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Abstract

High service availability is crucial for cloud systems. A

typical cloud system uses a large number of physical

hard disk drives. Disk errors are one of the most im-

portant reasons that lead to service unavailability. Disk

error (such as sector error and latency error) can be seen

as a form of gray failure, which are fairly subtle fail-

ures that are hard to be detected, even when applications

are afflicted by them. In this paper, we propose to pre-

dict disk errors proactively before they cause more se-

vere damage to the cloud system. The ability to predict

faulty disks enables the live migration of existing virtual

machines and allocation of new virtual machines to the

healthy disks, therefore improving service availability.

To build an accurate online prediction model, we utilize

both disk-level sensor (SMART) data as well as system-

level signals. We develop a cost-sensitive ranking-based

machine learning model that can learn the characteris-

tics of faulty disks in the past and rank the disks based

on their error-proneness in the near future. We evalu-

ate our approach using real-world data collected from a

production cloud system. The results confirm that the

proposed approach is effective and outperforms related

methods. Furthermore, we have successfully applied the

proposed approach to improve service availability of Mi-

crosoft Azure.

1 Introduction

In recent years, software applications are increasingly

deployed as online services on cloud computing plat-

forms, such as Microsoft Azure, Google Cloud, and

Amazon AWS. As cloud service could be used by mil-

lions of users around the world on a 24/7 basis, high

availability has become essential to the cloud-based ser-

vices. Although many cloud service providers target at

a high service availability (such as 99.999%), in reality,

service could still fail and cause great user dissatisfac-

tion and revenue loss. For example, according to a study

conducted on 63 data center organizations in the U.S,

the average cost of downtime has steadily increased from

$505,502 in 2010 to $740,357 in 2016 (or a 38 percent

net change) [33].

Various software, hardware, or network related prob-

lems may occur in a cloud system. Our experience with

Microsoft Azure shows that disk problem is the most se-

vere one among hardware issues. A typical cloud system

like Azure uses hundreds of millions of hard disk drives.

Disk-related problem has become one of the most sig-

nificant factors that contribute to the service downtime.

The importance of disk problem is also observed by re-

searchers in Facebook and Google, who reported that

20-57% of disks experience at least one sector error in

datasets collected over 4-6 years [27, 35].

To improve service availability, many proactive disk

failure prediction approaches have been proposed [18,

31, 32, 42, 41]. These approaches train a prediction

model from historical disk failure data, and use the

trained model to predict if a disk will fail (i.e., whether a

disk will be operational or not) in near future. Proactive

actions, such as replacement of failure-prone disks, can

then be taken. The prediction model is mainly built us-

ing the SMART [1] data, which is disk-level sensor data

provided by firmware embedded in disk drives.

The existing approaches focus on predicting complete

disk failure (i.e., disk operational/not operational). How-

ever, in a cloud environment, before complete disk fail-

ure, upper-layer services could already be affected by

disk errors (such as latency errors, timeout errors, and

sector errors). The symptoms include file operation er-

rors, VM not responding to communication requests, etc.

Disk errors can be seen as a form of gray failure [22],

which are fairly subtle failures that can defy quick and

definitive detection by a conventional system failure de-

tector, even when applications are afflicted by them. Gu-

nawi et al. also pointed out the impact of fail-slow hard-

ware that is still functional but in a degraded mode [20].
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If no actions are taken, more severe problems or even

service interruptions may occur. Therefore, we advocate

that it is important to predict disk errors so that proactive

measures can be taken before more severe damage to the

service systems incur. The proactive measures include

error-aware VM allocation (allocating VMs to healthier

disks), live VM migration (moving a VM from a faulty

disk to a health one), etc. In this way, service availability

can be improved by predicting disk errors.

In this paper, we develop an online prediction algo-

rithm for predicting disk errors, aiming at improving ser-

vice availability of a cloud service system. We find that

disk errors can be often reflected by system-level sig-

nals such as OS events. Our approach, called CDEF

(stands for Cloud Disk Error Forecasting), incorporates

both SMART data and system-level signals. It utilizes

machine learning algorithms to train a prediction model

using historical data, and then use the built model to pre-

dict the faulty disks. We design the prediction model to

have the following abilities:

• Be able to rank all disks according to the degree

of error-proneness so that the service systems can

allocate a VM to a much healthier one.

• Be able to identify a set of faulty disks from which

the hosted VMs should be live migrated out, under

the constrains of cost and capacity.

However, it is challenging to develop an accurate disk

error prediction model for a production cloud system.

We have identified the following challenges:

1. In real-world cloud service systems, the extremely

imbalanced data make prediction much more diffi-

cult. In average, only about 300 out 1,000,000 disks

could become faulty every day. We need to iden-

tify the faulty disks and be careful not to predict

a healthy disk as faulty. In our work, we propose

a cost-sensitive ranking model to address this chal-

lenge. We rank the disks according to their error-

proneness, and identify the faulty ones by minimiz-

ing the total cost. Using the cost-sensitive ranking

model, we only focus on identifying the top r most

error-prone disks, instead of classifying all faulty

disks. In this way, we mitigate the extreme imbal-

ance problem.

