
Improving Similarity Measures for Short Segments of Text

Wen-tau Yih and Christopher Meek
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
{scottyih, meek}@microsoft.com

Abstract

In this paper we improve previous work on measuring the
similarity of short segments of text in two ways. First, we in-
troduce a Web-relevance similarity measure and demonstrate
its effectiveness. This measure extends the Web-kernel sim-
ilarity function introduced by Sahami and Heilman (2006)
by using relevance weighted inner-product of term occur-
rences rather than TF×IDF. Second, we show that one can
further improve the accuracy of similarity measures by using
a machine learning approach. Our methods outperform other
state-of-the-art methods in a general query suggestion task
for multiple evaluation metrics.

Introduction
The problem of measuring the similarity between two very
short text segments has become increasingly important
for many Web-related tasks. Examples of such tasks in-
clude query reformulation (similarity between two queries),
search advertising (similarity between the user’s query and
advertiser’s keywords), and product keyword recommenda-
tion (similarity between the given product name and sug-
gested keyword).

Measuring the semantic similarity between two texts has
been studied extensively in the IR and NLP communities.
However, the problem of assessing the similarity between
two short text segments poses new challenges. Text seg-
ments commonly found in these tasks range from a single
word to a dozen words. Because of the short length, the
text segments do not provide enough context for surface-
matching methods such as computing the cosine score of
the two text segments to be effective. On the other hand, be-
cause many text segments in these tasks contain more than
one or two words, traditional corpus-based word similarity
measures can fail too. These methods typically rely on the
co-occurrences of the two compared text segments and, be-
cause of their lengths, they may not co-occur in any docu-
ments even when using the whole Web as the corpus. Fi-
nally, because of the diversity of the text segments used in
these Web applications, linguistic thesauruses such as Word-
Net do not cover a significant fraction of the input text seg-
ments. In order to overcome these difficulties, researchers

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have recently proposed several new methods for measuring
similarity of short text segments (Sahami & Heilman 2006;
Jones et al. 2006; Metzler, Dumais, & Meek 2007).

In this paper, we study the problem of measuring similar-
ity of short text segments in a general query suggestion sce-
nario: given a short text segment q and a list of suggestions
{s1, s2, ..., sn}, we would like to rank suggestions based on
their similarity to q or select a subset of suggestions that are
similar to q. Our contributions are as follows. First, we in-
troduce a web-relevance similarity measure which improves
the web-based kernel method (Sahami & Heilman 2006)
through a new term weighting scheme. Instead of using the
traditional TF×IDF score or its variations, we use the “rel-
evancy” of the words to the document, estimated by a state-
of-the-art keyword extractor (Yih, Goodman, & Carvalho
2006). Second, in order to leverage the strengths of different
similarity measures, we propose to combine them using ma-
chine learning. In particular, we consider two learning ap-
proaches: one directly models the similarity between a query
and a suggestion (q, si) and the other models the preference
ordering between two suggestions si and sj , with respect to
the same query q. Finally, we present an experimental com-
parison between existing approaches for measuring similar-
ity between short text segments and our enhanced similarity
measures. The experiments indicate that our methods are
significantly better than existing methods.

The rest of the paper is organized as follows. We first re-
view existing methods for measuring similarity of short text
segments. We then introduce our Web-relevance similarity
measure and the proposed learning approaches, followed by
the experimental evaluation.

Related Work
We review existing methods for measuring similarity be-
tween short text segments that are very related to our ap-
proaches. We consider three categories of methods: surface
matching, corpus-based methods and query-log methods.

Surface Matching

Given an input query and suggestion (q, s), the idea of
surface-matching methods is based on the number of words
that occur in both text segments. Suppose Q and S are the
sets of words in q and s, respectively. Common similarity

1489

measures discussed in (Manning & Schütze 1999) are listed
as follows.

Matching |Q ∩ S|
Dice 2|Q ∩ S|/(|Q| + |S|)
Jaccard |Q ∩ S|/|Q ∪ S|
Overlap |Q ∩ S|/ min(|Q|, |S|)

Cosine |Q ∩ S|/
√
|Q| × |S|

There are several variations of these surface-matching
methods. For example, the sets Q and S can be constructed
using the stemmed words instead of the original words. Two
words can be matched if they are synonyms according to
some thesauruses such as WordNet. The set operations de-
scribed here are equivalent to vector operations when rep-
resenting q and s as binary vectors, where an element indi-
cates whether a word in the vocabulary appears in the orig-
inal text segments. It is therefore straightforward to extend
these measures as operations of real-valued vectors, where
each element may represent the frequency of the word.

