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Abstract

Diagnosing software failures in the field is notoriously difficult, in
part due to the fundamental complexity of trouble-shooting any
complex software system, but further exacerbated by the paucity
of information that is typically available in the production setting.
Indeed, for reasons of both overhead and privacy, it is common
that only the run-time log generated by a system (e.g., syslog) can
be shared with the developers. Unfortunately, the ad-hoc nature of
such reports are frequently insufficient for detailed failure diagno-
sis. This paper seeks to improve this situation within the rubric of
existing practice. We describe a tool, LogEnhancer that automati-
cally “enhances” existing logging code to aid in future post-failure
debugging. We evaluate LogEnhancer on eight large, real-world
applications and demonstrate that it can dramatically reduce the set
of potential root failure causes that must be considered during di-
agnosis while imposing negligible overheads.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Diagnostics

General Terms Reliability

Keywords Log, Software Diagnosability, Static Analysis

1. Introduction

Complex software systems inevitably have complex failure modes:
errors only triggered by some combination of latent software bugs,
environmental conditions and/or administrative errors. While con-
siderable effort is spent trying to eliminate such problems before
deployment or at run-time [9, 14, 38, 48], the size and complexity
of modern systems combined with real time and budgetary con-
straints on developers have made it increasingly difficult to deliver
“bullet-proof” software to end-users. Consequently, many software
failures still occur in fielded systems providing production services.

1.1 Production Failure Reporting

Production failures are problematic at two different levels. First,
they demand tremendous urgency; a production failure can have
direct impact on the customer’s business, and system vendors must
make the diagnosis and remediation their highest priority. Unfortu-
nately, this goal conflicts with a second problem — the substantial
difficulty in analyzing such failures. Indeed, diagnosing rare fail-
ures can be challenging even in a controlled setting, but produc-
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tion deployments are particularly daunting since often support en-
gineers are given insufficient information to identify the root cause,
let alone reproduce the problem in the lab.

To address this problem, a range of research efforts have fo-
cused on techniques for capturing external and non-deterministic
inputs, thereby allowing post-mortem deterministic replay [13, 20,
28, 33, 40, 44, 49, 50, 52, 55]. However, these approaches have
been slow to gain traction in the commercial world for several rea-
sons, including high overhead, environmental complexity (e.g., in-
teractions between multiple licensed software and hardware from
different vendors), and substantive privacy concerns.

A more established vehicle for diagnosis is the “core dump”,
which captures memory context and execution state in a file. How-
ever, core dumps have their own drawbacks. They are typically
collected only at the time of the crash failure. They only capture
program state but no execution history information (which is fre-
quently critical for diagnosis), and the comprehensive capture of
process state can once again preclude sharing such files due to pri-
vacy concerns 1.

Consequently, the sine qua non of production failure debug-
ging remains the log file. Virtually all software systems, whether
commercial or open source, log important events such as er-
ror or warning messages, as well as some historic intermediate
progress/bookkeeping information generated during normal exe-
cution. It is a common industry practice for support engineers to
request such logs of their customers upon failure, or even for cus-
tomers to allow their systems to transmit such logs automatically
(i.e., “call home” [18]). Since these logs focus on the system’s
own status and “health”, they are usually considered to be less sen-
sitive than other data. Moreover, since they are typically human-
readable, customers can inspect them first (either after a failure or
during initial contract negotiations). Consequently, most modern
systems today from EMC, NetApp, Cisco, Dell are able to col-
lect logs from at least 50% of their customers, and many of them
even have enabled the capability to automatically send logs to the
vendor [1, 2, 18, 47].

1.2 Diagnosing via Log Messages

Thus in many cases, log messages are the sole data source available
for vendors to diagnose reported failures. Support engineers then
attempt to map log message content to source code statements
and work backwards to infer what possible conditions might have
led to the failure. While a range of research projects have shown
that statistical machine learning techniques can be used to detect
anomalies or catch recurring failures that match known issues [3, 8,

1 Some systems, such as Windows Error Reporting [26] and Mozilla’s
Quality Feedback Agent [41] attempt to mitigate the privacy issues through
data minimization (typically limiting the scope of captured state to the
execution context and stack trace) but at the cost of yet reduced debugging
effectiveness. Indeed, these systems succeed because they aggregate large
numbers of failures with common causes, rather than due to their ability to
substantively aid in the debugging of any singular failure instance.



Figure 1. Example of real-world patches just for the purpose of enhancing log messages.

16, 29, 56], the detective work of mapping log messages to source
statements and then sifting through potential causes of individual
crashes remains a heavily manual activity.

Recent work on the SherLog system [57] addresses the first part
of this problem by automating this manual inference process. Sher-
Log is a post-mortem diagnosis tool that uses failure log messages
as starting points to automatically infer what source code paths may
have been executed during a failed execution. Although SherLog
can conduct deeper inference than manual efforts, it is still limited
by the amount of information available in log messages. Just like
manual inference by the programmers, if a log message does not
contain enough information, automatic log inference engines have
limited starting information to disambiguate between different po-
tential causal paths that led to a failure. It is precisely this limitation
that motivates the work in this paper. In Section 4.2 we will show
three real world cases to demonstrate how automatic log inference
engines like SherLog can perform better after log messages are en-
hanced with more causally-related information that is automatically
collected by LogEnhancer.

At its essence, the key problem is that existing log messages
contain too little information. Despite their widespread use in fail-
ure diagnosis, it is still rare that log messages are systematically de-
signed to support this function. In many cases, logging statements
are inserted into a piece of software in an ad hoc fashion to ad-
dress a singular problem. For example, in many cases, an error log
message may simply contain “system failed” without providing any
further context for diagnosis. While there are a number of “rules of
thumb” for designing better logging messages (e.g., such as logging
the error symptoms [51] and the thread ID with each message [57]),
these still do not capture the specific information (e.g., state vari-
able values) that are frequently necessary to infer a problem’s root
cause. Instead, developers update log messages to add more infor-
mation as they discover they need it. For example, there are more
than 900 different error log messages in apache httpd, capturing
various failure types, and over its five year history, we have identi-
fied 5,409 “enhancements” in the form of patches to these messages
to improve their fidelity. Figure 1 shows three such enhancements,
each of which expanded the log messages to capture distinct pieces
of diagnostic state. In our work we propose to systematically and
automatically add such enhancements to log messages, and thereby
improve the diagnostic power of logging in general.

1.3 Our Contributions

In the remainder of this paper, we present a tool called Log-
Enhancer, that modifies each log message in a given piece of
software to collect additional causally-related information to ease
diagnosis in case of failures 2. To be clear: LogEnhancer does not
detect bugs nor failures itself. Rather it is a tool for reducing the
burden of failure diagnosis by enhancing the information that pro-
grammers should have captured when writing log messages. Such

2 We target for production failure diagnosis even though our work can also
be useful for in-house testing and debugging.

additional log information can significantly narrow down the num-
ber of possible code paths and execution states for engineers to
examine to pinpoint a failure’s root cause.

In brief, we enhance log content in a very specific fashion, using
program analysis to identify which state should be captured at each
log point (a logging statement in source code) to minimize causal
ambiguity. In particular, we say that the “uncertainty” around a
log message reflects the control-flow paths or data values that are
causally-related but cannot be inferred from the original log mes-
sage itself. Using a constraint solver we identify which candidate
variable values, if known, would resolve this ambiguity. Note we
do not try to disambiguate the entire execution path leading to the
log message. For example, a branch whose directions have no ef-
fect for the execution to reach the log message will not be resolved
since it is not causally-related.

