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Abstract The purpose of this paper is to improve the simu-
lated annealing method with a variable neighborhood search
to solve the resource-constrained scheduling problem. We
also compare numerically this method with other neighbor-
hood search (local search) techniques: threshold accepting
methods and tabu search. Furthermore, we combine these
techniques with multistart diversification strategies and with
the variable neighborhood search technique. A thorough nu-
merical study is completed to set the parameters of the
different methods and to compare the quality of the solu-
tions that they generate. The numerical results indicate that
the simulated annealing method improved with a variable
neighborhood search technique is indeed the best solution
method.

Keywords Simulated annealing · Threshold accepting ·
Tabu search · Diversification · Variable neighborhood
search · Resource-constrained scheduling

1 Introduction

The purpose of this paper is to improve the simulated an-
nealing method introduced in Jeffcoat and Bulfin (1993)
with a variable neighborhood search technique to solve the

This research was supported by NSERC grant (OGP 0008312) the
first author received a FCAR fellowship during her M.Sc. studies.

V. Bouffard · J.A. Ferland (�)
University of Montreal, CP 6128, Succ Centre-Ville, Montreal,
PQ H3C 3J7, Canada
e-mail: ferland@iro.umontreal.ca

V. Bouffard
e-mail: bouffarv@iro.umontreal.ca

resource-constrained scheduling problem (RCSP). We also
complete a numerical study to verify that this method gener-
ates better solutions than other neighborhood search tech-
niques like threshold accepting methods and tabu search
even if they are combined with multistart diversification
strategies or with the variable neighborhood search tech-
nique.

The resource-constrained scheduling problem (RCSP)
formulated in Jeffcoat and Bulfin (1993) is to determine a
schedule for n tasks (i = 1,2, . . . , n) requiring resources to
be completed. Each task i requires a specified number of
periods to be completed, and a specified number of units of
each resource during each period of its completion. Further-
more, each task i cannot be initiated before an earliest period
(ready time of the task) and must be completed within a lat-
est period (deadline of completion). For each resource, the
number of units available during each period is also speci-
fied.

Two important assumptions simplify the problem. First,
there is no preemption in the completion of any task. Sec-
ond, there is no precedence relationship among the tasks.
Nevertheless, the problem is Np-hard (Blazewicz 1978). We
use the following notation to formulate the problem:

ri : ready time of task i = 1,2, . . . , n; i.e., the earliest pe-
riod when i can be initiated.

fi : deadline for completion of task i = 1,2, . . . , n, i.e., the
last period when i can be completed.

di : duration of task i = 1,2, . . . , n; i.e., the number of pe-
riods required to complete it.

ai�: number of units of resource � = 1,2, . . . ,L required
during each period of completion of task i = 1,2,

. . . , n.
B�j : number of units of resource � = 1,2, . . . ,L available

during period j of the horizon J .
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J : the horizon is the set of period indices j

J =
{
j : 1 ≤ j ≤ max

1≤i≤n
{fi}

}
.

The decision variable xi denotes the starting period of
task i = 1,2, . . . , n, and the vector x

x = [x1, x2, . . . , xn],
denotes a schedule of the n tasks. A schedule x is said ad-
missible if each task i is initiated at one of its admissible
starting period Ji ; i.e., xi ∈ Ji where

Ji = {j : ri ≤ j ≤ fi − di + 1}.
For a schedule x, let Ej(x) denote the subset of tasks

being executed during period j ∈ J ; i.e.,

Ej(x) = {i : xi ≤ j ≤ xi + di − 1}.
An admissible schedule x is feasible if for � = 1,2, . . . ,L

and j ∈ J

∑
i∈Ej (x)

ai� ≤ B�j .

Now, to determine a best admissible schedule we use a
penalty approach where resource constraints violations are
minimized. This problem can be formulated as follows:

(P ) min P(x) =
∑
j∈J

L∑
�=1

max

{
0,

∑
i∈Ej (x)

ai� − B�j

}

Subject to xi ∈ Ji, i = 1,2, . . . , n.

Of course, whenever P(x) = 0, then the admissible schedule
x is feasible. But if there is no admissible schedule satisfy-
ing all the resource constraints, then the optimal solution of
(P ) corresponds to an admissible solution minimizing the
shortages of resources.

Several different resource-constrained scheduling prob-
lems have been studied in the literature. The problem
(RCSP) studied in the paper has been introduced by Jeff-
coat and Bulfin (1993). The Cumulative Scheduling Prob-
lem (CUSP) studied by Baptiste et al. (1999) is closely re-
lated. Each task is characterized as in the (RCSP), but only
one resource is considered. The objective is to decide if
there exists a schedule of the tasks verifying the capacity
constraint on the number of units of the resource available
during each period and all the time constraints of the tasks.
The variant of this problem where more than one resource is
required has been studied by Carlier and Pinson (1998).

In the Resource-Constrained Scheduling (RCS) problem
described by Srivastav and Stangier (1997), each task is
characterized as in the (RCSP) above except that no dead-
line for completion has to be satisfied. The objective in this

problem is to schedule the starting time of the tasks in or-
der to minimize the latest completion time (or makespan).
Zhang et al. (2004) study the special case where there is no
ready time specified for the tasks and where 2 resources are
used.