Although different statistics for surface matching have
their own strengths and weaknesses, their quality on mea-
suring the similarity of very short text segments is usually
unreliable (Sahami & Heilman 2006). Therefore, different
expanded representations of the original text segments have
been proposed to replace the surface vectors.

Corpus-based Methods

One method to overcome the weakness of surface match-
ing is to leverage the information derived from a large cor-
pus, which is often the Web. There are two kinds of popular
corpus-based methods. One focuses on using the informa-
tion of whether the text q and s co-occur in the same doc-
ument. Representative methods used for measuring seman-
tic similarity of words include pointwise mutual informa-
tion (Turney 2001) and latent semantic analysis (Landauer,
Foltz, & Laham 1998). While these methods can potentially
be applied to general short text segments, as the lengths of
the text segments increase, the chance that these two text
segments co-occur in some documents decreases substan-
tially, which affects the quality of these similarity measures.

The other kind of corpus-based methods use the large doc-
ument collection to represent each of the text segments sep-
arately. A typical approach is to use the words in the doc-
uments that contain the text segments as the expanded rep-
resentation, and the similarity score is then calculated us-
ing the new representations. For example, measuring the
similarity of the word distributions between the expanded
representations using KL-divergence has been proposed by
Metzler, Dumais, & Meek (2007) recently. Another type of
methods treat the expanded representation as a sparse vec-
tor and adapt operations used for surface matching. For in-
stance, Fitzpatrick & Dent (1997) used the normalized set
overlap as similarity measure, where the words in each doc-
uments are weighted by their positions. Sahami & Heilman
(2006) created a web-based kernel function, which basically
constructs two unit vectors using the words in the expanded
representations and then returns the inner-product as the fi-
nal similarity score. Because we will show how to improve

this Web kernel similarity measure, we describe more details
of this method here.

Web-based Similarity Kernel (Sahami & Heilman 2006)
Given a pair of short text segments q and s, the Web-based
similarity kernel is simply the inner-product of the expanded
vector representations, denoted as QE(q) · QE(s). The
query expansion representation QE of a short text segment
x is derived as follows.

1. Let Dn(x) be the set of top n documents returned by a
search engine when using x as the query term.

2. For each document di ∈ Dn(x), construct the term vector
vi, where each element is the weighted score wi,j of term
tj , defined as follows.

wi,j = tf i,j × log(
N

df j

), (1)

where tf i,j is the term frequency of tj in di, N is the
total number of documents in the corpus for calculating
document frequencies, and df j is the document frequency
of term tj .

3. Let C(x) be the centroid of the L2 normalized vectors vi:
C(x) = 1

n

∑n
i=1 vi/||vi||

4. Let QE(x) be the L2 normalization of the centroid C(x):
QE(x) = C(x)/||C(x)||

This method can be modified to improve efficiency. One
example is to consider only high weighted terms in the vec-
tors. Another example is to use only the summary generated
by the search engine to represent the whole document di.
Both techniques were implemented in their system (Sahami
& Heilman 2006).

Query-log Methods
Commercial search engines such as Google or Yahoo re-
ceive millions of queries per day. The search query logs
have become a great resource for measuring similarity be-
tween short text segments, especially for tasks such as query
suggestion. One recent example is the work of generating
query substitutions by Jones et al. (2006). In this task, their
goal is to generate alterative query suggestions to a given
query. They first generated suggestions based on the infor-
mation about whether the target query and suggestion had
appeared in the same session query log. These suggestions
were then ranked based on a linear regression model trained
with three major types of features: surface characteristics
such as number of characters or words of the query and sug-
gestion, syntactic difference between the query and sugges-
tion such as Levenshtein edit distance or size of prefix over-
lapping, and substitution statistics such as the log-likelihood
ratio or the mutual information between the query and sug-
gestion using their distributions in the query logs. Probably
due to the fact that candidate suggestions were selected us-
ing the substitution statistics, they found that the only useful
features here were based on syntactic differences. In addi-
tion, sophisticated learning methods such as linear SVMs
and decision trees did not outperform the simple linear re-
gression model.