We explore two different policies for collecting these variable
values: delayed collection, which captures only those causally-
related key values that are “live” at the log point or can be in-
ferred directly from live data, and in-time collection, which, in
addition to those recorded in delayed collection, also records his-
torical causally-related key values before they are overwritten prior
to the log point. The latter approach imposes additional overhead
(2-8% in our experiments) in exchange for a richer set of diag-
nostic context, while delayed collection offers the reverse trade-
off, annotating log messages with only variable values “live” at log
points, while imposing minimal overhead (only at the time an ex-
isting message is logged).

We also develop a variant of the delayed collection method that
derives equivalent information from a core dump. Thus we can
perform a similar analysis with unmodified binaries when core files
are available.

Finally, we evaluate LogEnhancer with 8 large, real-world ap-
plications (5 servers and 3 client applications). We find that Log-
Enhancer automatically identifies 95% of the same variable values
that developers have added to their log messages over time. More-
over, it identifies an additional set of key variable values (10-22)
which, when logged, dramatically reduce the number of potential
causal paths that must be considered by a factor of 35. We also
selected 15 representative, real-world failures (with 13 caused by
bugs and 2 caused by mis-configurations) from the above applica-
tions to demonstrate how the enhanced log messages can help diag-
nosis. In all these cases, the enhanced log messages would quickly
reduce the number of possible partial execution paths and run-time
states, helping both manual diagnosis and automatic log inference
engines like SherLog to narrow down and identify the root causes.
Finally, we show that both log size and run-time overhead are small,
and almost negligible with delayed collection.

To the best of our knowledge, our work is the first attempt to
systematically and automatically enhance log messages to collect
causally-related information for diagnosis in case of failures. It can
be used to enhance every existing log message in the target software
prior to release, oblivious to what failure might occur in production.



Figure 2. Highly simplified code for rm in coreutils-4.5.4. Different colors highlight which information can be inferred given the log message was printed
on line 16. For example, “Must-Execute” reflects code paths that can be completely inferred based on the given log message. Variable values that cannot be
inferred are also highlighted.

2. Overview

To explain how LogEnhancer works, we first examine how diag-
nosis is performed manually today. Figure 2(A) shows a simpli-
fied version of a real world failure case in the rm program from
the GNU core utilities. This is a particularly hard-to-diagnose fail-
ure case since it has complex environmental requirements and only
manifests on FreeBSD systems using NFS that do not have GLIBC
installed. In particular, when executing rm -r dir1 for an NFS di-
rectory dir1 in such an environment, rm fails with the following
error message:

rm: cannot remove ‘dir1/dir2’:Is a directory

2.1 Manual Diagnosis

Upon receiving such a failure report, a support engineer’s job is
to find the “log point” in the source code and then, working back-
wards, to identify the causally-related control flow and data flow
that together could explain why the message was logged. Pure con-
trol flow dependencies are relatively easy to reason about, and upon
inspection one can infer that the error message (printed at line 16)
can only be logged if the conditional at line 12 (is dir == T NO)
is taken and the conditional at line 13 (unlink(filename == 0))
is not taken. This suggests that rm treated filename (dir1/dir2 in
this case) as a non-directory and subsequently failed to “unlink”
it. Indeed, purely based on control flow, one can infer that lines
14–15, and 20–22 could not have been executed (highlighted in
Figure 2(A) as “Must-Not-Execute”), while lines 1–4, 11-13, and
16–19 must have been executed (similarly labeled in the figure as
“Must-Execute”). Already, the amount of ambiguity in the program
is reduced and the only remaining areas of uncertainty within the
function are on lines 5–10, and lines 23-32 (also highlighted in Fig-
ure 2(A) as “May-Execute”).

However, further inference of why is dir equals T NO is consid-
erably more complicated. There are two possibilities for the branch

at line 4, depending on the value of dp, and both paths may set
is dir to be T NO. Further, since dp is a parameter, we must find the
caller of remove entry. Unfortunately, there are two callers and we
are not sure which one leads to the failure. In other words, given
only the log message, there remain several uncertainties that pre-
vent us from diagnosing the failure. Note that this challenge is not
a limitation of manual diagnosis, but of how much information is
communicated in a log message. In Section 4.2 we will show that
automatic log inference engines such as SherLog can do no better
than manual inference in this case.

In addition to control flow, backward inference to understand
a failure also requires analyzing data flow dependencies, which
can be considerably more subtle. We know from our control flow
analysis that the conditional at line 12 is satisfied and therefore
is dir must equal T NO. However, why is dir holds this value
depends on data flow. The value of is dir was previously assigned
at either line 5 or 9, and has data dependencies on either the value
of dp->d type or sbuf.st mode, respectively. Determining which
data dependency matters goes back to control flow: which branch
did the program follow at line 4?

Unfortunately, the error message at line 16 simply does not
provide enough information to answer this question conclusively.
The conditional at line 4 is uncertain — either path (line 5, or
line 7 to 10) could have been taken (indicated as “may-execute” in
Figure 2(A)). Similarly, the values of dp->d type and sbuf.st mode

are also uncertain, as is the context in which remove entry() was
called. While the ambiguity is modest in this small example, it is
easy to see how the number of options that must be considered can
quickly explode when diagnosing a system of any complexity.

However, a complete execution trace is not necessary to resolve
this uncertainty. Indeed, if the program had simply included the
single value of dp in the logging statement at line 16, the situation
would have been far clearer (we illustrate how this piece of new



information would help in Figure 2(B)). In this case dp is non-zero,
and thus the code at line 5 is now in a “must-execute” path, while
lines 6–10 “must not” have executed. In turn, it removes the need to
consider the value of sbuf.st mode since is dir now only depends
on dp->d type.

The remaining uncertainties then include: (1) which function
(remove cmd entries or rm 1) called remove entry? (2) What was
the value of dp->d type at line 5? Resolving these would require
logging some additional information such as the call stack frames,
and dp->d type (or, some equivalent value that can be used to
infer dp->d type’s value at line 5; we will discuss how to find an
equivalent value in Section 3.2).

The goal of LogEnhancer is to automate exactly the kind of
analysis we described above — identifying causally-related vari-
able values for each “log point” and enhancing the log messages to
incorporate these values. Moreover, because it is automatic, Log-
Enhancer can be applied comprehensively through out the entire
program, thereby capturing the information needed to diagnose
unanticipated failures that may occur in the future.

2.2 Usage

LogEnhancer is a source-based enhancement tool that operates on
a program’s source code and produces a new version with enhanced
data logging. It can be used to enhance every existing log printing
statement in the target software’s source code or to enhance any
newly inserted log printing statement. The only real configuration
requirement is for the developer to identify log points (i.e., typically
just the name of the logging functions in use). For example, the
cvs revision control system uses GLIBC’s standard logging library
error(), so simply issuing

LogEnhancer --logfunc="error" CVS/src

is sufficient for LogEnhancer to do its work.
Once invoked, LogEnhancer leverages the standard make pro-

cess to compile all program source code into the CIL intermedi-
ate language [45], then identifies log points (e.g., statements in cvs
that call error()), uses program analysis to identify key causally-
related variables, instruments the source code statically to collect
the values of these variables at the log points and then re-compiles
the modified source to generate a new binary.

During production-runs, when an log message is printed, the
additional log enhancement information (variable values and call
stack) will be printed into a separate log file. LogEnhancer can
also be optionally configured to record additional log enhancement
information only when error messages are printed.

