
Received August 22, 2020, accepted September 17, 2020, date of publication September 21, 2020,
date of current version September 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3025460

Improving Software Fault Localization by
Combining Spectrum and Mutation

ZHANQI CUI 1, (Member, IEEE), MINGHUA JIA 1,2, (Student Member, IEEE),

XIANG CHEN 3, (Member, IEEE), LIWEI ZHENG 1, AND XIULEI LIU 1
1Computer School, Beijing Information Science and Technology University, Beijing 100101, China
2School of Information, Central University of Finance and Economics, Beijing 100081, China
3School of Information Science and Technology, Nantong University, Nantong 226019, China

Corresponding author: Xiulei Liu (liuxiulei@bistu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB1400402, in part

by the National Natural Science Foundation of China under Grant 61702041 and Grant 61601039, and in part by the Qin Xin Talents

Cultivation Program of Beijing Information Science Technology University under Grant QXTCP C201906 and Grant QXTCP B201905.

ABSTRACT The performance of software fault localization techniques is critical to software debugging

and the reliability of software. Spectrum-based fault localization (SBFL) and mutation-based fault localiza-

tion (MBFL) are the twomost popular fault localizationmethods. However, the accuracies of the twomethods

are still limited. For example, only 10.63% of faults can be detected by inspecting the top 3 suspicious

elements reported by Ochiai, which is a famous SBFL technique. Unfortunately, programmers only examine

the first few suspicious elements before losing patience. Since the information used in SBFL and MBFL

are quite different and complementary, this paper proposes a novel approach by combining spectrum and

mutation to improve the fault localization accuracy. First, the faulty program is evaluated by using SBFL, and

the potential faulty statements are ranked according to their suspiciousness. Then, mutants of the program

are generated and executed by MBFL. Finally, the statements that are ranked in the top tied n by SBFL

are evaluated and reranked according to their mutation scores. Experiments are carried on the Defects4J

benchmark and the results reveal that the accuracy of the proposed approach outperforms those of the SBFL

and MBFL techniques. In terms of the faults located by inspecting the top 1 suspicious elements, the SMFL

techniques detect at least 2.36 times more faults than two SBFL techniques (DStar and Ochiai) and detect at

least 1.86 times more faults than two MBFL techniques (MUSE and Metallaxis).

INDEX TERMS Software debugging, fault localization, program spectrum, mutation testing.

I. INTRODUCTION

As software becomesmore complex and error prone, software

testing and fault localization become critical to software qual-

ity. Fault localization techniques, which play important roles

in program analysis and software testing, focus on efficiently

identifying faulty program elements that cause software fail-

ures. In the whole life cycle of software, the debugging

process is the most expensive and time-consuming stage,

especially for fault localization activities. As the scale and

complexity of software increase, increasingly more faults

could exist in software, and testing software is one of the keys

to improving software quality. The failures detected by testing

need to be fixed by debugging. Typically, fault localization is

the most expensive part of debugging.

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

Fault localization techniques focus on how to use the

static or dynamic information of software to accurately and

quickly locate program elements that cause failures. The

existing fault localization techniques can mainly be classi-

fied into seven types, including spectrum-based fault local-

ization (SBFL) [1]–[7], mutation-based fault localization

(MBFL) [8]–[11], dynamic program slicing [12]–[14], stack

trace analysis [15], [16], prediction switching [17], informa-

tion retrieval-based fault localization [18], and history-based

fault localization [19], [20]. Among these seven types of

fault localization techniques, SBFL and MBFL are the most

popular fault localization methods.

SBFL uses the program spectrum to localize faults. The

program spectrum is a collection of program information

that provides a specific matrix on the dynamic behaviors

of software [1], [2]. SBFL is based on spectrum cover-

age information and test case execution results. Typically,

172296
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-5537-9236
https://orcid.org/0000-0003-0859-7502
https://orcid.org/0000-0002-1180-3891
https://orcid.org/0000-0001-7641-6369
https://orcid.org/0000-0002-9303-3682
https://orcid.org/0000-0003-3264-185X

Z. Cui et al.: Improving Software Fault Localization by Combining Spectrum and Mutation

an element is suspicious if it is executed multiple times by

failed test cases but is seldom executed by passed test cases.

However, many suspicious elements are frequently ranked

the same by SBFL. For instance, the elements in a basic

block are all executed or not executed by different test cases;

hence, the elements in a basic block are always ranked the

same [1], [2]. In addition, the accuracy of SBFL is limited,

especially for the top suspicious elements. In [2], SBFL tech-

niques successfully localized only 4.5% of faults on average

by inspecting the top 1 suspicious element, which means that

only 45 out of 1000 programs that contain faulty elements can

be successfully localized by inspecting the top 1 suspicious

element of the ranked lists.

MBFL is based on mutants, where a mutant typically

changes one statement by replacing one operand or expres-

sion with another [2], [8], [9], [21]. It calculates the mutation

score of each mutant and averages the mutation scores of the

mutants of an element as the suspicious value of the element.

Intuitively, an element is suspicious if it affects failed test

cases more frequently and affects passed test cases more

rarely. However, the accuracy of MBFL is still limited, even

though it costs a huge amount of time to generate and exe-

cute mutants. In [2], MBFL techniques successfully localized

6.5% of faults on average by inspecting the top 1 suspicious

element, which means that 65 out of 1000 faulty programs

can be successfully localized by inspecting the top 1 element

of the ranked lists.

However, previous studies suggested that programmers

will only inspect a few positions at the top of a ranked

list before losing patience [10], [22]. In [22], programmers

exhibited some form of jumping between positions when

confirming the faults of programs according to a ranked list.

37% of the jumps skipped 10 positions on average. However,

95% of the reviews start with the top 1 suspicious element in

the ranked list, which means that the top 1 position is very

rarely skipped by programmers. Therefore, how to improve

the fault localization accuracy, especially for the top 1 suspi-

cious element, is crucial to the practicability of fault local-

ization. We notice that SBFL and MBFL methods utilize

different information of spectrum and mutation, respectively.

The previous research also found that the two methods are

weakly correlated [2]. This finding suggests that it is possible

to improve the fault localization accuracy by combining the

spectrum and mutation.

A. PROPOSED SOLUTION

In this paper, we propose a novel approach that combines

Spectrum andMutation for Fault Localization (SMFL). First,

the faulty program is evaluated by using SBFL based on the

spectrum of the coverage information and execution results

of test cases, and the potential faulty statements are ranked

according to their suspiciousness. Then, mutants of the pro-

gram are generated and executed byMBFL. Finally, the state-

ments that are ranked as top tied n by SBFL are reranked

according to their mutation scores. The approach leverages

the advantages of both SBFL and MBFL to improve the

fault localization accuracy. Specifically, four SMFL-based

techniques, including OMuse (combines Ochiai [4] and

MUSE [8]), OMetallaxis (combines Ochiai and Metal-

laxis [9]), DMuse (combines DStar [11] and MUSE) and

DMetallaxis (combines DStar andMetallaxis), are presented.