1490

Compared to previous methods described in this section,
Jones et al. did not aim to provide a similar metric. Measur-
ing the similarity between the query and suggestion is some-
what bound to the generation task. In addition, the coverage
for pairs of short text segments is limited because subsets
of the words in both segments must appear in the same user
session query logs.

Web-relevance Similarity Measure
In this section, we describe a Web-relevance similarity mea-
sure, which extends the Web-based similarity kernel func-
tion by using a better term weighting scheme.

The web-based similarity kernel function uses term and
document frequencies to measure the importance of the
terms in the expanded representation of the input text seg-
ment (Eq. 1). While using TF×IDF or its variations is a
simple and effective method to evaluate the importance of a
word in a given document, this crude measure may not al-
ways be reliable. For example, a word that appears in the
beginning of a document is typically more important and
relevant to the topic of the document, and words that ap-
pear in the document title should not be treated the same as
words in the body. However, this kind of information is not
captured by either term frequency or document frequency.
Another potential problem is the side effect of using doc-
ument frequency. Document frequency is very effective in
down-weighting stopwords, which have both high TF and
DF values. However, not all the high-DF words are use-
less. Popular keywords that interest people may be broadly
discussed in many different documents, which can be easily
down-weighted by their high-DF values, even though they
are actually important1.

Because of these weaknesses of using only TF and DF,
we use an alternative approach to assessing the importance
of terms in a document. In particular, we consider a key-
word extraction approach to term weighting. In this ap-
proach, a keyword extraction system is used to associate
a relevance score with terms and phrases extracted from
a document (Frank et al. 1999; Turney 2000; 2003;
Goodman & Carvalho 2005; Yih, Goodman, & Carvalho
2006). We use the relevance score output by a keyword
extraction system as the weighting function in our Web-
relevance similarity measure.

We first build a keyword extraction system following the
approach described in (Yih, Goodman, & Carvalho 2006),
which is the current state-of-the-art keyword extraction sys-
tem trained using more than 10 categories of features. In
their original design, all the phrases (i.e., consecutive words)
up to length 5 are treated as keyword candidates. Because
the goal here is to judge the importance of the words in
the document, we consider only words as candidates. For
efficiency reason, we also use the summary pages gener-
ated by the search engine as the document, which is sim-

1In the 222,867 pages we sampled from the web for deriving
document frequency, we observe several terms that have high-DF
values but are also popular search queries. Examples of this sort
include travel, books, jobs, casino, and names of big corporations
such as UPS, AOL, Monster and CNN.

ilar to the technique used in (Sahami & Heilman 2006;
Metzler, Dumais, & Meek 2007). The detailed steps of the
new query expansion method are described below.

1. Let Dn(x) be the set of top n documents returned by a
search engine when using x as the query term.

2. Construct a document d by concatenating the title and
short summary of each document di ∈ Dn(x).

3. Construct the term vector v, where each element is the
relevancy score wj output by the keyword extraction sys-
tem.

4. Let QErel(x) be the L2 normalization of the vector v:
QErel(x) = v/||v||.

Similarly, given a pair of short text segments q and s, the
Web-relevance similarity measure is QErel(q) · QErel(s).

Learning Similarity Measures
In this section, we develop a machine learning approach that
uses labeled training data to improve the similarity measure
for short text segments. Existing similarity measures for
short text segments, including our Web-relevance similarity
measure, typically suffer from two limitations. First, these
measures are static measures of similarity given a corpus.
There is no reason to believe that any single static measure
is ideal for all applications. To the contrary, the existence
of a variety of alternative similarity function is evidence that
the ideal similarity measure is a function of the target ap-
plication. Second, different similarity measures have differ-
ent coverage. For example, query-log methods cover only
the queries that appear in the search query logs; Web-based
kernel or Web-relevance function have difficulties providing
robust similarity measures for new or rarely used text seg-
ments, those which occur in very few pages indexed by a
search engine.

Recently, researchers have started to address these two is-
sues at least implicitly. For example, a learning approach
has been used by Jones et al. (2006) to fine tune their system
to suggest better query alternatives. The coverage issue has
been improved using a hybrid approach by Metzler, Dumais,
& Meek (2007) in which a simple rule is used to combine
some surface-matching methods with their KL-divergence
similarity measure. However, none of these approaches cov-
ers both limitations in a principled way.

