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Abstract. Shape retrieval/matching is a very important topic in com-
puter vision. The recent progress in this domain has been mostly driven
by designing smart features for providing better similarity measure be-
tween pairs of shapes. In this paper, we provide a new perspective to
this problem by considering the existing shapes as a group, and study
their similarity measures to the query shape in a graph structure. Our
method is general and can be built on top of any existing shape match-
ing algorithms. It learns a better metric through graph transduction by
propagating the model through existing shapes, in a way similar to com-
puting geodesics in shape manifold. However, the proposed method does
not require learning the shape manifold explicitly and it does not require
knowing any class labels of existing shapes. The presented experimen-
tal results demonstrate that the proposed approach yields significant
improvements over the state-of-art shape matching algorithms. We ob-
tained a retrieval rate of 91% on the MPEG-7 data set, which is the
highest ever reported in the literature.

1 Introduction

Shape matching/retrieval is a very critical problem in computer vision. There
are many different kinds of shape matching methods, and the progress in in-
creasing the matching rate has been substantial in recent years. However, all of
these approaches are focused on the nature of shape similarity. It seems to be
an obvious statement that the more similar two shapes are, the smaller is their
difference, which is measured by some distance function. Yet, this statement
ignores the fact that some differences are relevant while other differences are ir-
relevant for shape similarity. It is not yet clear how the biological vision systems
perform shape matching; it is clear that shape matching involves the high-level
understanding of shapes. In particular, shapes in the same class can differ signif-
icantly because of distortion or non-rigid transformation. In other words, even
if two shapes belong to the same class, the distance between them may be very
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Fig. 1. Existing shape similarity methods incorrectly rank shape (b) as more similar
to (a) than (c)
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Fig.2. A key idea of the proposed distance learning is to replace the original shape
distance between (a) and (e) with a geodesic path in the manifold of know shapes,
which is the path (a)-(e) in this figure

large if the distance measure cannot capture the intrinsic property of the shape.
It appears to us that all published shape distance measures [IR2IBIABI6T] are
unable to address this issue. For example, based on the inner distance shape
context (IDSC) [3], the shape in Fig. [(a) is more similar to (b) than to (c),
but it is obvious that shape (a) and (c) belong to the same class. This incorrect
result is due to the fact that the inner distance is unaware that the missing tail
and one front leg are irrelevant for this shape similarity judgment. On the other
hand, much smaller shape details like the dog’s ear and the shape of the head
are of high relevance here. No matter how good a shape matching algorithm is,
the problem of relevant and irrelevant shape differences must be addressed if we
want to obtain human-like performance. This requires having a model to capture
the essence of a shape class instead of viewing each shape as a set of points or a
parameterized function.

In this paper, we propose to use a graph-based transductive learning algo-
rithm to tackle this problem, and it has the following properties: (1) Instead
of focusing on computing the distance (similarity) for a pair of shapes, we take
advantage of the manifold formed by the existing shapes. (2) However, we do not
explicitly learn the manifold nor compute the geodesics [§], which are time con-
suming to calculate. A better metric is learned by collectively propagating the
similarity measures to the query shape and between the existing shapes through
graph transduction. (3) Unlike the label propagation [9] approach, which is semi-
supervised, we treat shape retrieval as an unsupervised problem and do not re-
quire knowing any shape labels. (4) We can build our algorithm on top of any
existing shape matching algorithm and a significant gain in retrieval rates can
be observed on well-known shape datasets.

Given a database of shapes, a query shape, and a shape distance function,
which does not need to be a metric, we learn a new distance function that is
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expressed by shortest paths on the manifold formed by the know shapes and the
query shape. We can do this without explicitly learning this manifold. As we
will demonstrate in our experimental results, the new learned distance function
is able to incorporate the knowledge of relevant and irrelevant shape differences.
It is learned in an unsupervised setting in the context of known shapes. For
example, if the database of known shapes contains shapes (a)-(e) in Fig.[2] then
the new learned distance function will rank correctly the shape in Fig. [[l(a) as
more similar to (c¢) than to (b). The reason is that the new distance function
will replace the original distance (a) to (c¢) in Figlll with a distance induced by
the shortest path between in (a) and (e) in Fig2l

