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Abstract. Software product line (SPL) is an emergent strategy for generating software products. The variability

and commonality of SPL is illustrated by feature models (FMs). The quality of software products relies on the

correctness of SPL. The overall benefits of software product line engineering (SPLE) are reduced by various kinds

of defects such as dead features and false optional features in an FM. These defects can be inherited in the software

products built from a defective product line model (PLM). In this paper, the problem of enhancing the quality of

software products derived from SPLE is handled. An ontological based approach is proposed following first-order

logic (FOL) rules to identify defects namely dead features and false optional features. The classification of cases for

these defects in FMs that represent variability of SPL is defined. The presented approach has been explained with

the help of anFMderived from the standard case in product line (PL) community. The initial empirical evaluation of

the proposed approach analyses 35FMswith different sizes. The results obtained exhibit that the proposed approach

is accurate, effective, scalable up to 200 features and therefore improves SPL.

Keywords. Feature model (FM); software product line (SPL); defects; ontologies; feature model ontology

(FMO).

1. Introduction

A set of software products shares some common functions that

address specific requirements of a certain market segment [1].

Software reusability is the objective of software product line

engineering (SPLE) strategy. It allows numerous organizations

to diminish cost, development time and simultaneously increase

the quality of software products [2]. Feature model (FM)

notation is used to represent variability in software product line

(SPL). It illustrates the features and their relationships for

developing valid products from a product line (PL) using an

accurate and correct combination of features [3].

The successful development of software products in SPL

entirely depends on the quality of FM. The modelers of feature

modeling may inevitably introduce contradictory relationships

into FM. The growing complexity of FMs may introduce

inadvertent defects, which recedes the quality of FMs and fur-

ther affects the yields of PL. Recently, defects in FM are con-

sidered as a critical issue in the community of SPL. However,

manual inspection of defects in FMs is a tiring and cumbersome

job. Therefore, this key issue should be solved suitably to pro-

vide the benefits of reusability in the industrial domain.

The intent of this research is to develop a generic framework

for improving SPL. In this paper, the classification of cases for

false optional and dead feature defects in FMs is defined. First-

order logic (FOL) is used to define rules based on ontology for

the identification of above-mentioned defects in the presented

classification of cases for these defects. It provides information

to the modelers and PL developers for defects fixation to

improve SPL for attaining defect-free products. A standard

method is used for modeling an SPL to provide formalization,

which further allows reasoning of themodel using few standard

tools. The idea of using FOL rules in FMs has been explored

earlier also. Few researches have used FOL rules in FMs as it

formalizes an SPL [4–9]. Prolog [10] is used as a reasoning tool.

The details of the SPL model used in this paper are also pre-

sented. In this paper, the generalization of all presented rules for

dead and false optional feature defects is proved by imple-

menting examples for all the cases.

The highlights of the proposed work are given below:

I. A generic framework is proposed for the identification of

dead and false optional feature defects in the presented

classification of cases for the above-mentioned defects

in SPL.

II. FMO is constructed using predicate-based ontology to

provide formalization using FOL. The ontological based

approach following FOL rules is given for the identifi-

cation of defects due to dead and false optional features.

Seven rules are given for the identification of dead
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feature defects and four rules for the identification of

false optional feature defects. These rules are defined

based on the existing literature [5, 7, 9, 11, 12].

III. The outcome of preliminary evaluation indicates that the

proposed approach is accurate, effective, and scalable up

to 200 features in FMs and can surely improve SPL.

The paper is divided into following sections: Section 2

presents a brief description of the preliminary terms

required for understanding the proposed generic framework

illustrated in section 3. The implementation details and

comparison with existing work is described in section 4.

The related work is described in section 5. Section 6 pro-

vides the conclusion and future work.

2. Preliminary terms

2.1 Software product line

SPL is a family of related software intensive systems,

sharing a managed and common set of features. It fulfills

the exact requirements of an appropriate market segment

built from a common set of core assets in a prerequisite

fashion. The main focus of SPL is on software reuse in an

attempt to improve the productivity and quality while

reducing cost and time to market.