2. Some features, especially system-level signals, are

time-sensitive (their values keep changing drasti-

cally over time) or environment-sensitive (their data

distribution would significantly change due to the

ever-changing cloud environment). We have found

that models built using these unstable features may

lead to good results in cross-validation (randomly

dividing data into training and testing sets) but per-

form poorly in real-world online prediction (divid-

ing data into training and testing sets by time). We

will elaborate this challenge in Section 2.2. To ad-

dress this challenge, we perform systematic feature

engineering and propose a novel feature selection

method for selecting stable and predictive features.

We evaluate our approach using real-world data col-

lected from a production cloud system in Microsoft. The

results show that CDEF is effective in predicting disk er-

rors and outperforms the baseline methods. We have also

successfully applied CDEF in industrial practice. In av-

erage, we successfully reduce around 63k minutes of VM

downtime of Microsoft Azure per month.

In summary, we make the following contributions in

this paper:

• We propose CDEF, a disk error prediction method.

In CDEF, we consider both system-level signals and

disk-level SMART attributes. We also design a

novel feature selection model for selecting predic-

tive features and a cost-sensitive ranking model for

ranking disks according to their error-proneness.

• We have successfully applied CDEF to Azure, a

production cloud system in Microsoft. The results

prove the effectiveness of CDEF in improving ser-

vice availability in industrial practice. We also share

the lessons learned from our industrial practice.

The rest of this paper is organized as follows: In Sec-

tion 2, we introduce the background and motivation of

our work. Section 3 describes the proposed approach

and detailed algorithms. The evaluation of our approach

is described in Section 4. We also discuss the results and

present the threats to validity. In Section 5, we share our

experience obtained from industrial practice. The related

work and conclusion are presented in Section 6 and Sec-

tion 7, respectively.

2 Background and Motivation

2.1 Disk Error Prediction

A cloud system such as Microsoft Azure contains hun-

dreds of millions of disks serving various kinds of ser-

vices and applications. Disks are mainly used in two

kinds of clusters, clusters for data storage and clusters

for cloud applications. For the former of clusters, redun-

dancy mechanisms such as RAID [30] could tolerate disk

failures well. The latter form of clusters hosts a tremen-

dous amount of virtual machines, disk errors could bring

undesirable disruptions to the services and applications.

In this paper, we focus on the disks used in the cloud

application cluster.
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For cloud systems such as Microsoft Azure, Amazon

AWS, and Google Cloud, service problems can lead to

great revenue loss and user dissatisfaction. Hence, in

today’s practice, the service providers have made ev-

ery effort to improve service availability. For example,

from “four nines” (99.99%) to “five nines” (99.999%),

and then to “six niness”(99.9999%). Disks are among

the most frequently failing components in a cloud envi-

ronment and have attracted much attentions from both

academia and industry. For example, BackBlaze pub-

lishes quarterly reports and the underlying data for users

to keep track of reliability of popular hard drives in the

market. In their data, disk failure is labelled 0 if the drive

is OK, and 1 if this is the last day the drive was opera-

tional before failing [2].

To mitigate cost incurred by disk failures, researchers

have proposed to automatically predict the occurrence of

disk failure before it actually happens. In this way, proac-

tive measures, such as disk replacement, can be taken.

Disk failure prediction has been a hot subject of study.

Existing work [9, 18, 31, 32, 41, 42] mostly use the

SMART data (Self-Monitoring, Analysis and Reporting

Technology, which monitors internal attributes of indi-

vidual disks) to build a disk failure prediction model.

However, before a disk completely fails, it already

started reporting errors. There are various disk errors

such as disk partition errors (disk volumes and volume

size become abnormal), latency errors (unexpected long

delay between a request for data and the return of the

data), timeout errors (exceeding the predefined disk time-

out value), and sector errors (individual sectors on a drive

become unavailable), etc. Disk failures can be detected

by a conventional system failure detection mechanisms.

These mechanisms often assume an overly simple fail-

ure model in which a component is either correct or

failed. However, such mechanisms are inadequate to deal

with disk errors as they are subtle gray failures [22]. In

our practice, the disk error data is obtained through root

cause analysis of service issues performed by field engi-

neers.

Disk errors are common. For example, a study by

Bairavasundaram et al. [8] reports that 5-20% of hard

disk drives in Netapps storage systems report sector er-

rors over a period of 24 months. The disk errors can

affect the normal operations of upper-layer applications

and can be captured by unexpected VM downtime. The

symptoms include I/O requests timeout, VM or container

not responding to communication requests, etc. If no ac-

tions are taken, more severe problems or even service

interruptions may occur. Therefore, it is important that

disk errors to be captured and predicted before the vir-

tual machines get affected.

2.2 Challenges

In this work, we propose to predict the error-proneness of

a disk based on the analysis of historical data. The ability

to predict disk error can help improve service availability

from the following two aspects:

• VM allocation, which is the process of allocating

a VM (virtual machine) to a host. To enable more

effective VM allocation, we can proactively allocate

VMs to a host with a healthier disk rather than to a

host with a faulty disk.