To further validate the effectiveness of the SMFL approach,

experiments are carried on the Defects4J1 benchmark and

the results reveal that the accuracy of the proposed method

significantly outperforms those of the spectrum-based and

mutation-based techniques.

B. CONTRIBUTIONS

The main contributions of this paper are summarized as fol-

lows:

• a novel SMFL fault localization approach, which

improves the fault localization accuracy and efficiency.

• four SMFL-based techniques, including OMuse, OMet-

allaxis, DMuse and DMetallaxis, are proposed for fault

localization.

• an experimental evaluation of SMFL in comparison with

SBFL and MBFL on the Defects4J benchmark.

The rest of the paper is organized as follows. Section II

describes the SMFL approach. Section III presents the exper-

imental design and evaluation. Section IV reviews related

works. Finally, the conclusion and the discussion of the future

work are provided in section V.

II. OUR APPROACH

The SMFL approach is based on combining spectrum-based

fault localization and mutation-based fault localization. The

flowchart of the approach is presented in Figure 1. First,

the faulty program is evaluated by using SBFL based on spec-

trum coverage information and test case execution results,

and the potential faulty statements are ranked according to

their suspiciousness. Then, mutants of the program are gen-

erated and executed by MBFL. Finally, the statements ranked

as top tied n by SBFL are selected as candidates, and the

candidates are reranked according to their mutation scores.

The following part of this section introduces the SMFL fault

localization approach in details.

A. EVALUATE THE PROGRAM BY USING SBFL

SBFL uses the program spectrum and test results to local-

ize software faults. The program spectrum is a collection

of coverage information and execution results of test cases.

The spectrum of a program, which usually is in the form of

a matrix, describes the dynamic behaviors of the program.

The testing results record whether a test case has failed or

passed. The more frequently an element is executed by failed

tests, and the less frequently it is executed by passed tests,

the more suspicious the element [1], [2]. Conversely, the less

frequently an element is executed by failed tests, and themore

frequently it is executed by passed tests, the less suspicious

the element.

1Defects4J: http://fault-localization.cs.washington.edu/

VOLUME 8, 2020 172297

Z. Cui et al.: Improving Software Fault Localization by Combining Spectrum and Mutation

FIGURE 1. The flow chart of the SMFL approach.

For different SBFL techniques, the suspiciousnesses of

elements are calculated by different suspiciousness formulas

with the same spectrum of the program and test cases. As a

result, different SBFL techniques are strongly correlated.

Ochiai and DStar are the SBFL techniques with the best

performance on real bugs in [21]. In [2], Ochiai and DStar,

which are selected as the representative SBFL techniques, can

respectively locate approximately 44% and 43% of the faults

by inspecting the top 10 suspicious elements. In [23], Ochiai

was selected as a representative coefficient-based technique

and DStar archived good results in many cases. Therefore,

we choose the Ochiai and DStar techniques as the repre-

sentative SBFL techniques to evaluate the suspiciousness of

statements in this step.

For a faulty program, the execution spectrum is constituted

by a binary matrixMa and a test result vector Re.Ma records

the coverage information of the executing test cases for all

statements. Re records the testing results of each test case.

For a statement si, the execution information of the statement

can be extracted from the program spectrum and represented

as a 3-tuple (ei,f , ei,p, ni,f), where ei,f indicates the number

of failed test cases that execute si, ei,p indicates the number

of passed test cases that execute si, and ni,f indicates the

number of failed test cases that not execute si. Figure 2,

in which each row gives the execution information of a test

case, is an example of a program spectrum. In columns 2-8,

‘1’ represents that the corresponding statement is executed

by the test case while ‘0’ represents that the corresponding

statement is not executed by the test case. The last column,

in which ‘+’ indicates pass and ‘−’ indicates fail, represents
the results of each test case. A 3-tuple (1, 3, 0) represents the

spectrum information of s1, which means that s1 is executed

by one failed test case and three passed test cases. A 3-tuple

(0, 2, 1) represents the spectrum information of s3, which

means that s3 is executed by two failed test cases; besides,

there is another failed test case that does not execute s3.

Equations (1) and (2) are the suspiciousness formulas

used by Ochiai [4] and DStar [11], in which Ochiai(si) and

DStar(si) represent the suspiciousness values of a statement

FIGURE 2. An example of a program spectrum.

si. ‘*’ in equation (2) is a variable, which we set to 2, as in

the empirical study of Zou et al [2]. By using Ochiai or

DStar, the potential faulty statements can be ranked according

to their suspiciousness values. The suspiciousness values of

some statements could be the same. Especially, statements in

a basic block are always executed or not executed by different

test cases, and the suspiciousness values of the statements

in one basic block are all the same. We rank the statements

of the program according to their suspiciousness values cal-

culated by Ochiai or DStar to a sequence S = 〈Tied1,
Tied2, . . . ,Tiedi, . . .〉. Tiedi is a subsequence of S, which is

composed of statements 〈si,1, si,2, si,j, . . .〉 with the same

suspiciousness value and ranked as tied i. The statements

in Tiedi are ranked by the line number of the statements in

ascending order.

Ochiai(si) =
ei, f

√

(ei, f + ni, f) · (ei, f + ei, p)
(1)

DStar(si) =
e∗i, f

ei, p + ni, f
, (∗ = 2, 2.5, 3, . . .) (2)

B. EVALUATE THE PROGRAM BY USING MBFL

MBFL techniques are based on the execution information

of mutants, where a mutant typically changes one statement

by replacing one operand or expression with another [2],

[8], [9]. Mutation operators can be categorized as state-

ments, operations, variables, constants, etc. Typically, an ele-

ment is suspicious if it affects failed test cases more

172298 VOLUME 8, 2020

Z. Cui et al.: Improving Software Fault Localization by Combining Spectrum and Mutation

frequently and affects passed test cases more rarely. In con-

trast, if an element affects passed test cases more frequently

and affects failed test cases more rarely, the element is less

suspicious.

As a previous study shown, MUSE and Metallaxis are two

of theMBFL techniques with the best performance [2]. In [2],

MUSE and Metallaxis can respectively locate approximately

19% and 36% of the faults by inspecting the top 10 suspicious

elements. Equation (3) and Equation (4), as shown at the

bottom of the next page are the formulas used by MUSE

and Metallaxis, respectively. The performance of MUSE and

Metallaxis are quite different because the two techniques

extract different information on a mutation test, and differ-

ent factors are used. Moreover, a previous study found that

these two MBFL techniques are weakly correlated [2]. Thus,

we evaluate the program using both theMUSE andMetallaxis

techniques to get different mutation scores of the statements,

respectively.

