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ABSTRACT
This paper presents a context-sensitive, inclusion-based,
field-sensitive points-to analysis for C and uses the analysis
to detect and prevent security vulnerabilities in programs.
In addition to a conservative analysis, we propose an opti-
mistic analysis that assumes a more restricted C semantics
that reflects common C usage to increase the precision of
the analysis.

This paper uses the proposed pointer alias analyses to
infer the types of variables in C programs and shows that
most C variables are used in a manner consistent with their
declared types. We show that pointer analysis can be used
to reduce the overhead of a dynamic string-buffer overflow
detector by 30% to 100% among applications with signifi-
cant overheads. Finally, using pointer analysis, we statically
found six format string vulnerabilities in two of the 12 pro-
grams we analyzed.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.3.4 [Programming Languages]: Processors—Compil-
ers; D.2.3 [Operating Systems]: Security and Protection

General Terms
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Vulnerabilities, Software errors.
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1. INTRODUCTION
Software vulnerabilities in C programs have led to tremen-

dous losses of productivity and have caused damages esti-
mated in billions of dollars. These vulnerabilities often stem
from the lack of type safety in the C language, with buffer
overflows and format string exploits being two well-known
security vulnerabilities.

Tools exist which audit programs for vulnerabilities; how-
ever, the unsafe nature of C makes it difficult to create pre-
cise software analysis tools. In particular, pointer alias an-
alysis is an important component in any program auditing
tool. The semantics of C can cause a sound pointer analysis
to generate many false points-to relations. Existing software
checkers often minimize false positive warnings by using un-
sound pointer analysis instead. The Metal compiler and the
Intrinsa system, known to find numerous serious vulnerabil-
ities in widely used operating systems, assume that pointers
are unaliased until proven otherwise with a local analysis
[4, 9]. The same assumption was used in a buffer overflow
detection tool by Wagner et al. [18]. However, by making
such unsound assumptions, these tools may not find all pos-
sible vulnerabilities and cannot be used to guarantee that a
program is safe.

This paper explores the use of more advanced pointer alias
analysis to create practical tools for improving software se-
curity. We present a context-sensitive, inclusion-based, and
field-sensitive points-to analysis for C. We apply the analysis
to (1) infer the type of variables in C based on their usage,
(2) reduce the overhead of a dynamic bounds checker, and
(3) find format string vulnerabilities.

1.1 Pointer Alias Analysis
Our analysis is based on a points-to algorithm devel-

oped originally for Java [20] using a binary-decision-diagram
(BDD) representation. Our analysis is context-sensitive,
meaning that calling contexts along different acyclic call
paths have distinct points-to relations. It is inclusion-based,
meaning that two pointers may point to overlapping but dif-
ferent sets of objects. It is also field-sensitive, meaning that
separate fields in an object have distinct points-to relations.
The BDD representation efficiently handles the exponential
number of contexts by exploiting their similarities. It also
accelerates inclusion-based analysis through efficient transi-
tive closure computations [3, 20, 24]. Field-sensitive analy-
ses are known to be much more precise than field-insensitive
approaches. Our analysis, however, is flow-insensitive: the
order of execution of program statements is not modeled.

Because of the semantics of the C language, pointer anal-



ysis for C is much more complex than that for Java. While
Java enforces type safety by limiting user access to memory,
C affords the user complete, direct control. A C programmer
can take the address of any field within an object, treat any
portion of memory as a contiguous region of bytes, perform
arbitrary address arithmetic, and perform arbitrary object
casts, whether between variant types of a union or in com-
plete violation of declared type. Although many of these
actions may violate the letter or spirit of the C99 standard,
in practice most C compilers allow them. None of the pro-
posed C pointer alias analyses are strictly sound because
such an analysis would conclude that most locations in me-
mory may point to any location in memory. In particular,
they all assume that the relative placement of objects in me-
mory is undefined. Most programs satisfy this assumption,
which is part of the C99 standard, for the sake of portability.
We propose in this paper a conservative pointer analysis, re-
ferred to as cons, that is sound for all programs satisfying
the above assumption.