The Resource-Constrained Project Scheduling Problem
(RCPSP) is probably the most widely studied problem of
this type. Here, the tasks are part of a project. Instead of
having ready time and deadline for completion, the tasks
are related to each other through precedence relationships.
Several variants of this problem exist according to the dif-
ferent types of resources used, according to the number of
modes available to process the tasks, according to the ob-
jective function used, etc. A complete classification of the
different variants can be found in Brucker et al. (1999).

Several problems can be formulated as (RCSP). Jeffcoat
and Bulfin (1993) mention a foundry scheduling problem
where the tasks correspond to lots to be produced. Each lot
is using one of several parallel production lines and requires
different raw materials and different kinds of manpower
available in limited quantities. Reduced inventory space and
shipping commitments induce ready times and deadlines
for the tasks. Brucker and Knust (2001) show that several
timetabling problems can be formulated as (RCPSP). But in
some of these timetabling problems, there is no precedence
relationship between tasks, and hence they can be formu-
lated as (RCSP). In the formulation of the basic high-school
timetabling problem (Schaerf 1999b; de Werra 1985), the
lectures correspond to the tasks, and the classrooms and
the teachers to the resources. Similarly, in the university
course timetabling problem (Aubin and Ferland 1989; Burke
and Petrovic 2002; Petrovic and Burke 2004; Schaerf 2006;
Schaerf 1999a; de Werra 1985), the lectures correspond also
to the tasks, and the classrooms, the teachers, and the stu-
dents to the resources. This formulation allows simulating
the conflicting situations where some teachers would have
to teach or where some students would have to take more
than one lecture simultaneously. Note then in these two ex-
amples of timetabling problems there is no ready time or
deadline for any task.

In Sect. 2, we characterize the neighborhood structure in-
troduced in Jeffcoat and Bulfin (1993) that we use to imple-
ment the neighborhood search (or local search) techniques.
Then we summarize the simulated annealing method of Jef-
fcoat and Bulfin (1993), three threshold accepting methods
and a tabu search to solve the (RCSP). Finally, a technique to
generate an initial solution is introduced. In Sect. 3, we give
three improving strategies: two different multistart diversifi-
cation strategies and the variable neighborhood search tech-
nique. The numerical efficiency of the methods is analyzed
in Sect. 4 where we use three different sets of randomly gen-
erated problems; the first set is used to fix the parameters
of the methods, the second one, to select the best improv-
ing strategy for each method, and the third one, to compare
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the quality of the solutions generated by the methods and
their variants when combined with an improving strategy.
Finally, concluding remarks are included in the conclusion.
The numerical results indicate that the simulated annealing
method in Jeffcoat and Bulfin (1993) improved with a vari-
able neighborhood search is the best solution method.

2 Neighborhood search techniques (NST)

A neighborhood search technique (NST)(or local search
technique) (Ferland et al. 1996; Reeves 1996) is an itera-
tive procedure to move from an admissible schedule x to a
new one x′ in its neighborhood N(x) until some admissible
schedule x∗ satisfying some stopping criterion is found. In
general, the neighboring solutions x′ ∈ N(x) are generated
by slightly modifying x. In our implementation we use the
neighborhood introduced by Jeffcoad and Bulfin (1993).

Denote by x(i, �) and x(i, r) the schedules derived from
x as follows:

x(i, �) = [x1, x2, . . . , xi−1, xi − 1, xi+1, . . . , xn],
x(i, r) = [x1, x2, . . . , xi−1, xi + 1, xi+1, . . . , xn];

i.e., task i is started one period earlier and one period later in
x(i, �) and x(i, r), respectively. If xi − 1 ≥ ri (i.e., if x(i, �)

is admissible), then x(i, �) is included in N(x). Similarly,
if xi + 1 ≤ fi − di + 1, x(i, r) is included in N(x). Thus
the size of the neighborhood N(x) is at most equal to 2n.
To generate N(x), we consider each task i sequentially to
obtain x(i, �) and x(i, r). Note that additional neighborhood
structures are introduced in Sect. 3.3 to specify the variable
neighborhood search approach.

The most straightforward NST is the descent method.
At each iteration, the best admissible schedule x′ ∈ N(x)

(i.e., x′ = arg minz∈N(x) P (z)) is selected as the current so-
lution of the next iteration. The procedure stops whenever
P(x) = P(x′); i.e., whenever a first local minimum x is
reached. Other neighborhood search techniques have been
developed to avoid being trapped in a first local minimum.
Variants of some of these techniques are introduced next to
solve problem (P ).

2.1 Simulated annealing

Simulated annealing allows nondescent modification to
avoid being trapped in a local minimum. Originally the ap-
proach was used to simulate the evolution of an unstable
physical system toward a thermodynamic stable equilibrium
point at a fixed temperature. Kirkpatrick et al. (1983) and
Cerny (1985) were the first using it to solve optimization
problems.