In this section, we propose using machine learning to im-
prove the similarity measure. By taking the output of exist-
ing similarity measures as features, we can effectively com-
bine them to increase the overall coverage. Furthermore, by
using application-specific labeled data to train the model, the
similarity measure can be tuned to the target application.

Learning Approaches
While there are other alternative approaches such as ordi-
nal regression (Herbrich, Graepel, & Obermayer 2000), in
this paper, we consider two machine learning approaches for
learning better similarity measure for short text segments.

In the first approach we learn the similarity metric di-
rectly. Given a pair of text segments q and s, the goal is to
learn a monotonic function fm : (q, s) → R. fm(qi, si) >

1491

fm(qj , sj) indicates that qi and si are more alike compared
to qj and sj . Training this model requires labels for a set
of text segment pairs. When specific numeric similarities
scores are given, a regression function can be learned. When
only binary labels that indicate whether a pair of text seg-
ments is similar or not are given, a probability estimator can
be learned, and the probability that the given text segments
q and s are similar (i.e., P (sim(q, s) = 1)) can be used as
the similarity metric directly.

In the second approach we learn preference ordering. In
many applications, including those considered in this paper,
the goal is to obtain a ranked set of candidates. We con-
sider learning to predict the pairwise preference of each pair
of suggested candidates si and sj , with respect to the same
query q. It is important to note that a set of preference order-
ings need not be consistent with a total ordering. We use a
simple weighted voting mechanism to score each candidate
and obtain a total ordering. Learning preference ordering
has been advocated by researchers (e.g., Burges et al. 2005)
and is motivated by the observation that preference annota-
tions are generally more reliable than categorical similarity
labels. When given the labeled preference for each pair of
suggestions, we can train a probabilistic binary classifier to
predict whether si is a more preferable suggestion than sj .

One can apply a variety of alternative learning algorithms
for these two approaches. Since comparing different learn-
ing algorithms is not our goal, in this paper, we choose logis-
tic regression for its good empirical performance and clear
probability interpretation of its output 2. In principle, other
learning algorithms can be used as well.

Because one of the main reasons for using a machine
learning approach is to improve the coverage of static sim-
ilarity measures, we use the output of different similarity
measures and some variations such as the derived ranks as
features. These features include all the surface-matching
methods described previously (i.e., matching, Dice coef-
ficient, Jaccard coefficient, overlap and cosine), the KL-
divergence method (Metzler, Dumais, & Meek 2007), Web-
based similarity kernel (Sahami & Heilman 2006) and our
Web-relevance similarity measure. Clearly, additional fea-
tures can be considered including other properties of the
short text segments, such as their query log frequencies,
length of the segments, word edit distance between and
more. To simplify the presentation, however, we only de-
scribe results of using static similarity features.

Experiments
In this section, we describe the experimental comparison be-
tween our methods and alternative state-of-the-art methods.
We describe the data that we collected for a general query
suggestion task and the results of applying various similar-
ity measures to this data. We demonstrate that our Web-
relevance function outperforms existing corpus-based meth-
ods and better ranking results can be achieved by combining
various similarity measures using our learning approaches.

2The actual training method used in experiments is the SCGIS
algorithm (Goodman 2002). The variance of the Gaussian prior is
3 and the number of iterations is 100.

Pa Pe κ

Excellent, Good, Fair, Bad 0.598 0.397 0.338
(Excellent & Good) vs. (Fair & Bad) 0.844 0.723 0.435

Preference (�, ≡, �) 0.647 0.414 0.399
Preference (�, �) 0.827 0.673 0.473
Preference (�, �) 0.799 0.645 0.432

Table 1: The inter-annotator agreement analysis on different
groupings of classification and preference choices

Data

We created a query suggestion data set in the following way.
We first built our query and suggestion candidate set by tak-
ing a random sample of 363 thousand queries from the top
1 million most frequent queries in late 2005. Among those
candidates, 122 queries were randomly selected as our tar-
get queries. For each target query, up to 100 queries that
were considered relevant (according to a set of alternative
mechanisms) were used as the suggestions.