In more general terms, even if the difference between shape A and shape C'
is large, but there is a shape B which has small difference to both of them, we
still claim that shape A and shape C are similar to each other. This situation is
possible for most shape distances, since they do not obey the triangle inequality,
i.e., it is not true that d(4,C) < d(4, B) + d(B,C) for all shapes A, B,C [10].
We propose a learning method to modify the original shape distance d(A, C).
If we have the situation that d(A,C) > d(A4,B) + d(B,C) for some shapes
A, B, C, then the proposed method is able to learn a new distance d'(A, C') such
that d'(A,C) < d(A, B) + d(B,C). Further, if there is a path in the distance
space such that d(A,C) > d(A, By) + ...+ d(Bg,C), then our method learns
a new d'(A,C) such that d'(A,C) < d(A,B1) + ...+ d(By,C). Since this path
represents a minimal distortion morphing of shape A to shape C, we are able to
ignore irrelevant shape differences, and consequently, we can focus on relevant
shape differences with the new distance d’.

Our experimental results clearly demonstrate that the proposed method can
improve the retrieval results of the existing shape matching methods. We ob-
tained the retrieval rate of 91% on part B of the MPEG-7 Core Experiment
CE-Shape-1 data set [I], which is the highest ever bull’s eye score reported in
the literature. As the input to our method we used the IDSC, which has the
retrieval rate of 85.40% on the MPEG-7 data set [3]. Fig. Bl illustrates the ben-
efits of the proposed distance learning method. The first row shows the query
shape followed by the first 10 shapes retrieved using IDSC only. Only two flies
are retrieved among the first 10 shapes. The results of the learned distance for
the same query are shown in the second row. All of the top 10 retrieval results
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Fig. 3. The first column shows the query shape. The remaining 10 columns show the
most similar shapes retrieved from the MPEG-7 data set. The first row shows the
results of IDSC [3]. The second row shows the results of the proposed learned distance.
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are correct. The proposed method was able to learn that the shape differences
in the number of fly legs and their shapes are irrelevant. The remainder of this
paper is organized as follows. In Section 2] we briefly review some well-known
shape matching methods and the semi-supervised learning algorithms. Section [3]
describes the proposed approach to learning shape distances. Section Ml relates
the proposed approach to the class of machine learning approaches called label
propagation. The problem of the construction of the affinity matrix is addressed
in Section [l Section [f] gives the experimental results to show the advantage of
the proposed approach. Conclusion and discussion are given in Section [1

2 Related Work

The semi-supervised learning problem has attracted an increasing amount of in-
terest recently, and several novel approaches have been proposed. The existing
approaches could be divided into several types, multiview learning [12], gener-
ative model [I3], Transductive Support Vector Machine (TSVM) [I4]. Recently
there have been some promising graph based transductive learning approaches
proposed, such as label propagation [9], Gaussian fields and harmonic functions
(GFHF) [15], local and global consistency (LGC) [16], and the Linear Neigh-
borhood Propagation (LNP) [I7]. Zhou et al. [I8] modified the LGC for the
information retrieval. The semi-supervised learning problem is related to mani-
fold learning approaches, e.g., [19].

The proposed method is inspired by the label propagation. The reason we
choose the framework of label propagation is it allows the clamping of labels.
Since the query shape is the only labeled shape in the retrieval process, the label
propagation allows us to enforce its label during each iteration, which naturally
fits in the framework of shape retrieval. Usually, GFHF is used instead of label
propagation, as both methods can achieve the same results[9]. However, in the
shape retrieval, we can use only the label propagation, the reason is explained
in detail in Section @

Since a large number of shape similarity methods have been proposed in the
literature, we focus our attention on methods that reported retrieval results
on the MPEG-7 shape data set (part B of the MPEG-7 Core Experiment CE-
Shape-1). This allows us to clearly demonstrate the retrieval rate improvements
obtained by the proposed method. Belongie et al. [I] introduced a novel lo-
cal representation of shapes called shape context. Ling and Jacobs [3] modified
the shape context by considering the geodesic distance of contour instead of
the Euclidean distance, which improved the classification of articulated shapes.
Latecki and Lakaemper [4] used visual parts for shape matching. In order to
avoid problems associated with purely global or local methods, Felzenszwalb
and Schwartz [5] also described a hierarchical matching method. Other hierar-
chical methods include the hierarchical graphical models in [20] and hierarchical
procrustes matching [6].