Our conservative pointer analysis is likely to be imprecise
because programs frequently conform to the C99 standard.
By imposing additional assumptions on the C programs that
reflect common usage, we can improve upon the pointer an-
alysis results. We thus also propose an optimistic analysis,
referred to as pcp (practical C pointers), that is not only
sound for programs adhering to the C99 standard, but also
for programs that may violate its type model. For example,
we use structural equivalence to determine type compatibil-
ity, whereas C99 resorts to name equivalence for aggregates
such as structures and unions.

Like the analysis for Java, we express our points-to anal-
ysis in Datalog, a logic programming language used in de-
ductive databases [17]. We use the bddbddb tool to translate
the Datalog rules into efficient BDD operations [20]. The
resulting points-to relations can be used in subsequent Dat-
alog programs, making it easy to develop further algorithms
based on the results.

1.2 Type Inference
The declared types of C variables are hints indcating how

the variables are likely to be used. Type inference deter-
mines the actual types of objects by analyzing the usage of
those objects. This is of great interest, since it can show
that a program is type safe and portable, or identify un-
safe program operations that should be audited statically or
checked dynamically.

We perform a type inference using the results of our
pointer analysis. Using both the pcp and cons models,
we found very few instances where type declarations were
violated. However, the cons model consistently found more
type declaration violations, as well as heap objects with mul-
tiple inferred types.

To check the results of our type inference, we instrumented
our programs with a dynamic type checker, and with only
two exceptions, found that there were no actual type con-
flicts. In the case that there were type conflicts, those oper-
ations did not propagate any pointer values. These results
suggest that the pcp analysis is effective in finding more
precise pointer alias results for these programs.

1.3 Optimized Dynamic Buffer
Overflow Detection

Buffer overflows are the most common form of security

threat in software systems today, consistently dominating
CERT advisories [5]. Despite years of effort on this topic,
there is no practical static checker that can guarantee to
find all buffer overflows automatically. The C semantics
make it difficult to create a dynamic bounds checker that can
ensure no buffer overflows occur without breaking existing
programs.

CRED (C Range Error Detector) is a recently developed
dynamic bounds checker that has been shown to work prop-
erly on over one million lines of C code[15]. Since buffer over-
flow exploits tend to be transported as user input strings,
CRED can be run with less overhead by checking only string
buffer overflows. Such an approach is shown to be effective
against a testbed of 20 different buffer overflow attacks [21].

CRED is based on Jones and Kelly’s concept of referent
objects [11]. A pointer’s referent object is the object that it
is intended to reference. A pointer arithmetic operation pro-
duces a new address, but the result has the same referent ob-
ject as the original pointer. When a pointer is dereferenced,
it must point within the bounds of its referent object. CRED
uses an object table to dynamically track the base and extent
of each object. It instruments pointer arithmetic, derefer-
ences, and string-manipulation functions such as memcpy to
associate referent objects with pointer addresses and check
that out-of-bounds pointers are not dereferenced.

Normally, CRED enters all referent objects into the ob-
ject table. To reduce the overhead of the strings-only CRED
system, we use our points-to results to inform CRED about
objects which do not contain string-typed values. This op-
timization reduces the overhead of some of the benchmarks
by 30% to 100%.

1.4 Format String Vulnerabilities
Another common security threat is the format string vul-

nerability exploit. A program may be exploited if it passes a
user-supplied string as the format string argument to a sys-
tem function of the printf family. The user-supplied string
may contain format specifiers that can cause the program to
write to unintended memory locations. The static detection
of user-supplied format strings is an example of a taint an-
alysis, and requires the results of a pointer analysis. We use
our pointer analysis to identify strings containing data that
may be supplied by the user, and to report instances of for-
mat string arguments which point to these tainted strings.
We find actual format string vulnerabilities in two of our
benchmarks.