Table 1 shows the 9 mutation operators, which are used

to generate mutants of programs [24]. The descriptions and

examples of the mutation operators are given in the table. Let

us suppose thatMu= {M1,M2, . . . ,Mi, . . .} is a set of mutant

sets for the statements of a program P, where Mi = {mi,1,
mi,2, . . .} is a set of mutants generated for a statement si. Most

of the statements have multiple mutants but there are still

some statements having no mutants because these statements

cannot be mutated. The mutation score of the mutants are

calculated using mutation testing. For a statement si, Ti is

the subset of the original test cases T that executed si. The

factors used in MUSE and Metallaxis include totalfailed ,

failed(mi,j), passed(mi,j), f2p, and p2f. totalfailed indicates

the number of failed test cases for the original program P.

For the execution result of a mutant mi,j, failed(mi,j) and

passed(mi,j) are used to indicate the number of test cases that

failed on P but now pass on mutant mi,j and the number of

test cases that passed on P but now fail on a mutant mi,j,

respectively. f2p, and p2f are used to indicate the number

of test cases with results that change from failure to pass

on any mutant and the number of test cases with results

that change from pass to failure on any mutant, respectively.

In Equation (3), the factors of the MUSE suspiciousness for-

mula contain f2p, p2f, failed(mi,j), and passed(mi,j); while in

Equation (4), the factors of the Metallaxis suspicious formula

contain totalfailed , failed(mi,j), and passed(mi,j).

C. COMBINE SPECTRUM AND MUTATION

The third step of SMFL is to rerank the candidates reported

by SBFL according to their mutation scores. OMuse, OMet-

allaxis, DMuse, and DMetallaxis are proposed by combing

spectrum and mutation for fault localization.

Algorithm 1 describes how to combine the spectrum and

mutation for fault localization. In line 5, the sequence S

= 〈Tied1, Tied2, . . . ,Tiedi, . . .〉 is the result of an SBFL

technique, such as Ochiai or DStar. In line 6, S is split

into two subsequences S ′ = 〈Tied1, Tied2, . . . ,Tiedn〉 and
S ′′ = 〈Tiedn+1, Tiedn+2, . . .〉. In lines 8-10, a set of mutants

TABLE 1. Mutation operators.

are generated for each statement in P. In line 12, mutation

testing is carried out on the generated mutants. In lines 13-20,

the mutation score of the statements in P′ are calculated by

mutation formulas, such as MUSE and Metallaxis. In line 21,

the statements in P′ are reranked according to their mutation

scores to generate a suspicious subsequence S ′′′. For the

statements in S ′′, the original order reported by SBFL is kept.

S ′′′ is spliced with S ′′ together into a reranked suspicious

statements list S.

In this paper, OMuse, OMetallaxis, DMuse, and DMetal-

laxis are proposed by combing the spectrum and mutation

for fault localization. OMuse is based on the combination

of Ochiai and MUSE while OMetallaxis is based on the

combination of Ochiai and Metallaxis. DMuse is based on

the combination of DStar and MUSE while DMetallaxis is

based on the combination of DStar and Metallaxis. It should

be noted that in OMetallaxis and DMetallaxis, only the state-

ments in P′ need to be mutated in lines 8-10. This is because

the variables f2p and p2f, which are related to all the mutants

of P, are not used in Equation (4).

III. EXPERIMENTS AND EVALUATIONS

A. EXPERIMENTAL DESIGN

We implemented OMuse, OMetallaxis, DMuse, and DMetal-

laxis based on the proposed SMFL approach, which combines

Ochiai, DStar, MUSE, and Metallaxis, respectively. In our

empirical study, we select the statements ranked Tied1 (n=1)
as candidates for reranking to evaluate our approach. To eval-

uate the effectiveness of the approach, the research intends to

answer the following research questions:

RQ1: Is it common for multiple elements to have the same

suspiciousness value by SBFL?

RQ2: How effective is SMFL compared with SBFL?

RQ3: How effective is SMFL compared with MBFL?

VOLUME 8, 2020 172299

Z. Cui et al.: Improving Software Fault Localization by Combining Spectrum and Mutation

Algorithm 1 Combine the Spectrum and Mutation for Fault

Localization
Input:

Program P, spectrum Sp, mutantsMu, test cases T

Output:

Reranked suspicious statements list: S

1: for si in P do

2: get ei,f , ei,p, ni,f from Sp

3: get suspiciousness value of si by Ochiai(si)

4: end for

5: S = rank si in P according to Ochiai(si)

6: split S into S ′ = 〈Tied1, Tied2, . . . ,Tiedn〉 and S ′′ =
〈Tiedn+1, Tiedn+2, . . .〉

7: P
′ = {si | si in S ′}

8: for si in P do

9: Mi← a set of the mutants generated for si
10: end for

11: Mu = M1 ∪M2 ∪ · · · ∪Mi ∪ · · ·
12: mutation test is carried out onMu with test cases T

13: get the value of the parameters, such as totalfailed , f 2p,

and p2f based on the results of the mutation test

14: for si in P
′ do

15: Mi = {mi,1, mi,2, . . .}
16: for mi,j in Mi do

17: get failed(mi,j) and passed(mi,j) based on the results

of the mutation test

18: end for

19: get mutation score of si by via MBFL

20: end for

21: S ′′′ = rerank statements in S ′ according to their mutation

scores

22: S = 〈S ′′′′ , S ′′〉
23: return S

B. EXPERIMENTAL SUBJECTS

To answer the research questions, experiments are carried

out on the Defects4J benchmark. Defects4J is a real-world

fault dataset composed of 6 open-source Java projects. It is

a collection of reproducible faults and a supporting infras-

tructure with the goal of advancing software engineering

research. The Defects4J benchmark has been used as the

experimental subject in many previous fault localization stud-

ies [2], [24]–[29]. The details of the Defects4J benchmark are

summarized in Table 2. It contains 395 faults from the 6 open-

source projects: Chart (26 faults), Closure (133 faults), Lang

(65 faults), Math (106 faults), Mockito (38 faults), and Time

TABLE 2. Details of the Defects4J Dataset(V1.1.0).