There is a significant body of work on distance learning [21]. Xing et al.
[22] propose estimating the matrix W of a Mahalanobis distance by solving a
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convex optimization problem. Bar-Hillel et al. [23] also use a weight matrix W to
estimate the distance by relevant component analysis (RCA). Athitsos et al. [24]
proposed a method called BoostMap to estimate a distance that approximates a
certain distance. Hertz’s work [25] uses AdaBoost to estimate a distance function
in a product space, whereas the weak classifier minimizes an error in the original
feature space. All these methods’ focus is a selection of suitable distance from
a given set of distance measures. Our method aims at improving the retrieval
performance of a given distance measure.

3 Learning New Distance Measures

We first describe the classical setting of similarity retrieval. It applies to many
retrieval scenarios like image, document, key word, and shape retrieval. Given is
a set of objects X = {x1,...,2,} and a similarity function sim: X x X — R™
that assigns a similarity value (a positive integer) to each pair of objects.

We assume that x; is a query object(e.g., a query shape), {xa,...,2,} is a
set of known database objects (or a training set). Then by sorting the values
sim(x1,x;) in decreasing order for ¢ = 2, ..., n we obtain a ranking of database
objects according to their similarity to the query, i.e., the most similar database
object has the highest value and is listed first. Sometimes a distance measure is
used in place of the similarity measure, in which case the ranking is obtained
by sorting the database objects in the increasing order, i.e., the object with the
smallest value is listed first. Usually, the first NV < n objects are returned as the
most similar to the query z;.

As discussed above, the problem is that the similarity function sim is not
perfect so that for many pairs of objects it returns wrong results, although it
may return correct scores for most pairs. We introduce now a method to learn
a new similarity function simy that drastically improves the retrieval results of
sim for the given query x.

Let w; ; = sim(z;,z;), for 4,5 = 1,..., n, be a similarity matrix, which is also
called an affinity matrix. We define a sequence of labeling functions f; : X —
[0,1) with fo(z1) = 1 and fo(x;) = 0 for i = 2,...,n. We use the following
recursive update of function f;:

> wig fr(j)

ft+1(mi) = Zn Wi
j=1 Wij

(1)

for i =2,...,n and we set
fer1(z1) = 1. (2)

We have only one class that contains only one labeled element being the query
x1. We define a sequence of new learned similarity functions restricted to 1 as

simy(x1, ;) = fi(x;). (3)

Thus, we interpret f; as a set of normalized similarity values to the query xj.
Observe that simq(z1,2;) = w1, = stim(x1, z;).
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We iterate steps ([Il) and (@) until the step ¢ = T for which the change is
below a small threshold. We then rank the similarity to the query x; with simq.
Our experimental results in Section [0] demonstrate that the replacement of the
original similarity measure sim with simr results in a significant increase in the
retrieval rate.

The steps [d) and (@) are used in label propagation, which is described in
Section [l However, our goal and our setting are different. Although label prop-
agation is an instance of semi-supervised learning, we stress that we remain in
the unsupervised learning setting. In particular, we deal with the case of only
one known class, which is the class of the query object. This means, in particular,
that label propagation has a trivial solution in our case lim;_, o fi(z;) = 1 for all
1 =1,...,n, ie., all objects will be assigned the class label of the query shape.
Since our goal is ranking of the database objects according to their similarity to
the query, we stop the computation after a suitable number of iterations ¢t = T'.
As is the usual practice with iterative processes that are guaranteed to converge,
the computation is halted if the difference ||f;11 — ft|| becomes very slow, see
Section [ for details.

If the database of known objects is large, the computation with all n objects
may become impractical. Therefore, in practice, we construct the matrix w using
only the first M < n most similar objects to the query z; sorted according to
the original distance function sim.

4 Relation to Label Propagation

Label propagation is formulated as a form of propagation on a graph, where
node’s label propagates to neighboring nodes according to their proximity. In
our approach we only have one labeled node, which is the query shape. The key
idea is that its label propagates "faster” along a geodesic path on the manifold
spanned by the set of known shapes than by direct connections. While following
a geodesic path, the obtained new similarity measure learns to ignore irrelevant
shape differences. Therefore, when learning is complete, it is able to focus on
relevant shape differences. We review now the key steps of label propagation
and relate them to the proposed method introduced in Section Bl

Let {(z1,91) ... (@1, y;)} be the labeled data, y € {1...C}, and {zi41 ... i1y}
the unlabeled data, usually | < u. Let n = [ + u. We will often use L and U to
denote labeled and unlabeled data respectively. The Label propagation supposes
the number of classes C' is known, and all classes are present in the labeled
datal9]. A graph is created where the nodes are all the data points, the edge
between nodes i, j represents their similarity w; ;. Larger edge weights allow
labels to travel through more easily. We define a n x n probabilistic transition
matrix P as a row-wise normalized matrix w.