2.2 Feature model with a running example

In SPLE, feature modeling notation is used for repre-

senting the variabilities and commonalities in terms of

relationships among the features. A feature is a unique

element that is of interest to various stakeholders. FM

can be represented in the form of a tree structure in

which features are organized in a hierarchy by means of

relationships. The root of the tree in FM represents the

entire PL and it is mandatory to incorporate it in all valid

products of the PL.

The PLM i.e., adapted version of the graph product line

(GPL) [13] described by means of feature modeling nota-

tion is shown in figure 1. It is a standard case for the

evaluation of PL methodologies among the communities of

PL. The root feature is represented by ‘‘gpl’’ which is

mandatory to incorporate in all the valid products of SPL.

The proposed approach is illustrated by introducing 14

additional features along with eight cross tree constraints in

the primary model which causes defects, i.e., seven dead

features (aa1, bb1, weighted, aa2, bb4, bfs, and cc1) and

four false optional features (mst, cc1, cc2, and bb5). All the

features and cross tree constraints have a name for under-

standing. The various relationships used for feature mod-

eling are

Mandatory: A child feature is said to be mandatory if it

appears in every product whenever its parent feature is

chosen. For example in figure 1, it is mandatory to select

‘‘bb2’’ whenever search is selected.

Optional: A child feature is optional if it may or may not

be incorporated in valid products involving parent feature.

For example in figure 1, it is optional to have feature

weighted.

Group cardinality: This relationship describes an interval

that limits the count of child features that are incorporated

in a product whenever their parent feature is included.

The two cross tree constraints are as follows:

Implication: The inclusion of source feature of an

implication relationship in a product implies the inclusion

of its target feature in the same product. For example, the

implication relation between features mst and cc3,

describes that the feature cc3 is implied by the feature mst

as shown in figure 1.

Exclusion: The excluded features are not incorporated

simultaneously in any valid product. For example, in fig-

ure 1, exclusion relationship between aa1 and graph_type

describes that no product will incorporate features aa1 and

graph_type simultaneously.

2.3 Defects in feature models

In PLM, the quality of the model is adversely affected by

the undesirable properties known as defects [14]. Though,

there are many types of defects in FMs, still, few defects

are identified by the proposed approach mainly false

optional and dead features. In general, these defects arise

due to the incorrect usage of cross tree constraints in FMs.

False optional feature: The feature declared as optional

is incorporated in every product derived from the SPL is

known as false optional feature.

Dead feature: A feature defined in an FM is never

incorporated in any valid product derived from the SPL and

is, therefore, termed as dead feature.

3. Proposed approach for improving SPL

This section explains the proposed approach to define as

well as identify dead and false optional feature defects in

the given classification of cases for the afore-mentioned

defects in FMs. A set of rules is defined for representing

certain cases of incorrect usage of relationships among

features in an FM that causes these defects. The proposed

rules are implemented using Prolog [15].

3.1 Prerequisites for explaining the proposed

approach for identification process

The root feature is mandatory to be included in all products

e.g., gpl. A parent can have more than one child. Each

feature is assigned a unique name in FM. The cross tree
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constraint relationships have been named for better under-

standing of the identification process. Each feature can be

optional or mandatory where ‘‘o’’ represents an optional

feature and ‘‘m’’ represents a mandatory feature. A relation

(i.e., cross tree constraint relationships) can be exclusion or

implication where ‘‘excl’’ represents exclusion relationship

and ‘‘impl’’ represents implication relationship between

features.

3.2 Feature model ontology

An ontology defines ‘‘a formal, explicit specification of a

shared conceptualization’’ [16]. In context of expressive-

ness, ontology is more powerful and richer than a feature.