(27 faults). For each fault, it provides a faulty version of

the project. In Table 2, the first column is the names of

the projects. The second column is the numbers of faults

for the 6 projects. The third column is the average source

lines of code (LOC) for each project. The fourth column

is the number of average test cases for each project, which

include at least one failed test case per fault. For each fault,

Defects4J provides faulty and fixed program versions with a

minimized change that represents the isolated bug fix. This

change indicates which lines in a program are defective.

C. MEASUREMENT METRICS

Manymeasurementsmetrics are used to evaluate the accuracy

and effectiveness of software fault localization techniques.

In this paper, we adopt EXAM, Einspect@n and propose

Einspect@Tiedn as the metrics to measure the performance of

the SBFL, MBFL, and SMFL techniques.

EXAM is a commonly used metric for fault localization

techniques to evaluate the average rank of faulty elements [2],

[30]–[32]. The value of EXAM is the percentage of elements

that must be inspected until a real faulty element is found [2],

[10], [23], [26]. The smaller the value of EXAM is, the more

effective the fault localization technique.

In their empirical research, Zou et al. [2] usedEinspect@n to

evaluate the absolute rank of the faulty elements. Einspect@n

counts the total number of faults that were successfully local-

ized by inspecting the top n positions of the ranked lists [2],

[8], [22]. The bigger the value of Einspect@n is with a smaller

n, the more effective the fault localization technique. It is

worth noting that programmers pay more attention to the

top suspicious elements in practice. As a pervious study

shown [19], instead of checking the statements in a ranked

list one by one until the hypothesis about the cause of the

failure is confirmed, all the programmers exhibit some form

of jumping between positions in a ranked list. Moreover,

the top 1 position in a ranked list is very rarely skipped by

MUSE (si) =

∑

mi,j∈Mi

(

failed
(

mi,j
)

− f 2p
p2f
· passed

(

mi,j
)

)

|Mi|
, (Mi ∈ mutants (si)) (3)

Metallaxis (si) =

∑

mi,j∈Mi

(

failed(mi,j)√
totalfailed ·(failed(mi,j)+passed(mi,j))

)

|Mi|
, (Mi ∈ mutants (si)) (4)

172300 VOLUME 8, 2020

Z. Cui et al.: Improving Software Fault Localization by Combining Spectrum and Mutation

TABLE 3. The distribution of different versions that are ranked as tied 1
by Ochiai.

TABLE 4. The distribution of different versions that are ranked as tied 1
by DStar.

the programmers. Therefore, Einspect@1 is very important to

evaluate the effectiveness of fault localization techniques.

In addition, we find that many statements are ranked as

tied with the same suspiciousness values. To describe this

situation in a more precise way, we propose Einspect@Tiedn
as a metric. Einspect@Tiedn represents the number of the

faults that can be successfully localized by inspecting the

statements of the suspicious list ranked as tied 1 to tied n.

With this metric, we can not only pay attention to the absolute

positions of the faulty elements in the suspiciousness list

using Einspect@n, but we can also address the tied ranks of

faulty elements using Einspect@Tiedn.

D. EXPERIMENTAL RESULTS AND ANALYSIS

1) STATEMENTS WITH SAME SUSPICIOUS VALUES BY SBFL

The number of different versions of the projects, in which

only 1 statement and more than 1 statement are ranked as tied

1 by Ochiai and DStar, are shown in Tables 3 and 4, respec-

tively. As Tables 3 and 4 show, 277 (70%) and 269 (68%)

defective programs that have more than 1 element are ranked

as tied 1 by Ochiai and DStar, respectively. In Tables 3 and

4, except Mockito, more than 1 element is ranked as tied 1 in

more than half of the different versions of the other 5 projects

(Chart, Closure, Lang, Math, and Time). The column ‘Avg

Size’ gives the average number of statements that are ranked

as tied 1 in different versions of the projects. As Tables 3 and 4

shows, the average size of tied 1 is 22 for the 6 projects, which

means that 22 statements on average are both ranked as tied

1 by Ochiar and DStar.

TABLE 5. The performance of Ochiai on Einspect @Tiedn (n = 1, 2, 3, 5).

TABLE 6. The performance of DStar on Einspect @Tiedn (n = 1, 2, 3, 5).

TABLE 7. The performance of Ochiai on Einspect @n (n = 1, 3, 5, 10).

Tables 5 and 6 describe the performance of Ochiai and

DStar on Einspect@Tiedn (n = 1, 2, 3, 5). For example,

Einspect@Tied2 indicates the number of faulty program ver-

sions that were successfully localized by inspecting the state-

ments ranked as tied 1 and tied 2. The performances of

Ochiai and DStar on Einspect@n (n = 1, 3, 5, 10) are listed

in Tables 7 and 8, respectively. In Tables 7 and 8, we can

find that if the programmers only check the first suspicious

statement, only 9 and 11 out of 395 faults can be located

by Ochiai and DStar, respectively. In comparison, 78 and

70 real faults can be found by inspecting the tied 1 statements

that are ranked by Ochiai and DStar, respectively. If we

can effectively rerank the tied 1 statements by using the

information of the mutation test, up to 20% of the faults

could be successfully located by only checking the top 1

statement.

Answer for RQ1: 70% and 68% of the defective programs

have more than 1 element ranked as tied 1 by Ochiai and

DStar, respectively, and the average number of statements

ranked as tied 1 is 22 for both Ochiai and DStar.

VOLUME 8, 2020 172301

Z. Cui et al.: Improving Software Fault Localization by Combining Spectrum and Mutation

TABLE 8. The performance of DStar on Einspect @n (n = 1, 3, 5, 10).

2) THE COMPARISON OF SMFL AND SBFL

To compare SMFL and SBFL, experiments are performed

by using Ochiai, DStar, OMuse, OMetallaxis, DMuse, and

DMetallaxis on Defects4J, respectively. To compare their

performances, Einspect@n and EXAM scores are used as the

measurements metrics.

As Table 7 shows, Ochiai can locate 9, 42, 95, and

149 faults (approximately 2%, 11%, 24%, and 38% of all

faults) by inspecting the top 1, 3, 5, and 10 suspicious state-

ments, respectively. The performances of OMuse and OMet-

allaxis on Einspect@n (n = 1, 3, 5, 10) are listed in Table 9.

As Table 9 shows, the performances of OMuse and OMetal-

laxis are almost the same expect for the small difference on

Einspect@1 for the Lang and Math projects. Both OMuse and

OMetallaxis can locate 36, 60, 104, and 154 faults (approx-

imately 9%, 15%, 26%, and 39% of all faults) by inspecting

the top 1, 3, 5, and 10 suspicious statements, respectively,

which are 4.00, 1.43, 1.09, and 1.03 times greater than those

of Ochiai. The total EXAM of Ochiai is 0.0330, and the

total EXAM of OMuse and OMetallaxis are both 0.0270.