Wi
et Wik
where P;; is the probability of transit from node i to node j. Also define a I x C
label matrix Y7, whose ith row is an indicator vector for y;, i € L: Yic = 6(ys.c).

Py = (4)
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The label propagation computes soft labels f for nodes, where f is a n x C' matrix
whose rows can be interpreted as the probability distributions over labels. The
initialization of f is not important. The label propagation algorithm is as follows:

1. Initially, set f(z;) = y; for ¢ = 1,...,1 and f(z;) arbitrarily (e.g., 0) for
Tj € Xu

2. Repeat until convergence: Set f(x;) = ijﬁlwiif,(jwj), Vo; € X, and set
j=1 Wi,

flx;) =y; fori=1,...,1 (the labeled objects should be fixed).

In step 1, all nodes propagate their labels to their neighbors for one step. Step 2 is
critical, since it ensures persistent label sources from labeled data. Hence instead
of letting the initial labels fade way, we fix the labeled data. This constant push
from labeled nodes, helps to push the class boundaries through high density
regions so that they can settle in low density gaps. If this structure of data fits
the classification goal, then the algorithm can use unlabeled data to improve
learning.

Let f = (fL ). Since fy, is fixed to Yy, we are solely interested in fi;. The

fu
matrix P is split into labeled and unlabeled sub-matrices
Prr Pru
P = )
[PUL PUU] ®)

As proven in [9] the label propagation converges, and the solution can be com-
puted in closed form using matrix algebra:

fo =~ Pyy) ' PuLYy (6)

However, as the label propagation requires all classes be present in the labeled
data, it is not suitable for shape retrieval. As mentioned in Section [3] for shape
retrieval, the query shape is considered as the only labeled data and all other
shapes are the unlabeled data. Moreover, the graph among all of the shapes is
fully connected, which means the label could be propagated on the whole graph.
If we iterate the label propagation infinite times, all of the data will have the
same label, which is not our goal. Therefore, we stop the computation after a
suitable number of iterations t = T'.

5 The Affinity Matrix

In this section, we address the problem of the construction of the affinity matrix
W. There are some methods that address this issue, such as local scaling [26],
local liner approximation [I7], and adaptive kernel size selection [27].

However, in the case of shape similarity retrieval, a distance function is usually
defined, e.g., [II3I4Y5]. Let D = (D;;) be a distance matrix computed by some shape
distance function. Our goal is to convert it to a similarity measure in order to con-
struct an affinity matrix W. Usually, this can be done by using a Gaussian kernel:

2
wij = exp(— ;) (7)
ij
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Previous research has shown that the propagation results highly depend on the
kernel size 0;; selection [I7]. In [I5], a method to learn the proper o;; for the kernel
is introduced, which has excellent performance. However, it is not learnable in
the case of few labeled data. In shape retrieval, since only the query shape has
the label, the learning of o;; is not applicable. In our experiment, we use use an
adaptive kernel size based on the mean distance to K-nearest neighborhoods [28§]:

0i; = C - mean({knnd(z;), knnd(z;)}) (8)

where mean({knnd(z;), knnd(x;)}) represents the mean distance of the K-nearest
neighbor distance of the sample z;, z; and C is an extra parameter. Both K and
C are determined empirically.

6 Experimental Results

In this section, we show that the proposed approach can significantly improve
retrieval rates of existing shape similarity methods.

6.1 Improving Inner Distance Shape Context

The IDSC [3] significantly improved the performance of shape context [I] by
replacing the Euclidean distance with shortest paths inside the shapes, and ob-
tained the retrieval rate of 85.40% on the MPEG-7 data set. The proposed
distance learning method is able to improve the IDSC retrieval rate to 91.00%.
For reference, Table [ lists some of the reported results on the MPEG-7 data
set. The MPEG-7 data set consists of 1400 silhouette images grouped into 70
classes. Each class has 20 different shapes. The retrieval rate is measured by
the so-called bull’s eye score. Every shape in the database is compared to all
other shapes, and the number of shapes from the same class among the 40 most
similar shapes is reported. The bull’s eye retrieval rate is the ratio of the total
number of shapes from the same class to the highest possible number (which is
20 x 1400). Thus, the best possible rate is 100%.

