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11

Abstract Many molecular simulation methods use force fields to help model and simulate molecules and their behavior in12

various environments. Force fields are sets of functions and parameters used to calculate the potential energy of a chemical13

system as a function of the atomic coordinates. Despite the widespread use of force fields, their inadequacies are often thought14

to contribute to systematic errors inmolecular simulations. Furthermore, different force fields tend to give varying results on the15

same systems with the same simulation settings. Here, we present a pipeline for comparing the geometries of small molecule16

conformers. We aimed to identify molecules or chemistries that are particularly informative for future force field development17

because they display inconsistencies between force fields. We applied our pipeline to a subset of the eMolecules database,18

and highlighted molecules that appear to be parameterized inconsistently across different force fields. We then identified over-19

represented functional groups in thesemolecule sets. Themolecules andmoieties identified by this pipelinemay be particularly20

helpful for future force field parameterization.21

22

0.1 Keywords23

Molecular Mechanics simulations ⋅ Force Fields ⋅ Geometry Optimization ⋅Molecular Modeling ⋅ Conformer Comparison24

0.2 Abbreviations25

FF Force field26

QM Quantum Mechanical27

TFD Torsion Fingerprint Deviation28

RMSD Root-Mean-Square Deviation29

MMFF Merck Molecular Force Field30

GAFF General AMBER Force Field31

SMIRNOFF SMIRKSNative Open Force Field; here, also typically used as shorthand for the SMIRNOFF99Frosst force field version32

1.0.833

1 Introduction34

Molecular simulations are widely used in drug design, materials design, and in the study of biophysical processes. Large sys-35

tems, like biomolecules or even small molecules in solution, prove to be computationally difficult to simulate at the quantum36

mechanical (QM) level of theory. For this reason, classical empirical potential energy functions known as force fields are often37
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used in place of quantum mechanics in order to efficiently simulate chemical and biological systems. General small force fields,38

such as the general AMBER force fields GAFF and GAFF2 [39–41], OPLS [17, 23], CGenFF [36, 37], and the Merck molecular force39

fields MMFF94 andMMFF94S [10–16], were built to model a wide variety of small organic molecules. These force fields are often40

fit to attempt to reproduce energies and geometries observed in QM calculations. However, when applied to new molecules,41

they have been observed to differ from both quantum mechanical calculations and from each other in predicted energies and42

optimized geometries for important areas of chemical space [3, 7, 27, 33].43

In the present study, we aimed to identify regions of chemical space where parameterization differences between force44

fields lead to different optimized geometries for small drug-like molecules in the gas phase. Geometric differences between45

force fields for some molecules would indicate that the underlying force fields describe the molecule differently, and thus are46

indicative of force field differences. Here, a subset ofmolecules from the eMolecules database [5] was used as a broad sample of47

small molecule chemical space. Five energyminimizations were performed on eachmolecule using one of five force fields: GAFF,48

GAFF2, MMFF94, MMFF94S, and theOpen Force Field Initiative’s SMIRNOFF99Frosst [27]. Two geometricmeasurements, Torsion49

Fingerprint Deviation [31] (TFD) and TanimotoCombo [18], were used to better identify meaningful geometric differences that50

may suggest parameterization inconsistencies.51

One key assumption in our work is that large geometric differences in optimized geometries tend, overall, to be indicative of52

substantial differences in the underlying force fields. In other words, we operate with the belief that differences in force fields53

which are substantial enough to result in large differences in optimized geometries are interesting to force field developers.54

This assumption does not mean that such force field differences are necessarily large; indeed, small force field differences can55

result in large differences in optimized geometries [6, 27, 33]. This is because many organic molecules have a large number56

of conformational minima often separated by relatively small barriers, so small force field differences may cause a molecule57

to optimize into different minima. Rather, we assume that force field differences which are large enough to substantially alter58

optimized geometries are of interest, even if the force field differences themselves are relatively small. All minimizations were59

performed with the same starting structure to ensure that differences observed are as attributable as possible to differences in60

force fields.61

In part, our work is motivated by the Open Force Field Initiative (OpenFF), which seeks to develop open data sets and in-62

frastructure which can be used to produce new force fields which improved accuracy. It recently released an initial prototype63

force field, SMIRNOFF99Frosst [27] and, given our connection with OpenFF, SMIRNOFF99Frosst is one focus of our testing in the64

present study.65

By identifying particular functional groups or substructures that lead to drastically different geometrically optimized con-66

formers, we will have identified a portion of chemical space that is inconsistently parameterized by the gamut of force fields67

studied, and thus is likely to be inaccurately described by at least some of these force fields. In the future, these molecules could68

be prioritized when training new force fields through inclusion in QM reference calculations or searches for new experimental69

data.70

2 Results and Discussion71

In this study, we aimed to identify portions of small molecule chemical space which are particularly informative for force field72

development. After filtering eMolecules as described in Section 3.3, we were left with 2.7 million molecules. We optimized each73

of these molecules with each of the five force fields considered – GAFF, GAFF2, MMFF94, MMFF94S, and SMIRNOFF99Frosst [10–74

16, 27]. For any given molecule, we performed pairwise comparisons of these five minimized conformers, yielding ten compar-75

isons that we here call "molecule pairs" (though each member of a molecule pair is actually the same molecule in different con-76

formations). Each of the molecule pairs was evaluated for geometric differences using Torsion Fingerprint Deviation (TFD) [32]77

and TanimotoCombo [18]. We limited our analysis tomolecules having 25 or fewer heavy atoms. Furthermore, we restricted our78

analysis to molecule pairs which yielded a TFD value less than 0.60 and a TanimotoCombo value between 0.25 and 2.0. These79

cutoffs were chosen based on visual inspection, as explained in detail in Section 3. Last, we sort molecules into different sets,80

which were then characterized using the Checkmol [8, 9] functional group identification tool.81