The improvement of EXAM is only 0.0060 because only the

statements ranked as tied 1 by SBFL are chosen to be reranked

by SMFL, which accounts for just a small portion of the entire

program.

As Table 8 shows, DStar can locate 11, 32, 56, and

103 faults (approximately 3%, 8%, 14%, and 26% of all

faults) by inspecting the top 1, 3, 5, and 10 suspicious

statements, respectively. Meanwhile, as shown in Table 10,

DMuse can locate 26, 49, 66, and 112 faults (approximately

7%, 12%, 17%, and 28% of all faults) by inspecting the top 1,

3, 5, and 10 suspicious statements, respectively, which are

2.36, 1.84, 1.18, and 1.09 times greater than those of DStar.

DMetallaxis can locate 27, 50, 68, and 113 faults (approxi-

mately 7%, 13%, 17%, and 29% of all faults) by inspecting

the top 1, 3, 5, and 10 suspicious statements, respectively,

which are 2.45, 1.56, 1.21, and 1.10 times greater than those

of DStar. The total EXAM of DStar is 0.0497, and the total

EXAM of DMuse (DMetallaxis) is 0.0444 (0.0443). The

improvement ofEXAM is approximately 0.0050 because only

the statements ranked as tied 1 by SBFL are chosen to be

reranked by SMFL, which accounts for just a small portion

of the entire program.

TABLE 9. The performance of OMuse and OMetallaxis on Einspect @n
(n = 1, 3, 5, 10) and EXAM.

TABLE 10. The performance of DMuse and DMetallaxis on Einspect @n
(n = 1, 3, 5, 10) and EXAM.

The results of comparing SMFL with Ochiai and DStar by

Einspect@n are also shown in Figure 3. In Figure 3, we can

see that SMFL techniques (OMuse, DMuse, OMetallaxis and

DMetallaxis) can find more faults than SBFL techniques

(Ochiai and DStar) according to Einspect@1, Einspect@3,

Einspect@5, and Einspect@10.

Answer for RQ2: The accuracies of the SMFL techniques

are better than those of the SBFL techniques. Specifically,

SMFL techniques can localize more faults than Ochiai and

DStar, and the EXAM of the SMFL techniques are also

reduced.

172302 VOLUME 8, 2020

Z. Cui et al.: Improving Software Fault Localization by Combining Spectrum and Mutation

FIGURE 3. The results of comparing SMFL with SBFL and MBFL on
Einspect @n.

TABLE 11. The performance of MUSE and Metallaxis on Einspect @n
(n = 1, 3, 5, 10) and EXAM.

3) THE COMPARISON OF SMFL AND MBFL

Table 11 shows the performance of MUSE and Metallaxis,

which are MBFL techniques, on Einspect@n (n= 1, 3, 5, 10).

MUSE can locate 14, 30, 36, and 44 faults (approximately

4%, 8%, 9%, and 11%of all the faults) by inspecting the top 1,

3, 5, and 10 suspicious statements, respectively. Metallaxis

can locate 14, 31, 39, and 47 faults (approximately 4%, 8%,

10%, and 12% of all the faults) by inspecting the top 1, 3, 5,

and 10 suspicious statements, respectively.

As Table 9 and Table 11 show, the number of faults

localized by OMuse is 2.57, 2.00, 2.89, and 3.50 times

greater than that of MUSE on Einspect@1, Einspect@3,

Einspect@5,Einspect@10, respectively. Moreover, the EXAM

of OMuse is 0.3872 lower than that of MUSE. The number

of faults localized by OMetallaxis is 2.57, 1.93, 2.67, and

3.28 times greater than that of Metallaxis on Einspect@1,

Einspect@3, Einspect@5,Einspect@10, respectively. Moreover,

the EXAM of OMetallaxis is 0.3765 lower than that of Met-

allaxis.

As Table 10 and Table 11 show, the number of faults

localized by DMuse is 1.86, 1.63, 1.83, and 2.55 times

greater than that of MUSE on Einspect@1, Einspect@3,

Einspect@5,Einspect@10, respectively. Moreover, the EXAM

of DMuse is 0.3698 lower than that of MUSE. The number

of faults localized by DMetallaxis is 1.93, 1.61, 1.74, and

2.40 times greater than that of Metallaxis on Einspect@1,

Einspect@3, Einspect@5,Einspect@10, respectively. Moreover,

the EXAM of DMetallaxis is 0.3592 lower than that of

Metallaxis.

The results of comparing SMFL with SBFL and MBFL by

Einspect@n are also shown in Figure 3. In Figure 3, we can see

that the SMFL techniques (OMuse, DMuse, OMetallaxis and

VOLUME 8, 2020 172303

Z. Cui et al.: Improving Software Fault Localization by Combining Spectrum and Mutation

TABLE 12. Time costs of mutant generation and test execution (in seconds).

DMetallaxis) can find more faults than the MBFL techniques

(MUSE and Metallaxis) in terms of Einspect@1, Einspect@3,

Einspect@5,Einspect@10.

As we know, MBFL techniques cost much more time than

SBFL techniques becauseMBFL techniques need to generate

a large number of mutants and the tests need to be executed

multiple times. Therefore, we compare the time costs of

the SMFL and MBFL techniques that are spent on mutant

generation and test execution in table 12. As Table 12 shows,

the time costs of OMuse, DMuse, MUSE, and Metallaxis are

the same because all the mutants of the programs are gener-

ated and executed. Meanwhile, OMetallaxis and DMetallaxis

only have approximately 11% of the time costs of the previ-

ous 4 techniques. The reason is that in equation (4), which is

the suspiciousness equation of Metallaxis, the variables f2p

and p2f contained in equation (3) are not included. To get the

values of f2p and p2f, all the mutants of the program need to

be generated and executed. To get the values of the variables

in equation (4), only the suspicious statements reported by

SBFL need to be generated and executed. As a result, time

costs are saved in OMetallaxis and DMetallaxis.

Answer for RQ3: The accuracy of the SMFL tech-

niques outperforms that of the MBFL techniques. Specifi-

cally, SMFL techniques can localize more faults than MUSE

and Metallaxis, and the EXAM of the SMFL techniques are

also reduced. In addition, the OMetallaxis and DMetallaxis

techniques save 89%of the time costs that are spent onmutant

generation and test execution in comparison with the MBFL

techniques.

E. THREATS TO VALIDITY

The threats to internal validity relate to the technique choices,

experimental errors and biases. The choice of the SBFL and

MBFL techniques in our study threatens the internal validity

of the technique choices. We choose Ochiai, DStar, MUSE

and Metallaxis because Ochiai and DStar are two of the

SBFL techniques with the best performance, and MUSE and

Metallaxis are two of the MBFL techniques with the best

performance [2]. The effectiveness of the proposed SMFL

method may result in different experiment results and conclu-

sions when SMFL adopts other SBFL andMBFL techniques.