At each iteration of this probabilistic technique, an ad-
missible schedule x′ is selected randomly in the neighbor-
hood N(x) of the current schedule x. This schedule x′ re-
places x as the current solution if �P = P(x′) − P(x) < 0.
But x′ can replace x even if �P ≥ 0 (i.e., no improvement
of P is induced by moving from x to x′) according to a
probability decreasing with the value of �P and with the
number of iterations already completed. More specifically,
x′ replaces x with probability e−�P/T where the parameter
T (referred to as the temperature factor) decreases with the
number of iterations completed.

We use a more deterministic implementation proposed
by Jeffcoat and Bulfin (1993). For a given value T of the
temperature, instead of selecting randomly the trial solutions
x′ in N(x), we rather try to modify sequentially the starting
time xi of each task i. Each time we modify the value T of
the temperature, we select a different random permutation of
the indices {1,2, . . . , n} corresponding to the order in which
the tasks are considered sequentially.

A parameter R ∈ (0,1) is used to modify the temper-
ature (T := T · R). Even if this cooling schedule cools
more rapidly than the logarithmic schedule proposed by Van
Laarhoven et al. (1992), the numerical results in Jeffcoat and
Bulfin (1993) indicate that it performs well. The stopping
criterion is specified in terms of a maximum number (iter-
max) of different values of the temperature and in terms of
a maximum number (countmax) of successive values of the
temperature where the value PC of the current solution be-
fore cycling through all tasks i is not improved during the
cycle. For the sake of completeness, the procedure is sum-
marized in Fig. 1.

2.2 Threshold accepting methods

Threshold accepting methods (Dueck 1993; Dueck and
Scheuer 1990) are also iterative procedures that can be seen,
in some sense, as deterministic variants of simulated anneal-
ing. At each iteration, an admissible schedule x′ is selected
randomly in the neighborhood N(x) of the current solu-
tion x. Then we rely on the value of an auxiliary function
γ (x, x′) and on a threshold value dr to decide if x′ replaces
x as the current solution; i.e., x′ replaces x if γ (x, x′) ≤ dr .
Several variants can be specified according to different ways
of specifying γ (x, x′) and dr .

Our implementation of the threshold accepting approach
is a straightforward modification of the simulated annealing
procedure of Fig. 1 where the probabilistic test in 4, and 5
of Step 1 is replaced by a threshold test.

In this paper we consider three different variants intro-
duced in Dueck (1993); Dueck and Scheuer (1990). In the
“standard threshold accepting method ”, the threshold value
dr is updated as the temperature value T is modified in the
simulated annealing; i.e.,

dr := a · dr
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Initialization

Let xo be an initial admissible schedule.
Let x∗ := x := xo.
{x and x∗ denote the current and the best known solutions, respectively}.
Let T o be an initial temperature.
Let T := T o; iter := count := 0.

Step 1 (For a given value T of the temperature)

PC := P(x).
Generate a permutation Γ of the indices {1,2, . . . , n}.
For each task i (considered in the order specified by Γ )

1. If P(x∗) = 0, then Stop
2. If x(i, �) is admissible (i.e., if xi − 1 ≥ ri), and

If �P = P(x(i, �)) − P(x) < 0, then
x := x(i, r)

go to 6
3. If x(i, r) is admissible (i.e., if xi + 1 ≤ fi − di + 1), and

If �P = P(x(i, r)) − P(x) < 0, then
x := x(i, r)

go to 6
4. If x(i, �) is admissible (i.e., if xi − 1 ≥ ri), then

let �P = P(x(i, �)) − P(x)

select r ∈ (0,1) randomly
If r < e−�P/T , then

x := x(i, �)

go to 6
5. If x(i, r) is admissible (i.e., if xi + 1 ≤ fi − di + 1), then

let �P = P(x(i, r)) − P(x)

select r ∈ (0,1) randomly
If r < e−�P/T , then

x := x(i, r)

6. If P(x) < P (x∗), x∗ := x

Step 2

T := T · R
If P(x) < PC, then count := 0
iter := iter +1
count := count +1

Step 3 (Stopping criteria)

If iter > itermax or count > countmax, then Stop.
Otherwise, repeat Step 1.

Fig. 1 Simulated annealing procedure

where a ∈ (0,1) is a parameter of the procedure. Further-
more, the threshold function γ (x, x′) is

γ (x, x′) = P(x′) − P(x).

Hence x′ replaces x if it is not deteriorating the objective
function by more than the threshold value dr .

In the “great deluge method”, the threshold value dr can
be seen as the level of water, and x′ replaces x if its value
P(x′) is below the level of water, independently of the value
P(x). Hence

γ (x, x′) = P(x′).
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The initial value dro of the threshold is equal to P(xo), and
the threshold value dr is updated linearly according to the
parameter δ; i.e.,

dro := P
(
xo

)
,

dr := dr − δ.

Finally, in the “maximal deterioration method ”, x′ replaces
x if and only if its value P(x′) does not deteriorate the value
P(x∗) of the best known admissible solution by more than
a threshold value μ. Hence

γ (x, x′) = P(x′)

and

dr := P(x∗) + μ

where μ is a parameter of the procedure.