In the rm example, at the log point at line 16, the following
information will be added: (1) dp: helps determining the control
flow in line 4; (2) The call stack: helps knowing which call path
leads to the problem; (3) dp->d type or sbuf.st mode depending
on the value of dp helps determining why is dir was assigned to
T NO; (4) filename: since it’s used in unlink system call, whose
return value determines the control flow to log point at line 16; (5)
dirp in function remove cwd entries if this function appears on the
call stack.

During diagnosis, LogEnhancer’s enhanced log from produc-
tion run can be manually examined by developers at each log mes-
sage, or can be fed to automatic inference engines such as SherLog,
which automatically infer execution paths and variable values. Sec-
tion 4.2 shows three such examples.

2.3 Architecture Overview

The complexity in our system is largely in the analysis, which
consists of three main tasks:

(1) Uncertainty Identification: This analysis identifies “uncer-
tain” control-flow and variable values that are causally-related
and whose state could not be resolved using only the original

log message. Starting from each log point and working back-
wards, we identify the conditions that must have happened to allow
the program execute to each log point (e.g., is dir == T NO and
unlink(filename) are such conditions in rm). Using these con-
ditions as clues, we continue to work backwards to infer why
these conditions occurred through data-flow analysis (e.g., dp,

dp->d type and sbuf.st mode are identified through data-flow
analysis starting from is dir). This process is repeated recursively
for each potential caller (e.g., the data dependency on dirp from
remove cwd entries is identified in this step). To prune out in-
feasible paths, LogEnhancer uses a SAT solver to eliminate those
combinations with contradictory constraints.

(2) Value Selection: This analysis is to identify key values that
would “solve” the uncertain code paths or values constrained by the
previous analysis. It consists the following sub-steps: (i) Identify
values that are certain from the constraint (i.e., the conditions for
the log message to be printed), and prune them out using a SAT
solver; (ii) Parse the uncertain values into a conditional value
format, e.g., [dp]:dp->d type, indicating the value dp->d type is
only meaningful under condition dp!=NULL; (iii) Identify the values
that would be overwritten before the target log point; (iv) Find
equivalent values that can be used to infer those overwritten key
values; (v) From the uncertain value set, find the minimum set
by eliminating redundant values that can be inferred by remaining
uncertain values. Finally, LogEnhancer builds an Uncertain Value
Table to identify the selected variable values to be recorded for each
log point.

(3) Instrumentation: Before each log point, LogEnhancer inserts a
procedure LE KeyValues(LogID) to record the variable values in the
Uncertain Value Table corresponding to the LogID, where LogID is
a unique identifier for each log point. At run-time, LE KeyValues()

collects these variable values from the stack and heap only at the
log point(delayed collection). For in-time collection, LogEnhancer
further instruments source code to keep a “shadow copy” of any
key values that will be overwritten before the log point and cannot
be inferred via equivalent values live at the log point.

2.4 LogEnhancer’s Assumptions

No tool is perfect, and LogEnhancer is no exception. There is
an inevitable trade-off between the completeness and scalability.
We make certain simplifying assumptions to make implementa-
tion practical and to scale to large real world programs, at the cost
of a few incomplete (missing certain variable values) and/or un-
sound (logging non-causally-related variable values) results. How-
ever, LogEnhancer does not impact the validity of diagnosis since
all values recorded by LogEnhancer are obtained right from the
failed execution. We briefly outline the issues surrounding our as-
sumptions and their impact below.

(1) How far and deep can LogEnhancer go in analysis? To avoid
path explosion, LogEnhancer places a number of limits on how
far its analysis is applied within a program. Given the problem
of inferring causally-related information, our design focuses on
analyzing only the functions that must have a causal relationship
with the log point (i.e., functions that are on the call-stack or whose
return values are causally-related to a log point), while ignoring
the side-effects of other functions. Moreover, we do not perform
program analysis more than one level deep into functions that are
not on the call stack at the log point. Each function is analyzed only
once, ignoring the side-effects caused by recursive calls.

Although we limit our analysis in this fashion, we still identify
an average of 108 causally-related branches for each log point
(with a max of 22,070 such branches for a single log point in
PostgreSQL). Moreover, our experience is that the variables with
most diagnostic value are commonly on the execution path to a



log point and such variables are naturally collected using Log-
Enhancer’s style of analysis.

(2) What and how many values are logged per message? The core
of our analysis is to first identify causally-related branches to each
log point and then infer a compact set of values that resolve those
branch choices. In our evaluation, 108 causally-related branches
are identified for each log point on average, that can be resolved by
16.0 variable values (this includes the effects of removing redun-
dant values).

(3) What about privacy concerns? Just as with existing log mes-
sages, the information we record focuses narrowly on the system’s
own “health”. Because we are only recording a small number of
variable values per message, it is much easier, compared with core
dumps, for users to to check that no private information is revealed.
It is also easier to combine our system with automatic privacy in-
formation filtering techniques (e.g., [12] that can filter data that
can potentially leak private user information). In addition, collected
logs can be analyzed at customers’ sites by sending an automatic
log analysis engine like SherLog [57] to collect back the inferred
and less-sensitive information (e.g. the execution path during the
occurred failure).

(4) How do we handle inter-thread or inter-process data dependen-
cies? Due to the limitations of static analysis, we do not analyze
data dependencies across threads or processes. Any values that are
causally-related to the log point through these dependencies thus
would be missed. In most cases, such dependencies do not inter-
fere with our analysis since most shared data do not make a big im-
pact on control flows and are not causally-related to a log message.
However, in some rare cases, we may not log enough information to
figure out why certain shared key variables have particular values.
The sub-steps (iii)-(v) in our value selection might also be inaccu-
rate on shared data since the inter-thread data-flow is not analyzed.
Therefore, for applications with very intensive inter-thread data de-
pendencies on control variables, we might disable these sub-steps
and conservatively treat any shared data as overwritten ones at the
log point.

Note this limitation does not mean that we cannot handle con-
current programs. For concurrent programs, we still analyze the
intra-thread/process data flow to identify key variables to log. Such
variables are useful for diagnosing failures in programs (sequential
and concurrent). Five of our evaluated applications are concurrent,
including Apache, CVS, Squid, PostgreSQL and lighttpd. Section 4
shows our evaluation results on these applications. Note that a ma-
jority of failures in real world are caused by semantic bugs and
mis-configurations, not by concurrency bugs [36].

Also, our objective is to collect more diagnostic information,
not to to pinpoint the exact root cause (although it would be ex-
tremely nice, it is too ideal to be realistic). So even for concur-
rency bugs, the causally-related key variable values from intra-
thread/process analysis is still useful to reduce the diagnostic space.

Additionally, unlike static analysis for bug detection, inaccurate
data flow analysis does not introduce false bug reports since all
the recorded values are from the production-run execution. The
only consequence is that some logged variable values may be less
useful for diagnosis or that we are still missing some causally-
related variable values. However, the recorded variable values are
still valid, just as if programmers manually added those variables
into logging statements.

