise in CT slices. But we had some

difficulties, as current CT images contain many anatomical

structures which are contrasted with relation to each other and

especially with relation to the background. This creates many

edges and is not easy to distinguish these high frequency fea-

tures from the ones created by the noise. In this paper, we

improve the denoising algorithm by including a correlation

map as suggested in [13] which takes into account the reli-

ability of the noise computation from a given pixel of a CT

slice. We include a mask that eliminates the edges and traces

those are left with the noise in the high frequency range, we

built a reference pattern noise for each device. A correlation

map was also built for each device for better correlation com-

putation. Then we are able to identify the CT-Scanner based

on the correlation between the tested slices and the reference

pattern noise, the correlation was basically completed using

the correlation map, this correlation map decides the impor-

tance of the pixel position, it gives a weighting factor as a
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percentage for each pixel, this percentage was computed us-

ing the pixel position being used as an edge or not.

In Section 2, we describe our new version of the CT-

Scanner identification method and we focus on the improve-

ment of the denoising algorithm by using the correlation map.

In Section 3, we present some experimental results in addition

to some further discussions. In Section 4, we discuss some

ideas for future research.

2. THE PROPOSED METHOD

For each device we built a reference pattern noise and a cor-

relation map. To identify a specific CT-Scanner as the acqui-

sition device of a tested slice, we compute the correlation be-

tween the noise component of this slice and the reference pat-

tern noise of this device, this correlation is computed depend-

ing on the correlation map. The correlation value between the

noise component of this tested slice and the reference pattern

noise of the acquisition device should always be the highest.

Fig.1 illustrates the method overview.

Fig. 1. Method overview 1.

In this section, we will present our proposed denoising

method which is used to extract the noise component of each

studied slice, how we can build both the reference pattern

noise and the correlation map and finally, how do we com-

pute the correlation between noise component of the tested

slice and the reference pattern noise depending on the corre-

lation map in order to decide the acquisition device.

2.1. Denoising algorithm

In the frequency domain, we applied a Wiener filter based

wavelet transformation [14–16]. Basically, this algorithm is

composed of two parts. First; local variance estimation of the

wavelet components. Second; denoising of these components

using Wiener filter (see a tutorial in [17]) as follows:

• Calculate four levels of wavelet decomposition of the

original slice. In each level, take out the three high fre-

quency sub-bands: horizontal, vertical and diagonal. For

four levels of wavelet decomposition with three sub-bands

in each level we have 12 sub-bands for each processed

slice.

• For each wavelet sub-band, estimate the local variance.

Four variances values are computed regarding four sizes

of pixel area {3 5, 7, 9}, then the smallest one is the final

estimated variance.

• Denoise each wavelet sub-band using Wiener filter:

Xden(i, j) = X(i, j)
σ̂2(i, j)

σ̂2(i, j) + σ2
0

, (1)

where X is the wavelet sub-band, σ̂2(i, j) is the estimated

variance of each pixel, σ0 is an initial integer constant

value that we tuned manually, σ0 ∈ [1, 6].

• Apply inverse wavelet transformation on the denoised

wavelet sub-bands to extract the denoised component

F (s) of the original slice s.

2.2. Noise extraction and correction

Our basic concern is about noise, in order to extract the noise

component, we subtract the denoised slice from the original

one.

n(i) = s(i) − F (s(i)), (2)

where n is the noise component, s is the slice, F () is the

denoising function and i is the slice number.

As a result of the subtraction operation we get the noise

component, but in addition to the noise, there exist other

traces or edges that remain in the noise slice. To deal with

these kinds of traces, we apply a noise correction step. We

apply an edge detection on the original image in order to build

a mask of the edges that existed in the slice [18] as follow:

• Apply a blurring filter to remove the noise.

• Compute the gradient of each pixel.

• Compute the norm of the gradient for each pixel and cre-

ate an image of the values.

• Finally, threshold the norm image to extract the maximum

local values that represents the edge mask.

Finally, we applied this edge mask on the previous noise com-

ponent computed from equation 2, the result of the masked

slice represents the pure noise component, this component

does not contain any traces or edges as illustrated in Fig.2

.

In Fig.2, an example of a slice from a 3D image of phan-

tom that were acquired by a Siemens device, where (a) is the

original slice, (b) contains noise in addition to some traces

and (c) contains noise only without any trace or edge.

2.3. CT-Scanner reference pattern and correlation map

To build the reference pattern noise, we selected a set of slices

regarding the CT-Scanner device, we denoised these slices.
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(a) (b) (c)

Fig. 2. (a) Example of a slice from CT-Scanner from Siemens,

(b) Its noise component, (c) Its noise component without

edges.

Then, we calculated the average of slices of the pure noise

component, the average result represents the reference pattern

noise RPN or what is called the device fingerprint:

RPN =
1

N

N∑

i=1

n(i), (3)

where RPN is the reference pattern noise, N is the number

of noise slices and n is the noise component.

We are dealing with 3D volumes consisting of multiple

slices, we applied an average operation according to ’z’ axis

to extract the 2D reference pattern noise. In some slices, we

remove the traces that remain in the noise component, so ac-

cording to the pixel position, in some slices, this pixel may

have served as an edge and it has been removed. Conse-

quently, this pixel position loses some information regarding

the ’Z’ directional axis, while another pixel position did not

lose any information since it has not served as an edge. We

built what we called a correlation map as suggested in [13].