2.3 Tabu search

This solution procedure was developed independently by
Glover (1986) and Hansen (1986). At each iteration, the best
admissible schedule x′ ∈ N(x) is selected to be the current
solution of the next iteration. As long as P(x′) < P (x), the
procedure behaves like the descent method. But if P(x′) ≥
P(x), then moving from x to x′ induces no improvement
or even a deterioration of the objective function P(x). Nev-
ertheless, this allows to move out of a local minimum in a
different way than the simulated annealing approach. It is
then interesting to compare numerically the two approaches
for solving problem (P ).

Now, since the value of the objective function P(x) is
not necessarily monotone decreasing during the resolution,
a safeguard against cycling is required. This is provided
through a memory mechanism forbidding to return to a so-
lution already visited. Hence a short term tabu list is used
to keep the modifications recently used to generate the se-
quence of current solutions. More specifically, suppose that
the element x′ ∈ N(x) selected as the current solution for the
next iteration is x(i, �) or x(i, r). Then, in the new schedule,
i is initiated at xi − 1 or xi + 1 rather than at xi . To provide
a safeguard against cycling we forbid task i to be initiated at
xi in any current solution of the next |T L| iterations, where
|T L| is a fixed scalar. The mechanism is implemented by
using a cyclic list T L that is updated at each iteration by
including the pair (i, xi) corresponding to the task i modi-
fied and its current starting period xi . Since the length |T L|
of the tabu list is fixed, if the list is full when (i, xi) is put
into the list, then the oldest element is eliminated from it.
An admissible schedule z ∈ N(x) is said tabu (and cannot
be selected as the current solution for the next iteration) if

z = x(i, �) and the pair (i, xi − 1) ∈ LT or if z = x(i, r) and
the pair (i, xi + 1) ∈ LT .

The mechanism has the drawback of making tabu other
admissible solutions that were not generated before. Now,
since some of these tabu solutions might be very good, we
introduce an aspiration criterion to bypass the tabu status of
such solutions. Hence even if z ∈ N(x) is tabu, whenever its
value P(z) is smaller than P(x∗), the value of the best solu-
tion x∗ generated so far (i.e., P(z) < P (x∗)), z becomes the
best solution (replacing x∗) and the current solution (replac-
ing x).

Finally, the stopping criteria are specified in terms of a
maximum number (itermax) of iterations and in terms of
a maximum number (countmax) of consecutive iterations
where the shortages of resources in the objective function
P(x) do not improve.

In our numerical experimentation we compare the strat-
egy of using the whole neighborhood to identify the current
solution for the next iteration against the one using only a
subset Nv(x) ⊂ N(x). Here v denotes a sequence of indices
of a subset of tasks, and these indices are used sequentially
to generate the elements of Nv(x). We consider subsets of
different size including n′(n′ ≤ n) tasks selected randomly,
and the sequence v is a random permutation of the indices
of these tasks.

We also compare numerically a “standard” variant where
we generate completely the neighborhood Nv(x) before se-
lecting the current solution for the next iteration with a more
“aggressive” variant where the generation of Nv(x) is inter-
rupted whenever the aspiration criterion is satisfied, in which
case this solution better than the current best is used as the
current solution for the next iteration. Note that in the ag-
gressive variant, if the iteration is interrupted, we continue
to run through the indices in v during the next iteration be-
fore generating a new sequence v.

2.4 Initial solution

To generate randomly the initial solution for the differ-
ent NST, we use the following straightforward constructive
method. First we order the tasks according to some criterion,
and then we schedule the tasks sequentially in order to use
efficiently the resources still available.

The ordering criterion is specified in terms of the re-
sources. Denote by ci the total number of units of resources
required to complete task i; i.e., for each i = 1,2, . . . ,m,

ci = di

i∑
�=1

ai�.

The tasks are scheduled sequentially in decreasing order of
their values ci (i.e., the tasks requiring larger numbers of
units are scheduled first). Each task i is completed during
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its admissible period where the largest number of units of
resources is still available; i.e., the task i is initiated at period
s ∈ Ji such that

s = arg max
j∈Ji

{
j+di−1∑

t=j

L∑
�=1

ba�t

}

where ba�t denotes the number of units of resource � still
available in period t before scheduling task i.

3 Improving strategies

Several strategies have been proposed to improve the effi-
ciency of neighborhood search techniques (NST). In this pa-
per we analyze three different strategies to search more ex-
tensively the domain of admissible schedules by leading the
search to unexplored regions of the domain. These strategies
are diversification tools.

3.1 Random diversification (RD)

In this approach, the NST is executed several times using
different initial solutions to solve a problem. The different
initial solutions are generated randomly. In our implementa-
tion, we use a variant of the procedure in Sect. 2.4. In order
to generate several initial solutions, instead of scheduling
the tasks i in decreasing order of their ci , we select the next
task to be scheduled randomly using a distribution where the
probability of selecting task i is proportional to its value ci

(roulette whell).