Addressing these issues would require more complicated thread-
aware code analysis. For each variable that is causally-related to
the log message, in addition to analyzing the intra-thread or intra-
process data flow, we would also need to analyze any inter-thread or
inter-process modifications. Although theoretically we can still use
the same Uncertainty Identification algorithm to recursively follow
intra-thread/process and inter-thread/process data-flow, we imag-

ine practical scalability and precision issues might arise. Given an
uncertain variable value V in function F, any modifications to V

that might be executed concurrently with F need to be considered.
Without precise information about which functions might be exe-
cuted concurrently and with the complications caused by pointer
aliasing, we might end up analyzing many data-flows that are not
causally related to the log point at all. This might add significant
overhead to our analysis, and more importantly, end up recording
a huge number of irrelevant variables. Annotations can be used
in expressing which functions are concurrent [19, 24], while tech-
niques presented in RacerX can help to automatically infer this
information [23]. Previous work [42, 43] also show that for mem-
ory safe languages like Java where pointer usages are are limited,
it is possible to analyze the concurrency behavior of a program
much more precisely. Leveraging these techniques to handle inter-
thread/process data-flows remains as our future work.

(5) What if there is no log message? In this work, we are trying to
improve the world as it is. As mentioned in our introduction, most
commercial and open source software already contains significant
number of logging statements as logging has become a standard
practice. Hence we focus on enhancing existing log messages,
and assume that such log messages exist. If a software program
generates no log message at all, LogEnhancer offers no value.
Fortunately, this is usually not the case in most commercial and
open source software.

3. Design and Implementation

LogEnhancer’s source code analysis is implemented using the Sat-
urn static analysis framework [5]. Saturn models C programs pre-
cisely and allows user to express the analysis algorithm in a logic
programming language. It is summary-based, meaning it conducts
its analysis for each function separately and then generates a sum-
mary for each function. At the calling sites of a function, the sum-
mary is used instead of going deep into the function. Saturn also
provides a SAT solver.

In this section we will not repeat the all the details of Saturn.
Except for the Data-flow analysis described in Section 3.1, all the
analysis processes, design and implementation issues are unique to
LogEnhancer and solved by us.

3.1 Uncertainty Identification

For each log message in the target software, the goal of Uncertainty
Identification is to identify uncertain control or data flows that
are causally-related to this log point but cannot be determined
assuming the log point is executed. Our analysis starts from those
variable values that are directly included in the conditions for the
log point to be executed. It then analyzes the data-flow of these
variable values to understand why these conditions hold.

Within each function f , LogEnhancer starts from the beginning
and goes through each instruction once. At any program point P
within f , LogEnhancer simultaneously performs two kinds of anal-
ysis: (1) data-flow analysis that represents every memory location f
accesses in the form of a constrained expression (CE); (2) control-
flow analysis that computes the control-flow constraint to reach P .
If the current P is a log point LP , LogEnhancer takes the control-
flow constraint C, and converts each memory location involved in
C to its CE. Thus both the control and data flow branch conditions
related to the log point can be captured together in one constraint
formula, and it is stored as the summary of f to reach LP . The
same process is recursively repeated into the caller of f . At the end
of the analysis, for every function f ′ along a possible call-chain to
a log point LP , a summary of f ′ is generated which captures the
causally-related constraint within f ′ to eventually reach LP .



Data-flow analysis and memory model: LogEnhancer directly
uses Saturn’s memory model for data-flow analysis. Saturn models
every memory location accessed by function f at every program
point P in the form of a constrained expression (CE). A CE is rep-
resented in the format of V=E:C, indicating the value of V equals
the expression E under condition C. At the beginning of each func-
tion f , Saturn first statically enumerates all the memory locations
(heap and stack) accessed by f , and initializes each location V as
V=V:True, indicating the value of V is unknown (symbolic). This
is possible because we model the loops as tail-recursive functions,
thus each function body is loop-free (see Handling Loops later this
section). At an assignment instruction P , V=exp;, the value of V is
updated to exp:C, where C is the control-flow constraint to reach P .
At any merge point on the control-flow graph (CFG), all the con-
ditions of V from every incoming edge are merged. This will prune
all non-causally-related conditions to reach P . Figure 3 shows the
CE of is dir in rm at log point 1.

is dir =

8

>

<

>

:

T YES: Cyes = dp&&dp->d type==DT DIR

||!dp&&S ISDIR(sbuf.st mode)

T NO: Cno = dp&&dp->d type!=DT DIR

||!dp&&!S ISDIR(sbuf.st mode)

Figure 3. The constrained expression for is dir at line 16. Cyes and
Cno are constraints for is dir to hold value T YES and T NO respectively.

Each variable involved in the CE is a live-in variable to the
function f , i.e. variable whose value is first read before written in
f [4]. Thus we can represent all memory locations accessed by f
with a concise set of variable values (i.e. live-ins) to reduce the
number of redundant values to record. For example, is dir is not
a live-in variable, and its value can be represented by a small set of
live-in values such as dp, T YES, etc., as shown in Figure 3.

Control-flow analysis: At each program point P , LogEnhancer
also computes the constraint for the control-flow to reach P . At
a log point LP , every variable value involved in the control-flow
constraint would be replaced by its constrained expression. Then
this constraint is solved by a SAT solver to test its satisfiability.
An unsatisfiable constraint indicates no feasible path can reach
LP , therefore, we can prune out such a constraint. The satisfiable
constraint thus contains all the causally-related control and data-
flow conditions to reach LP . This constraint C will be stored as a
part of this function’s summary, along with the location of LP .
It records that function f would reach LP under constraint C.
Non-standard control flows such as exit, abort, exit and their
wrappers are identified and adjusted on the CFG. longjmps are
correlated with setjmps through function summaries in a manner
similar to that described in [57].

In the rm example, the control-flow constraint within remove

entry to reach log point 1 would be is dir==T NO && unlink

(filename)!=0. Then is dir is replaced by its CE as shown in
Figure 3. The SAT solver determines T YES cannot satisfy this
control-flow constraint, thus T YES and its constraint are pruned.
The remaining result is a simplified, feasible constraint Cr, which
is stored as the summary of remove entry to reach log point 1:

Cr = (dp && dp->d type!=DT DIR || !dp &&

!S ISDIR(sbuf.st mode)) && unlink(filename)

Inter-Procedural analysis: The above process is then recursively
repeated in the caller by traversing the call-graph in bottom-up or-
der. In rm, after analyzing remove entry, LogEnhancer next ana-
lyzes its caller remove cwd entries in the same manner: a linear
scan to compute the CE for each memory location and control-
flow constraint for each program point. At line 25, it finds a call-
site to a function with a summary (remove entry), indicating that
reaching this point might eventually lead to log point 1, so it takes

the control-flow constraint (Cc = (readdir(dirp)!=NULL)), and
replaces every variable with its CE (in this case the CE for dirp).

Besides Cc, for context sensitivity, LogEnhancer also takes the
Cr from remove entry and substitutes it to produce the following:

C′

r
= (readdir(dirp) && readdir(dirp)->d type!=DT DIR ||

!readdir(dirp)) && f==Sym

Here, readdir(dirp) is the substitution for dp in Cr; S ISDIR

(sbuf.st mode) is pruned since it is not visible in the caller’s
context; f==Sym is the substitution for unlink (filename). Sym is
a symbolic value and f is the substitution of filename in caller.
f==Sym indicates we should plug-in the CE of f to track the inter-
procedural data-flow, while not enforcing any constraint on f’s
value. Finally, C′

r ∧ Cc is stored as the summary for remove cwd

entries to reach log point 1.
Such bottom-up analysis traverses upward along each call chain

from the log point. It ignores functions that are not in the call chains
for the log point—we refer them as “sibling functions”. Sibling
functions may also be causally-related to the log point. Therefore, if
a sibling function’s return value appears in the constraint for the log
point, LogEnhancer also analyzes the function and identifies the
control- and data flow dependencies for its return value. This anal-
ysis is implemented as a separate analysis pass after the bottom-up
analysis. Currently we limit the analysis to descend only one level
into such functions due to scalability concerns. If a causally-related
sibling function is a library call with no source code (e.g. unlink()
in the rm example), we simply plug in its parameter into our con-
straint so we may choose to record the parameter.