The correlation map gives information about the importance

of each pixel position.

Regarding the selected slices of the reference pattern

noise, we built the correlation map, where the pixel value

represent its frequency as an edge in these slices:

map(i, j) =
∑

I∈RPNslices

maskI(i, j) (4)

where map is the edge frequencies and maskI is the edge

mask of I .

To convert the values of correlation map into percentage

values, we inverted the map values and divided each pixel

value by the maximum one, so each pixel value represents

its importance regarding its frequency as an edge. The pixel

with the highest edge frequency has a low importance and so

it takes the value of 0, while the pixel with the lowest edge

frequency has a high importance and it takes the value 1:

corr map(i, j) =
Inv(map(i, j))

max(map)
, (5)

where corr map is the final correlation map, Inv is the in-

version factor and max is the maximum value of map.

2.4. Decision by correlation

Looking at each device, we have a reference pattern noise and

a correlation map. In order to test new slices to know from

which device they were acquired, we compute the correlation

between the reference pattern noise of each device and the

noise component of each slice depending on the weighting

factor of the correlation map. The tested slice is identified

as acquired from a specific device when it has the highest

correlation value with its reference pattern noise:

R̃PN(i, j) = RPN(i, j)×map(i, j), (6)

where RPN is the reference pattern noise and map is the

correlation map.

ñ(i, j) = n(i, j)×map(i, j), (7)

where n is the pure noise component and map is the correla-

tion map. Finally, the correlation is:

corr(ñ(z), R̃PN) =
(ñ(z) − ¯̃n(z)).(R̃PN − R̃PN)

‖ñ(z) − ¯̃n(z)‖‖R̃PN − R̃PN‖
, (8)

where z is the slice number, the correlation was applied on

the unmasked pixels only.

3. EXPERIMENTAL RESULTS

We applied our experiments on 40 3D images of 3600 slices

from three different CT-Scanners, 12 3D images of 1200

slices from the Siemens 1, 12 3D images of 1200 slices from

the Siemens 2 and 16 3D images of 1200 slices from General

Electric. These images have similar acquisition parameters

(Beam energy: (120, 140) KV, Pitch value: (0.5, 1), Recon-

struction: (soft, hard)) and the other parameters are illustrated

in Table 1.

Siemens 1 Siemens 2 GE

Content phantom phantom phantom

Nb of images 12 12 16

Nb of slices 1200 1200 1200

Size (pixels) 512x512 512x512 512x512

Bits per pixel 16 16 16

Slice thickness 3mm 3mm 3mm

Pixel size 1mm 1mm 1mm

Nb of slices of RPN 200 200 200

Nb of tested slices 1000 1000 1000

Table 1. Characteristics of the experimental images.

200 slices were selected randomly from each device to build

the reference pattern noise as illustrated in Fig. 3, the corre-

lation map was built depending on the slices of the reference

pattern noise of each device. To build the correlation map,
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(a) RPN of S1 (b) RPN of S2 (c) RPN of GE

Fig. 3. The reference pattern noise of each device.

each pixel of the correlation map represents the frequency of

the same pixel in all the device slices being served as an edge

as illustrated in Fig. 4.

(a) Map of S1 (b) Map of S2 (c) Map of GE

Fig. 4. The correlation map of each device.

And the resulted reference pattern noise of each device ac-

cording to equation 6 is illustrated in Fig. 5.

(a) RPN of S 1 (b) RPN of S 2 (c) RPN of GE

Fig. 5. The three RPNs according to (6).

Generally, the General Electric images are centered in a

circle of diameter equal to the image hight or width, so we

build a circle mask with a size equal to that of General Elec-

tric, in order to keep a common element among all the refer-

ences. Then, we applied this mask on each reference pattern

noise and tested slice. Finally, we calculated the correlation,

between the noise component of the tested slices and the ref-

erence pattern noise of each device, the correlation is depen-

dent on the correlation map as illustrated in Fig.(6, 7, 8). In

each plot, the ’x’ axis represents the tested slice number and

the ’y’ axis represents the correlation value. We could notice

that the correlation values between the tested slices and the

reference pattern noise of the same device are the highest.

Table 2 illustrates the identification accuracy regarding each

device:

Siemens 1 Siemens 2 GE

Siemens 1 94,3 % 2,3 % 0 %

Siemens 2 2,6 % 95,2 % 0 %

GE 3,1 % 2,5 % 100 %

Table 2. Identification accuracy.

• 943 slices of Siemens 1 were classified correctly as ac-

quired from Siemens 1, while 57 slices were not.

• 952 slices of Siemens 2 were classified correctly as ac-

quired from Siemens 2, while 48 slices were not.

• 1000 slices of General Electric were classified correctly

as acquired from GE.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed an improvement to the analysis of

the CT-Scanner identification problem. As a method of med-

ical image forensics, we were able to identify three different

CT-Scanners from their original images.

For future research, we plan to work directly on 3D im-

ages , to study the influence of different acquisition parame-

ters and we are going to study the influence of image com-

pressing on our proposed method.
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