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Abstract. Within the scope of the TO CHAIR project, a state space
modeling approach is proposed in order to improve accuracy obtained
from the weatherstack.com website with a dataset of real observations.
The proposed model establishes a stochastic linear relationship between
the maximum temperature observed and the h-step-ahead forecast pro-
duced from the website. This relation is modeled in a state space frame-
work associated to the Kalman filter predictors. Since normality of dis-
turbances was not a good assumption for this dataset, alternative Gen-
eralized Method of Moments (GMM) estimators were considered in the
models parameters estimation. The results show that this approach al-
lows reducing the RMSE of the uncorrected forecasts in 16.90% consider-
ing the 6-step-ahead forecasts and in 60.45% considering the 1-step-ahead
forecasts, compared with the initial RMSE. Additionally, empirical con-
fidence intervals at the 95% level have a coverage rate similar to this
confidence level. So, this approach has proven suitable for this type of
forecasts correction since it considers a stochastic calibration factor in
order to model time correlation of this type of variable.
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1 Introduction

This work is carried out in the context of project “TO CHAIR - Optimum
Challenges in Irrigation” - https://systec.fe.up.pt/projects/FCT-TOCHAIR/ -
and aims to understand and analyze the behavior of humidity in the soil by
mathematical/statistical modeling in order to find optimal solutions to improve
the efficiency of daily water use in irrigation systems [3].

In the context of the TO CHAIR project, it is necessary to improve short-
term forecasts of meteorological variables. In fact, more accurate forecasts of
these variables can improve the results of the optimization routines in order to
obtain a more efficient use of water in irrigation systems.

In this project, the main goal of statistical modeling is to improve the ac-
curacy of the forecast of meteorological variables obtained from the weather-

stack.com website for the location under analysis, a farm in Portugal. However,
agricultural researchers that investigate in this area know that forecasts have
significant errors compared with observations obtained locally by a portable
weather station. Several factors can contribute to these discrepancies. On the
one hand, this farm is located in a valley in a mountainous region, and so it
has a specific orography. On the other hand, the methodology adopted by the
site’s forecasts (which we do not know), possibly associated with the significant
distance between this farm and fixed weather stations in with which forecasts
are computed, can partially explain these differences.

This work intends to establish a state space framework that combines fore-
casts with the observations in order to correct or ”calibrate” a forecast by com-
paring it with the knowledge from the past, namely through an estimated model
based on few data. This approach has been considered in environmental prob-
lems, for instance in [1, 4].

2 Exploratory Analysis of Data

The statistical analysis was performed using a dataset that includes forecasts
(obtained from the weatherstack.com website) of daily maximum temperature
(in Celsius degrees) for the location of the farm Senhora da Ribeira in Portugal,
between February 20 and October 11, 2019. Additionally, we also use observa-
tions of daily temperatures obtained by a portable weather station installed in
the farm during that period of 234 days (see Fig. 1).

In this context, we consider that Yt is the real maximum temperature in
day t with a small error associated to the measurement of the portable station.
However, the forecast Wt:t−h has an additional uncertainty associated to the
interpolation methods or the methodology adopted by the website.

The data from the portable station will be used to compare with the site’s
forecasts and to assess their accuracy. Considering that the observations from
the portable weather station are more accurate, in fact, the most accurate ob-
servations available, they will be used for correct or calibrate the site’s forecasts,
since the portable station was temporary installed in the farm.



Fig. 1. Time series plots of the observed maximum temperature (in black) and the re-
spective forecasts at 6-steps-ahead and 1-step-ahead (in blue and orange, respectively).

The roots of the mean square error of the forecasts from the site, Wt:t−h,
with t = 1, ..., 234 and h = 1, ..., 6, compared with the observations Yt, with
t = 1, ..., 234, computed by

RMSEh =

√√√√ 1

234

234∑

t=1

(Yt −Wt:t−h)
2

(1)

whereWt:t−h represents the h-steps-ahead forecast of the maximum temperature
in day t, that is, the forecast indicated by the site h days before the day t, and
Yt is the observed maximum temperature in the farm by the portable weather
station.

Table 1 presents the root mean square error, RMSEh. Notice that, as ex-
pected, the RMSE is greater for large values of h than for forecasts obtained
with few days of delay. However, all RMSE are very significant, even for fore-
casts obtained a day before. So, the site’s forecasts are significantly inaccurate
when compared with the observations collected in the farm.