Here, we chose TFD and TanimotoCombo, rather than themore common RMSD, as keymetrics for this analysis. The primary82

trouble with RMSD is that it is highly dependent on molecular size. For example, a value of 1.0 Åmight correspond to a very83

large geometric difference for an extremely small molecule (e.g. butane) but a trivial geometric difference for a large, drug-like84

molecule (e.g. lipitor). Both TFD and TanimotoCombo are dimensionless numbers covering a well defined scale (TFD from 0 to85

1; TanimotoCombo from 0 to 2) allowing us to define similarity and difference flags which are independent of molecular size. As86
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described above, these metrics also track well with the qualitative structural differences we hope to identify in molecule pairs.87

While RMSD also captured some of these differences, its size dependence makes it impractical for surveying a wide variety of88

molecules.89

Figure 1. The vast majority of molecule pairs are geometrically similar by TanimotoCombo and TFD. Each point on this graph represents
a molecule pair, i.e., a pair of structures of the same molecule, geometrically optimized with different force fields. The points are plotted at
the resulting TFD and TanimotoCombo scores of the molecule pair. If the two minimized structures are identical, we would expect a Tanimoto
Combo score of 2.0 and a TFD score of 0.0. For the purposes of this project, we flag molecule pairs yielding a TFD score above 0.2 and a
TanimotoCombo score above 0.5 as being informatively different. This region is shaded red on the graph. Pairs judged as similar are shaded
blue; the white region is included in neither category to avoid extreme sensitivity to choice of cutoff. This graph displays a random sample of
38,880 molecule pairs out of the total of 26,984,560 molecule pairs analyzed in this project.

2.1 Molecule pairs were flagged as similar or different based on TFD and TanimotoCombo90

We used TanimotoCombo and TFD to identify molecules with dissimilar geometries in order to potentially identify molecules91

with parameter inconsistencies. We assign a “difference flag” to a molecule pair (in a “molecule pair”, the comparison is made92

across force fields) when it yields a TFD value over 0.20 and a TanimotoCombo value over 0.50. These pairs visually exhibit dif-93

ferent minimized geometries that may be indicative of parameterization differences. Out of 26,984,560 possible molecule pairs94

involving any pair of force fields, the combination of the SMIRNOFF99Frosst and GAFF2 force fields yielded the largest number95

of difference flags (305,582, Table 1)). This indicates that these force fields are quite different. In contrast, the combination96

of MMFF94 and MMFF94S yielded the smallest number of difference flags at 10,048 difference flags, indicating that these two97

force fields are the most similar among those being compared. These numbers are sensible given the history of these force98

fields – GAFF2 has undergone considerable recent reparameterization [39] and SMIRNOFF99Frosst inherits parameters from99

parm@Frosst [1], a sibling force field of GAFF, while reducing the number of parameters with an entirely different form of chemi-100

cal perception [26, 27]. In contrast, MMFF94 and MMFF94S are identical aside from their treatment of some nitrogen atoms [15]101

consequently their optimized conformers should be rather similar, as reflected in our scores. Thus, these results match what102

would be expected from the parameterization history of these force fields.103
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Table 1. Number of difference flags in analysis for each FF pair (out of 2,698,456 molecules). Shown are the number of difference flags ob-
tainedwhen comparing each FF pair, with each difference flag representing amolecule with a substantially different geometry afterminimization
with those two force fields.

FF GAFF GAFF2 MMFF94 MMFF94S SMIRNOFF

GAFF - 87,829 153,244 142,369 268,830

GAFF2 - - 138,716 131,528 305,582

MMFF94 - - - 10,048 267,131

MMFF94S - - - - 246,894

SMIRNOFF - - - - -

We also label molecule pairs with highly similar geometries. To do this, we assign “similarity flags” to molecule pairs that104

yielded TFD values under 0.18, indicative of similar geometries (Table 2). In order to visualize the number of molecule pairs with105

each flag, we plot TFD versus TanimotoCombo for all molecule pairs. We highlight regions flagged as similar and different along106

with regions outside the interest of this analysis (Figure 1). Figure 1 likewise shows that the vast majority of molecule pairs were107

rated similar by both TFD and TanimotoCombo.108

Table 2. Number of similarity flags in analysis for each FF pair (out of 2,698,456 molecules). Shown are the number of similarity flags
obtained when comparing each FF pair, with each similarity flag representing a molecule with a similar geometry after minimization with those
two force fields.

FF GAFF GAFF2 MMFF94 MMFF94S SMIRNOFF

GAFF - 2,577,081 2,467,654 2,481,084 2,324,408

GAFF2 - - 2,483,650 2,493,171 2,277,081

MMFF94 - - - 2,678,568 2,294,096

MMFF94S - - - - 2,319,197

SMIRNOFF - - - - -

2.2 Sets of molecules were created based on their similarity and difference flags109

We then sort themolecules into sets of interest by their patterns of difference and similarity flags. Asmolecule pairs were formed110

from a set of five conformers, each resulting from optimization with a different force field, each molecule results in ten different111

molecule pairs which can be assigned either a difference or similarity flag. All molecules that yielded five or more difference112

flags out of ten were added to the set named “FivePlus.” We also categorized molecules of particular interest for each force field.113

For each force field, we identified molecules in which two conditions held: (1) all molecule pairs involving that force field were114

flagged as different, and (2) the molecule pairs not including that force field were flagged as similar. Accordingly, molecules in115

these sets must result in four difference flags and six similarity flags; molecules in these sets can not also be in the FivePlus set.116