• Live migration, which is the process of moving a

running VM among hosts without disconnecting the

client or application. To enable more effective live

migration, we can proactively migrate VMs from a

host with a faulty disk to a host with healthy disks.

To achieve so, we can build a prediction model based

on historical disk error data using machine learning tech-

niques, and then use the model to predict the likelihood

of a disk having errors in the near future. There are sev-

eral main technical challenges in designing the disk error

prediction model for a large-scale cloud:

Extremely imbalanced data: For a large-scale cloud

service system such as Microsoft Azure, each day, at

most only 3 disk in ten thousand disks could become

faulty. The extreme 3-in-10,000 imbalanced ratio poses

difficulties in training a classification model. Fed with

such imbalanced data, a naive classification model could

attempt to judge all disks to be healthy, because in this

way, it has the lowest probability of making a wrong

guess. Some approaches apply data re-balancing tech-

niques, such as over sampling and under sampling tech-

niques, to address this challenge. These approaches help

raise the recall, but at the same time could introduce a

large number of false positives, which dramatically de-

crease the precision. In our scenario, the cost of false

positives is high as the cost of VM migration is in-

neglectable and the cloud capacity may be affected by

the false positives.

Online prediction: Existing work [9, 26] usually

deals with prediction problem in a cross-validation man-

ner. However, we found that it is inappropriate for evalu-

ating our disk error prediction model. In cross validation,

the dataset is randomly divided into training and testing

set. Therefore, it is possible that the training set con-

tains parts of future data, and testing set contains parts

of past data. However, when it comes to online predic-

tion (using historical data to train a model and predict

future), training and testing data will have no time over-

lap. Besides, some data, especially system-level signals,

are time-sensitive (their values keep changing drastically

over time) or environment-sensitive (their data distribu-

tion could change due to the ever-changing cloud envi-
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Figure 1: The overview of the proposed approach

ronment). For example, a rack encounters an outage at

time t, all disks on it will experience such a change at

the same time. Using cross validation, the environment-

specific knowledge can spread to both training set and

testing set due to random splitting. The knowledge

learned from the training set could be applied to the test-

ing set, which causes high accuracy in cross validation

but poor result when evaluating new data.

Therefore, to construct an effective prediction model

in practice, we should use online prediction instead of

cross-validation: the future knowledge should not be

known at the time of prediction.

3 Proposed Approach

In this section, we present CDEF (Cloud Disk Error

Forecasting), our proposed approach that can improve

service availability by predicting disk errors. Figure 2

shows the overview of CDEF. First, we collect histori-

cal data about faulty and health disks. The disk label

is obtained through root cause analysis of service issues

by field engineers. The feature data includes SMART

data and system-level signals. We then select for training

those features that are stable and predictive. Based on

the selected features, we construct a cost-sensitive rank-

ing model, which ranks the disks and identifies the top r

ones that minimize the misclassification cost as the pre-

dicted faulty disks.

CDEF addresses the challenges described in the pre-

vious section by incorporating: 1) a feature engineering

method for selecting stable and predictive features 2) a

ranking model to increase the accuracy of cost-sensitive

online prediction. We describe these two components in

this section.

3.1 Feature engineering

3.1.1 Feature Identification

We collect two categories of data, SMART data and

system-level signals. SMART (Self-Monitoring, Analy-

sis and Reporting Technology) is a monitoring firmware

which allows a disk drive to report data about its inter-

nal activity. Table 1 gives some of the SMART features.

Table 1: Examples of SMART features

SMART

ID

Description

S2 Start/Stop Count

S12 Power Cycle Count

S193 Load Cycle Count

S187 The number of read errors that could not be

recovered using hardware ECC

S5 Count of reallocated sectors. When a read

or a write operation on a sector fails, the

drive will mark the sector as bad and remap

(reallocate) it to a spare sector on disk.

S196 The total count of attempts to transfer data

from reallocated sectors to a spare area.

Unsuccessful attempts are counted as well

as successful.

Table 2: The system-level signals

Signal Description

PagingError Windows encounters an error in

creating a paging file.

FileSystem-

Error

An error occurs when trying to read,

write, or open a file.

DeviceReset Device is forced to reset or shut-

down.

TelemetryLoss Telemetry data cannot be captured

over a period.

DataExchange-

Disabled

The data exchange integration ser-

vice cannot be enabled or initial-

ized.

VMFrozen VM is unresponsible to communi-

cation request

Windows

Event 129

A Windows event log caused by

dropped requests.

More information about SMART can be found in [31].

In cloud systems, there are also various system-level

events, which are collected periodically (typically ev-

ery hour). Many of these system-level events, such as

Windows events, file system operation error, unexpected

telemetry loss, etc., are early signals of disk errors. Ta-

ble 2 gives the descriptions of some system-level sig-

nals. For example, the FileSystemError is an event that

is caused by disk related errors, which can be traced back

to bad sectors or disk integrity corruption.