Table 1. Root of the mean square error (RMSE) between the maximum temperature
observed in the farm and the h-steps-ahead obtained from the site weatherstack.com,
with h = 1, ..., 6.

h-step-ahead 6 5 4 3 2 1

RMSE 4.670 4.222 4.107 4.003 3.901 3.875

However, in spite of the website’s inaccurate forecasts, forecasts and observa-
tions are linear correlated. In fact, the Pearson’s correlation coefficients between



observations from the portable station and the h-step-ahead forecasts show a
significant linear correlation (Table 2)

Table 2. Pearson’s correlation coefficients between observations from the portable
station and the h-step-ahead forecasts show, with h = 1, ..., 6.

h-step-ahead 6 5 4 3 2 1

correlation 0.880 0.918 0.941 0.956 0.970 0.976

3 The State Space Approach

3.1 The State Space Model

Considering that the forecasts Wt:t−h, with t = 1, ..., 234, are known at instant
t − h, and the observed maximum temperature Yt is related with forecasts, we
propose a state space model composed by these two equations:

Yt = βtWt:t−h + et (2)

βt = µ+ φ(βt−1 − µ) + ǫt (3)

where Eq. 2 is the observation equation and Eq. 3 is the state or transition
equation. This model assumes that the maximum temperature observed in the
farm at day t is linear related with the h-step-ahead forecast given by the website
at day t− h.

The unobservable process {βt} is called the state process and must be pre-
dicted. In this case, it is be assumed that the process {βt} follows a stationary
autoregressive process of order 1, that is, {βt} ∼ AR(1), with mean µ and the
autoregressive coefficient φ, such as |φ| < 1.

Errors et and ǫt are assumed to be a sequence of uncorrelated variable with
zero mean and variances σ2

e and σ2
ǫ , respectively, and uncorrelated with each

other, that is, E(etǫr) = 0, ∀t, r.
Usually, in several applications it is assumed that the disturbances et and ǫt

are normally distributed, that is, et ∼ N(0, σ2
e) and ǫt ∼ N(0, σ2

ǫ ), however, this
assumption is not always valid with environmental data.

The model Eq 2 - Eq 3 assumes that the state process represents a stochas-
tic calibration factor between the maximum temperature observation and the
website’s forecasts, which contain significant uncertainty. As the factor βt is
stochastic, it varies over time allowing some flexibility in the correction proce-
dure.

3.2 Kalman Filter

The Kalman filter, proposed by Kalman (1960) and Kalman and Bucy (1961),
is an iterative algorithm that produces, at each time t, an estimator of the state



vector at time t. It provides optimal unbiased linear one-step-ahead and update
estimators of the unobservable state βt.

Let β̂t|t−1 denote the predictor of βt based on the observations Y1, Y2, . . . , Yt−1

and Pt|t−1 be its mean square error (MSE), this is, E[(β̂t|t−1 − βt)
2]. The one-

step-ahead forecast for the observable vector Yt is given by Ŷt|t−1 = Wt:t−hβ̂t|t−1.
When, at time t, Yt is available, the prediction error or innovation, ηt =

Yt − β̂t|t−1, is used to update the estimate of βt (filtering) through the equation

β̂t|t = β̂t|t−1 +Ktηt, (4)

where Kt is called the Kalman gain matrix and is given by

Kt = Pt|t−1Wt:t−h(W
2
t:t−hPt|t−1 + σ2

e)
−1. (5)

Furthermore, the MSE of the updated estimator β̂t|t, represented by Pt|t, verifies
the relationship Pt|t = Pt|t−1 −KtWt:t−hPt|t−1.

The Kalman filter algorithm is initialized with β̂1|0 and P1|0, and when the
state process is stationary, it can be initialized considering that initial state
vector β1 has β̂1|0 = µ and MSE σ2

ε(1− φ2)−1.

3.3 Parameters Estimation – a Distribution-free Approach

When disturbances et and ǫt are normally distributed and under the indepen-
dence between errors and the initial state β1, the parameters Θ = (µ, φ, σ2

e , σ
2
ε)

can be estimated by the Gaussian maximum likelihood method.
The log-likelihood of a sample (Y1, Y2, . . . , Yn) can be written through con-

ditional distributions, given by

logL(Θ;Y1, Y2, . . . , Yn) = −
n

2
log(2π)−

1

2

n∑

t=1

log(Ωt)−
1

2

n∑

t=1

η2tΩ
−1
t , (6)

where

Ωt = W 2
t:t−hPt|t−1 + σ2

e . (7)

The optimization of the log-likelihood is done by numerical procedures via
the Newton-Raphson method or, more often, by the EM algorithm ([6]).