This allows us to highlight molecules which were treated differently by only one force field, potentially indicating problems in117

the force field’s parameters for the represented chemistries of the molecule. We called this set the “Individually Different” set118

for that force field. For example, the molecules identified in this scheme for SMIRNOFF99Frosst were added to the ”Individually119

Different SMIRNOFF” (IDSMIRNOFF ) set. This latter analysis is probablymost relevant to the SMIRNOFF force field, as GAFF/GAFF2120

andMMFF94/MMFF94S come in families which would reduce the number of cases meeting these criteria if intra-family similarity121

is high – specifically, if both family members treat a molecule consistently, it will not be flagged as "individually different" for that122

force field.123

Our results after categorizing put 111,162 molecules into the FivePlus and 93,859 molecules in the IDSMIRNOFF set out of a124

total of 2,698,456 molecules. The IDSMIRNOFF set was the largest of the individually different force field sets, as is displayed in125

Table 3. As noted, we had some expectation SMIRNOFF might be relatively distinct from the other force fields considered.126
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Table 3. Number of molecules in each set of interest. Shown are the number of molecules in each of six sets of interest (described in
Section 2.1); briefly, the FivePlus set contains molecules with substantially different geometries across multiple force fields, whereas the other
sets contain molecules in which only the indicated force field yields a substantially different geometry from other force fields. The set with the
largest number of molecules, the FivePlus set, contains 111,162 molecules out of the 2,698,457 molecules analyzed. No molecule can appear in
more than one set of interest.

Set of Interest Number of Molecules

FivePlus 111,162

Individually Different SMIRNOFF 93,859

Individually Different GAFF2 13,689

Individually Different GAFF 813

Individually Different MMFF94S 718

Individually Different MMFF94 72

2.3 Certain functional groups are more likely to be responsible for geometric differences127

We characterized molecules with five or more difference flags128

Molecules which yielded five or more out of ten possible difference flags were separated into what we call our FivePlus set. This129

set contained 111,162 total molecules, comprising 4.62% of all molecules included in this analysis. Visualizations of selected130

molecule pairs from the FivePlus set displaying significant geometric differences are provided in Figure 2.131

We observed 150 Checkmol functional group descriptors with at least two occurrences within the FivePlus set. For each132

descriptor, we compared the proportion of FivePlus molecules with this descriptor to the proportion of molecules with this133

descriptor in the total set (Eq. 1), to assess whether any particular chemistries/functional groups tend to increase the likelihood134

of force fields treating molecules differently (and thus it ending up in the FivePlus set). We then identified the descriptors that135

are over-represented within the FivePlus set. For each of the descriptors we include in this section, we will provide an inline136

SMILES pattern for that descriptor along with the number of molecules with that descriptor in the current set of interest and the137

total set in the form (SMILES, number of molecules with the descriptor in the set of interest, number of molecules in total). For138

example, disulfides ([R1]SS[R2], 51, 302) yield an over-representation factor of 4.04 in the FivePlus set.139

The most over-represented descriptor within the FivePlus set was the thiocarbonic acid monoester (OC(O[R])=S, 5, 26),140

which were over-represented in the FivePlus set by a factor of 4.67. Three other descriptors were over-represented in the141

FivePlus set by a factor greater than 4:142

1. Thiocarbamic acid halides ([F,Cl,Br,I]C(N([R])[R])=S, 3, 17) were over-represented in the FivePlus set by a factor of 4.28.143

2. Phosphoric acid amides ([R]P(N([R])[R])([R])=O, 51, 302) were over-represented in the FivePlus set by a factor of 4.10.144

3. Disulfides ([R]SS[R], 149, 895) were over-represented in the FivePlus set by a factor of 4.04.145

Themost under-representeddescriptor in the FivePlus setwas the ketene ([R]C([R])=C=O, 9, 2124), with anover-representation146

factor of 0.11. This suggests that most force fields describe geometries of ketenes consistently, possibly due to the ketene func-147

tion group’s simple linear structure.148

We repeated this process with pairs of Checkmol descriptors to see whether particular combinations of descriptors are149

especially indicative of discrepancies. We observed 6,500 descriptor pairs occurring in at least two cases in the FivePlus set.150

As with singular descriptors, we compared the proportion of molecules displaying a descriptor pair in the FivePlus set to the151

proportion of molecules displaying a descriptor pair in the total set (we applied the same expression, Eqn. 1, but for A+B de-152

scriptor pairs). The most over-represented descriptor pair in the FivePlus set were imidoyl halides paired with oxime molecules153

([R]/C([F,Cl,Br,I])=N\[R] & [R]/C([R])=N \O, 3, 3), which was over-represented in the FivePlus set by a factor of 24.28, but154

the number of molecules with this particular combination is so low it makes it hard to know how much weight to give this ob-155

servation. We determined by visual inspection that the imidoyl halide and oxime functional groups were in close proximity in156

these molecules, such that they may form a conjugated system. The force fields inconsistently predicted planar groups within157

this larger system. Two other descriptor pairs were over-represented in the FivePlus set by a factor greater than 19:158

1. Quaternary ammonium salts paired with secondary aromatic amine molecules ([R][N+]([R])([R])[R] & [R]N[R], 11, 12)159

were over-represented in the FivePlus set by a factor of 22.25.160
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2. Secondary aliphatic amines paired with disulfide molecules ([R]N[R] & [R]SS[R], 11, 12) were over-represented in the161

FivePlus set by a factor of 19.90.162

Again, these combinations are rare, so conclusions must be tentative at best.163

Table 4. Selected Over-Represented Checkmol Descriptors and Descriptor Pairs in the FivePlus Set. Shown are the over-representation
factors corresponding to selected descriptors or descriptor pairs, calculated using Equation 1. Descriptor pairs are denoted with an ampersand,
e.g. “Descriptor One & Descriptor Two”. The four descriptors and three descriptor pairs shown are the most over-represented descriptors and
descriptor pairs of the FivePlus set.