Apart from the features that are directly identified

from the raw data, we also calculate some statistical fea-

tures as follows:

Diff Through data analysis, we have found that the

changes in a feature value over time could be useful for

distinguishing disk errors. We call such a feature Di f f .
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Given a time window w, we define Di f f of feature x at

time stamp t as follows:

Di f f (x, t,w) = x(t)− x(t−w) (1)

Sigma Sigma calculates the variance of attribute val-

ues within a period. Given a time window w, Sigma of

attribute x at time stamp t is defined as:

Sigma(x, t,w) = E[(X−µ)2], (2)

where X = (xt−w,xt−w−1, ...,xt) and µ = ∑(X)
w

.

Bin Bin calculates the sum of attribute values within a

window w as follows:

Bin(x, t,w) =
t

∑
j=t−w+1

x( j) (3)

In our work, we use three different window sizes 3, 5,

7 in calculating Di f f , Bin, and Sigma.

3.1.2 Feature Selection

Through the feature identification process described in

the previous section, we have identified 457 features in

total from SMART and system-level data. However, we

have found that not all of the features can well distin-

guish between healthy and faulty disks, especially in the

context of online prediction.

Feature selection proves very useful in selecting rele-

vant features for constructing machine learning models.

Existing feature selection methods fall into two main cat-

egories, statistical indicators (Chi-Square, Mutual Infor-

mation, etc.) and machine-learning based methods like

Random Forest [17]. However, in our scenario, the tra-

ditional feature selection methods cannot achieve good

prediction performance because of the existence of time-

sensitive and environment-sensitive features. These fea-

tures carry information that are highly relevant to the

training period, but may not be applicable for predict-

ing samples in the next time period. We call this kind of

features non-predictive features, meaning they have no

predictive power in online prediction. Our experimental

results (to be described in Section 4.3.2) show that the

traditional feature selection methods lead to poor perfor-

mance in our scenario.

Figure 2(b) illustrates an example of a non-predictive

feature SeekTimePer f ormance. Line G train indicates

the feature values of healthy disks over time in train-

ing set, and Line F train indicates the feature values of

faulty disks in the training set. Clearly, in the training

set, the mean feature value of healthy disks is lower than

that of faulty disks. We expect the same pattern for the

same feature in the testing set (which is collected from

the next time period). However, our data shows that it

is not the case. In Figure 2(b), Lines G test and F test

indicate the feature values of healthy and faulty disks

over time in the testing set, respectively. Clearly, in the

testing set, the mean feature value of healthy disks is

higher than that of faulty disks. Therefore, the behav-

ior of this feature is not stable. We consider this feature

a non-predictive feature and not suitable for online pre-

diction. As a comparison, Figure 2(a) shows a predic-

tive feature ReallocatedSectors, from which we can see

that the behavior of this feature is stable - the values of

healthy disks are always close to zero and the values of

faulty disks keep increasing over time, in both training

and testing sets.

Algorithm 1: Prune non-predictive features

Input : Training data TR with feature set F

( f1, f2, , , , fm)

Output: Reduced feature set F ′

1 Split TR by time equivalently into TR1 and TR2

2 foreach fi in F do

3 // use TR1 to predict TR2, get accuracy result

4 r← train(TR1) and test(TR2)

5 // remove data about fi from TR, then predict

6 r fi ← train(TR1- fi) and test(TR2- fi)

7 if r fi > r then

8 delete fi from F

9 end

10 if number of remaining features <= θ ∗m

then

11 Break

12 end

13 end

14 Return F ′

To select the stable and predictive features, we per-

form feature selection to prune away the features that

will perform poorly in prediction. The idea is to simu-

late online prediction on the training set. The training

set is divided by time into two parts, one for training and

the other for validation. If the performance on validation

set gets better after deleting one feature, then the feature

is deleted until the number of remaining features is less

than θ% of the total number of the features. The details

are described in Algorithm 1. In our experiment, we set

θ = 10% by default, which means that the pruning pro-

cess will stop if the number of remaining features is less

than 10%.

At last, we re-scale the range of all selected features

using zero-mean normalization as follows: xzero−mean =
x−mean(X).
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(a) Predictive features (b) Non-predictive feature

Figure 2: An example of predictive and non-predictive feature

3.2 Cost-sensitive ranking model

Having collected features from historical data, we

then construct a prediction model to predict the error-

proneness of disks in the coming days. In this step, we

formulate the prediction problem as a ranking problem

instead of a classification problem. That is, instead of

simply telling whether a disk is faulty or not, we rank

the disks according to their error-proneness. The ranking

approach mitigates the problem of extreme imbalanced

fault data because it is insensitive to the class imbalance.

To train a ranking model, we obtain the historical fault

data about the disks, and rank the disks according to their

relative time to fail (i.e., the number of days between the

data is collected and the first error is detected). We adopt

the concept of Learning to Rank [24], which automat-

ically learns an optimized ranking model from a large

amount of data to minimize a loss function. We adopt the

FastTree algorithm [28, 14], which is a form of “Multi-

ple Additive Regression Trees” (MART) gradient boost-

ing algorithm. It builds each regression tree (which is

a decision tree with scalar values in its leave) in a step

wise fashion. This algorithm is widely used in machine

learning and information retrieval research.