3.2 First order diversification (FOD)

The first order diversification (FOD) strategy was first in-
troduced in Kelly et al. (1994) for the quadratic assignment
problem. It is also a multistart procedure using the current
local minimum x∗ to generate a new initial solution. The
strategy is to move away from the current admissible sched-
ule x∗ by modifying sequentially the current starting period
of some tasks i to x∗

i − 1 or x∗
i + 1. At each iteration of the

process, we select the task i for which modifying its cur-
rent starting period induces the smallest deterioration or the
largest improvement of the objective function P . The admis-
sible schedule generated after modifying the starting time of
a fixed percentage of the tasks become the new initial solu-
tion.

3.3 Variable neighborhood search approach

The variable neighborhood search (VNS) approach was
introduced by Hansen and Mladenović (2001, 1997). The
VNS is also a multistart approach, but it explores different

neighborhoods of the best known solution x∗ instead of us-
ing different initial solutions to apply a NST several times.

A set of neighborhood structures Nk , k = 1,2, . . . ,K ,
have to be specified a priori. At each iteration, a local mini-
mum x′′ is generated using a NST where the initial solution
x′ is selected randomly in Nk(x∗), and where the neighbor-
hood structure Nk is used. If the local minimum x′′ is better
than x∗ (i.e., if P(x′′) < P (x∗)), then x′′ replaces x∗, and
the neighborhood structure N1 is used for the next iteration.
Otherwise, the neighborhood structure Nk+1 is used for the
next iteration unless k = K , in which case N1 is used for the
next iteration. Note that we return to structure N1 whenever
x′′ is better than x∗ because, in general, the complexity of
using any neighborhood structure increases with the value
of the index k.

3.3.1 Neighborhood structures

In our implementation we consider four different structures.
The first three are nested (N1 ⊂ N2 ⊂ N3) and the fourth
one is specified differently.

The structure N1 is the neighborhood structure described
in Sect. 2. N2 and N3 are straightforward extensions of N1:

N2(x) = N1(x) ∪ {
admissible schedules x

(
i, �2

)
and

x
(
i, r2

) : i = 1,2, . . . , n
}

where

x
(
i, �2) = [x1, x2, . . . , xi−1, xi − 2, xi+1, . . . , xn]

and

x
(
i, r2) = [x1, x2, . . . , xi−1, xi + 2, xi+1, . . . , xn].

Similarly,

N3(x) = N2(x) ∪ {
admissible schedules x

(
i, �3

)
and

x
(
i, r3

) : i = 1,2, . . . , n
}

where

x
(
i, �3) = [x1, x2, . . . , xi−1, xi − 3, xi+1, . . . , xn]

and

x
(
i, r3) = [x1, x2, . . . , xi−1, xi + 3, xi+1, . . . , xn].

When we generate these neighborhoods, the neighbor sched-
ules associated with task i are generated in the following
order:

(i) for N2(x) : x(i, �2), x(i, r2), x(i, �), x(i, r),
(ii) for N3(x) : x(i, �3), x(i, r3), x(i, �2), x(i, r2), x(i, �),

x(i, r).
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The elements of the structure N4(x) are generated by
“switching” the starting periods of two tasks. Hence, for all
pair (i1, i2) of tasks (1 ≤ ii , i2 ≤ n), denote

x(i1, i2) = [x1, x2, . . . , xi1−1, xi2, xi1+1, . . . , xi2−1,

xi1, xi2+1, . . . , xn],

and x(i1, i2) ∈ N4(x) if it is an admissible schedule (i.e.,
xi2 ∈ Ji1 and xi1 ∈ Ji2). This neighborhood is generated ac-
cording to a sequence of pairs of tasks rather than accord-
ing to a sequence of tasks as for N1, N2 and N3 (i.e., the
sequence v in the tabu search and Γ in the other methods
include a sequence of pairs of tasks). Furthermore, for the
tabu search, the tabu list is modified by including the pair of
elements (i1, xi1) and (i2, xi2) whenever x(i1, i2) is selected
to replace the current solution x. Also, any solution x(i1, i2)

is tabu if (i1, xi2) or (i2, xi1) is an element of the tabu list.
In our numerical experimentation we consider two dif-

ferent implementations: the “nested” variant (VNSN) using
the three nested structures N1, N2, and N3, and the “switch-
ing” variant (VNSS) using the structures N1, N2, and N4.
The purpose is to see if it is better to increase the number of
nested structures (adding N3) or to diversify with a different
kinds of neighborhood like N4. We are not trying to identify
the best number of different neighborhood structures to use.
This would require additional numerical tests.

4 Numerical results

Three different sets of problems are used to complete the
numerical experimentation. We determine the proper val-
ues of the parameters for each method with a first set of 50
problems. Then a second set of 50 other problems is used
to select the best improving strategy for each method. Fi-
nally we compare numerically all the methods and all the
methods combined with their best strategy with a third set
of 100 other problems. The problems in each of these sets
are generated randomly using a variant of the approach pro-
posed in Jeffcoat and Bulfin (1993) that can be summarized
as follows.