However, previous modeling has shown that the normality is rejected in the
residuals analysis. So, alternative methods are needed. In this context, we pro-
posed to adapted the distribution-free estimators initially proposed in [2] and
subsequently generalize them for multivariate models in [5].

Considering the model of type Eq 2 - Eq 3 for some h, the mean, µ, of the
state {βt}t=1,2,..., can be easily estimated by the generalized method of moments
(GMM):

µ̂ =
1

n

n∑

t=1

Yt

Wt:t−h
. (8)



The autoregressive parameter φ is estimated by the covariance structure of
process {YtW

−1
t:t−h}t=1,2,... based on the autocovariance function of the process

{βt} by

φ̂ =

∑ℓ
k=1 γ(k + 1)γ(k)
∑ℓ

k=1 γ
2(k)

(9)

where γ̂(k) is the sample autocovariance function of the process {YtW
−1
t:t−h}t=1,2,....

The choice of ℓ was discussed in the original work [2] and for a sample of
dimension of 200, as it is approximately in this case, it is recommended the use
of ℓ = 60.

To estimate σ2
ǫ it is considered the distribution-free estimator

σ̂2
ǫ =

1− φ̂2

φ̂
γ̂(1). (10)

The observation noise variance σ2
e is based on sample mean square error of

the process {YtW
−1
t:t−h}t=1,2,..., that is, γ̂0, defining γ̂0 as

γ̂0 =
1

n

n∑

t=1

(
Yt

Wt:t−h
− µ̂

)2

and the estimator of σ2
e is given by

σ̂2
e =

1

n

n∑

t=1

(
Yt

Wt:t−h
− µ̂

)2

−
σ̂2
ǫ

(1− φ̂2)2
. (11)

The estimators 8 to 11 are, under simple regularity conditions, consistent
([2]). In this sense, in this work the dataset has a high sample dimension (up to
200) which ensures the properties of the estimators.

3.4 Forecasts Correction Procedure

Once modeled the relation between the observed maximum temperature and its
forecasts h-step-ahead from the website, the correction procedure for them can
then be proposed.

At each day t it is available the observation Yt and six forecasts Wt+1:t,
Wt+2:t, ..., Wt+h:t, ..., Wt+6:t. The main goal is to improve these forecasts with
the observations available until the present, the day t.

So, for each h-step-ahead forecast and for each day t it is possible to predict
the correction factor βt+h to the day t + h using the Kalman filter prediction,
such as

β̂t+h|t = µ+ φh(β̂t|t − µ) (12)

with the mean square error

Pt+h|t = φ2hPt|t + φ2(h−1)σ2
ǫ + φ2(h−2)σ2

ǫ + ...+ φ2σ2
ǫ + σ2

ǫ . (13)



Thus, the corrected h-step-ahead forecast for Yt+h based on data available
until t is given by

Ŷt+h|t = β̂t+h|tWt+h:t (14)

with mean square error given by

MSEt+h|t = W 2
t+h:tPt+h|t + σ2

e . (15)

Even considering the distribution-free estimators, but attending to their
asymptotic properties of consistence, we can compute empirical confidence in-
tervals with (1− α) ∗ 100% level to corrected forecasts from equations

Yt+h|t = Ŷt+h|t ± z1−α

2

√
MSEt+h|t. (16)

where z1−α/2 is the normal quantil of probability 1− α/2.

4 Results

The modeling procedure considered two series: the training series (in-sample)
and the out-sample series. The first time series comprising data between 20
February until 31 August, 2020 (193 days) is considered to estimate parameters
and analyze the assumptions based on the residuals analysis; the second time
series comprising data between 1 September and 11 October, 2020 (41 days),
is considered to better assess the model’s performance in a independent period
where the models were adjusted.

Table 3. Estimates of parameters.

parameter / h 6 5 4 3 2 1

µ 1.1650 1.1555 1.1633 1.1608 1.1658 1.1723
φ 0.8394 0.7857 0.8092 0.8796 0.9419 0.8888
σ2
ǫ 0.0028 0.0032 0.0032 0.0008 0.0009 0.0011

σ2
e 9.3464 6.0780 4.2854 3.8355 2.0164 2.2936

Table 3 presents the estimates of parameters for all six models considering
h = 1, ..., 6. As expected, these results show that the mean of the state {βt} is
greater than 1 in all models. This means that, in average, the forecasts are lower
than the observations from the portable station; that is, there is a stochastic
bias. However, as the state process is a factor, this bias can be interpreted in a
relative way. For instance, µ̂ = 1.1723 for the 1-step-ahead forecasts, that is, in
average, the maximum temperature observed in the farm was greater in 17.23%
than the 1-step-ahead forecast. This factor does not differ much for the different
values of h.