Human annotators then judged the degree of similarity of
each query and suggestion, and labeled it using a 4-point
scale – Excellent, Good, Fair and Bad. The annotator guide-
lines indicated that Excellent and Good should be used when
the suggested keywords are clearly related to the query in-
tent, while Fair and Bad should be used when the suggested
keywords are too general or unrelated. We managed to col-
lect 4,852 labeled query/suggestion pairs. Some of the pairs
are labeled by more than one annotator for the analysis of
inter-annotator agreement. When these query/suggestion
pairs are used for evaluating different similarity measures,
the final label is the class that has the most votes. Of these
effective annotations, the ratios of the four labels are: Excel-
lent - 5%, Good - 12%, Fair - 44% and Bad - 39%.

To better understand the degree to which similarity judge-
ments are subjective we evaluate the inter-annotator agree-
ment for our data set. One standard approach for assessing
the inter-annotator agreement is the the Kappa statistic (Ng,
Lim, & Foo 1999; Carletta 1996; Siegel & Castellan 1988).
It basically estimates the degree of agreement between two
human subjects, but also considers the effect that the agree-
ment is by chance. Suppose two human subjects are given
n identical examples for labeling, and on a examples they
give the same labels. The agreement rate between these two
subjects is given by Pa = a/n. Assume that there are m
different labels or classes in this task and cj is the number of
examples that both human subjects labeled as class j. The
probability that these two annotators agree by chance is es-
timated by Pe =

∑m
j=1(

cj/2
n)2. The Kappa statistic is then

defined as: κ = (Pa − Pe)/(1 − Pe).
We judge the agreement of each pair of annotators using

this method and report the averaged results in Table 1. The
first half of the table lists the agreement rates on the original
classification tasks, where the first row shows the Kappa val-
ues on the 4-scale labels and the second row shows the val-
ues on the reduced binary classes by treating Excellent and
Good as positive and others as negative. The second half of
the table shows the pairwise preference agreement. In this

1492

setting, we consider each pair of the suggestions si and sj ,
along with the same query q. When both annotators ordered
si and sj equally, we say that they agree on the preference
of these two suggestions. For example, if the labels given
by one annotator are L1(q, si) = Excellent and L1(q, sj) =
Bad, and the labels given by the other are L2(q, si) = Good
and L2(q, sj) = Fair, these two annotators still agree on the
preference, which is si is more similar to q than sj , even
though they give totally different labels. There are three
preference choices: si�j , si � sj and si ≡ sj , which in-
dicate that si is better, worse or equal to sj . Similarly, this
3-scale label can be reduced to 2-scale by combining the
equivalent case to either better or worse, which are denoted
as � vs. � and � vs. �, respectively.

From Table 1, we can see that the agreement on the 4-
point scale labeling is unsurprisingly the lowest. Our an-
notators agree more with each other when reducing the 4
categories into a binary setting. The agreement on the 3-
scale preference label is also higher than the original 4-point
scale labeling, which motivates our comparison between di-
rect and preference approaches to learning a similarity mea-
sure. However, when comparing the 2-scale preference label
to the 2-point binary label, the distinctions between prefer-
ence and classification are less clear.

Results
We compare the quality of several static similarity mea-
sures including the surface-matching, KL-divergence, Web-
based kernel and our Web-relevance function, as well as the
learned similarity functions based on different learning ap-
proaches. In particular, we concentrate on two evaluation
metrics: the AUC score and precision at k.

The area under the ROC curve (AUC) has been used to
indicate the quality of a ranking function. It essentially con-
siders the correctness of the preference prediction of each
pair of the elements in the sequence, and can be calculated
by the following Wilcoxon-Mann-Whitney statistic (Cortes
& Mohri 2004):

A(f ;x,y) =
∑

i,j:yi>yj

If(xi)>f(xj) +
1

2
If(xi)=f(xj),

where f is the ordinal function derived using either the sim-
ilarity metric or preference predictor, x is the sequence of
compared elements and y is the labels. When evaluating the
similarity between each query suggestion s ∈ {s1, · · · , sn}
and the original query q, the AUC score basically says that
we get one point for a correct preference prediction and half
a point when the similarity measure cannot distinguish the
preference.

Another metric that is commonly used in a ranking sce-
nario is the precision at k, which calculates the accuracy of
the top-ranked k elements. Unlike the AUC score, which
treats each pair of the elements in the sequence equally im-
portant, the precision at k metric only measures the quality
of the top ranked items and ignores the rest.