Each problem has n = 100 tasks, uses L = 4 types of re-
sources over an horizon of |J | = 100 periods. For each task
i, the duration di is a random integer numbers in [1,20], and
the resources required are ai1 = 1, and random integer num-
bers in the intervals [0,5], [0,10], and [0,15] for resource
types 2, 3, and 4, respectively.

The ready time ri and the deadline for completion fi of
each task i together with the number of units B�j of each
resource � available during each period j are determined in
such a way that the following schedule s is admissible and
feasible (i.e., P(s) = 0). This schedule is generated as fol-
lows. The first task starts in period 1 (i.e., s1 = 1), the second

task starts in the period following completion of the first task
(i.e., x2 = s1 + d1), and so on. Now, if scheduling task i af-
ter completing task (i − 1) would induce that task i finishes
later than period 100 (i.e., if (si−1 + di−1)+ di > 100), then
task i starts in period 1 (i.e., si = 1), and the process contin-
ues until all tasks are scheduled. Then for each task i,

ri = max{1, si − ui},
fi = min{100, si + di + vi}
where ui and vi are random integers in [1,10]. Furthermore,
to guarantee that s is feasible, the resource availabilities are
specified as follows:

B�j =
∑

i∈Ej (s)

ai� + w�j

where w�j is a random integer number in the intervals [0,1],
[0,5], [0,10], [0,15] for � = 1,2,3, and 4, respectively.

Note that the problems are generated as in Jeffcoat and
Bulfin (1993) except for the values of the resource availabil-
ities. Indeed in Jeffcoat and Bulfin (1993)

B�j = max
t∈J

{ ∑
i∈Et (s)

ai�

}

inducing easier problems to solve in general. Furthermore,
we had to complete our numerical experimentation using
randomly generated problems since we are not aware of real
data available.

All the tests were completed on a Pentium II having an
AMD Athlon 750 MHz processor.

4.1 Parameters setting for the method

Each problem of the first set of 50 problems is solved once.
The details of this thorough analysis to fix the parameters of
the methods can be found in (Bouffard 2003), but in this pa-
per we limit the presentation to a summary of the approach
used and of the values selected for the parameters.

In order to complete a fair comparison of the methods, we
determine the values of the parameters itermax and count-
max of the stopping criteria such that they run for the same
length of time. These values are determined for a short (3 s),
a medium (6 s), and a long (30 s) length of time. Further-
more, different values of the other parameters are also se-
lected for each length of time. Finally, to measure the perfor-
mance of each selection of parameters, we use the average
value of the objective function and the number of problems
where the best value is achieved with respect to the others.

For the simulated annealing, we compare the efficiency
of several pairs of values for the initial temperature T o and
for the parameter R to modify the temperature. The values
selected for the different length of time are summarized in
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Table 1 Values of the initial temperature T o and of the parameter R

for simulated annealing

Length of time (s) T o R itermax countmax

3 5 0.994 600 20

6 7 0.997 1200 15

30 10 0.99925 10 000 150

Table 2 Values of the initial threshold dro and the parameter a for the
standard threshold accepting

Length of time (s) dro a itermax countmax

3 10 0.9966 750 15

6 10 0.9983 1450 20

30 25 0.99952 9000 550

Table 3 Values of the initial threshold dro and the parameter a for the
great deluge method

Length of time (s) δ itermax countmax

3 0.80 750 200

6 0.40 1500 400

30 0.085 10 000 1975

Table 4 Values of the parameter μ for the maximal deterioration
method

Length of time (s) μ itermax countmax

3 7 600 500

6 7 1200 1000

30 7 6000 200

Table 5 Length of the tabu list |T L| for different average running
times

Length of time (s) |T L| itermax countmax

3 70 1500 450

6 70 3000 1000

30 80 17 000 5750

Table 1. A similar approach is used to select the values of
the parameters of the different variants of the threshold ac-
cepting methods. They are summarized in Tables 2, 3 and 4.

The tabu search method is more difficult to calibrate be-
cause the number of parameters is larger. This leads us to set
these sequentially. First the size |T L| of the tabu list is se-
lected. The results are summarized in Table 5 for three dif-
ferent lengths of time. Then, comparing different sizes for
the set v, the results indicate that using 30% of the tasks to
specify the set v is the best approach.

In (Bouffard 2003) we also compare the efficiency of us-
ing a fixed length tabu list |T L| with that of using a “vari-
able length tabu list” (Taillard 1991) where only the |T L|
last elements of the list are used to verify the tabu status of
a schedule. The value of |T L| is a random integer value sat-
isfying the relation

tmin ≤ |T L| ≤ |T L|
where tmin = 	0.8|T L|
. Using the first set of 50 problems,
the results show that it is better to use a “variable length tabu
list”.

Finally, the results in Bouffard (2003) also show that the
“aggressive” variant is more efficient in general than the
“standard” one. Hence, we continue the numerical experi-
mentation with the “aggressive” variant of the tabu search
using 30% of the tasks to specify the subset v, and a “vari-
able length tabu list”.