This reason motivated us to merge them together for

building a more effective feature meta-model. FOL is used

to define formal semantics of the feature modeling that

provides meticulous formal explanation for graphical

notations. Formal languages based on FOL and unified

modeling language (UML) class diagrams [17] have been

used to represent ontologies. It is a common practice in

software engineering. Ontology is applied to feature meta-

modeling for a more influential description method. The

meta-model is composed of ontology classes and their

relationships.

The FMO is built using ontologies. The concepts of FM

are represented in the shape of an ontology using FMO. The

semantic relationships between the FM concepts are

exploited using ontological representation. The FMO is

constructed using FOL predicate-based ontology modeling

[18] and conforming the FM meta-model based on UML

recommended by Mazo et al [19] as shown in figure 2. The

proposed FM meta-model is represented using ontology

classes and properties. In the FMO, ontology classes are

depicted as meta-model classes and the ontological

properties are depicted using UML relationships. The meta-

model class feature is separated in ontology classes i.e.,

Root, Feature, ParentFeature, and ChildFeature. It repre-

sents that an FM has single root feature. Meta-model is

used for defining all the concepts that are used in FOL

predicates for formalization.

The ontological representation of FMs allows us to infer

interesting information about the FMs; for example, to get

child features [20]. It further allows us to verify consistency

among the FM and its meta-model [21].

3.3 Generic framework

The proposed generic framework broadly consists of input,

identification process and output as shown in figure 3.

3.3a Input: It includes stage 1 of the framework given in

figure 3. FM is transformed into FMO using FOL predi-

cate-based ontology to provide formalization [22]. First-

order language is a predicate-based ontology language in

which classes of objects are represented using binary

predicates and properties are represented using ternary

predicates [18]. Following are the three types of predicates

i.e., feature, relation, and parent which are used to represent

FMO:

feature(x, m): It indicates feature x as a mandatory fea-

ture, e.g., feature(graph_type, m).

feature(y, o): It represents feature y as an optional fea-

ture, e.g., feature(algorithm, o).

parent(x, y): It shows feature x has parent feature y e.g.,

parent(unweighted, graph_type).

relation(x, y, excl): It indicates feature x excludes feature

y, e.g., relation(graph_type, aa1, excl).

relation(x, y, impl) : It represents feature x implies fea-

ture y, e.g., relation(weighted, aa1, impl).

Figure 1. The FM of GPL (graph product line).
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3.3b Identification process: It includes Stage 2 of the

framework, shown in figure 3. FOL rules have been

developed and applied to the generated predicate-based

FMO for the identification of defects. The identified defects

are dead and false optional features in the given classifi-

cation. Each rule is a source for originating the identified

dead or false optional feature defects. The input predicate-

based FMO in Prolog represents the existing facts. Fol-

lowing text illustrates the identification process for defects

in SPL:

General criteria. The following are the general criteria for

describing identification of dead and false optional feature

defects:

1. Feature n1 is mandatory, feature n2 is optional and n1

excludes n2.

2. Feature n1 is mandatory, feature n2 is optional, n1

excludes n2 and optional feature n3 implies n2.

3. Feature n1 is mandatory, feature n2 is optional and n1

implies n2.

4. Mandatory feature n1 implies an optional feature n2 and

n2 excludes an optional feature n3.

5. Mandatory feature n1 implies an optional feature n2 and

n2 implies an optional feature n3.

Cases and rules for the identification of dead and false

optional feature defects

The dead and false optional feature defects are classified

into three cases, which are explained as follows: (a) exclu-

sion and optional feature, (b) full-mandatory feature

implies optional feature, and (c) implication and optional

feature. The cases of these defects and the rules to represent

Figure 2. Proposed FM meta-model for feature PLMs.

Figure 3. Overview of the generic framework for improving SPL.
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certain cases of incorrect usage of cross tree constraints in

FM that causes these defects are explained below:

Case 1: Exclusion and optional feature: It is the case of

dead feature defects, which is described with rules 1, 2, 3,

4, 5, and 6. In this case, a mandatory feature mutually

excludes an optional feature. Accordingly, the optional

feature can never be selected for the configuration of a valid

product and therefore becomes a dead feature.