Handling Loops Loops are modeled as tail-recursive functions so
that each function is cycle-free, which is a key requirement allow-
ing us to statically enumerate all the paths and memory locations
accessed by each function. Each loop is handled similarly to ordi-
nary functions except that it is traversed twice, to explore both loop
entering and exiting directions. A variable V modified within the
loop body is propagated to its caller as V==Sym to relax the value
constraint, since we are not following the multiple iterations as in
run-time. In this way, constraint from the loop body can be conser-
vatively captured.

Efficiency and Scalability Uncertainty Identification scans the
program linearly, a key to our scalability to large applications. We
further use pre-selection and lazy SAT solving for optimization. The
former pre-selects only those functions that on the call-stack of any
log point to analyze, and the latter queries the SAT solver lazily
only at the time when function summaries are generated.

Pointer Aliasing: Intra-procedural pointer aliasing is precisely
modeled by Saturn’s constrained expression model [5]. Inter-
procedural pointer aliasing analysis is only performed on func-
tion pointers to ensure that LogEnhancer can traverse deep along
the call-chain. The other types of pointers are assumed to be
non-aliased, which might cause us to miss some causally-related
variable values. Note that for Value Selection we enable inter-
procedural alias analysis for all types of pointers for conservative
liveness checking.

3.2 Value Selection

Value Selection selects, from all constraints identified by the pre-
vious step, what key variable values to record at each log point. In
this section, we refer an expression without any Boolean operator
(i.e., &&, ||, !) as a uni-condition. For example, “dp!=NULL” is a
uni-condition (note != is not one of the three Boolean operators).
A constraint is thus a formula of uni-conditions combined together
using Boolean operators.

(1) Pruning Determinable Values: Some variable values can be
inferred knowing that a given log point is executed. We call them
determinable values. For example, in constraint a==0 && b!=0, it



can be determined that "a" must equal zero, while b’s value is still
uncertain. A determinable value V is identified if: (i) V is involved
in a necessary uni-condition uc of constraint C, i.e., ¬uc ∧ C is
unsatisfiable; (ii) uc is in the form of V==CONSTANT. A determinable
value can be pruned out since it need not be recorded.

(2) Identifying the condition for a value to be meaningful: After
the above step, all remaining values are uncertain. However, not ev-
ery value is meaningful under all circumstances. In rm, dp->d type

is meaningful only if dp!=NULL. Recording a non-meaningful value
could result in an invalid pointer dereference or reading a bogus
value. Therefore, for each un-pruned value, we also identify un-
der what condition this value would be meaningful, writing this as
[C]:V, indicating value V is meaningful under condition C. Our run-
time recording will first check C before recording V.

(3) Liveness Checking and Equivalent Value Identification
(EVI): A value can also be dead (overwritten or gone altogether
along with its stack frame) prior to a given log point and we cannot
delay the recording until the log point. To identify such dead values,
we perform conservative liveness analysis, i.e., if a variable value
might be modified before the log point, we conservatively mark it
as “dead”. To be conservative, we run Saturn’s global pointer alias
analysis [30] before the liveness checking. Any pointers passed into
a library call where source code is unavailable are conservatively
treated as “dead” after the call (we manually exclude some com-
mon C libraries such as strlen). Any extern values not defined
inside the program are also conservatively treated as dead.

However, we do not give up on recording dead values so easily.
For each dead value, we try to find some equivalent variable values
which live until the log point and can be used to infer the dead
value. More specifically, a value EV is equivalent to another value V

if and only if: (i) it is defined as EV=V op UV, where UV are other
live values, and (ii) both have the same control flow constraint.
Therefore, if a dead value V has an equivalent EV, we simply record
EV and UV.

3.3 Run-time Value Collection

Figure 4. Run-time recording for Delayed Collection.

Delayed Collection: We instrument the source code of the target
application right before each log point by adding a function call
LE KeyValues() to record the values of identified live variables.
The addresses of these variables are obtained from the compiled
binary by parsing the DWARF debugging information [22]. Lo-
cal variables’ addresses are the offsets from the stack frame base
pointer. Heap values’ addresses are represented the same way as
they are in the original code. Each live value is represented by its
address and the condition for it to be meaningful is stored into an
Uncertain Value Table (UVT) that corresponds to the log point. At
the end of our analysis, each UVT is output to a separate file. These
files are released together with the target application.

Figure 4 shows the run-time process of LE KeyValues(). It is
triggered only at the log point, i.e., when a log message is being
printed. When triggered, it first uses the LogID of the log point
to load the corresponding UVT into memory. It then obtains the
current call stack, using it to index into the UVT to find what values
to record. For each value, the condition for it to be meaningful
is first tested. A local variable’s dynamic address is computed by
reading the offset from UVT and then adding this offset to the

dynamic stack frame base pointer obtained by walking the stack.
Note that the UVT is only loaded into memory during the execution
of LE KeyValues(), so the delayed recording does not add any
overhead during normal execution, i.e., when no log message being
printed. We also record the dynamic call stack.

By default, LogEnhancer records only basic type values. For
example, for a pointer value, we only record the address stored in
this pointer. To further provide meaningful diagnostic information,
we add two extensions. First, if the variable is of type char* and
is not NULL, then we record the string with a maximum of 50
characters (of course, if the string is shorter than 50, we record only
the string). Second, if the variable is a field within a structure, in
addition to that field, we also record the values of other fields. This
is because structures are often used to represent multiple properties
of a single entity, such as a request in apache httpd.

Although we are already very cautious in our design to record
only meaningful and valid values to ensure memory safety, due to
the limitation of static analysis, we might still access an invalid
memory location (e.g., caused by multi-threading). To be conser-
vative, we further ensure memory safety by intercepting SIGSEGV
signals without crashing the running application. For applications
such as apache which also intercept SIGSEGV signals, we add a
wrapper to filter out those caused by our log recording. In our ex-
periments, we have never encountered such a signal.

In-time Collection: In addition to instrumentation at log points,
the in-time collection method further saves a shadow copy of every
dead value X that has no equivalent value by instrumenting the code
in the following way:
- if (X)

+ if (LE InTime(&X, Lint32) && X)

LE InTime() always returns 1. It simply copies Lint32 number of
bytes starting from &X. Note that LE InTime() can record X directly
without checking any condition since it is within the same context
as the use of X.

All recorded values from LE KeyValues() and LE InTime() are
first stored into buffers in memory (both currently 40 KB) re-
spectively. At error messages, both buffers are flushed to disk.
LE KeyValues()’s buffer is also flushed when it becomes full,
whereas LE InTime() simply recycles the shadow buffer from the
beginning. Each thread has its own private buffer.

We also implement a variation of the delayed method as a core
dump analyzer (referred as a Core Dump Digger) that automat-
ically identifies the key values (or equivalent values) from a core
dump at a log point (if there is such core dump). When a core
dump is generated, our Core Dump Digger derives equivalent in-
formation to delayed collection from the core dump. Note that not
every log point has a core dump, especially those for book-keeping
or warning messages.