4.2 Selecting the improving strategies

Each of the 50 problems of the second set is solved once
to determine the best improving strategy (RD, FOD, VNSN,
or VNSS) to use with each method having its parameters
set as in Sect. 4.1. For the first order diversification (FOD)
strategy, we modify the starting time of 75% of the tasks to
generate the new initial solution.

A table is associated with each method where, for each
strategy, we indicate the average value P(x∗) of the best
schedules generated for this set of problems, and the number
#BS of problems for which the strategy generates the best
schedule with respect to the others, and the average number
#RC of times that the corresponding method is restarted (for
RD and FOD) or the number of times that the neighborhood
structure is changed (for VNSN and VNSS). Furthermore,
each strategy is used for a period of 30 seconds to solve each
problem.

Whenever an improving strategy is combined with a
NST, we have to specify the length of time that the NST
is applied each time it is restarted or each time the neighbor-
hood structure is changed. This has an impact on the number
of times (intensity level) that the strategy is applied. It seems
interesting to analyse if it is more efficient to use an improv-
ing strategy with a higher or a lower intensity level. Here we
consider two different intensity levels: a low level or a high
level where the NST is applied for a length of 6 or 3 sec-
onds each time it is restarted or each time the neighborhood
structure is changed, respectively.

The best improving strategy for the different methods are
identified according to the results in Tables 6, 7, 8, 9 and 10.
The results summarized in Table 11 indicate that there is no
uniformly dominating improving strategies. The two strate-
gies VNSS and RD are not selected as best for any method.
It is interesting to note that the nested variant (VNSN) of the



J Sched (2007) 10: 375–386 383

Table 6 Simulated annealing: average value P (x∗), number of prob-
lems #BS where the best schedule is achieved, and number of restarts
#RC according to the improving strategy and the intensity level

Improving strategy Intensity level P (x∗) #BS #RC

RD low 10.9 2 4.6

high 12.3 0 9.8

FOD low 10.9 4 4.0

high 12.7 4 8.9

VNSN low 7.3 18 3.2

high 6.5 29 6.1

VNSS low 15.4 0 2.0

high 10.6 7 3.3

Table 7 Standard threshold accepting method: average value P (x∗),
number of problems #BS where the best schedule is achieved, and
number of restarts #RC according to the improving strategy and the
intensity level

Improving strategy Intensity level P (x∗) #BS #RC

RD low 19.7 11 4.1

high 19.5 6 9.0

FOD low 18.3 14 4.0

high 18.8 14 8.8

VNSN low 21.7 7 2.0

high 19.0 10 3.9

VNSS low 21.7 7 2.0

high 19.0 10 4.0

Table 8 Great deluge method: average value P (x∗), number of prob-
lems #BS where the best schedule is achieved, and number of restarts
#RC according to the improving strategy and the intensity level

Improving strategy Intensity level P (x∗) #BS #RC

RD low 29.2 1 11.0

high 40.3 0 23.6

FOD low 27.0 6 9.5

high 35.6 3 18.7

VNSN low 21.5 23 7.1

high 21.5 17 14.0

VNSS low 23.8 10 6.7

high 25.2 6 13.5

variable neighborhood search strategy is more efficient than
(or at least as efficient) the switching variant (VNSS) for all
the neighborhood search techniques.

4.3 Comparing the methods and their improving strategies

Now we use the third set of 100 problems to compare the
methods and their combinations with their best improving

Table 9 Maximal deterioration method: average value P (x∗), number
of problems #BS where the best schedule is achieved, and number of
restarts #RC according to the improving strategy and the intensity level

Improving strategy Intensity level P (x∗) #BS #RC

RD low 22.8 5 4.1

high 25.1 5 9.1

FOD low 20.3 13 4.0

high 20.2 17 9.0

VNSN low 22.8 7 3.8

high 21.8 13 7.3

VNSS low 22.8 7 3.8

high 23.5 8 7.0

Table 10 Tabu search: average value P (x∗), number of problems #BS

where the best schedule is achieved, and number of restarts #RC ac-
cording to the improving strategy and the intensity level

Improving strategy Intensity level P (x∗) #BS #RC

RD low 34.6 7 4.4

high 42.7 3 10.0

FOD low 27.6 23 7.1

high 31.1 8 15.5

VNSN low 34.5 8 3.1

high 34.2 5 8.4

VNSS low 35.0 7 3.1

high 36.0 4 9.1

Table 11 Methods and their improving strategy selected

Method Improving strategy Intensity level

simulated annealing (SA) VNSN high

standard threshold accepting
(STA)

FOD low

great deluge (GD) VNSN low

maximal deterioration (MD) FOD high

tabu search (TS) FOD low

strategies as identified in Sect. 4.2. Here also, each problem
is solved once.

In Table 12 we compare the methods globally in terms
of the average value P(x∗) of the best schedules generated
and the number #BS of problems for which the method gen-
erates the best solution with respect to the others. The re-
sults in Table 12 indicate a clear prevalence of the simulated
annealing method mostly when combined with the nested
variable neighborhood search (VNSN).