Rule 1: dead(Feature_2): feature(Feature_2, o), par-

ent(Feature_2, Parent_1), feature(Feature_1, m), par-

ent(Feature_1, Parent_1), relation(Feature_1, Feature_2,

excl).

Input: feature(feature_1, m), parent(feature_1, parent_1),

feature(feature_2, o), parent(feature_2, parent_1), rela-

tion(feature_1, feature_2, excl).

Output: Dead_Feature = feature_2.

Explanation: Figure 4(a) depicts rule 1, which identifies

dead feature defect indicated by the general criteria number

1. In rule 1, mandatory feature feature_1 which has a parent

feature parent_1 excludes optional feature feature_2 that

has same parent feature parent_1. Feature feature_1 being

mandatory must be incorporated in each product. Accord-

ing, to the exclusion relationship, feature_1 and feature_2

cannot be incorporated together in any product. It means

feature_2 is excluded from all products. Thus, feature_2

becomes a dead feature defect.

Rule 2: dead(Feature_3): dead(Feature_2), feature(Fea-

ture_3, o), parent(Feature_3, Feature_2).

Input: feature(feature_1, m), parent(feature_1, parent_1),

feature(feature_2, o), parent(feature_2, parent_1), rela-

tion(feature_1, feature_2, excl), feature(feature_3, o), par-

ent (feature_3, feature_2).

Output: Dead_Feature = feature_3.

Explanation: Rule 2 is demonstrated using figure 4(b),

which identifies dead feature defect indicated by the gen-

eral criteria number 1. Rule 2 executes rule 1 to identify

dead feature i.e., feature_2. However, rule 2 results in a

dead feature defect feature_3 as its parent feature feature_2

is a dead feature also.

Rule 3: dead(Feature_3): dead(Feature_2), feature(Fea-

ture_3, o), parent(Feature_3, Feature_1), relation(Fea-

ture_3, Feature_2, impl).

Input: feature(feature_1, m), parent(feature_1, parent_1),

feature(feature_2, o), parent(feature_2, parent_1), rela-

tion(feature_1, feature_2, excl), feature(feature_3, o), par-

ent (feature_3, feature_1), relation(feature_3, feature_2,

impl).

Output: Dead_Feature = feature_3.

Explanation: Figure 4(c) shows rule 3, which identifies

dead feature defect indicated by the general criteria number

2. Rule 3 first executes rule 1 to identify dead feature i.e.,

feature_2. The output of rule 3 is a dead feature defect

feature_3 which has parent feature feature_1 as feature_3

implies dead feature feature_2.

Rule 4: dead(Feature_2): feature(Feature_1, m), par-

ent(Feature_1, Parent_1), feature(Feature_2, o), par-

ent(Feature_2, Parent_1), feature(Feature_3, m),

parent(Feature_3, Feature_1), relation(Feature_3, Fea-

ture_2, excl).

Input: feature(feature_1, m), parent(feature_1, parent_1),

feature(feature_2, o), parent(feature_2, parent_1), fea-

ture(feature_3, m), parent(feature_3, feature_1), rela-

tion(feature_3, feature_2, excl).

Output: Dead_Feature = feature_2.

Explanation: Figure 4(d) depicts rule 4, which identifies

dead feature defect indicated by the general criteria number

1. In rule 4, mandatory feature feature_1 and optional

feature feature_2 have same parent feature parent_1. The

mandatory feature feature_3 has parent feature_1. Dead

feature defect feature_2 is the outcome of this rule since it

is excluded by feature_3.

Rule 5: dead(Feature_4): dead(Feature_2), feature(Fea-

ture_4, o), parent(Feature_4, Feature_2).