1.5 Paper Organization
The rest of the paper is organized as follows: we first de-

scribe our C pointer alias analysis based on our pcp model
in Section 2. Section 3 presents the cons model. Section 4
discusses our type inference analysis. Section 5 presents our
optimizations for the CRED dynamic bounds checker. Sec-
tion 6 presents our algorithm to find format string vulner-
abilities. We report our experimental results in Section 7.
Finally, Sections 8 and 9 describe related work and con-
clude.

2. THE PCP POINTS-TO ANALYSIS
As discussed in Section 1, our cons analysis assumes dis-

joint object spaces, as stated formally in Assumption 1.
To increase precision, our pcp (practical C pointers) model
makes several additional assumptions that reflect typical C



usage. This section justifies the assumptions in PCP and
describes the points-to analysis algorithm.

Assumption 1 (Disjoint object spaces) Each object is
allocated in a separate memory space; a pointer to an object
can only be derived from a pointer to the same object.

2.1 Types and Fields
An object may be cast to more than one type during its

lifetime, which requires us to consider whether a pointer de-
posited in a field under one type may be read from a field
under another type. The pcp model represents fields as dis-
tinct and separate locations, unless it can be proven that
they have the same physical location and the same phys-
ical layout. We will first discuss references to equivalent
fields under identical physical layouts, followed by the use
of casting to access physically overlapping union variants
with different physical layouts.

2.1.1 Structural Equivalence
The C99 standard treats structure and union types as

compatible if they are name equivalent. We use a more
liberal model of type compatibility, structural equivalence.
Under structural equivalence, any two types, regardless of
naming, are considered type compatible as long as their
physical layout is identical. This is similar to the notion
of common initial sequences as specified in the C99 stan-
dard. Types that are structurally equivalent are considered
to be interchangeable in our model. We also describe fields
of two structures (or variants of a union type) as structurally
equivalent if they have the same offset and have structurally
equivalent field types.

We model an object as having separate locations for each
structurally distinct field. Data stored in one field of an
object is accessible through any structurally equivalent field
in that object. A formal definition of structural equivalence
is provided through structural induction:

• Scalar types. Primitive types, such as integers, point-
ers, chars, floats, doubles, are structurally equiva-
lent if and only if they have the same sizes. A scalar
object can be thought of as a field, since it is struc-
turally equivalent to a leading field of a structure with
a structurally equivalent field type.

• Structures and union types. The ith fields of two
structures (or variants of a union type) are considered
to be structurally equivalent if the types of the first
i−1 fields are structurally equivalent and the declared
types of the ith fields are also structurally equivalent.
Fields that are structural equivalent are referred to
having a common initial sequence [23]. Two struc-
tures are structurally equivalent if they have the same
number of fields and all their fields are structurally
equivalent.

We normalize C programs by renaming the types and fields
such that they have the same names if and only if they are
structurally equivalent. This enables us to determine if two
fields are structurally equivalent by a simple inspection of
their field paths.

2.1.2 Dynamic Variant Types
Objects, most commonly unions, may be cast between

multiple types throughout the execution of a C program. If

data stored into a field under one variant type is retrieved
through a field under another variant type, the exact values
read depend on the platform-specific physical layout. This
behavior is not defined under the ANSI C standard, which
says that data stored into an object under one variant type
is not expected to be retrieved when the object is cast to
another variant type.

If an object is cast to another structurally nonequivalent
type, the pcp model assumes that reads from a field in one
variant type will not be used to access data stored to a
structurally nonequivalent field in the other variant type.

Assumption 2 (Variant Types) Pointers written to one
field can only be retrieved when accessed as fields that are
structurally equivalent.

Example 1

union U {int x; char c;} u;

u.c = ’c’;

int i = u.x;

Our optimistic model will not recognize that the character
‘c’ in u.c will be accessed through u.x. 2

2.2 Handling of Pointers
Unlike Java references, C pointers can point into the mid-

dle of an object. A pointer is modeled as a pair 〈o, p〉, where
o is the object name, and p is a field path. Stack-allocated
objects are given names of the variable; heap objects are
named by the allocation sites. A pointer pointing to the
base address of an object is known as a base pointer, and
has an empty field path denoted as ε.