For any solution procedure, if the value P(x∗) of the best
solutions for the 100 problems would be normally distrib-
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Table 12 Global comparison of the methods

Procedures P (x∗) SD INT #BS

SA 9.6 7.8 [1.8, 17.4] 36

SA & VNSN 7.0 5.0 [2.0, 12,0] 69

STA 21.7 7.4 [14.3, 29.1] 0

STA & FOD 20.1 7.9 [12.2, 28.0] 1

GD 20.3 7.5 [12.8, 27.8] 1

GD & VNSN 20.2 8.7 [11.5, 28.9] 1

MD 21.3 8.0 [13.3, 29.3] 0

MD & FOD 20.4 8.3 [12.1, 28.7] 1

TS 26.5 8.9 [17.6, 35.4] 0

TS & FOD 26.1 10.1 [16.0, 26.2] 0

uted, then it is well known that the probability

P
(
x∗) ∈ INT = [

P
(
x∗) − SD,P

(
x∗) + SD

]
,

is equal to 0.683 (where SD denotes the standard deviation
of the distribution of P(x∗)). Hence, if we use INT to com-
pare the behavior of the different solution procedures, the
results in Table 12 illustrate even more strongly the preva-
lence of the SA & VNSN method. Indeed, for all methods
other than SA (where INT(SA & VNSN) ⊂ INT(SA)) and
GD & VNSN (where INT(GD & VNSN) slightly intersect
with INT(SA & VNSN)), their interval INT is completely
on the right hand side of INT(SA & VNSN).

In addition we compare the procedures by pairs in Ta-
ble 13. The entry (i, j) is equal to the difference between
the number of problems where procedure i generates a so-
lution better or as good as procedure j , and the number of
problems where procedure j generates a solution better as
good as procedure i. Hence, whenever the symmetric en-
tries (i, j) and (j, i) have absolute value close to 0, then the
efficiency of the two procedures is quite similar. If the value
of entry (i, j) is positive, then according to this criterion,
the efficiency of the procedure associated with row i over

the one associated with column j increases with the value
of entry (i, j).

The results in Table 13 indicate that the simulated anneal-
ing method combined with the nested variable neighborhood
search is also the most efficient procedure according to this
criterion. Furthermore, the simulated annealing method is
neatly more efficient than all the other neighborhood search
techniques even if they are combined with any improving
strategy.

The second group of more efficient procedures are the
threshold accepting methods combined with their improving
strategies. Among these, the great deluge method combined
with the nested variable neighborhood search is the most ef-
ficient. Now, since the threshold accepting methods can be
seen as some kind of deterministic variants of the simulated
annealing method, we may conjecture that the probabilistic
behavior of the simulated annealing method has a positive
impact on the efficiency of the method.

Finally, our implementation of the tabu search method
even combined with the first order diversification is far less
efficient than any of the threshold accepting methods. It is
worth noticing that simulated annealing methods seem also
to generate better results than tabu search methods for the
resource-constrained project scheduling problem (RCPSP)
closely related to our problem (P). Indeed, Alcaraz and
Maroto (2001) report that the Bouleimen and Lecoq sim-
ulated annealing method (Bouleimen and Lecocq 1998) is
the third best method after their genetic algorithm and Hart-
man genetic algorithm (Hartmann 1998) to solve RCPS. For
the problems in the Project Scheduling LIBrary (PSBLIB)
(Kolisch et al. 1995) having 30 and 60 tasks, Bouleimen and
Lecoq simulated annealing method is two to three times bet-
ter than Baar et al. tabu search method (Baar et al. 1998)
with respect to the criteria based on the average deviation
from the optimal or the best known solution.

Table 13 Comparing the procedures by pairs

SA SA & VNSN STA STA & FOD GD GD & VNSN MD MD & FOD TS TS & FOD

SA 0 −34 86 80 85 82 91 85 96 93

SA & VNSN 34 0 96 97 93 90 97 98 99 100

STA −86 −96 0 −16 −14 −15 −12 −16 45 32

STA & FOD −80 −97 16 0 0 1 13 −11 43 40

GD −85 −93 14 0 0 −7 8 1 50 33

GD & VNSN −82 −90 15 1 7 0 22 16 45 53

MD −91 −97 12 −13 −8 −22 0 −8 53 50

MD & FOD −85 −98 16 11 −1 −16 8 0 53 51

TS −96 −99 −45 −43 −50 −45 −53 −53 0 −17

TS & FOD −93 −100 −32 −40 −33 −53 −50 −51 17 0
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5 Conclusion

The numerical results indicate that Jeffcoat and Bulfin sim-
ulated annealing method (Jeffcoat and Bulfin 1993) gener-
ates better solutions than other local search techniques like
threshold accepting methods and the tabu search. This is
consistent with the fact that the simulated annealing ap-
proach performs better than the tabu search approach for
RCPSP (Alcaraz and Maroto 2001). Furthermore, the per-
formance of the simulated annealing method can be im-
proved with a variable neighborhood search approach. Fi-
nally, even if we combine the threshold accepting methods
and the tabu search method with improving strategies like
random diversification, first order diversification, or vari-
able neighborhood search, the numerical results indicate that
their performance remains inferior to that of the simulated
annealing method.
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