Input: feature(feature_1, m), parent(feature_1, parent_1),

feature(feature_2, o), parent(feature_2, parent_1), fea-

ture(feature_3, m), parent(feature_3, feature_1), fea-

ture(feature_4, o), parent(feature_4, feature_2),

relation(feature_3, feature_2, excl).

Output: Dead_Feature = feature_4.

Explanation: Rule 5 is illustrated using figure 4(e),

which identifies dead feature defect represented by the

general criteria number 1. Rule 5 first executes rule 4 to

identify dead feature i.e., feature_2. Dead feature defect

feature_4 is the outcome of rule 5 as its parent feature

feature_2 is already a dead feature.

Rule 6: dead(Feature_2): feature(Feature_1, m), par-

ent(Feature_1, Parent_1), feature(Feature_2, o), par-

ent(Feature_2, Parent_2), relation(Feature_1, Feature_2,

excl).

Input: feature(feature_1, m), parent(feature_1, parent_1),

feature(feature_2, o), parent(feature_2, parent_2), rela-

tion(feature_1, feature_2, excl).

Output: Dead_Feature = feature_2.

Explanation: Figure 4(f) depicts rule 6, which identifies

dead feature defect indicated by the general criteria number

1. In rule 6, mandatory feature feature_1 which has a parent

feature parent_1 excludes an optional feature feature_2 that

has a parent feature parent _2. Thus, feature_2 becomes a

dead feature defect.

Case 2: Full-mandatory feature implies optional feature:

It is the case of false optional feature defects, which has

been described through rules 7, 8, 9, and 10. In this case, a

mandatory feature implies an optional feature. Accordingly,

the optional feature is not optional further and thus emerges

as a false optional feature.

Rule 7: false_option(Feature_2): feature(Feature_1, m),

parent(Feature_1, Parent_1), feature(Feature_2, o), par-

ent(Feature_2, Parent_1), relation(Feature_1, Feature_2,

impl).
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Input: feature(feature_1, m), parent(feature_1, parent_1),

feature(feature_2, o), parent(feature_2, parent_1), rela-

tion(feature_1, feature_2, impl).

Output: False_Optional_Feature = feature_2.

Explanation: Rule 7 is demonstrated using figure 4(g),

which identifies false optional feature defect indicated by

the general criteria number 3. In rule 7, mandatory feature

feature_1 which has a parent feature parent_1 implies an

optional feature feature_2 that has same parent feature

parent_1. According to the implication relationship, fea-

ture_2 is incorporated in all the products in which feature_1

is included. Thus, feature_2 becomes false optional feature

defect.

Rule 8: false_option(Feature_3): false_option(Fea-

ture_2), feature(Feature_3, o), parent(Feature_3, Fea-

ture_1), relation(Feature_2, Feature_3, impl).

Figure 4. Demonstration of dead and false optional feature defects identification rules.

1386 Megha Bhushan and Shivani Goel



Input: feature(feature_1, m), parent(feature_1, parent_1),

feature(feature_2, o), parent(feature_2, parent_1), rela-

tion(feature_1, feature_2, impl), feature(feature_3, o), par-

ent(feature_3, feature_1), relation(feature_2, feature_3,

impl).

Output: False_Optional_Feature = feature_3.

Explanation: Figure 4(h) depicts rule 8, which identifies

false optional feature defect indicated by the general cri-

teria number 5. Rule 8 first executes rule 7 to identify false

optional feature i.e., feature_2. The output of rule 8 is false

optional feature defect feature_3 which has parent feature

feature_1 since feature_3 is implied by feature_2.

Rule 9: false_option(Feature_3): false_option(Fea-

ture_2), feature(Feature_3, m), parent(Feature_3,

Feature_2).

Input: feature(feature_1, m), parent(feature_1, parent_1),

feature(feature_2, o), parent(feature_2, parent_1), fea-

ture(feature_3, m), parent(feature_3, feature_2), rela-

tion(feature_1, feature_2, impl).