The pcp model allows an object to be cast to any type,
so a base pointer can be used as a pointer to any type.
However, a pointer to a field in the middle of an object
cannot be used as if it pointed to a type incompatible with
the field type.

Example 2

struct A { struct B A1; int A2; int A3; } a;

struct B { void *B1; void *B2; } *ptr;

ptr = (B*)&a; (1)

ptr->B2 = ptr; (2)

ptr = (B*)&a.A2; (3)

ptr->B2 = ptr; (4)

The use of ptr in lines (1) and (2) illustrate a common use
of type casts. The base address of a is also the base address
of its first field A1, so it can be interpreted either as pointing
to an object of type A or B. So, it is safe to perform the field
offset B2 to the pointer. On the other hand, when ptr points
to a.A2, the only possible type int does not have any fields.
The pcp model would simply ignore the statement to add
the field offset B2 to ptr. The conservative model would
write the pointer into both fields A2 and A3. 2

Assumption 3 (Field type safety) If a dereference or a
field-access operation is applied to a non-base pointer, the
referent field type must be structurally equivalent to the type
assumed by the operation.

Using type information to eliminate certain points-to rela-
tions is not new. Such type-filtering is commonly used in



type-safe languages [3, 20]. It helps in removing side effects
due to spurious pointers which result from the imprecision
of static analysis.

To model this restriction properly, we define the concept
of a legal field path. Let t ∈ T be the set of types in the pro-
gram. Each struct t has a set of canonical fields, denoted
F (t). The first field of struct t is known as the leading field.
The type of field f is given by type(f).

We define a legal field path to be a sequence of field names,
f1.f2. · · · .fn, such that f1 is a field of some structure t1 and
∀i > 1 : fi ∈ F (type(fi−1)). Note that adding a leading
field to a path does not advance the path. We drop all the
leading fields from the head and tail of a legal field path to
derive a canonical field path.

Example 3 In Example 2, paths ε, A1 and A1.B1 all point
to the base address of an object, whereas B2 and A1.B2 both
point to the second field in structure B. The canonical path
of the former is ε and the latter is B2. The ε path can be
used as a pointer to any kind of structure, however, the
latter field path can only be used as a pointer to a field of
type void*. 2

We say that cpath(p, l) is true if p is the canonical version
of the legal path l. When a field access f is applied to a
pointer with a canonical field path p, we check if p can point
to a structure of which f is a field. Formally, we ask if there
a legal path l such that cpath(p, l) and cpath(p′, l .f). p′ is
the new canonical path representing the location. If l does
not exist, then the field access cannot be performed in the
pcp model.

In the pcp model, a pointer pointing to a non-union field
in the middle of an object can point to only one primitive
type. However, if a pointer points to a start address of
a union type, it can correspond to the start of multiple
variants with different types. We say that safecast(p, t) is
true if a canonical path p points to a location of primitive
type t. Formally, it is true if p is an empty path, or if p can
be extended to form a legal path whose last field is declared
to be of primitive type t.

2.3 Primitive Assignment Statements
We now describe the program representation which our

analysis uses. Since our algorithm is flow-insensitive, we
ignore all control flow statements. All remaining C state-
ments are broken down into simple operations on primitive
type variables. For example, an assignment to a field of a
structure is decomposed into a field address calculation, fol-
lowed by a store. Temporary variables are introduced as
needed.

All program information relevant to the analysis is ex-
tracted and stored as relations in a program database. The
database can be queried using Datalog, a logic query lan-
guage [17]. We write Datalog rules to capture how we infer
the points-to relations from each simple program operation.
Relations are expressed as predicates in Datalog; for exam-
ple, we say that A(w, x) is true if the tuple (w, x) is in rela-
tion A. A Datalog rule defines a predicate as a conjunction
of other predicates. For example, the Datalog rule

D(w, z) : − A(w, x), B(x, y), C(y, z).

says that “D(w, z) is true if A(w, x), B(x, y), and C(y, z)
are all true.”