4. Evaluation

We use LogEnhancer to enhance all 9,125 log messages in 8 dif-
ferent real-world applications as shown in Table 1. Five of them
are server applications, including 2 web servers (apache httpd,
lighttpd), a database server (postgresql), a concurrent version con-
trol server (cvs), and a web cache (squid). For server applications
where there are multiple log files, we enhance all messages print-
ing into the error log file. Currently we do not enhance other types
of log files such as access logs. In the default verbosity mode, all
applications only print error messages (some of them also prints
warning messages). Therefore, during normal execution with the
default verbosity mode, there are few log message printed besides
a few messages indicating system start/stop.

For any diagnostic tools like LogEnhancer, the most effective
evaluation method is of course user study: having it used by real
programmers for a period of time who then report their experi -
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Figure 5. Overall Result of LogEnhancer. In (A), we compare the number of variables per message logged manually by developers with the ones inferred
automatically by LogEnhancer. “Overlap” shows the number of variable values that are selected by both programmers and LogEnhancer. The percentages of
overlap are marked beside each bar. “LE-additional” shows the additional variable values only identified by LogEnhancer. In (B), we compare the amount
of uncertain branches that are causally related to each log point given different types of information recorded: without any variables (the original uncertainty
space); existing variables included by developers; call stack in addition to existing variables; variables inferred by LogEnhancer and call stack using the
delayed collection method.

Log Points
Application Version LOC All Default
ln 4.5.1 20K 26 14 (ERR)
rm 4.5.4 18K 28 25 (ERR)
tar 1.22 86K 210 176 (ERR)
apache 2.2.2 317K 1,654 1,093 (WARN)
cvs 1.11.23 148K 1,088 762 (ERR)
squid 2.3.S4 69K 1,116 402 (ERR)
postgresql 8.4.1 1,029K 4,876 4,403 (WARN)
lighttpd 1.4.26 56K 127 127 (ERR)

Table 1. Evaluated applications. LOC is lines of code of the entire ap-
plication. “All” shows the total number of log points for the most verbose
level. “Default” shows the default verbose-level of log message printed (in
bracket) and the number of log points at this level.

ences. Unfortunately, this would be a time-consuming process and
it is hard to select samples to be representative. Given these con-
straints, we try to evaluate LogEnhancer both quantitatively and
qualitatively using three sets of experiments, all conducted on a
Linux machine with eight 2.33GHz Xeon processors and 16GB of
memory. Since the analysis is done off-line, LogEnhancer currently
runs as single process, single thread (even though the analysis can
potentially be parallelized to reduce the analysis time).

(1) Value selection. First, we investigate how well our algorithm
captures the variable whose values are useful for failure diagnosis
by comparing against manual selection ( variable values that have
already been recorded in existing logging statements by program-
mers). Then, we also evaluate how many new variables are selected
for logging in addition to those manually added by programmers
over time (i.e., how many new variable values would be logged by
LogEnhancer) and how effective these additional logged values can
help reducing the number of code paths to be considered in post-
mortem diagnosis.

(2) Diagnostic effectiveness. In the second set of experiments
we select 15 real world failure cases caused by 13 bugs and 2 mis-
configurations to show the usefulness of the information collected
by LogEnhancer in failure diagnosis. In particular, we also show
how automatic log inference tools like SherLog can be improved
given the information added by LogEnhancer into log messages.

(3) Logging overhead. The third set of experiments evaluate the
overhead introduced by LogEnhancer’s run-time logging for both
in-time and delayed collection methods.

4.1 Effectiveness in Variable Recording

Figure 5 (A) shows LogEnhancer’s comparison with existing log
variables included manually by programmers into log messages
over the years. On average, 95.1% (with minimum 89% and max-
imum 98%) of these log variables are selected automatically by

LogEnhancer. In all the applications except squid, LogEnhancer
achieves a coverage over 95%3. This high coverage is an evi-
dence that our design matches with the intuition of programmers in
recording key values to help diagnosis. It implies that LogEnhancer
can do at least as well as manual effort.

The small fraction (4.9% on average) of existing log variables
that are not automatically selected by LogEnhancer are mainly
book-keeping information that is not very useful for inferring the
execution path to the log point. For example, when CVS detects
an invalid configuration entry, it outputs the line number of that
entry in the configuration file. Since this line number is not used
in any branches to determine the control flow, it is thus missed by
LogEnhancer. Note that the invalid configuration entry string it-
self is identified by LogEnhancer. So even without the line num-
ber, recording the configuration entry string itself is enough for
users/developers to locate the error in the configuration file.

There are four main categories of manually-identified variables
that are missed by LogEnhancer, together contributing to 97% of
the few missed cases. (1) Book-keeping values logged immediately

after initialization (37%). For example, immediately after receiving
a request, the length of the request is logged before it is actually
used. All these log messages are verbose mode messages that do
not indicate any error. (2) The line number of invalid entry in
configuration file (28%). (3) General configuration (host-names,
PID, program names, etc.) (24%) that are not causally-related to the
log point. Note causally-related configuration information would
be identified LogEnhancer. (4) Redundant multi-variables (8%)
that are always updated together while only one used in branch.
LogEnhancer only identifies the one used in branch and the missed
values can be inferred from the identified one.

In addition to automatically selecting most of existing log vari-
ables manually included by programmers, LogEnhancer also se-
lects an average of 14.6 additional new variable values for each
log message. Recording these values (including the call stack) can
eliminate an average of 108 uncertain branches for each log point
as shown in Figure 5 (B). From the 108 original uncertain branches
per log point, existing log variables can reduce it to 97, whereas
LogEnhancer’s delayed recording scheme can reduce this number
to 3, meaning that, on average for each log point, there are only
3 unresolved branches for programmers to consider to fully un-
derstand why the log point was reached. The remaining uncertain
branches are caused by uncertain values that are dead at log points,

3 Many variable values are converted to human readable strings when print-
ing to log message. For example “inet ntoa” converts an IP address into
string. We count the value as covered by LogEnhancer only if by recording
the non-text value we can deterministically infer the text string.



uncert. br. (avg/med/max/min) # of Var
Apps. w/o any var L.E. (delay) all live logged

ln 41/43/78/7 2.9/1/8/0 11.3 9.8 10.1
rm 28/27/57/6 1.4/1/9/0 10.2 9.3 9.5
tar 114/35/1419/2 2.2/1/20/0 22.6 19.5 21.6

apache 115/78/626/1 3.5/2/35/0 17.2 14.7 15.9
cvs 139/62/3836/1 6.5/3/38/0 12.2 8.7 10.6

squid 67/19/4409/1 1.3/0/17/0 13.0 11.6 12.5
postgre 270/61/22070/1 1.2/0/48/0 20.9 14.7 18.1
lighttpd 86/88/222/5 6.4/6/40/0 20.7 15.2 18.8

Table 2. Detailed result showing the number of uncertain branches and
uncertain variable values per log point. The large difference between aver-
age and median in “w/o any var” is caused by small number of log points in-
side some library functions, that have a large number of uncertain branches
accumulated from many possible call stacks. Once we differentiate call
stacks in “Stack” approach, this difference between average and median
significantly reduces.

which can be recorded by our in-time collection if overhead is not
a concern. If we record only the stack frames in addition to the
original log messages, the number of uncertain branches is reduced
from 97 to 40 on average. Table 2 shows the detailed number of
uncertain branches.

Table 2 also shows the number of variable values identified by
LogEnhancer at different analysis stages. On average, 16.0 uncer-
tain values are identified for each log point (“all”). 14.6 of these can
be recorded at log points (“logged”) without introducing normal-
run overhead. Among these 14.6 variables, 12.9 are not overwritten
before log point (i.e., they are “live”), and the remaining 1.7 are
recovered from Equivalent Value Identification (EVI). On average
49% of the dead values can be recovered by EVI. The remaining
51% of dead values can be collected only via in-time collection, at
the cost of some overhead to normal execution.