Output: False_Optional_Feature = feature_3.

Explanation: Rule 9 is illustrated using figure 4(i), which

identifies false optional feature defect indicated by the

general criteria number 3. Rule 9 first executes rule 7 to

identify false optional feature i.e., feature_2. The result of

rule 9 is false optional feature defect feature_3 as its parent

feature feature_2 is also a false optional feature.

Rule 10: false_option(Feature_2): feature(Feature_1, m),

parent(Feature_1, Parent_1), feature(Feature_2, o), par-

ent(Feature_2, Parent_1), feature(Feature_3, m), par-

ent(Feature_3, Feature_1), relation(Feature_3, Feature_2,

impl).

Input: feature(feature_1, m), parent(feature_1, parent_1),

feature(feature_2, o), parent(feature_2, parent_1), fea-

ture(feature_3, m), parent(feature_3, feature_1), rela-

tion(feature_3, feature_2, impl).

Output: False_Optional_Feature = feature_2.

Explanation: Figure 4(j) demonstrates rule 10, which

identifies false optional feature defect indicated by the

general criteria number 3. In rule 10, a mandatory feature

feature_1 and optional feature feature_2 have same parent

feature parent_1. The mandatory feature feature_3 has

parent feature_1. False optional feature defect feature_2 is

the outcome of this rule since it is implied by feature_3.

Case 3. Implication and optional feature. It is the case of

dead feature defect, which has been described by rule 11.

Rule 11: dead(Feature_3): false_option(Feature_2), fea-

ture(Feature_3, o), parent(Feature_3, Feature_1), rela-

tion(Feature_2, Feature_3, excl).

Input: feature(feature_1, m), parent(feature_1, parent_1),

feature(feature_2, o), parent(feature_2, parent_1), rela-

tion(feature_1, feature_2, impl), feature(feature_3, o), par-

ent(feature_3, feature_1), relation(feature_2, feature_3,

excl).

Output: Dead_Feature = feature_3.

Explanation: Rule 11 is illustrated using figure 4(k),

which identifies dead feature defect indicated by the gen-

eral criteria number 4. Rule 11 first executes rule 7 to

identify false optional feature defect i.e., feature_2. The

output of rule 11 is a dead feature defect feature_3 which

has parent feature feature_1 since feature_3 is excluded by

feature_2.

3.3c Output: It includes stage 3 of the framework shown

in figure 3. The identified dead and false optional feature

defects are produced as output in this stage.

Running example: A running example of GPL is used to

explain the identification of dead and false optional feature

defects as output. The root feature ‘‘gpl’’ is mandatory to be

included in every product. According to rule 1, optional

feature aa1 turns into dead feature defect since it is

excluded by mandatory feature graph_type. The output of

rule 2 is dead feature defect bb1 as it has a dead parent

feature aa1. The result of rule 3 is a dead feature defect

Figure 5. The features which are bold, italic, and underlined are false optional feature defects. Bold features are dead feature defects

after applying rules to figure 1.
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weighted since it implies dead feature aa1. Dead feature

defect aa2 is the output of rule 4 as it is excluded by dead

feature defect aa2. However, the output of rule 5 is dead

feature defect bb4 since its parent feature aa2 is a dead

feature defect (figure 5).

According to rule 6, optional feature bfs is a dead feature

defect as (i) mandatory feature bb6 has a parent mandatory

feature aa3, and (ii) feature bb6 excludes feature bfs that

has a parent optional feature algorithm. False optional

feature defect mst is the output of rule 7 since mst is implied

by mandatory feature bb2. After implementing rule 8,

optional feature cc3 becomes false optional feature defect

as it is implied by another false optional feature defect mst.

False optional feature defect cc2 is the output of rule 9 as its

parent feature mst is a false optional feature too. The output

of rule 10 is a false optional feature defect bb5 since it is

implied by mandatory feature cc4 which has a parent

mandatory feature bb3. Dead feature defect cc1 is the

output of rule 11 as it is excluded by false optional feature

defect mst.