To improve service availability, we would like to intel-

ligently allocate VMs to the healthier disks so that these

VMs are less likely to suffer from disk errors in near fu-

ture. To achieve so, we identify the faulty and healthy

disks based on their probability of being faulty. As most

of the disks are healthy and only a small percentage of

them are faulty, we select the top r results returned by

the ranking model as the faulty ones. The optimal top r

disks are selected in such a way that they minimize the

total misclassification cost:

cost =Cost1∗FPr +Cost2∗FNr,

where FPr and FNr are the number of false positives and

false negatives in the top r predicted results, respectively.

Cost1 is the cost of wrongly identifying a healthy disk as

faulty, which involves the cost of unnecessary live migra-

tion from the “faulty” disk to a healthy disk. Although

we have very good technology for live migration, the mi-

gration process still incurs an unneglectable cost and de-

creases the capacity of the cloud system. Cost2 is the

cost of failing to identify a faulty disk. The values of

Cost1 and Cost2 are empirically determined by experts

in product teams. In our current practice, due to the con-

cerns about VM migration cost and cloud capacity, Cost1

is much higher than Cost2 (i.e., we value precision more

than recall). The ratio between Cost1 and Cost2 is set

to 3:1 by the domain experts based on their experience

on disk error recovery. The number of false positives

and false negatives are estimated through the false pos-

itive and false negative ratios obtained from historical

data. The optimum r value is determined by minimiz-

ing the total misclassification cost. The top r disks are

predicted faulty disks, which are high-risk disks and the

VMs hosted on them should be migrated out.

4 Experiments

In this section, we evaluate the effectiveness of our ap-

proach. The aim is to answer the following research

questions:

RQ1: How effective is the proposed approach in pre-

dicting disk errors?

RQ2: How effective is the proposed feature engineer-

ing method?

RQ3: How effective is the proposed ranking model?
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4.1 Dataset and Setup

Dataset To evaluate the proposed approach, we collect

real-world data from a large-scale Microsoft cloud ser-

vice system. We use one-month data (October 2017)

for training, and divide the data of November 2017 into

three parts for testing. In each dataset, the ratio between

healthy disks and faulty disks is around 10,000 : 3.

Setup We utilize Microsoft COSMOS [3] to store and

process data collected from product teams. For ranking

algorithm, we use the FastTree algorithm implemented in

Microsoft AzureML [4]. We use 200 iterations in Fast-

Tree setting. The experimental evaluation is performed

on a Windows Server 2012 with (Intel CPU E5-4657L

v2 @2.40GHz 2.40 with 1.0 TB Memory).

4.2 Evaluation Metric

Following the existing work [23, 32, 42], we evaluate the

accuracy of the proposed approach using the FPR and

TPR metrics. We consider faulty disks as positive and

healthy ones as negative. True Positive (TP) denotes the

faulty disks that are predicted as faulty. False Positive

(FP) denotes the healthy disks that are falsely predicted

as faulty. True Negative (TN) denotes the healthy disks

that are predicted as healthy. False Negative (FN) de-

notes the faulty disks that are falsely predicted as healthy.

False Positive Rate (FPR) denotes the proportion of FP

among all healthy disks. FPR = FP/(FP+T N). True

Positive Rate (TPR) denotes the proportion of TP among

all faulty disks. T PR = T P/(T P+FN).
We also use the ROC curve [5] that plots TPR (True

Positive Rate) versus FPR (False Positive Rate), and

compute the Area Under Curve (AUC). Following the

related work [23, 29], we compute the TPR value when

FPR is 0.1%, which indicates how good an algorithm can

predict faulty disks under a high precision requirement.

4.3 Results

4.3.1 RQ1: How effective is the proposed approach

in predicting disk errors?

We evaluate the effectiveness of the proposed CDEF ap-

proach on all three datasets. We also compare CDEF

with the Random Forest and SVM based methods pro-

posed in the related work on disk failure prediction

[26, 32]. These methods use the Random Forest or SVM

classifiers to classify disks based on the SMART data.

We treat them as baseline methods in this experiment.

The experimental results are shown in Figure 3. The

diagonal lines indicate the accuracy obtained by Random

Guess (meaning random prediction with 50% probabil-

ity). The results show that CDEF outperforms the base-

line methods consistently under different FPR/TPR ra-

tios on all datasets. For example, on Dataset 1, the AUC

values for our approach is 0.93, while the AUC value for

Random Guess, Random Forest, and SVM is 0.5, 0.85,

and 0.53, respectively.

We evaluate the effectiveness of the proposed ranking

approach in terms of misclassification cost and the TPR

value (when FPR is 0.1%). The misclassification cost

is obtained as: cost= Cost1*FP+Cost2*FN, where Cost1

and Cost2 are set to 3 and 1 respectively by the prod-

uct team. Table 3 shows the results. Clearly, CDEF ob-

tains better results than the other two methods. The TPR

value is 36.50%, 41.09%, and 29.67% on Dataset 1, 2,

and 3, respectively. CDEF is also cost-effective. In aver-

age, CDEF achieves around 187.92% cost reduction than

Random Forest, and 10.13% cost reduction than SVM.