Descriptor or Descriptor Pair Over-Representation Factor

Thiocarbonic Acid Monoester 4.67

Thiocarbamic Acid Halide 4.28

Phosphoric Acid Amide 4.10

Disulfide 4.04

Imidohalide & Oxime 24.28

Quaternary Ammonium Salt & Secondary Aromatic Amine 22.25

Secondary Aliphatic Amine & Disulfide 19.90

Some pairs of descriptors aremore likely to appear in the set of interest togethermore often than they are apart. We quantify164

this dependence by our pair enrichment factor (PEF) measurement (Eq. 2). The descriptor pair that showed the greatest degree165

of this dependence is quaternary ammonium salts paired with secondary aromatic amines ([R][N+]([R])([R])[R] & [R]N[R],166

11, 12), which yielded a pair enrichment factor of 2,807. Two other descriptor pairs yielded pair enrichment factors greater than167

1,000:168

1. Imines paired with thioxohetarenes ([R]/C([R])=N\[R] & [R]N1C=CC=CC1=S, 13, 24) yielded a PEF of 1,967.169

2. 1,2-amino alcohols paired with carboxylic acid hydrazides ([R]C(N([R])O)=O& [R]C(N([R])N)=O, 2, 3) yielded a PEF of 1,188.170

These findings display that heteroatoms, especially in delocalized pi-systems, are likely to lead to inconsistent optimized171

geometries. In particular, nitrogen, phosphorus, and sulfur atoms were found in all of the most over-represented descriptors172

and descriptor pairs. This is in line with our expectations, as QM treatments of sulfur and phosphorus are computationally173

expensive. Early force field development may have prioritized parameters for only the most common functional groups that174

involve sulfur and phosphorus. Our procedure has identified molecular fragments that yielded inconsistent geometries, and175

therefore can be improved upon in future force fields. Furthermore, nitrogen planarity errors are a known issue across force176

fields [15, 27]. We therefore believe that the descriptors identified by this proceduremay be informative for the creation/training177

of higher accuracy small molecule force fields. Molecules containing these fragments should be included in future force field178

training sets in order to create more accurate and general small molecule force fields.179

Table 5. Selected Pair Enriched Checkmol Descriptor Pairs in the FivePlus Set. Shown are the pair enrichment factors corresponding
to selected descriptor pairs, calculated using Equation 2. The three descriptor pairs shown are the three pairs that yielded the highest pair
enrichment factor in the FivePlus set.

Descriptor or Descriptor Pair Pair Enrichment Factor

Quaternary Ammonium Salt & Secondary Aromatic Amine 2807

Imine & Thioxohetarene 1967

1,2-Amino Alcohol & Carboxylic Acid Hydrazide 1188
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Figure 2. Molecule pairs from the FivePlus set display visual geometric differences. The six molecules displayed here were identified
from the FivePlus set using the over-represented descriptor and descriptor pair method described in Section 3.1 and thus are molecules where
geometries differ substantially across force fields. Each panel shows a molecule (with the 2D structure shown as inset) and a pair of minimized
conformers resulting from optimization with different force fields. These highlight geometric differences between minimized structures. While
many structure pairs yield difference flags for molecules in the FivePlus set, only one structure pair is displayed for each molecule here. The
lightly colored structure was optimized with GAFF, while the darkly colored structure was optimized with SMIRNOFF. (1) While GAFF predicts
a planar structure of the ring system, SMIRNOFF predicts a buckled ring for this molecule with the disulfide descriptor. (2) GAFF predicts the
imidoyl halide group to be nonplanar in this molecule with the imidoyl halide and oxime descriptors, while SMIRNOFF predicts it to be planar. (3)
SMIRNOFF predicts a larger bond angle between the amine and non-bridging oxygen than does GAFF in this molecule displaying the phosphoric
acid amide descriptor. (4) This molecule displays both the quaternary ammonium cation and the secondary aromatic amine descriptors. While
SMIRNOFF predicts a planar thiadiazolium ring, GAFF predicts it to be nonplanar. (5) While GAFF predicts the thiocarbamic acid halide fragment
to be planar and perpendicular to the aromatic ring, SMIRNOFF predicts it to be nonplanar and off-perpendicular to the aromatic ring. (6) This
molecule displays both the thioxohetarene and imine descriptors. While GAFF predicts a planar pyrroline ring, SMIRNOFF predicts this ring to
be buckled.

We characterized molecules where SMIRNOFF was individually different180

The OpenFF Initiative seeks to improve force fields via a series of progressive improvements, thus we focus on the SMIRNOFF181

force field in particular in order to help our work with OpenFF. Specifically, we identify molecules where parameterization dif-182
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ferences in SMIRNOFF relative to other force fields lead to geometry differences. Molecules that yielded four difference flags183

from combinations including the SMIRNOFF-minimized conformer, and six similarity flags from combinations not including the184

SMIRNOFF-minimized conformer, were likewise grouped into a set of interest. We refer to this set as the Individually Different185

SMIRNOFF (IDSMIRNOFF ) set. This set contained 93,859 molecules in total, or 3.48% of all molecules included in this analysis.186

Visualizations of molecule pairs from the IDSMIRNOFF set displaying geometric differences are provided in Figure 3.187

We observed 139 Checkmol descriptors in at least two molecules in the IDSMIRNOFF set. We compared the proportion of188

molecules exhibiting some descriptor within the IDSMIRNOFF set to the proportion of molecules exhibiting the descriptor in the189

total set (Equation 1). We can then identify descriptors that are over-represented or underrepresented within the IDSMIRNOFF190

set. The most over-represented descriptor within the IDSMIRNOFF set was the azo compound descriptor ([R]/N=N/[R], 717,191