When deriving the total ranking of the suggestions for
each target query, if two suggestions are considered equally
similar to the query, their order will be decided randomly for
a fair comparison.

Measure AUC Prec@1 Prec@3 Prec@5 Cov.
Matching 0.617 0.633 0.444 0.368 64.7%

Dice Coefficient 0.627 0.708 0.456 0.383 64.7%
Jaccard Coefficient 0.627 0.708 0.456 0.383 64.7%

Overlap 0.606 0.442 0.389 0.352 64.7%
Cosine 0.626 0.708 0.456 0.373 64.7%

KL-Divergence 0.691 0.617 0.483 0.413 80.5%
Web-kernel 0.664 0.667 0.436 0.383 82.4%

Web-relevance 0.703 0.683 0.508 0.427 83.3%
Metric learning 0.735 0.717 0.556 0.477 94.4%

Preference learning 0.739 0.733 0.569 0.488 94.4%

Table 2: The AUC scores, precision at 1, 3, 5 and coverage
of different similarity measures for short text segments

In addition to these two evaluation metrics, we also report
the coverage of different similarity measures. For surface-
matching methods, if the score is 0, which means there are
no overlapping words in the two compared text segments,
we treat this input pair as not covered. For corpus-based
methods, if no expanded representation can be generated for
any of the input text segments (i.e., no page that has the in-
put text segment can be found by the search engine), then it
is considered as not covered. Learning-base methods take
several similarity measures as input features, so the only
cases that they do no cover are those which are not covered
by any of the underlaying static similarity measures. When
comparing the performance of two methods, we conduct the
statistical significance test in the following way. First, we
group the query/suggestion pairs by the target queries. Eval-
uation metrics such as AUC or precision at k are computed
for each of target queries. We then run a student’s paired-t
test on these individual scores and consider the results to be
statistically significant when the p-value is lower than 0.05.

Table 2 lists the scores of the similarity measures we
tested in different evaluation metrics. When evaluating static
similarity measures, the average performance on all the la-
beled query/suggestion pairs is reported. For metric learning
and preference learning, the experiments were conducted us-
ing 10-fold cross validation and the averaged performance
on the 10 disjoint subsets for testing is reported.

Generally speaking, the surface-matching methods cover
the least number of cases (64.7%). They also have worse to-
tal ranking results, which is reflected by their lower AUC
scores compared to other groups of similarity measures.
However, when only the top ranked suggestions are consid-
ered for evaluation, the surface-matching methods perform
reasonably well, especially for the Dice coefficient, Jaccard
coefficient and the cosine measure. This may be due to the
fact that many of the candidate suggestions do have words
that also occur in the corresponding query. In addition, when
a pair of query and suggestion have no overlapping words,
the chance that they are considered similar by our annotators
is usually low, at least in this data set.

With the help of the Web, corpus-based methods cover
more than 80% of the cases3 and provide better overall rank-

3We ran these corpus-based methods at different time. Because

1493

ing than the surface-matching methods. The KL-divergence
method performs better than the Web-kernel approach in
AUC, precision at 3 and precision 5, and worse on preci-
sion at 1. However, none of their differences is statistically
significant. Our Web-relevance similarity measure is bet-
ter than the original Web-kernel in all the evaluation metrics
here. Except for precision at 1, all the differences are sta-
tistically significant. It is also better when compared to the
KL-divergence method, although only the difference in the
AUC score is statistically significant.

Taking the output of various similarity measures and com-
bining them using machine learning have clear advantages.
Both the AUC and precision scores indicate that the learning
approach yields better quality in measuring short text seg-
ment similarity. Compared to the best corpus-based method,
Web-relevance similarity measure, both learning approaches
outperform it and all the differences except in precision at 1
are statistically significant. Although the preference learn-
ing approach has higher AUC and precision at k scores com-
pared to the metric learning approach, the differences are in
fact not statistically significant.