In order to visualize the gain in retrieval rates by our method as compared to
IDSC, we plot the percentage of correct results among the first & most similar
shapes in Fig.[d|(a), i.e., we plot the percentage of the shapes from the same class
among the first k-nearest neighbors for £ = 1,...,40. Recall that each class has
20 shapes, which is why the curve increases for k& > 20. We observe that the
proposed method not only increases the bull’s eye score, but also the ranking of
the shapes for all k =1,...,40.

We use the following parameters to construct the affinity matrix: C' = 0.25
and the neighborhood size is K = 10. As stated in Section Bl in order to increase
computational efficiency, it is possible to construct the affinity matrix for only
part of the database of known shapes. Hence, for each query shape, we first
retrieve 300 the most similar shapes, and construct the affinity matrix W for
only those shapes, i.e., W is of size 300 x 300 as opposed to a 1400 x 1400 matrix
if we consider all MPEG-7 shapes. Then we calculate the new similarity measure
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Fig.4. (a) A comparison of retrieval rates between IDSC [3] (blue circles) and the
proposed method (red stars) for MPEG-7. (b) A comparison of retrieval rates between
visual parts in [4] (blue circles) and the proposed method (red stars) for MPEG-7. (c)
Retrieval accuracy of DTW (blue circles) and the proposed method (red stars) for the
Face (all) dataset.

Table 1. Retrieval rates (bull’s eye) of different methods on the MPEG-7 data set

Alg. CSS | Vis. Parts SC IDSC | Hierarchical | Shape Tree | IDSC+DP
+TPS | +DP Procrustes + our
[29] [4] 1] (3] [6] [5] method
Score | 75.44% | 76.45% | 76.51% | 85.40% 86.35% 87.70% 91.00%

simp for only those 300 shapes. Here we assume that all relevant shapes will be
among the 300 most similar shapes. Thus, by using a larger affinity matrix we
can improve the retrieval rate but at the cost of computational efficiency.

In addition to the statistics presented in Fig. 4, Fig. [l illustrates also that
the proposed approach improves the performance of IDSC. A very interesting
case is shown in the first row, where for IDSC only one result is correct for the
query octopus. It instead retrieves nine apples as the most similar shapes. Since
the query shape of the octopus is occluded, IDSC ranks it as more similar to an
apple than to the octopus. In addition, since IDSC is invariant to rotation, it
confuses the tentacles with the apple stem. Even in the case of only one correct
shape, the proposed method learns that the difference between the apple stem is
relevant, although the tentacles of the octopuses exhibit a significant variation
in shape. We restate that this is possible because the new learned distances are
induced by geodesic paths in the shape manifold spanned by the known shapes.
Consequently, the learned distances retrieve nine correct shapes. The only wrong
results is the elephant, where the nose and legs are similar to the tentacles of
the octopus.

As shown in the third row, six of the top ten IDSC retrieval results of lizard are
wrong. since IDSC cannot ignore the irrelevant differences between lizards and
sea snakes. All retrieval results are correct for the new learned distances, since the
proposed method is able to learn the irrelevant differences between lizards and
the relevant differences between lizards and sea snakes. For the results of deer
(fifth row), three of the top ten retrieval results of IDSC are horses. Compared
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Fig. 5. The first column shows the query shape. The remaining 10 columns show the
most similar shapes retrieved by IDSC (odd row numbers) and by our method (even
row numbers).

to it, the proposed method (sixth row) eliminates all of the wrong results so that
only deers are in the top ten results. It appears to us that our new method learned
to ignore the irrelevant small shape details of the antlers. Therefore, the presence
of the antlers became a relevant shape feature here. The situation is similar for
the bird and hat, with three and four wrong retrieval results respectively for
IDSC, which are eliminated by the proposed method.

An additional explanation of the learning mechanism of the proposed method
is provided by examining the count of the number of violations of the triangle
inequality that involve the query shape and the database shapes. In Fig. 6(a),
the curve shows the number of triangle inequality violations after each iteration
of our distance learning algorithm. The number of violations is reduced signif-
icantly after the first few hundred iterations. We cannot expect the number of
violations to be reduced to zero, since cognitively motivated shape similarity may
sometimes require triangle inequality violations [I0]. Observe that the curve in
Fig. 6(a) correlates with the plot of differences ||fi+1 — fi|| as a function of ¢
shown in (b). In particular, both curves decrease very slow after about 1000
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Fig. 6. (a) The number of triangle inequality violations per iteration. (b) Plot of dif-
ferences || fi+1 — ft|| as a function of ¢.