4. Comparative analysis

On the basis of implementation details, FM is transformed

into FMO based on FOL predicates for representing con-

cepts of FM meta-model. SWI-Prolog 7.2.3 is used for

implementing rules in FOL to identify defects. The pre-

liminary evaluation was done on a 2.40 GHz,

Intel(R) Core(TM) i7 processor machine with 8GB RAM.

The proposed approach for the identification of dead and

false optional features is scalable up to 200 features as

compared to the one given by Rincón et al [9] which is

scalable up to 150 features only. Rincón et al [9] have

proposed six rules for the identification of dead features and

three rules for the identification of false optional features.

However, the proposed approach provides (i) classification

of cases for these defects, (ii) seven rules for the identifi-

cation of dead feature defects, and (iii) four rules for the

identification of false optional feature defects.

Elfaki et al [5] have represented variability in SPL by

merging FM and orthogonal variability model (OVM) [23]

while the proposed approach completely deals with ontol-

ogy based feature modeling notation as it is more expres-

sive and understandable for PL modelers. The author Elfaki

et al [5] validated the detection method for defects by using

own generated data sets while in the proposed approach,

validation was done using real world FMs from SPLOT

repository.

5. Related work

Many studies have been proposed so far associated with the

representation of FMs in SPL and with the identification of

defects e.g., false optional and dead features.

The varied contributions have been proposed for repre-

senting FMs in SPL. One way to represent FMs is using

ontologies for improving SPL [17, 24, 25] and there is a

requirement to add more semantics to FMs. Lee et al [26]

have proposed that FM could be expressed using ontologies

for analyzing their variabilities and commonalities based on

semantic analysis criteria. A framework based on Web

Ontology Language-Description Logic (OWL-DL) has

been used to represent FMs, their configurations and Pellet

as a reasoner by Sirin et al [27]. Zaid et al [20] have rep-

resented FMs using an approach based on OWL which

facilitated integration of different FMs. Wang et al [28]

have proposed DL and RACER tool to deal with dead

features and void feature models. Later, Wang et al [29]

have provided explanations using OWL debugging tool.

Matcha et al [30] have constructed FMs in ontology and

evaluated for the consistency of the feature configuration

with an appropriate example. Zaid et al [31] have analyzed

FMs based on semantic web technologies using Pellet

reasoner which focused on conformance checking [19] and

further detects inconsistencies in FMs [21]. FOL is proved

to be useful for representing FMs. Mannion [8] was the first

to connect FOL with FMs. Salinesi et al [11] have provided

FOL formalization and explanation for the verification

criteria of PLMs. Elfaki et al [5] have represented vari-

ability in SPL using FM and OVM together. In comparison

with the afore-mentioned works, the proposed approach

transforms FM into FMO for representation using FOL

predicate-based ontology modeling.

Several works exist in the literature related to the iden-

tification of defects in FMs e.g., false optional and dead

features. Many authors indicated the automated identifica-

tion of dead feature [12, 14, 32, 33]. Trinidad et al [34]

proposed a method based on finding each product and then

exploring unused features to detect dead features. The

solvers are used to validate FMs by Trinidad et al [35].

They aimed to automate error detection (i.e., full mandatory

features, dead features, and void features) based on theory

of diagnosis. FMs are mapped to diagnose models and

analyzed using constraint satisfaction problems (CSPs). It is

based on the configuration of all products in SPL. Finding

each solution is a complex process and solvers may take

inconceivable amount of time to explore each product to

validate large-sized FMs. The set of dependencies and their

explanation for dead and false optional features have been

identified by automating their approach [35] in FaMa by

Trinidad et al [36].