Conclusions
Web tasks such as query/keyword matching and search
query suggestion rely heavily on the quality of similarity
measures between short text segments. In this paper, we de-
velop a Web-relevance similarity measure that naturally ex-
tends the recently proposed Web-based kernel function. Our
method is not only better than a variety of surface-matching
methods in almost all evaluation metrics in our experiments,
but also outperforms existing state-of-the-art corpus-based
approaches, such as KL-divergence and Web-kernel. We
also demonstrate how to combine several similarity mea-
sures using machine learning. Our approach to learning
takes the output of similarity measures including our Web-
relevance similarity measure and other features to create a
similarity measure that has broader coverage and also tunes
the measure to a specific target application. We consider two
approaches to learning (similarity metric and preference or-
dering) and both achieved higher AUC and precision scores
as compared to all other similarity measures we tested using
a query suggestion data set.

In the future, we plan to evaluate alternative approaches to
learning the similarity of short text segments and alternative
features, such as the use of ontology. As observed by (Mena
et al. 2000), a term may have different senses or concepts
and exist in heterogeneous ontogologies. Whether a pair of
short text segments can be related to each other in the same
ontology can be a useful feature. In addition, we would like
to apply our similarity measures to different Web applica-
tions such as recommending advertising keywords for prod-
ucts in an online advertising scenario.

Acknowledgments
We thank Don Metzler, Sue Dumais and Chris Burges for
helpful discussions. We are also grateful to anonymous re-

of the results returned by the search engine varied slightly, there is
a small difference in the coverage of these methods.

viewers for their valuable comments.

References
Burges, C.; Shaked, T.; Renshaw, E.; Lazier, A.; Deeds,
M.; Hamilton, N.; and Hullender, G. 2005. Learning to
rank using gradient descent. In Proc. of ICML-05, 89–96.
Carletta, J. 1996. Assessing agreement on classifica-
tion tasks: the kappa static. Computational Linguistics
22(2):249–254.
Cortes, C., and Mohri, M. 2004. AUC optimization vs.
error rate minimization. In NIPS-03.
Fitzpatrick, L., and Dent, M. 1997. Automatic feedback
using past queries: Social searching? In SIGIR, 306–313.
Frank, E.; Paynter, G. W.; Witten, I. H.; Gutwin, C.; and
Nevill-Manning, C. G. 1999. Domain-specific keyphrase
extraction. In Proc. of IJCAI-99, 668–673.
Goodman, J., and Carvalho, V. R. 2005. Implicit queries
for email. In CEAS-05.
Goodman, J. 2002. Sequential conditional generalized it-
erative scaling. In ACL ’02.
Herbrich, R.; Graepel, T.; and Obermayer, K. 2000. Large
margin rank boundaries for ordinal regression. Advances
in Large Margin Classifiers 115–132.
Jones, R.; Rey, B.; Madani, O.; and Greiner, W. 2006.
Generating query substitutions. In Proc. of WWW ’06.
Landauer, T.; Foltz, P.; and Laham, D. 1998. An intro-
duction to latent semantic analysis. Discourse Processes
25:259–284.
Manning, C. D., and Schütze, H. 1999. Foundations of
Statistical Natural Language Processing. The MIT Press.
Mena, E.; Kashyap, V.; Illarramendi, A.; and Sheth, A. P.
2000. Imprecise answers in distributed environments: Esti-
mation of information loss for multi-ontology based query
processing. International Journal of Cooperative Informa-
tion Systems 9(4):403–425.
Metzler, D.; Dumais, S.; and Meek, C. 2007. Similarity
measures for short segments of text. In Proc. of ECIR-07.
Ng, H.; Lim, C.; and Foo, S. 1999. A case study on inter-
annotator agreement for word sense disambiguation. In
SIGLEX-99, 9–13.
Sahami, M., and Heilman, T. 2006. A web-based kernel
function for measuring the similarity of short text snippets.
In Proc. of WWW ’06.
Siegel, S., and Castellan, N. 1988. Nonparametric Statis-
tics for the Behavioral Sciences. McGraw-Hill.
Turney, P. D. 2000. Learning algorithms for keyphrase
extraction. Information Retrieval 2(4):303–336.
Turney, P. D. 2001. Mining the web for synonyms: PMI-IR
versus LSA on TOEFL. In Proc. of ECML-01.
Turney, P. D. 2003. Coherent keyphrase extraction via web
mining. In Proc. of IJCAI-03, 434–439.
Yih, W.; Goodman, J.; and Carvalho, V. 2006. Finding
advertising keywords on web pages. In Proc. of WWW ’06.

1494