The experiments are carried on the Defects4J benchmark

dataset to mitigate the risk to the internal validity from exper-

imental errors and biases. It can reduce experimental bias

since Defects4J is a real-world fault dataset.

The threats to external validity relate to the generalizability

of our proposed SMFL approach. The experiments are carried

on a real-world fault dataset Defects4J. It contains 395 real

faults from 6 open-source Java projects from real application

scenarios. Each real fault is accompanied by a comprehensive

test case that can expose that fault [27]. In the future, we will

test more real programs in different programming languages

with diverse faults using the SMFL method.

The threats to construct validity relate to the selection

of the candidates for reranking. The statements ranked as

tied 1 are chosen as candidates for reranking based on the

mutation scores. The performance of SMFLmay be improved

by choosing statements ranked as tied 1 to tied n (n > 1) as

candidates for reranking, but it needs to consider the complex

relationships and weights between the suspiciousness values

of the candidates reported by SBFL and the mutation scores

reported by MBFL. We also realize that a different value of n

might result in different experimental results and conclusions.

Another threat to the validity is that the experimen-

tal objects used are all single-fault programs. However,

the SMFL approach can also be applied to programs

with multiple faults. One simple solution is to produce

fault-focused clusters to group failed test cases related to

the same fault into the same clusters [33]. Then, the SMFL

approach is applied to the successful test cases and the failed

test cases in one cluster to locate the fault that is related to the

cluster.

IV. RELATED WORK

Generally, fault localization identifies the most likely faulty

elements via program analysis and the execution information

of test cases. The program elements (code lines, statement

blocks, functions, classes, etc.) are ranked and then checked

one by one according to the order until the real fault is

found [1], [2], [34]. SBFL and MBFL are two of the most

popular fault localization methods. In this section, we briefly

review the related work on spectrum-based fault localization

and mutation-based fault localization.

A. SPECTRUM-BASED FAULT LOCALIZATION

SBFL uses the program spectrum to locate faults. Collofello

and Cousins proposed that the program spectrum can be used

for fault localization [34]. The program spectrum is a collec-

tion of program information that provides a specific matrix of

the dynamic software behaviors [1], [2]. The specific matrix

172304 VOLUME 8, 2020

Z. Cui et al.: Improving Software Fault Localization by Combining Spectrum and Mutation

records the run-time profiles of the whole program statements

for specific test cases. SBFL is based on spectrum coverage

information and test case execution results. Typically, an ele-

ment is suspicious if it is executed multiple times by failed

test cases but it is seldom executed by passed test cases.

SBFL has received much research attention due to its sim-

plicity and effectiveness. The effectiveness of risk evaluation

formulas is an important research area of SBFL. However,

the performance results of the risk evaluation formulas in

SBFL strongly depend on the experimental setups, and the

results are not comprehensive enough to provide a fair eval-

uation of investigated SBFL technique. Thus, Xie et al. [1]

conducted a theoretical investigation of the effectiveness of

risk evaluation formulas and defined two types of relations

between formulas, namely, equivalent and better. They devel-

oped an innovative framework for theoretical analysis. The

framework identifies the relations between different SBFL

formulas by dividing all program statements into three dis-

joint sets to compare the sizes of these sets for different

SBFL formulas. The three disjoint sets include the suspi-

ciousness values higher than, equal to, and lower than the

suspiciousness value of the faulty statement. Among the

30 investigated formulas in their study, they proved that for

the single-fault scenario, there are five maximal formulas,

namely, Naish1, Naish2, Wong1, Russell & Rao, and Binary.

Kochhar et al. [35] show that 98% of practitioners consider

a fault localization technique to be useful only if it reports

the real faults within the top 10 of the suspicious ranking

lists. However, due to the nature of SBFL, it does not always

rank the root causes at the top. Thus, the researchers in [36]

proposed an SBFL technique that enlarges the nonfaulty

region iteratively to narrow down the suspicious region and

then ranks those components in the suspicious region using

existing SBFL techniques to improve the absolute ranking of

faulty elements.

Fault localization techniques can be divided into two cate-

gories, including component-based and statement-based fault

localization. The former is too coarse to accurately locate

the real fault statement, and the latter is too complicated

and costs more time. Thus, in [34], the researchers proposed

a new technique for fault localization called the double-

times-locating strategy. First, it built the program spectrum to

abstract function traces by abstracting the function call graph

from the source program, and then the function candidates

were sorted by using model-based diagnosis. Second, it used

DStar [11] to locate the faults in the function candidates. The

approach improved the fault localization performance with

respect to the average accuracy but cannot locate the accurate

place when multiple statements are ranked tied. In this paper,

the SMFL approach solves this problem by combining the

spectrum and mutation.

Debroy andWong [37] proposed to fix faults by combining

the idea of mutation and fault localization. The statements

are ranked according to their likelihood of containing faults

and then are mutated in the same order to produce potential

fixes. Tarantula and Ochiai are utilized for locating faults.

65 out of 314 faults are fixed by 8 selectedmutation operators.

Instead of fixing faults, SMFL focuses on improving the

fault localization accuracy, especially in terms of Einspect@1,

to save the effort of validating the faults. Therefore, SMFL

would be used to improve the efficiency of fixing faults.

B. MUTATION-BASED FAULT LOCALIZATION

MBFL is an important fault localization method, which has

high accuracy, but it is complicated and costs much time.

While SBFL techniques consider whether a statement is

executed or not, MBFL techniques consider whether the

execution of a statement affects the result of a test via a

mutation test [2]. The idea of whether the execution of a

statement affects the program behaviors has been researched

by many studies [3], [8]–[11], [38]. Cleve and Zeller [38]

first proposed to identify the state differences by comparing

the program states of a failing and a passing run. They focus

on the variables and values that are relevant for the failure in

space and the moments of the variables begin being failures

caused in time.

MBFL is based on mutants, where a mutant typically

changes one statement by replacing one operand or expres-

sion with another [2], [8], [9], [34]. It calculates the mutation

score of each mutant and averages the mutation scores of

the mutants of a statement as the suspiciousness value of

the statement. Typically, an element is suspicious if it affects

failed test cases more frequently and affects passed test cases

more rarely. However, MBFL costs a huge amount of time to

generate and execute mutants.