1500) which was over-represented in the IDSMIRNOFF set by a factor of 13.74. Such compounds have been a focus of reparam-192

eterization efforts in more recent versions of SMIRNOFF-based force fields, in particular in OpenFF 1.1. [21, 38], consistent with193

our observation here that these may be poorly treated. We discuss later OpenFF releases further below. Four other descriptors194

were over-represented in the IDSMIRNOFF set by a factor greater than 4:195

1. Carbodiimides ([R]N=C=N[R], 4, 19) were over-represented by a factor of 6.05.196

2. Acylcyanides ([R]C(C#N)=O, 5, 30) were over-represented by a factor of 4.79.197

3. Hydrazones ([R]/C([R])=N/N([R])[R], 2962, 20,025) were over-represented by a factor of 4.25.198

4. Thioaldehydes ([R]C([H])=S, 23, 165) were over-represented by a factor of 4.01.199

The most underrepresented descriptor in the IDSMIRNOFF set was the 1,2-amino alcohol ([R]N([R])CCO, 159, 24,344), with an200

over-representation factor of 0.19.201

We observed 5,805 descriptor pairs in at least two molecules in the IDSMIRNOFF set. As with singular descriptors, we com-202

pared the proportion of molecules displaying a descriptor pair in the IDSMIRNOFF set to the proportion of molecules displaying203

a descriptor pair in the total set (Equation 1). These descriptor pairs and their over-representation factors are likewise included204

in Table 4. Six different descriptor pairs were tied as most over-represented in the IDSMIRNOFF set. For these, all molecules205

displaying these pairs in the total set were also included in the IDSMIRNOFF set. For example, there were five molecules char-206

acterized as both ketene acetal derivatives and oximes ([R]/C([R])=C([R])\[R] & [R]/C([R])=N \O, 5, 5), and all five of these207

molecules were also present in the IDSMIRNOFF set. We observed two other descriptor pairs which occurred in greater than 10208

molecules in the IDSMIRNOFF set and had an over-representation factor greater than 20:209

1. Azo compounds paired with Aldehydes ([R]/N=N/[R] & [R]C([H])=O, 41, 49) were over-represented by a factor of 24.06.210

2. Hydrazones andHydroxamic Acids ([R]/C([R])=N/N([R])[R]& [R]C(N([R])O)=O, 14, 18) were over-represented by a factor211

of 22.36.212

Table 6. Selected Over-Represented Checkmol Descriptors and Descriptor Pairs in the IDSMIRNOFF Set. Shown are the over-
representation factors corresponding to selected descriptors or descriptor pairs, calculated using Equation 1. Descriptor pairs are denoted
with a "&" symbol, e.g. “Hydrazone & Hydroxamic Acid”. These are some of the most over-represented descriptors and descriptor pairs of the
IDSMIRNOFF set. Note that the “Ketene Acetal Derivative & Oxime” pair has a very high over-representation factor because all 5 molecules
displaying this descriptor pair are in the IDSMIRNOFF set.

Descriptor or Descriptor Pair Over-Representation Factor

Azo Compound 13.74

Carbodiimide 6.05

Acylcyanide 4.79

Hydrazone 4.25

Thioaldehyde 4.01

Ketene Acetal Derivative & Oxime 287.50

Azo Compound & Aldehyde 24.06

Hydrazone & Hydroxamic Acid 22.36

We also calculated pair enrichment factors (PEFs), as described in Equation 2, for the IDSMIRNOFF set of molecules. The213

descriptor pair that showed the greatest degree of this dependence in the IDSMIRNOFF set is the iminohetarene & secondary214
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alcohol pair ([R]/N=C1C=CC=CN/1[R] & [R]C(O)[R], 3, 10), which yielded a PEF of 2,308, relative to a mean PEF of 49.83 for the215

IDSMIRNOFF set. Two other descriptor pairs yielded PEFs greater than 2,000:216

1. Iminohetarenes paired with tertiary alcohols([R]/N=C1C=CC=CN/1[R] & [R]C(O)([R])[R], 4, 6) yielded a PEF of 2,187.217

2. Thiocarboxylic acid amides paired with primary aliphatic amines ([R]C(N([R])[R])=S & [R]N, 2, 3) yielded a PEF of 2155.218

Descriptor pairs with high pair enrichment factors may suggest unique chemistries that lead to geometric inconsistencies that219

were not accurately described by single descriptors.220

Nitrogen atoms in conjugated systems make up a large portion of molecules that were optimized to unique structures by221

SMIRNOFF. While other force fields have likewise had problems with nitrogen planarity, our results display two checkmol de-222

scriptors, azo compound and hydrazone, that are especially informative for SMIRNOFF. By visual inspection, molecules with one223

of these descriptors in between two aromatic rings are especially prominent, as can be seen in boxes 2, 3, and 4 of Figure 3. QM224

calculations are necessary to determine if SMIRNOFF’s minimized conformers weremore or less accurate than other force fields.225

Still, molecules like thesewill be useful in training sets of future force fields. In other cases, such as those displayed in boxes 5 and226

6 of Figure 3, SMIRNOFF disagrees with other force fields on the geometry of secondary carbon atoms in certain environments.227

SMIRNOFF assigns parameters to molecules separately by type (i.e. bonds, angles, and torsions are treated independently) with228

explicit treatment for bond order which differs from the atom-type approach used by the other force fields in this study [26]. It229

is possible this change in chemical perception can help account for the change in treatment of these systems. QM data on these230

molecules will be useful for future iterations of the SMIRNOFF force field, which are already in development.[2, 21, 24, 29]231

Table 7. Selected Pair Enriched Checkmol Descriptor Pairs in the IDSMIRNOFF Set. Shown are the pair enrichment factors corresponding
to selected descriptor pairs, calculated using Equation 2. The three descriptor pairs shown are the three pairs that yielded the highest pair
enrichment factor in the IDSMIRNOFF set.