[alloc] points-to(〈x, ε, type(x)〉, 〈mallocc, ε〉) : –
“c : x= malloc(y)”

[address] points-to(〈x, ε, type(x)〉, 〈y, ε〉) : –
“x = &y”

[assign] assign(〈x, ε, type(x)〉, 〈y, ε, type(y)〉) : –
“x = y”

[prop] points-to(〈x, ε, type(x)〉, 〈o, p〉) : –
assign(〈x, ε, type(x)〉, 〈y, ε, type(y)〉),
points-to(〈y, ε, type(y)〉, 〈o, p〉)

[load] assign(〈x, ε, type(x)〉, 〈o, p, t〉) : –
“x = ∗(t∗)y”,
points-to(〈y, ε, type(y)〉, 〈o, p〉), safecast(p, t)

[store] assign(〈o, p, t〉, 〈y, ε, type(y)〉) : –
“ ∗ (t∗)x = y”,
points-to(〈x, ε, type(x)〉, 〈o, p〉), safecast(p, t)

[field] points-to(〈x, ε, type(x)〉, 〈o, p2〉) : –
“x = &(((t∗)y)->f)”,
points-to(〈y, ε, type(y)〉, 〈o, p1〉),
cpath(p1, p

′
1), cpath(p2, p

′
1.f)

Figure 1: Inference Rules for Simple Statements.

Due to space constraints, we show only the inference rules,
written in Datalog, for simple assignment statements (Fig-
ure 1). For the sake of clarity, all the input relations ex-
tracted from the program are simply presented as code in
quotes. We say that points-to(〈o1, p1, t〉, 〈o2, p2〉) is true if
the pointer 〈o2, p2〉 is stored as type t in the pointer location
〈o1, p1〉. We say that assign(〈o1, p1, t1〉, 〈o2, p2, t2〉) is true if
the contents at the pointer address of 〈o2, p2〉 is retrieved as
type t2 and stored as type t1 in the pointer location 〈o1, p1〉.

[alloc] c: x = malloc(y);

x points to the object allocated, which is named by its
allocation site c.

[address] x = &y;

x points to the starting address of y.

[assign] x = y;

Note that here we are dealing with primitive types,
since aggregate assignments have been broken down to
primitive assignments. This creates an assign relation,
which says that the right-hand-side points to what the
left-hand-side points to. Rule [prop] propagates the
points-to targets from the source of the assign relation
to the destination.

[load] x = *(t*)y;

Check if *y is allowed to be cast to type t; if so, then
assign x to what is pointed to by y.

[store] *(t*) x = y;

Check if *x is allowed to be cast to type t; if so, then
assign y to the locations pointed to by x.

[field] x = &( ((t*)y)->f );

Check if it is legal to extend the paths pointed to by y

with f, if so assign the resulting canonical path to x.



2.4 Arrays and Pointer Arithmetic

Assumption 4 (Pointer arithmetic) Arithmetic is ap-
plied only to pointers pointing to an element of an array
to compute another element in the same array.

This assumption allows precise modeling of the common
usage of pointer arithmetic. Likely potential violations in-
clude unintended buffer overflows and underflows, and cast-
ing of data structures into character arrays to get at the
data’s low-level byte representation.

We model an array type as having two fields: the lead-
ing field f1 represents the first element and the second field
f2 represents all remaining elements. Both fields are struc-
turally equivalent to type t, the type of the array element.
Since f1 is a leading field, any pointer to an array may also
be used as a pointer to its element type. Furthermore, if two
array types have the same element type, their respective f2

fields are considered structurally equivalent, regardless of
the size of the array. However, the array types themselves
are considered structurally equivalent only if they have the
same sizes.

Arithmetic operations are allowed only on pointers to ar-
ray elements. For each arithmetic operation, we determine
if it may leave the pointer value the same, increment the
pointer, or decrement the pointer. The former is modeled
as a simple pointer assignment, the latter two are modeled
as follows:

1. Incrementing a pointer to field f1 or f2 in an array
returns a pointer to f2.

2. Decrementing a pointer to field f2 in an array results
in a pointer to both field f2 and f1.

In both cases, the element type of the referent array must
be structurally equivalent to the expected element type.