Li et al. [10] proposed a new approach MURE for

fault localization, which made use of mutation to refine

spectrum-based fault localization. First, it used an SBFL

technique Nash2 to output a list of suspicious statements,

and then it generated mutants for candidates and estimated

their likelihood of relating to faults. Second, it refined the

suspicious statements list by adjusting part of the suspicious

statements’ ordering. The experimental result indicated that

the accuracy of MURE was improved by 30% compared

with that of Naish2. However, MURE only focuses on the

statements that are executed by all of the failed cases. In addi-

tion, it only randomly selected at most 5 mutants for one

statement candidate to estimate the mutation impact of the

statement. Different from MURE, SMFL considers all the

program statements. Moreover, in SMFL, the mutation score

of a statement candidate is estimated based on all the mutants

of the statement candidate.

Recently, MBFL has been applied to improve the effec-

tiveness of fault localization techniques [2], [21]. Spencer

et al. [21]. proposed an improved MBFL technique MCBFL

that uses mutation coverage information and mutation kill

information. It uses EXAM to evaluate the average rank of

faulty elements. However, programmers use Einspect@nmore

to evaluate the absolute rank of the faulty elements. Zou

et al. [2] proposed CombineFL to explore combinations of

a wide range of techniques that rely on different information

sources. It combines 7 types of techniques, including SBFL,

VOLUME 8, 2020 172305

Z. Cui et al.: Improving Software Fault Localization by Combining Spectrum and Mutation

MBFL, slicing, stack trace, predicate switching, information-

retrieval-based, and history-based. Although it outperforms

all these techniques, it costs much time to execute all the fault

localization techniques and learn to rank.

V. CONCLUSION AND FUTURE WORK

This paper proposes a fault localization approach that com-

bines the spectrum andmutation to improve the fault localiza-

tion accuracy. First, the faulty program is evaluated by using

SBFL, and the potential faulty statements are ranked accord-

ing to their suspiciousness. Then, the mutants of the program

are generated and executed by MBFL. Finally, the statements

that are ranked as top tied n by SBFL are reranked accord-

ing to their mutation scores. The proposed fault localization

approach leverages the advantages of both SBFL and MBFL

and improves the fault localization accuracy.

In this paper, we adopt Ochiai and DStar as the SBFL tech-

niques and adopt MUSE and Metallaxis as the MBFL tech-

niques. In the future, we will combine other SBFL techniques

and MBFL techniques for fault localization and optimize the

MBFL techniques to fit SMFL and reduce the execution time

costs of mutation tests. Moreover, programs with multiple

faults will be considered in future work.

ACKNOWLEDGMENT

The preliminary version of this article was presented at the 6th

International Conference on Dependable Systems and Their

Applications (DSA) 2019 [39].

REFERENCES

[1] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, ‘‘A theoretical analysis of the risk

evaluation formulas for spectrum-based fault localization,’’ ACM Trans.

Softw. Eng. Methodol., vol. 22, no. 4, pp. 1–40, Oct. 2013.

[2] D. Zou, J. Liang, Y. Xiong,M. D. Ernst, and L. Zhang, ‘‘An empirical study

of fault localization families and their combinations,’’ IEEE Trans. Softw.

Eng., early access, Jan. 10, 2019, doi: 10.1109/TSE.2019.2892102.

[3] M. Weiser, ‘‘Program slicing,’’ IEEE Trans. Softw. Eng., vol. SE-10, no. 4,

pp. 352–357, Jul. 1984.

[4] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, ‘‘On the accuracy of

spectrum-based fault localization,’’ in Proc. Testing, Academic Ind. Conf.

Pract. Res. Techn., Sep. 2007, pp. 89–98.

[5] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, ‘‘An empirical

investigation of the relationship between spectra differences and regres-

sion faults,’’ Softw. Test., Verification Rel., vol. 10, no. 3, pp. 171–194,

Sep. 2000.

[6] Y. Xiaobo, B. Liu, and W. Shihai, ‘‘An analysis on the negative effect of

multiple-faults for spectrum-based fault localization,’’ IEEE Access, vol. 7,

pp. 2327–2347, 2019.

[7] H. He, J. Ren, G. Zhao, and H. He, ‘‘Enhancing spectrum-based fault

localization using fault influence propagation,’’ IEEE Access, vol. 8,

pp. 18497–18513, 2020.

[8] S. Moon, Y. Kim, M. Kim, and S. Yoo, ‘‘Ask the mutants: Mutating faulty

programs for fault localization,’’ in Proc. IEEE 7th Int. Conf. Softw. Test.,

Verification Validation, Mar. 2014, pp. 153–162.

[9] M. Papadakis and Y. Le Traon, ‘‘Metallaxis-FL: Mutation-based fault

localization,’’ Softw. Test., Verification Rel., vol. 25, nos. 5–7, pp. 605–628,

Aug. 2015.

[10] Z. Li, L. Yan, Y. Liu, Z. Zhang, and B. Jiang, ‘‘MURE: Making use

of MU tations to RE fine spectrum-based fault localization,’’ in Proc.

18th Int. Conf. Softw. Qual., Rel., Secur. Companion (QRS-C), Aug. 2018,

pp. 56–63.

[11] W. E.Wong, V. Debroy, R. Gao, and Y. Li, ‘‘The DStar method for effective

software fault localization,’’ IEEE Trans. Rel., vol. 63, no. 1, pp. 290–308,

Mar. 2014.

[12] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, ‘‘Fault localization

using execution slices and dataflow tests,’’ in Proc. 6th Int. Symp. Softw.

Rel. Eng., 1995, pp. 143–151.

[13] M. Renieres and S. P. Reiss, ‘‘Fault localization with nearest neighbor

queries,’’ in Proc. 18th IEEE Int. Conf. Automated Softw. Eng., 2015,

pp. 30–39.

[14] M. Ghorbani and M. S. Flallah, ‘‘Run-time verification for observational

determinism using dynamic program slicing,’’ in Proc. 20th Int. Conf. Inf.

Secur. (ISC), Nov. 2017, pp. 405–416.

[15] C.-P.Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H.Mei, ‘‘Boosting

bug-report-oriented fault localization with segmentation and stack-trace

analysis,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol., Sep. 2014,

pp. 181–190.

[16] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, ‘‘CrashLocator: Locating

crashing faults based on crash stacks,’’ in Proc. Int. Symp. Softw. Test. Anal.

(ISSTA), 2014, pp. 204–214.

[17] X. Zhang, N. Gupta, and R. Gupta, ‘‘Locating faults through automated

predicate switching,’’ in Proc. 28th Int. Conf. Softw. Eng. (ICSE), 2006,

pp. 272–281.

[18] J. Zhou, H. Zhang, and D. Lo, ‘‘Where should the bugs be fixed?

More accurate information retrieval-based bug localization based on bug

reports,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012, pp. 14–24.