Descriptor Pair Pair Enrichment Factor

Iminohetarene & Secondary Alcohol 2,308

Iminohetarene & Tertiary Alcohol 2,187

Thiocarboxylic Acid Amide & Primary Aliphatic Amine 2155
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1.

3. 4.

2.

5. 6.

Figure 3. Molecule pairs from the Individually Different SMIRNOFF set display visual geometric differences. The displayed molecules
were identified from the IDSMIRNOFF set using the descriptor method in Section 3.1. For each molecule, shown in a 2D inset, we visualize
the minimized conformer with SMIRNOFF (darker colors) and GAFF - representing all non-SMIRNOFF force fields (lighter colors). (1) SMIRNOFF
predicts the acylcyanide group to be near perpendicular to the aromatic ring, while GAFF makes it near planar. (2) The two force fields disagree
on the appropriate torsion angle for the C-N=N-C bond in the azo group. (3) Again, the SMIRNOFF and GAFF force fields disagree on the planarity
of the azo group where the orientation of the aldehyde group agrees between the two force fields. (4) The substituted hydrazone’s change in
planarity dominates this molecule with the hydrazone descriptor. (5) In this molecule with a thiocarbonyl, GAFF keeps all carbons planar while
SMIRNOFF allow the carbon-carbon single bonds to rotate. (6) This molecule pairs thiocarboxylic acid amide and primary amine descriptors
where GAFF predicts the primary amine to bend out of plane, while SMIRNOFF predicts all heavy atoms to be planar.

2.4 This work has been used to improve training datasets for the OpenFF Parsley series232

In the present work, discrepancies between optimized geometries from different force fields highlight potential issues, but we233

have no ground truth or point of reference for sorting out which geometries are correct and which are not. This data simply234

helps us select molecules/chemistries which may be informative, and prioritize them for further study. Particularly, ideally one235

might generate optimized geometries for these same molecules with QM calculations and then use these to help assess which236
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force fields produce the best results, or use these in force field training sets to improve force field quality.237

Indeed, informative molecules from the present study are being used for precisely that purpose. Particularly, a subset of238

the FivePlus set was used as the basis for the "coverage" set used for the first OpenFF Parsley release, OpenFF 1.0 [29]. A larger239

portion was used in benchmarking OpenFF 1.0. Then, for OpenFF 1.2, training data was completely redesigned, in part drawing240

fromwhat was called the "eMolecules Discrepancies Set" [22, 25], corresponding to the first portion of the FivePlus set generated241

here. This training data redesign resulted in improved performance on a variety of benchmarks [21, 24]. The relevant optimized242

geometries are freely available in QCArchive [Smith et al.] as part of the OpenFF 1.2 training and benchmarking datasets.243

While subsequent OpenFF work building on the data generated here is not formally part of this study, it does appear that244

molecules identified as potentially informative by this approach do servewell as input for QM calculations and force field training,245

at least when coupled with additional data selection/curation steps.246

3 Methods247

In order to help improve force fields, we sought to to identify where current force fields differ from one another. Here, we248

compared results of force fields (particularly, optimized geometries) after energy minimizing a large subset of the eMolecules249

database to identify sets of molecules for use in future force field parameterization.250

Multiple force fields were used to minimize conformers251

We created input files for multiple force fields from a filtered eMolecules set (filtering described in Section 3.3). Partial charges252

were assigned to molecules before minimization using the OpenEye implementation of AM1-BCC [19, 20]. The input generation253

process yields one Tripos MOL2 file to be minimized directly with SMIRNOFF99frosst, MMFF94, and MMFF94S, as well as indi-254

vidual input coordinate and parameter topography files for use by GAFF (1.8) and GAFF2 (2.1). These force fields were chosen255

because they are widely-used, easily available, and compatible with our workflow. Other force fields were either incompatible256

with our toolchain without substantial additional work, or were commercial and proprietary. For example, comparisons with257

CGenFF [36, 37], OPLS-AA [23], or the Schrödinger OPLS series [17, 30] would be of considerable interest, but these require258

substantially different toolchains, and the most recent Schrödinger force fields are also proprietary and require paying for a259

license.260

Weminimized eachmolecule using the parameters from each of the five aforementioned force fields, making sure to start all261

fiveminimizations from the same conformer. Minimizationswith force fields other thanMMFFwere performedwithOpenMM [4]262

7.0.1 using the L-BFGS algorithm [28] with an energy tolerance of 5.0e-9 kJ/mol and a maximum of 1500 iterations. MMFF mini-263

mizations were performed with OpenEye’s Szybki Toolkit [35, 42]. Sample run files can be found in the Supporting Information.264

Molecules that did not successfully result in five minimized structures (one from each force field), were removed from analy-265

sis. For each molecule with five minimized structures, pairwise comparisons yielded a total of ten molecule pairs for geometric266

evaluation. We call these pairs of minimized conformers generated by different force fields “molecule pairs.”267

Molecule pairs were assessed using Torsion Fingerprint Deviation and TanimotoCombo268

We then assessed eachmolecule pair for geometric differences. Molecule pairswere evaluated using twodistinctmeasurements:269

Torsion Fingerprint Deviation (TFD) and TanimotoCombo.270

TFD is amethod of measuring geometric differences between two conformers of the samemolecule based on torsion angles.271

The TFD score between two structures represents a weighted sum of torsional differences as defined by Schulz-Gasch et al. in272

2012 [31]. Torsions central to the molecule are given more weight than torsions on the periphery of the molecule. Similarly with273