All estimates for the autoregressive parameters are less than 1, so, the state
process is estimated as a stationary process, as assumed in assumptions. The



error of the observation equation has a high variance in all models. However,
this variability decrease as the forecasts are computed with less delay; for the
6-step-ahead forecasts the observation error was estimated in 9.3464 instead of
2.2936 for the 1-step-ahead forecasts. The error of the state equation has a low
variability for all h.

In order to verify the assumptions of model, an analysis of residuals η̂t|t−1

was performed. The residuals present an uncorrelated structure compatible with
assumptions. Fig. 2 represents histograms of the model’s residuals for h = 1 and
h = 6.

Fig. 2. Histograms of model’s residuals η̂t|t−1 of models for h = 1 and h = 6, for whole
period under analysis.

The estimates of parameters, associated to the Kalman filter equations, allow
to predict the state values, that is, the calibration factors. For instance, Fig. 3
shows the Kalman filter h-step-ahead forecasts of the calibration factors, β̂t+h|t

to the model with h = 1 and h = 6. These predictions show that the calibration
factor varies over time, thus showing its variability.

This approach, associated to the Kalman filter, allows to compute h-step-
ahead predictions of Yt based on Eq. 14. Figure 4 shows the observed maximum
temperature in the whole period under analysis with the website’s forecasts for
h = 1, 6 and the empirical confidence intervals of the corrected forecasts by the
Kalman filter.

For each h days in advance it was computed the root of the mean square
error of the corrected forecasts. The RMSE of the corrected forecasts given by
the Kalman filter reduced in 16.90% considering the 6-step-ahead forecasts and in
60.45% considering the 1-step-ahead forecasts, compared with the initial RMSE
(Table 4).

These results show a big reduction in MSE considering 1 day ahead and lower
reduction when h increases, as expect. Moreover, the confidence intervals with
a level of 95% have a coverage rate similar to this level (Table 5). Thus, these
models are well adjusted and suitable to model this type of data.



Fig. 3. Kalman filter forecasts of the calibration factor β̂t+h|t for the models with h = 1
(up) and h = 6 (down).

Table 4. Roots of the mean square errors before and after correction.

h 6 5 4 3 2 1

RMSE in-sample corrected 3.937 3.206 2.826 2.264 1.890 1.545
RMSE out-sample corrected 3.602 2.283 1.737 1.911 1.687 1.469
global RMSE uncorrected 4.670 4.222 4.107 4.003 3.901 3.875
global RMSE corrected 3.881 3.065 2.668 2.206 1.856 1.532
reduction of global RMSE (%) 16.90% 27.41% 35.04% 44.89% 52.42% 60.45%



Fig. 4. Empirical confidence intervals for h-step-ahead corrected forecasts of the max-
imum temperature for model h = 1 and h = 6, for the whole period under analysis.

Table 5. Coverage rates of empirical confidence intervals of corrected forecasts , with
h = 1, ..., 6.

h-step-ahead 6 5 4 3 2 1

coverage rate 97.86% 93.97% 95.24% 95.65% 97.38% 95.18%



5 Conclusions

The state space approach shows that it can be considered in the improvement of
weather variables forecasts obtained from some accessible sources, even if those
sources produce data with a significant errors, as long as, more accurate data is
available in order to estimate the parameters model.

Furthermore, as the normality of disturbances was not validated in a previous
analysis, the option for distribution-free estimators based on the GMM methods
proved to be adequate and produces good reductions in the RMSE of initial
forecasts. These reductions were more significant as the delay of the forecasts
were smaller.
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5. Gonçalves, A.M., Costa, M.: Predicting seasonal and hydro-meteorological impact
in environmental variables modelling via Kalman filtering. Stoch Environ Res Risk
Assess 27 1021–1038 (2013). https://doi.org/10.1007/s00477-012-0640-7

6. Shumway, R.H., Stoffer, D.F.: Time series analysis and its applications: with R

examples, Springer, New York, 2011.