SVM has low cost because SVM is accurate in predict-

ing healthy disks and induces less false positives. But

SVM performs worse in predicting faulty disks and in-

duces low TPR.

In summary, the experimental results show that CDEF

is effective in predicting disk errors. This is because of

two reasons: the proposed feature engineering method

and the proposed ranking model. We will show the ef-

fectiveness of these two methods in the following RQs.

Table 3: Experimental results of CDEF on three datasets
CDEF RandomForest SVM

Cost TPR Cost TPR Cost TPR

Dataset 1 2508 36.50% 3157 30.51% 2907 15.51%

Dataset 2 234 41.09% 1211 34.11% 258 21.71%

Dataset 3 760 29.67% 1675 18.81% 792 7.20%

4.3.2 RQ2: How effective is the proposed feature en-

gineering method?

In our work, we propose to use system-level signals

in disk error prediction. We also propose a feature

selection method to select the predictive features for

model training. In this RQ, we evaluate the effective-

ness of our proposed feature engineering method. We

experiment with three feature engineering methods: S

(traditional SMART-based features), S+A (SMART and

system-level signals), and S+A+F (SMART and system-

level signals with feature selection, which is used in

CDEF). All other experimental settings remain the same.

The results are shown in Figure 4. We can see that the

results achieved by incorporating system-level signals

outperform those achieved by SMART alone on all the

three datasets. Furthermore, by incorporating SMART

and system-level signals with feature selection, we can

obtain the best results on all the three datasets. In aver-

age, the TPR value (when FPR is 0.1%) is 27.6%, 30.3%,

and 35.8%, for S, S+A, and S+A+F, respectively. These

results confirm the effectiveness of the proposed feature

engineering methods.
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 3: ROC of comparative methods

Figure 4: Evaluation results with different features
S: traditional SMART-based features; S+A: SMART and

system-level signals; S+A+F: SMART and system-level sig-

nals with feature selection.

We also evaluate the effectiveness of CDEF using

the features selected by the proposed feature selection

method and the features selected by conventional feature

selection methods Chi-Square, Mutual Information, and

Random Forest [17, 21]. The results are given in Fig-

ure 5, which shows that the proposed feature selection

method outperforms the conventional feature selection

methods on all datasets.

4.3.3 RQ3: How effective is the proposed ranking

model?

In our work, we propose to use a cost-sensitive ranking

method to rank the disks and then select the top r disks

as faulty ones by minimizing the total misclassification

cost. In this RQ, we evaluate the effectiveness of the

proposed ranking approach.

To perform classification for imbalanced data, one

common approach is to apply the over-sampling tech-

nique SMOTE [10] to balance the training data for model

construction. The other approach is weighted classifi-

cation, which is essentially cost-sensitive learning [12]

that learns from extremely imbalanced data and assigns

a larger weight to minority class. The weight is usually

Figure 5: The comparison between the proposed feature

selection method and existing methods

set inversely to the sample portion. In our experiment,

we compare the proposed cost-sensitive ranking method

with these two approaches. To better evaluate the accu-

racy of the proposed method, we also compare with the

random guess method.

We evaluate the effectiveness of the proposed rank-

ing approach in terms of misclassification cost. The

proposed cost-sensitive ranking model achieves the min-

imum cost among all comparative methods on all

datasets. For example, on Dataset 2, the misclassification

cost obtained by our model is 234, while cost obtained

by Random Guess, weighted classification, and classifi-

cation with SMOTE are much higher (1146662, 717, and

7812, respectively).

We also evaluate the effectiveness of the proposed

ranking approach in terms of TPR and FPR values. Fig-

ure 6 shows the ROC curves achieved by the comparative

methods. Table 4 shows the TPR values when FPR is

0.1%, achieved by different methods on all the datasets.

Clearly, our cost-sensitive ranking method achieves the

best accuracy values. For example, on Dataset 2, the

TPR value (when FPR is 0.1%) achieved by our model

is 41.09%, while the values achieved by Random Guess,

weighted classification, and classification with SMOTE

are much lower (0.1%, 27.91%, and 27.94%, respec-
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tively). The AUC value achieved by our model is

88.75%, while the values achieved by Random Guess,

weighted classification, and classification with SMOTE

are 0.5%, 84.22%, and 83.56%, respectively.

In summary, the experimental results confirm the ef-

fectiveness of the proposed cost-sensitive ranking model.

4.4 Discussions of the Results

In our work, we do not use cross-validation to build

and evaluate the proposed approach. Instead, we do on-

line prediction - using the data before a certain date to

train the model and use the data after the date to test

the model. Existing work on failure prediction such as

[9, 26] uses cross-validation to evaluate their machine-

learning based models. In our scenario, cross-validation

can lead to much better results than online prediction,

as shown in Figure 7. For example, on Dataset 1, us-

ing cross-validation we can obtain TPR value of 91.64%

(when FPR is 0.1%), while using online prediction the

TPR value is only 36.50%. However, our experiences

show that cross-validation may not always reflect the ac-

tual effectiveness of a prediction model. Online predic-

tion should be used in practice.