RMSD, geometric similarity is inversely correlated with TFD score. TFD scores range from 0 to 1, with 0 being most similar and 1274

being most different. The authors of TFD consider scores over 0.2 to represent significantly different geometries. In contrast to275

RMSD, TFD is bounded and less sensitive to molecular size, making it particularly helpful here.276

TanimotoCombo, from OpenEye Scientific, is a normalized method of measuring geometric similarity between molecules. It277

is the sum of ShapeTanimoto, a measure of overall spatial overlap between two molecules, and ColorTanimoto, a measure of278

spatial overlap of specific functional groups between two molecules, both of which are also metrics from OpenEye. Tanimoto-279

Combo values between two conformers range between 0 and 2 (it is the sum of two values running from 0 to 1), with 2 being280

the most similar and 0 being the most different.281

By visual inspection, we determined that TanimotoCombo is useful for recognizing cases where geometric differences are282

caused by particularly flexible moieties, such as single bond rotations in an alkyl chain. These differences can often be attributed283

to minor differences between force fields leading to flexible bond rotations, not to larger differences in force fields that result284
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in more substantial geometric differences. Thus, here, we find that TanimotoCombo alone does not serve to help us isolate285

geometry differences that are likely due to substantial force field differences; instead, low TanimotoCombo values can result286

from simple bond rotations that result from molecules energy minimizing to different local minima that we do not consider287

particularly interesting by visual inspection. However, TanimotoCombo in conjunctionwith TFD can be used to identify geometric288

differences that suggest underlying inconsistencies in parameterization.289

Molecule pairs were flagged as similar or different based on TFD and TanimotoCombo290

We identified molecule pairs displaying parameterization differences which led to different geometries using TFD and Tanimo-291

toCombo. TFD is sensitive to ring deformations, torsional differences, and atom planarity changes, which makes it useful for292

recognizing differences in parameterization. TanimotoCombo, with greater sensitivity to coordinate differences caused by con-293

formational flexibility in a molecule, is more useful for removing cases that are less likely to be caused by parameterization294

differences, or which may simply be due to minor differences in which rotamer a molecule minimizes to.295

We chose cutoffs to flag molecule pairs displaying parameterization differences (flagged “different”) and pairs displaying no296

parameterization differences (flagged “similar”). TFD values below 0.20 are believed to be pharmacologically similar [31], so we297

chose a TFD value greater than 0.20 to label molecule pairs as different. After visual inspection of a variety of molecules, we298

observed that molecule pairs with a TanimotoCombo under 0.5 typically had changes due to single bond rotations. Because299

such bond rotations can arise from a variety of reasons aside from substantial differences in parameterization, we did not wish300

to focus on such cases. Thus, molecule pairs with a TFD value greater than 0.20 as well as a TanimotoCombo value greater than301

0.50 were flagged as different – allowing us to focus on cases with substantial torsional differences which were NOT simply due302

to rotations around highly flexible bonds. We used a substantial amount of manual inspection of these thresholds to help us303

make these choices. As a result of these choices, any pair of molecules with a TFD value of 0.18 or less was assigned a similarity304

flag, as it will display geometrically similar structures. We left a small buffer region between 0.18 and 0.2 when defining similarity305

flags in order to avoid an extreme sensitivity to small changes around the 0.20 cutoff.306

TFD: 0.046

TanimotoCombo: 0.27

Figure 4. Molecule pairs with low TanimotoCombo and low TFD scores are often uninformative. Here, we show an example of a molecule
pair that we did not deem informative for force field parameterization. The lightly colored molecule was minimized with GAFF, while the darker
molecule was minimized with SMIRNOFF. The two minimized structures display little geometric differences outside of the placement of sub-
stituents around the sulfonamide group; most of the geometric difference appears due to rotation of a single torsion. The low TFD value of
0.046 implies that these structures are highly similar by TFD, while the low TanimotoCombo value of 0.27 implies that these structures are
starkly different by TanimotoCombo. By visual inspection of this molecule and others, we determined that molecule pairs with low Tanimoto
Combo and low TFD scores were often not as informative, at least with respect to our goals in this project.

Molecule pairs that yielded very high TFD or very low TanimotoCombo values were determined to often be uninformative.307

Tagging these molecule pairs as ‘different’ would be unhelpful because the differences are not due to substantial changes in308
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force field parameters. Most molecule pairs in this category displayed cases of what might be called "conformer chirality" –309

where an achiral molecule was minimized to two similar but non-superimposable structures – essentially, collapsing down to310

two minima which are equivalent to the force field but not geometrically identical. A number of molecule pairs, most with small311

flexible ring systems, yielded TFD values greater than 1 (which should not be possible). While this behavior was unexpected, we312

continued to use RDKit’s implementation without modifications. Considering these results, we removed molecule pairs with a313

TFD greater than 0.60 or a TanimotoCombo less than 0.25.314

3.1 We created and characterized sets of interest315

Molecules can be sorted into sets of interest by considering the combinations of their difference and similarity flags. One316

molecule in this pipeline will yield five minimized structures. Taking pairwise combinations of these structures can yield ten317

molecule pairs, and thus up to ten flags. Molecules that yielded a large number of difference flags, regardless of the force318

fields of origin, are of particular interest for force field parameterization. Specifically, we set aside molecules with five or more319

difference flags for further analysis, we call this our FivePlus set.320

The other sets of interest are based on the origin of the difference flags with the goal of identifying molecules which behave321

differently with one force field than all the others. For a molecule to be considered different with that one force field, all four322

molecule pairs including that force field should be flagged as different and all other molecule pairs need to be flagged as similar.323

We call these Individually Different Sets for each force field, i.e. for SMIRNOFF we create the SMIRNOFF Individually Different324

set with the label IDSMIRNOFF . A molecule in the IDSMIRNOFF set would have 4 difference flags, one for each pair including325