Analysis Time Table 3 shows the analysis time of LogEnhancer
on each application. For all applications except postgresql, Log-
Enhancer finishes the entire analysis within 2 minutes to 4 hours.
For postgresql, it takes 11 hours since there are 4,876 logging
points in 1M lines of code. Since we expect LogEnhancer to be
used off-line prior to software release, the analysis time is less
critical. Additionally, the summary-based design allows it to be
parallel or incrementally applied [5]. The memory usage in all cases
is below 2.3GB.

Analysis Time and Memory Usage
ln 3m 579MB rm 2m 172MB tar 1.5h 263MB

apache 2.1h 1.3GB cvs 3.0h 1.7GB squid 3.8h 2.3GB
postgre 10.7h 1.5GB lighttpd 19.5m 532M

Table 3. Analysis performance.

4.2 Real World Failures

We evaluated LogEnhancer by analyzing 15 real-world failures,
including 13 software bugs and 2 configuration errors, to see how
our enhanced log messages would help failure diagnosis. In all
these cases, the original log messages were insufficient to diagnose
the failure due to many remaining uncertainties, while with Log-
Enhancer’s log enhancement these uncertainties were significantly
reduced and almost entirely eliminated. Due to space limitations,
in this section we will show 3 cases in detail to demonstrate the
effectiveness of LogEnhancer. The other 12 cases are summarized
in Table 4.

We also compared the inference results of SherLog [57] before
and after LogEnhancer’s enhancement.

Fail. Description

rm reports a directory cycle by mistake for a healthy FS.
cp fails to replace hardlinks given “–preserve=links”.
ln ln –target-directory failed by missing a condition check.

apache1 denies connection after unsuccessful login attemp.
apache2 OS checking procedure failed causing server to fail.
apache3 Server mistakenly refuses SSL connections.
apache4 A structure field wasn’t initialized properly causing

unpredictable failure symptoms.
squid wrong checking function caused access control failed.
cvs login with OS account failed due to misconfiguration.
tar 1 failed since archive stat.st mode improperly set.
tar 2 tar failed to update non-existing tar-ball.

lighttpd Proxy fails when connecting to multiple backends.

Table 4. Real-world failures evaluated.

Case 1: rm. For the rm failure described in Figure 2, LogEnhancer
recorded the call stack being:

...remove cwd entries:25 -> remove entry.
In addition, LogEnhancer records the following variable values at
log point 1: dp=0x100120, filename="dir1/dir2", dp->d type

= DT UNKNOWN. Programmers can infer that the failed execution
took the path at line 5 and came from caller remove cwd entries.
They can also tell that readdir returns a non-NULL value dp, but
dp->d type’s value is DT UNKNOWN in the failed execution, which is
exactly the root cause: the programmers did not expect such a type
for dp->d type. In this case, just as if dp is NULL, the program
should use lstat to determine the directory type. So the fix is
straightforward as shown below:
4: - if (dp)

4: + if (dp && dp->d type!=DT UNKNOWN)

Without LogEnhancer’s enhancement, SherLog inferred a to-
tal of 13 possible call paths (not even complete execution paths,
only function call sequences) that might have been taken to print
the error message. Developers need to further manually determine
among these which one actually lead to the failure. SherLog also
failed to infer the value of dp and dp->d type, leaving no clues for
developers to infer branch direction at line 4. With LogEnhancer’s
result, SherLog can pinpoint the only possible call path, and devel-
opers can easily examine the value of dp and dp->d type.

Case 2: Apache bug.
Figure 6 shows a bug report in apache. With only the error log

message at line 2, the developer could not diagnose the failure, so
he asked the user for all kinds of run-time information in a total of
95 message exchanges. Actually only two pieces of information are
key to identifying the root cause: One is the value of keepalives

and the other is the request type, proxyreq, both of which are unfor-
tunately buried deep in large and mostly irrelevant data structures.

LogEnhancer automatically identifies c -> keepalive and r->

proxyreq to be collected for this log message. keepalive is iden-
tified since it is used at line 12 as the constraint for the execution
to reach the log point. proxyreq is identified in similar manner.
So if the developers had used LogEnhancer to enhance their log
messages automatically, LogEnhancer would have helped them by
saving a lot of time in discussions back and forth with the user. In-
terestingly, after such painful experience, the programmers added
a patch whose sole purpose was to log the value of keepalives in
this function.

Without LogEnhancer’s enhancement, SherLog inferred 63
possible call paths and not be able to infer the value of keepalive
or proxyreq. With LogEnhancer’s enhancement, SherLog can nar-
row down to only one possible call path, and infer the value of
keepalive and proxyreq.



Figure 6. Apache bug example. “U” stands for apache user while “D” for
developer. Patched code is highlighted.

Figure 7. Apache configuration error. The dependencies to identify vari-
able mech are marked as arrows.

Case 3: Apache configuration error.
A misconfiguration failure in Apache occurs with the log mes-

sage shown in Figure 7. It warns of no space on disk, while users’
file system and disk are perfectly healthy with plenty of free space
available. From the source code, it is certain that the message was
printed at line 6, as a result of an unsuccessful call to create() at
line 4. However, developers had no other clues why this call failed.

LogEnhancer identifies mech as a key value to collect at line 6,
since it is used at line 10 in function mutex method, whose nmutex

is causally related to the log point at line 6. If apache had been en-
hanced by LogEnhancer, the log message would record the value
of mech being APR LOCK DEFAULT and the value of nmutex->meth be-
ing apr mutex unix sysv methods. This indicates that apache was
using the default lock setting which caused the failure. In a multi-
threaded mode, apache should use fnctl-based locking instead. To
fix this, users should explicitly add “AcceptMutex fcntl” into the
configuration file.

Note that, without LogEnhancer’s enhancement, SherLog can-
not infer the value of mech from the original log message and would
not be able to narrow down to the lock setting configuration as the
root cause.

4.3 Overhead

Execution Time: Table 5 shows the LogEnhancer’s recording
overhead during applications’ normal execution under the default
verbosity mode. Few log messages are printed in the default ver-
bosity mode during normal execution. Thus there is no overhead
for LogEnhancer with the delayed collection method. The in-time
collection incurs small (1.5-8.2%) overhead due to shadow copy-

ing. This number can be reduced by eliminating those shadow
recording in frequently invoked code paths (e.g., inside a loop). For
example in postgresql, by disabling two instrumentations in the
hash seq search library function, the slow-down can be reduced
to 1%.

Applications and Slow-down

tar 0.0%, 1.5% apache 0.0%, 3.9% postgre 0.0%, 7.6%
cvs 0.0%, 1.7% squid 0.0%, 8.2% lighttpd 0.0%, 3.4%

Table 5. Overhead of LogEnhancer in normal execution (de-
fault verbosity mode). The first number is the overhead for the
delayed collection, and the second is for the in-time collection. rm
and ln’s results are not reported since the execution times are too
short. Tar is measured in response time, while the servers are mea-
sured in throughput degradation when fully loaded.

Figure 8 shows LogEnhancer’s performance during normal exe-
cution with other verbosity modes. Turning on debug level logging
degrades the throughput by 13% even without LogEnhancer. With
LogEnhancer, there is an additional 3-7% overhead (measured in
throughput degradation) on top of the original.
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Figure 8. Normal execution throughput on fully loaded Apache for dif-
ferent verbosity modes. All numbers are normalized over the throughput of
unmodified apache under default verbosity level (WARN).