[19] S. Kim, T. Zimmermann, E. J. Whitehead, Jr., and A. Zeller, ‘‘Predicting

faults from cached history,’’ in Proc. 29th Int. Conf. Softw. Eng. (ICSE),

May 2007, pp. 489–498.

[20] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu, ‘‘Bugcache

for inspections: Hit or miss’’ in Proc. 19th ACM SIGSOFT Symp. Found.

Softw. Eng. (SIGSOFT/FSE), 2011, pp. 322–331.

[21] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang,

and B. Keller, ‘‘Evaluating and improving fault localization,’’ in Proc.

IEEE/ACM 39th Int. Conf. Softw. Eng. (ICSE), May 2017, pp. 609–620.

[22] C. Parnin and A. Orso, ‘‘Are automated debugging techniques actually

helping programmers?’’ in Proc. Int. Symp. Softw. Test. Anal. (ISSTA),

2011, pp. 199–209.

[23] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, ‘‘A survey on

software fault localization,’’ IEEE Trans. Softw. Eng., vol. 42, no. 8,

pp. 707–740, Aug. 2016.

[24] R. Just, F. Schweiggert, and G. M. Kapfhammer, ‘‘MAJOR: An efficient

and extensible tool for mutation analysis in a java compiler,’’ in Proc.

26th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2011,

pp. 612–615.

[25] J. A. Jones and M. J. Harrold, ‘‘Empirical evaluation of the tarantula auto-

matic fault-localization technique,’’ in Proc. 20th IEEE/ACM Int. Conf.

Automated Softw. Eng., 2005, pp. 273–282.

[26] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, ‘‘A learning-to-rank

based fault localization approach using likely invariants,’’ in Proc. 25th

Int. Symp. Softw. Test. Anal. (ISSTA), 2016, pp. 177–188.

[27] R. Just, D. Jalali, andM. D. Ernst, ‘‘Defects4J: A database of existing faults

to enable controlled testing studies for java programs,’’ in Proc. Int. Symp.

Softw. Test. Anal. (ISSTA), 2014, pp. 437–440.

[28] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, ‘‘Scalable

statistical bug isolation,’’ACMSIGPLANNotices, vol. 40, no. 6, pp. 15–26,

Jun. 2005.

[29] E. Wong, T. Wei, Y. Qi, and L. Zhao, ‘‘A crosstab-based statistical method

for effective fault localization,’’ inProc. Int. Conf. Softw. Test., Verification,

Validation, Apr. 2008, pp. 42–51.

[30] L. Naish, H. J. Lee, and K. Ramamohanarao, ‘‘A model for spectrabased

software diagnosis,’’ ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3,

pp. 1–37, Aug. 2011.

[31] W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. Thuraisingham, ‘‘Effec-

tive software fault localization using an RBF neural network,’’ IEEE Trans.

Rel., vol. 61, no. 1, pp. 149–169, Mar. 2012.

[32] F. Zong, H. Huang, and Z. Ding, ‘‘Software fault location based on double-

times-locating strategy,’’ J. Softw., vol. 27, no. 8, pp. 1993–2007, 2016.

[33] J. A. Jones, J. F. Bowring, and M. J. Harrold, ‘‘Debugging in parallel,’’ in

Proc. Int. Symp. Softw. Test. Anal. (ISSTA), Jul. 2007, pp. 16–26.

[34] J. S. Collofello and L. Cousins, ‘‘Towards automatic software fault loca-

tion through decision-to-decision path analysis,’’ in Proc. Nat. Comput.

Conf., 1986, p. 539.

[35] P. S. Kochhar, X. Xia, D. Lo, and S. Li, ‘‘Practitioners’ expectations on

automated fault localization,’’ in Proc. 25th Int. Symp. Softw. Test. Anal.

(ISSTA), 2016, pp. 165–176.

172306 VOLUME 8, 2020

http://dx.doi.org/10.1109/TSE.2019.2892102

Z. Cui et al.: Improving Software Fault Localization by Combining Spectrum and Mutation

[36] Y.Wang, Z. Huang, B. Fang, and Y. Li, ‘‘Spectrum-based fault localization

via enlarging non-fault region to improve fault absolute ranking,’’ IEEE

Access, vol. 6, pp. 8925–8933, 2018.

[37] V. Debroy andW. E.Wong, ‘‘Combiningmutation and fault localization for

automated program debugging,’’ J. Syst. Softw., vol. 90, no. 1, pp. 45–60,

Apr. 2014.

[38] H. Cleve and A. Zeller, ‘‘Locating causes of program failures,’’ in Proc.

27th Int. Conf. Softw. Eng., 2005, pp. 342–351.

[39] M. Jia, Z. Cui, Y.Wu, R. Xie, and X. Liu, ‘‘SMFL integrating spectrum and

mutation for fault localization,’’ in Proc. 6th Int. Conf. Dependable Syst.

Their Appl. (DSA), Jan. 2020, pp. 511–512.

ZHANQI CUI (Member, IEEE) received the B.E.

and Ph.D. degrees in software engineering and

computer software and theory from Nanjing Uni-

versity, in 2005 and 2011, respectively. He was

a visiting Ph.D. Student with the University of

Virginia from September 2009 to September 2010.

He is currently anAssociate Professor with Beijing

Information Science and Technology University.

His research interests include software analysis

and testing.

MINGHUA JIA (StudentMember, IEEE) received

the B.E. degree in software engineer from the

Computer School, Beijing Information Science

and Technology University. He is currently pur-

suing the master’s degree with the School of

Information, Central University of Finance and

Economics. His research interests include software

engineering and software testing.

XIANG CHEN (Member, IEEE) received the

Ph.D. degree in computer software and theory

from Nanjing University, in 2011. He is currently

an Associate Professor with the School of Infor-

mation Science and Technology, Nantong Univer-

sity. His research interests include software defect

prediction, regression testing, and combinatorial

testing.

LIWEI ZHENG received the Ph.D. degree in com-

puter software and theory from the Academy

of Mathematics and Systems Science, Chinese

Academy of Sciences, in 2009. He is currently

an Associate Professor with Beijing Information

Science and Technology University. His research

interests include requirement engineering and

trusted computing.

XIULEI LIU received the Ph.D. degree in computer

science from the Beijing University of Posts and

Telecommunications, in March 2013. He was a

visiting Ph.D. Student with the CCSR, University

of Surrey, from October 2008 to October 2010.

He is currently an Associate Professor with Bei-

jing Information Science and Technology Univer-

sity. His research interests include semantic sensor,

semantic Web, knowledge graph, and semantic

information retrieval.

VOLUME 8, 2020 172307