SMIRNOFF, and six similarity flags for all other force field combinations.326

3.2 Sets of interest were analyzed by the frequencies of the functional groups327

Identifying functional groups which are more prevalent in our sets of interest could be informative for future force field param-328

eterization. To this end, we used Checkmol [9] to describe the combination of functional groups in each molecule. When given329

a molecule, Checkmol provides a list of descriptors for the functional groups it has. We count the number of molecules overall330

and in each set of interest that display each descriptor. From there, we can determine the most over-represented descriptors331

in each set of interest. We only considered descriptors and descriptor pairs that appeared at least twice in our full molecule set.332

We compute the over-representation factor describing howover-represented a particular descriptor is in a given set by dividing333

the frequency of the descriptor in the set by the frequency of the descriptor in all molecule. Mathematically, we can write334

fA =
NA,set∕Nmols,set

NA,total∕Nmols,total

(1)

whereNA,set is the number of molecules containing descriptor A in a particular set,Nmols,set is the number of molecules in that335

particular set. NA,total is the number of molecules in total with descriptor A, and Nmols,total is the number of molecules in total.336

Force field behavior could change with combinations of functional groups, thus we repeated this calculation with pairs of337

Checkmol descriptors. We can apply Equation 1 to analyze pairs of descriptors by replacing A with A+B to represent molecules338

containing both descriptors. However, with pairs of descriptors, we are more concerned about if the combination of the de-339

scriptors is important. For example, if both descriptors A and B are highly probably in a set of molecules, then finding the340

combination in that set at a higher frequency is not particularly interesting. Thus, we try to determine if the descriptor pair is341

more likely to show up in a set of interest than the individual descriptors separately. To that end we calculate an enrichement342

factor given by343

fA+B

fA ⋅ fB

(2)

where fA+B denotes the frequency of the combined A and B descriptors in molecules in the set of interest, and fA and fB denote344

the individual frequencies of descriptors A and B in the set of interest. A larger enrichment factor indicates the combination of345

descriptors A and B is more likely to occur in a set of interest than those descriptors individually. Thus, descriptor pairs with a346

larger enrichment factor should be considered as important for future parameterization because the combination of functional347

groups changes a force field’s behavior.348

3.3 Molecules were sourced from the eMolecules online database349

Approximately 8.1 million molecules were initially sourced from the eMolecules database as SDF files (September 2016 ver-350

sion) [5]. Molecules from this set were then filtered by several criteria. We removed all molecules that contained any metal or351
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metalloid atoms, were over 200 heavy atoms, or had a nonphysical valence (such as a pentavalent carbon atom). Molecules352

which failed at any step of the process were also removed, i.e. could not be parameterized by one of the force fields. While353

we minimized all these molecules with each force fields, very large molecules are impractical for visual inspection or future QM354

calculations. Thus, we filtered the molecules for analysis here to remove molecules with more than 25 heavy atoms.355

4 Conclusions356

Here, we sought to determine informative molecules for force field parameterization. We assume that conformational differ-357

ences inmoleculesminimized with different force fields indicates thosemolecules ought to receive additional attention in future358

force field parameterization.359

Thus, we energy minimized a large portion of eMolecules with various force fields, and cross-compared the resulting opti-360

mized geometries based on TFD and TanimotoCombo metrics. We chose cutoffs for each of these metrics in order to prioritize361

conformational differences likely due to changes in force field parameters.362

Our analysis flags molecules for further analysis in several ways. First, we single out molecules that differ in treatment across363

many force fields as molecules which are likely to be particularly informative in general. Second, we can separate out molecules364

which are treated differently by only one force field as perhaps indicative of problems with that force field in particular. We365

can further break down informative molecules by looking at representation of functional groups, and pairs of functional groups,366

to identify those that are over-represented among informative molecules, perhaps indicating these functional groups require367

additional attention in force field parameterization.368

The descriptors which were over-represented in the FivePlus set could be informative for understanding the limitations of369

current force field parameterization procedure. All general small molecule force fields currently available depend on human370

determined typing rules – atom types in most force fields and the SMARTS patterns used in SMIRNOFF-based force fields. The371

differences in geometries around heteroatoms, especially sulfur and phosphorous, point to the potential bias of the scientists372

parameterizing each force field. Most of the time new parameter typing rules are added to force fields out of necessity and373

each group is going to prioritize different chemistry. Including typing rules in automatic force field parameterization should help374

reduce this bias since typing rules would be driven by training data rather than human choices.375

Finding the more accurate conformation in each molecule pair would require performing a quantum mechanical optimiza-376

tion(QM). QM calculations are significantly more expensive than a simple force field optimization. Our protocol allowed us to377

compare 26,984,560 molecule pairs. Our approach has identified regions of chemical space where force field parameterization378

is currently inconsistent. Our approach and results have identified descriptor and descriptor pairs which are different for each379

individual force field. Molecules with these descriptors could be prioritized for future parameterization leading tomore accurate380

force fields over all. Some work along these lines is already in progress [21, 22, 25, 29].381

5 Code and Data Availability382

We provide the code used in this project in our GitHub repository (https://github.com/mobleylab/off-ffcompare and with a DOI at383

https://dx.doi.org/10.5281/zenodo.3995606). Additionally, at https://dx.doi.org/10.5281/zenodo.3995059 we provide a supporting384

data package. This includes a .csv file which has TanimotoCombo and TFD scores, SMILES strings, and eMolecules identifiers385

for all 2,698,456 molecules analyzed. Additionally, we provide optimized geometries of 265,847 molecules with five or more386

difference flags. An archived copy of the GitHub repository is provided in the electronic Supporting Information associated with387

this paper.388
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