In cross validation, the dataset is randomly divided

into training and testing sets. Therefore, it is possible

that the training set contains parts of future data, and the

testing set contains parts of past data. However, in real-

world online prediction, training and testing sets are di-

vided by time. The past data is used to train the model

and the future data is used to test the model.

The gap is magnified when there are time-sensitive

features and environment-sensitive features. In disk error

prediction, some features have temporal nature and their

values vary drastically over time. Some features may

be easily affected by environmental changes to the cloud

system. For example, the disks on the same rack or the

same motherboard encounter similar attribute changes

caused by unstable voltage. However, such changes may

not happen before the time of prediction. Using cross-

validation we may utilize the knowledge that should not

be known at the time of prediction, thus obtaining bet-

ter evaluation results. Therefore, cross-validation is not

suitable for evaluating our model in practice. The prob-

lem of cross-validation in evaluating an online prediction

model is also observed by others [36].

4.5 Threats to Validity

We have identified the following threats to validities:

Subject systems: In our experiments, we only col-

lect data from one cloud service system of one company.

Therefore, our results might not be generalizable to other

systems. However, the system we studied is a typical,

large-scale cloud service system, from which sufficient

data can be collected. Furthermore, we have applied our

approach in the maintenance of the cloud system. In fu-

ture, we will reduce this threat by evaluating CDEF on

more subject systems and report the evaluation results.

Data noise: After a disk is identified to be faulty, it

could be sent to repair. After that, some disks could be

returned and used again. Therefore, a small degree of

noise may exist in the labeling of a disk.

Evaluation metrics: We used the FPR/TPR metrics

to evaluate the prediction performance. These metrics

have been widely used to evaluate the effectiveness of a

disk fault prediction mode [32]. Prior work [38] points

out that a broader selection of metrics should be used in

order to maximize external validity. In our future work,

we will reduce this threat by experimenting with more

evaluation measures such as Recall/Precision.

5 Lessons Learned from Practice

We have successfully applied CDEF to the maintenance

of Microsoft Azure, which is a large-scale cloud service

system that allows IT professionals to build, deploy, and

manage applications. The cloud service achieves global

scale on a worldwide network of data centers across

many regions. Due to the unreliable nature of the un-

derlying commodity hardware, various issues occur in

Azure every day. Without proper handling of these is-

sues, Azure service availability could be seriously af-

fected. We found disk error is the most severe one among

all hardware issues.

CDEF is currently used by Azure to preferentially se-

lect healthier disks for VM allocation and live migration.

After deploying CDEF, in average, we successfully saved

around 63k minutes of VM downtime per month. Note

that 99.999% service availability means that only 26 sec-

onds per month of VM downtime is allowed. Therefore,

CDEF has significantly improved service availability of

Microsoft Azure.

Currently the training is performed daily over the past

90-day data, and keeps a moving window of 90 days. The

cutting point r in the ranking model is set along with the

training process. When a disk is predicted as faulty, we

mark the host node unallocable and trigger live migration

process. We also run disk stress test on the predicted

disks before they are taken out for replacement.

We have learned the following lessons from our indus-

trial practice:

• Continuous training. Many factors could affect

the distribution of disk error data, such as bugs in

OS driver/firmware, workload on clusters, platform

maintenance, etc. A model trained in the past will

not always work in the future. Therefore, we build

a continuous training pipeline. For every predicted

disk error, we also let the disk go through a disk
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Table 4: The cost and TPR values (when FPR is 0.1%) achieved by the proposed cost-sensitive ranking model

Random Guess Cost-sensitive ranking Weighted Classification Classification+SMOTE

Cost TPR Cost TPR Cost TPR Cost TPR

Dataset 1 1447986 0.1% 2508 36.50% 2910 26.52% 9442 24.63%

Dataset 2 1146662 0.1% 234 41.09% 717 27.91% 7812 27.94%

Dataset 3 1446929 0.1% 760 29.67% 1234 17.42% 8239 17.68%

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 6: ROC of cost-sensitive ranking and classification

Figure 7: Evaluation results - cross validation vs. online

prediction

stress test to check if it is really faulty. This forms

a continuous feedback loop between disk error pre-

diction and disk stress test.

• Cost-effectiveness. Prediction alone may not make

much impact if the cost of recovery operation is re-

ally high (because the cost of leaving the host node

as it is might be cheaper than the cost of taking the

recovery operation). Furthermore, the cost to re-

cover a node with one VM on top is much cheaper

than the cost of recovery with 10 VMs in terms of

VM availability. Thus, the cost of recovery could

vary depending on the state of the host node, the re-

covery operation, etc. The prediction could be even

more useful if we can better estimate the cost.

• Faulty disks will get even worse. Our experience

shows that before a disk completely fails, it may al-

ready start emitting errors that affect upper-layer ap-

plications and services. That is why incorporating

the system-level signals is better than using SMART

alone. We found that disk errors, in average, occur

15.8 days earlier than complete disk failure. Our

experience also shows that, before completely fails,

the status of a disk will actually get worse over time.

For example, for faulty disks, the value of the fea-

ture ReallocatedSectors increases by 3 times dur-

ing the last week of its operation. The value of

system-level signal DeviceReset even increases by

10 times during the same period. This finding con-

firms our intention to detect disk error earlier before

it makes severe impact on application usage.