Memory Overhead: As mentioned in Section 3.3, delayed collec-
tion does not introduce any memory overhead during normal ex-
ecution (i.e., no log message printed). For in-time collection, the
only memory overhead is the size of the buffer, which is set to
40KB in our experiment. If a log point is executed at run-time,
LE KeyValues() introduces additional memory overhead by load-
ing the UVT into the memory. In all the 8 applications, the median
and average sizes of UVT are 395 bytes and 354 KB respectively.

Comparison with Core Dump Table 6 compares LogEnhancer’s
recording time and data size with core dump at a failure. On aver-
age, LogEnhancer only needs 0.43 millisecond. The recorded data
has only 66 bytes on average. In comparison, core dumps require
1000 times recording time, and 55MB in size. The large overhead
of core dumps makes it impractical to collect the entire memory
image with each log message.

Table 6 shows LogEnhancer’s average log size is 66 bytes per
message, which is in the same magnitude as original log message.

Failure
Time and Size (B)

LogEnhancer Core dump
ln 0.45ms 41 (original 45) 630ms 55M
rm 0.45ms 113 (original 51) 610ms 55M

tar 2 0.39ms 39 (original 96) 630ms 55M
cvs 0.44ms 54 (original 52) 60ms 772K

apache 1 0.41ms 82 (original 196) 670ms 3.2M

Table 6. Comparison between LogEnhancer and core dump. We repro-
duced 5 failures in table 4 and forced a core dump to be generated at each
log point using gcore [25] library call. The log size of LogEnhancer does
not include the size of the original log. The size of original log (without
LogEnhancer) is shown in the parenthesis.



A large portion of this log is the call stack encode in clear text. We
can further compress this portion since calling contexts are likely
to remain the same for a log point. Other variable values in our log
are encoded in binary format and are converted to human readable
form post-mortemly.

5. Related Work

Log analysis for failure diagnosis Existing log analysis work
focuses on post-mortem diagnosis using logs, learning statistical
signatures [3, 8, 16, 29, 56] or inferring partial execution paths
and run-time states [57]. Xu et al. [56] use statistical techniques to
efficiently learn a decision tree based signature from large number
of console logs. This signature can be used to effectively detect and
diagnose anomalies.

In particular, the closest related work, SherLog [57], uses static
analysis to infer the partial execution paths that can connect the run-
time log messages. It infers both control and data value information
post-mortemly, providing a similar user-experience as an interac-
tive debugger without dynamically re-executing the program.

LogEnhancer is different from but complementary to log anal-
ysis work like SherLog [57] in several aspects:

(1) LogEnhancer has a completely different focus: it aims to im-
prove software’s diagnose-ability by adding more causally related
information in log messages to make failure diagnosis easier. Such
information benefits not only manual diagnosis but also automatic
log analysis engines like SherLog.

(2) LogEnhancer logs only those variables that cannot be in-
ferred (manually or automatically with SherLog) from what is al-
ready available in log messages.

(3) Although LogEnhancer leverages summary-based static
analysis similar to SherLog, the different objectives lead to sev-
eral major new design and implementation issues. For example,
LogEnhancer needs to perform uncertain control/data identifica-
tion, value selection, liveness analysis, equivalent variable identifi-
cation, and finally instrument the source code to log those selected
variables at run-time. None of this would be needed in a log infer-
ence engine like SherLog.

(4) As the real world case studies in Section 4.2 have shown, au-
tomatic log inference engines like SherLog can significantly benefit
from LogEnhancer’s log enhancement information. For example,
in our second case study, the additional information added by Log-
Enhancer can help SherLog pinpoint the execution path from a total
of 63 possibilities before the enhancement.

Logging design Existing guidelines for logging design are purely
empirical [32, 51]. Kernighan and Pike [32] argued the importance
of well-designed log messages in failure diagnosis. Schmidt sum-
marized some empirical logging practices [51]. To the best of our
knowledge, LogEnhancer is one of the first to automatically en-
hance log messages.

Use of core dump for failure diagnosis Several systems collect
partial memory image [6, 26, 27, 46] when a system crashes.
Windows Error Reporting [26] monitors the system for crashes
or hangs, and records a “mini-dump”. Crash Reporter [6], NetApp
Savecore [46] and Google Breakpad [27] also collect compressed
memory dumps.

Some core dump analyzers infer diagnostic information from
the core dump. Their techniques are applicable on LogEnhancer’s
recording result as well. PSE [39] and ESD [58] perform off-
line diagnosis of program crashes from core dump. Weeratunge,
et al. [54] diagnose Heisenbugs by diff-ing the core dumps from a
failing run and passing run.

As discussed early in Introduction, our work is complementary
to core dumps. LogEnhancer can collect historic, intermediate in-
formation prior to failures and also provide diagnostic information

when no core dump is available. It also significantly reduces over-
head and data size by recording only causally-related information.

Profiling for diagnosis Many of diagnostic tools collect run-time
profiling such as low-level performance counters [10, 16] or exe-
cution traces [7, 13, 15, 29, 37, 52, 60]. Liblit et al. [37] sample
profiling information from many users to offload the monitoring
overhead, and isolate the most correlated information using statisti-
cal techniques. Chen et al. [13] propose hardware solution to accel-
erate instruction-level monitoring. Rather than collecting tailored,
causally-related information for each log message as LogEnhancer,
these profiling tools collect general information. Our work is com-
plementary to these work in that we collect causally-related infor-
mation specific to each log messages.

DCop [59] records the acquisition of each lock involved in a
deadlock to speed up the debugging process of deadlock failures.
Our work is also complementary to DCop in that we can help the
diagnosis of other kinds of failures that print log messages.

Logging for deterministic replay Other work [20, 34, 35, 40, 44,
49, 53, 55] attempts to deterministically replay failed execution,
which generally requires high run-time logging overhead especially
for multiprocessor systems. To reduce the overhead, recently SMP-
Revirt [21] made clever use of page protection. Our work is com-
plementary and mainly targets to the cases when failure reproduc-
tion is difficult due to privacy concerns, unavailability of execution
environments, etc.

Other Static Analysis Work Compiler techniques similar to Log-
Enhancer are also used to address some other software reliability
problems [11, 17, 31, 58]. KLEE [11] and ESD [58] use full
symbolic execution engine to expose bugs in testing or infer paths
from core dump. Carburizer [31] uses data-flow analysis to locate
dependencies on data read from hardware. Although LogEnhancer
also uses symbolic execution, due to the very different objectives,
it starts from each log message and walks backward along the call
chain to conduct “inference”, instead of walking forward to explore
every execution path. In addition, our work also has to use many
other techniques and analysis such as control/data flow analysis,
variable liveness analysis, equivalent variable analysis, run-time
value collection, etc.

6. Conclusions

In this paper we presented a tool, LogEnhancer, perhaps as the first
work to systematically enhance every log message in software to
collect causally-related diagnostic information. We applied Log-
Enhancer uniformly on 9,125 different log messages in 8 applica-
tions including 5 server applications. Interestingly, we found 95%
of the variables included in the log messages by developers over
time can be automatically identified by LogEnhancer. More impor-
tantly, LogEnhancer adds on average 14.6 additional values per log
message, which can reduce the amount of uncertainty (number of
uncertain branches) from 108 to 3 with negligible overhead. This
information not only benefits manual diagnosis but also automatic
log inference engines.
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