Table 2. Retrieval results on Kimia Data Set [30]

Algorithm  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
SC [30] 97 91 88 85 84 77 75 66 56 37
Shock Edit [30] 99 99 99 98 98 97 96 95 93 82
IDSC+DP [3] 99 99 99 98 98 97 97 98 94 79
Shape Tree [5] 99 99 99 99 99 99 99 97 93 86
our method 99 99 99 99 99 99 99 99 97 99

iterations, and at 5000 iterations they are nearly constant. Therefore, we se-
lected T = 5000 as our stop condition. Since the situation is very similar in all
our experiments, we always stop after 7= 5000 iterations.

Besides MPEG-7, We also present experimental results on the Kimia Data
Set [30]. The database contains 99 shapes grouped into nine classes. As the
database only contains 99 shapes, we calculate the affinity matrix based on all
of the shape in the database. The parameters used to calculate the affinity matrix
are: C' = 0.25 and the neighborhood size is K = 4. We changed the neighborhood
size, since the data set is much smaller than the MPEG-7 data set. The retrieval
results are summarized as the number of shapes from the same class among the
first top 1 to 10 shapes (the best possible result for each of them is 99). Table
lists the numbers of correct matches of several methods. Again we observe that
our approach could improve IDSC significantly, and it yields a nearly perfect
retrieval rate.

6.2 Improving Visual Part Shape Matching

Besides the inner distance shape context [3], we also demonstrate that the pro-
posed approach can improve the performance of visual parts shape similarity [4].
We select this method since it is based on very different approach than IDSC.
In [], in order to compute the similarity between shapes, first the best possible
correspondence of visual parts is established (without explicitly computing the
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visual parts). Then, the similarity between corresponding parts is calculated and
aggregated. The settings and parameters of our experiment are the same as for
IDSC as reported in the previous section except we set C' = 0.4. The accuracy
of this method has been increased from 76.45% to 86.69% on the MPEG-7 data
set, which is more than 10%. This makes the improved visual part method one
of the top scoring methods in Table [l A detailed comparison of the retrieval
accuracy is given in Fig. HlDb).

6.3 Improving Face Retrieval

We used a face data set from [3I], where it is called Face (all). It addresses a
face recognition problem based on the shape of head profiles. It contains several
head profiles extracted from side view photos of 14 subjects. There exist large
variations in the shape of the face profile of each subject, which is the main reason
why we select this data set. Each subject is making different face expressions,
e.g., talking, yawning, smiling, frowning, laughing, etc. When the pictures of
subjects were taken, they were also encouraged to look a little to the left or
right, randomly. At least two subjects had glasses that they put on for half of
their samples.

The head profiles are converted to sequences of curvature values, and nor-
malized to the length of 131 points, starting from the neck area. The data set
has two parts, training with 560 profiles and testing with 1690 profiles. The
training set contains 40 profiles for each of the 14 classes. As reported on [31],
we calculated the retrieval accuracy by matching the 1690 test shapes to the
560 training shapes. We used a dynamic time warping (DTW) algorithm with
warping window [32] to generate the distance matrix, and obtained the 1NN
retrieval accuracy of 88.9% By applying our distance learning method we in-
creased the 1NN retrieval accuracy to 95.04%. The best reported result on [31]
has the first nearest neighbor (INN) retrieval accuracy of 80.8%. The retrieval
rate, which represents the percentage of the shapes from the same class (profiles
of the same subject) among the first k-nearest neighbors, is shown in Fig. E(c).
The accuracy of the proposed approach is stable, although the accuracy of DTW
decreases significantly when k increases. In particular, our retrieval rate for k=40
remains high, 88.20%, while the DTW rate dropped to 60.18%. Thus, the learned
distance allowed us to increase the retrieval rate by nearly 30%. Similar to the
above experiments, the parameters for the affinity matrix is C' = 0.4 and K = 5.

7 Conclusion and Discussion

In this work, we adapted a graph transductive learning framework to learn new
distances with the application to shape retrieval. The key idea is to replace the
distances in the original distance space with distances induces by geodesic paths
in the shape manifold. The merits of the proposed technique have been vali-
dated by significant performance gains over the experimental results. However,
like semi-supervised learning, if there are too many outlier shapes in the shape
database, the proposed approach cannot improve the results. Our future work
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will focus on addressing this problem. We also observe that our method is not
limited to 2D shape similarity but can also be applied to 3D shape retrieval,
which will also be part of our future work.
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