6 Related Work

6.1 Disk Failure Prediction

There are a large amount of related work on predicting

disk failures. For example, BackBlaze publishes quar-

terly report [6] for users to keep track of reliability of

popular hard drives in the market. Most of the modern

hard drives support Self-Monitoring, Analysis and Re-

porting Technology (SMART), which can monitor inter-

nal attributes of individual drives. SMART is used by

some manufacturers to predict impending drive failure

by simple threshold-based method [31, 34].

As the prediction performance of the thresholding al-

gorithm is disappointing, researchers have proposed vari-

ous machine learning models for predicting disk failures.

For example, Zhu et al. [42] predicted disk failure based

on raw SMART attributes and their change rates, and

neural network and SVM model are applied. Ganguly

et al. [16] utilized SMART and hardware-level features
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such as node performance counter to predict disk failure.

Ma et al. [25] investigate the impact of disk failures on

RAID storage systems and designed RAIDShield to pre-

dict RAID-level disk failures.

Tan et al. [37] proposed an online anomaly prediction

method to foresee impending system anomalies. They

applied discrete-time Markov chains (DTMC) to model

the evolving patterns of system features, then used tree-

augmented naive Bayesian to train anomaly classifier.

Dean et al. [11] proposed an Unsupervised Behavior

Learning (UBL) system, which leverages an unsuper-

vised method Self Organizing Map to predict perfor-

mance anomalies. Wang et al. [41] also proposed an

unsupervised method to predict drive anomaly based on

Mahalanobis distance. There are also other work [19, 40]

in online machine learning [7], which aims to update the

best predictor at each step for steaming data (as opposed

to batch learning techniques). While our “online predic-

tion” focuses on the prediction workflow: always using

a batch of historical data to predict the future (as op-

posed to cross-validation). Furthermore, unlike [37], we

deal with the evolving features by proactively selecting

the consistently predictive features. Unlike [11, 41] that

can be used even when label data is difficult to get, we

adopt a supervised method as we have quality labeled

data. We will compare our method with unsupervised-

learning based methods in our future work.

For feature selection, Botezatu et al. [9] selected

the most relevant features based on statistical measures.

Gaber et al. [15] used machine learning algorithms to ex-

tract features representing the behavior of the drives and

predict the failure of the drives. However, these feature

selection methods are not able to prune non-predictive

features in online prediction scenario.

All these related work focus on disk failure prediction

based on SMART and other hardware-level attributes.

While our work focuses on predicting disk errors that

affect the availability of virtual machines, before com-

plete disk failure happens. We incorporate both SMART

and system-level signals, which proves better than using

SMART data alone. Also, most of the related work eval-

uate their prediction model in a cross validation manner,

which is not appropriate in real-world practice. In our

work, we perform online prediction and propose a novel

algorithm to select stable and predictive features.

6.2 Failures in Cloud Service Systems

Although tremendous effort has been made to maintain

high service availability, in reality, there are still many

unexpected system problems caused by software or plat-

form failures (such as software crashes, network outage,

misconfigurations, memory leak, hardware breakdown,

etc.). There have been some previous studies in the lit-

erature on failures of a data center. For example, Ford

et al. studied [13] the data availability of Google dis-

tributed storage systems, and characterized the sources

of faults contributing to unavailability. Their results indi-

cate that cluster-wide failure events should be paid more

attention during the design of system components, such

as replication and recovery policies. Vishwanath and Na-

gappan [39] classified server failures in a data center and

found that 8% of all servers had at least one hardware

incident in a given year. Their studies could be helpful

to reduce the hardware faults, especially the networking

faults. Huang et al. [22] also found that the major avail-

ability breakdowns and performance anomalies we see in

cloud environments tend to be caused by subtle underly-

ing faults, i.e., gray failure rather than fail-stop failure.

The above-mentioned related work shows that failures

in cloud systems can be triggered by many software or

hardware issues. In our work, we only focus on disk er-

ror prediction. In particular, disk errors can be also seen

as a form of gray failures: the system’s failure detectors

may not notice them even when applications are afflicted

by them.

7 Conclusion

Disk error is one of the most important reasons that cause

service unavailability. In this paper, we propose CDEF,

an online disk error prediction approach that can predict

disk errors proactively before they cause more severe

damage to the cloud system. We collect both SMART

and system-level signals, perform feature engineering,

and develop a cost-sensitive ranking model. We evalu-

ate our approach using real-world data collected from a

cloud system. The results confirm that the proposed ap-

proach is effective and outperforms related methods. The

ability to predict faulty disks enables the live migration

of existing virtual machines and allocation of new vir-

tual machines to the healthy disks, thus improving ser-

vice availability. We have also successfully applied the

proposed approach to Microsoft Azure.

There are many viable ways of extending this work.

We have applied our approach to hard disk drives in pro-

duction. In the future, we will apply it to other disk types

such as Solid State Drive. We will also explore the syn-

ergy between disk error prediction and other cloud fail-

ure detection techniques such as [22], and propose an

integrated solution to service availability improvement.
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