Other than above-mentioned approaches, many other

ways are used by researchers to represent and analyze

defects in SPL. FMs are transformed into generalized fea-

ture trees using algorithms [37]. Their work deals only with

dead features, explanation, and minimal set of conflicting

constraints. Approaches based on contradictory relationship

sets (CFRs) [38] and FODA maturity model [39] identifies

and explains the causes of dead and false optional features

in FMs. Ripon et al [40] have detected and provided
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explanations for void FMs, dead features, and invalid

products using FOL and UML. However, they have

detected false optional feature but there is no explanation

given for the same. For all features of an SPL, two finite

state machines (FSMs) are built, one for the requirements

and another for the design level, after which it is specified

how to check their conformance [41]. FSMs are extended

based on transitions in variables. The prototype SPLEnD

uses SPIN model checker for implementing conformance

checking. FeatureIDE is a tool to implement explanation

for various defects [33].

Minimal correction subsets (MCSes) of constraints have

been computed that could be removed from the constraint

program (CP) to produce accurate model by Trinidad and

Ruiz-Cortes [42]. There is no information provided to PL

modelers regarding why these constraints led to the

occurrence of defects in PLMs. Transforming models into

CPs could loss structure required for these explanations.

Thus, techniques based on constraint satisfaction are

insufficient for providing these explanations. Therefore, the

semantics and structure of PLMs are transformed into

ontologies as both properties are of utmost importance for

explaining defects.

A constraint-based framework is proposed for SPL that

uniformly expressed formalism to explain the constraints

within and across perspectives [43]. Their work shows that

the problems of liveness (i.e., dead features), consistency,

and commonness can be reduced to problems of constraint

solving using a realistic case study. The proposed approach

identifies false optional features as compared to the work by

Millo et al [43]. Knowledge-based (KB) method is used to

identify inconsistency and dead feature using particular

explanations for these defects [44]. Giraldo et al [45] have

used ontologies and Semantic Query-enhanced Web Rule

Language (SQWRL) to identify causes of dead features.

However, an ontological rule-based approach has been used

to identify and provide causes for false optional and dead

features [9]. Elfaki et al [5] have deduced false optional

features using FOL but did not deduce dead features.

Rincón et al [46] have identified these defects based on

MCSes, CPs, and detected possible corrections. Further,

Elfaki [7] has detected and prevented inconsistencies in the

process of domain engineering using FOL rules. They have

used their own generated data sets to validate these meth-

ods [5, 7, 44].

The limitation of work by Trinidad et al [35] motivated

for developing an approach to identify dead and false

optional features that work without solvers. In the proposed

approach, the search process is time efficient and has low-

cost for large-sized FMs as it searches only for the prede-

fined cases to identify defected features instead of the set of

dependencies. It improves semantics and expressivity of

FMs by using predicate-based ontology modeling. FOL

based rules are used to identify both defects and the pro-

posed approach has been validated using real world cases

from SPLOT repository.

6. Conclusion and future work

In this paper, the proposed approach has analyzed the

problem of defects in SPL. The dead feature and false

optional feature defects have been identified. The cases

classified under these defects are considered as a medium

issue. These must be managed to verify that efficacious

products are developed. In the proposed approach, FM is

transformed to FMO and rules are developed using FOL

predicates to identify defects. These rules are implemented

independently as well as simultaneously in Prolog. The

outcome of these rules is defects in an FM that can be used

by PL modelers to identify the incorrect relationships which

cause these defects. The proposed approach has been val-

idated with a standard case study of GPL and with 35 real

world FMs from SPLOT repository up to 200 features.

It should be considered that, presently, the proposed

approach is restricted to function in a specific environment

i.e., in all the cases where cross tree constraints are well

defined in basic FMs only. The existing set of rules in the

proposed approach could be maximized by adding new

rules to identify dead and false optional feature defects in

other FM notations also e.g., extended FMs and cardinality-

based FMs. Future line of research could be focused on

extending the proposed method to provide explanations for

the causes and corrective solutions for each defect. Further,

work can be done on execution time to increase the time

efficiency.
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