Some programs cast pointers to integers for the purposes
of performing arithmetic. Expression of the form addr =
(int)baseptr + i ∗ n, where n is a constant, are often used
to find element i of an array with elements of bytesize n.
We substitute equivalent pointer arithmetic expressions for
every possible element type of that bytesize. If i does not
have a constant multiplier we use char as the element type.

2.5 Memory Copy Routines
Routines such as memcpy and strcpy are often used to

copy values from one memory region to another, by treat-
ing the source destination locations as arrays of bytes and
copying a specified number of bytes from the source to the
destination. It is difficult to model a copy routine accurately
because no expected type information is provided and it is
often not possible to determine the range of fields copied.

Assumption 5 (Memcopy) We assume that the length of
a memory copy operation only extends to the end of the
largest field type located at the source address. For each type
at the source address, we match a common initial sequence of
fields with each type at the destination address. We precisely
model the operation as an assignment between corresponding
fields.

2.6 Context-Sensitive Analysis
Our treatment of procedure invocations and context sen-

sitivity is the same as the one used by Whaley and Lam [20].

Readers are referred to that paper for details. Here we shall
only provide an overview of the algorithm for completeness.

To handle indirect function calls, the algorithm first com-
putes the context-insensitive points-to relations while dis-
covering call targets on the fly. The algorithm then uses the
call graph computed to find the context-sensitive points-to
relations.

The analysis starts by extracting all the input relations
from the source program and store them as relations in the
database. In the context-insensitive phase, assignment re-
lations linking the actual with the formal parameters are
generated on-the-fly as the function targets are discovered.
The inference rules are applied until no more points-to rela-
tions are discovered.

Context sensitivity is handled with cloning. Cloning
conceptually generates multiple instances of a function
such that every distinct calling context invokes a differ-
ent instance, thus preventing information from one con-
text from flowing to another. Cloning makes generating
context-sensitive results algorithmically trivial: the context-
insensitive algorithm can be applied to the cloned program
to obtain context-sensitive results. Note that the analysis
does not clone the code per se; it simply produces a separate
answer for each clone. We use entire call paths to distinguish
between contexts in programs without recursion. To handle
recursion, call paths are reduced by eliminating all invoca-
tions whose callers and callees belong to the same strongly
connected component in the call graph. These reduced call
paths are used to identify contexts.

A location in a stack-allocated object in the context-
sensitive analysis is represented as 〈c, o, p〉, where c is the
context number identifying the clone in the call graph, o is
the local variable, and p represents the path taken to reach
the location. Context-sensitive relations and inference rules
are analogous to the context-insensitive ones, except that
stack allocated objects are qualified with a context number.

The call graph computed in the first pass is used to cre-
ate the clones for each function. Assignment statements are
generated before the analysis begins, linking the actual ar-
guments of each instance to the formal parameter of the
matching instance of the callee function. We then compute
the context-sensitive points-to relations by applying infer-
ence rules to the expanded call graph until no more new
relations are generated.

3. CONSERVATIVE POINTS-TO MODEL
Our conservative model, cons, includes the inference rules

in the pcp model, as well as additional rules to model pro-
gram behavior which falls outside assumptions of the pcp
model. The points-to relations found by the pcp model are
a subset of the relations found by the cons model. cons,
assumes only that displacements between objects are unde-
fined (Assumption 1):

1. Contrary to Assumption 2, any read from a field also
retrieves values from any possibly overlapping field.

2. Contrary to Assumption 3, we might dereference a
pointer of type ∗t pointing to path p, where there is no
type t field. All fields at p are accessed by the deref-
erence, as well as all fields following p, since the range
of the dereference may span into those fields as well.

3. Contrary to Assumption 3, we may lookup field f1

in type t1 relative to path p, where there is no type



t1 field. cons will return the address of every field
following p which can overlap with a hypothetical f1

field.
4. In the pcp model, arithmetic is applied only to point-

ers to an array element to derive pointers pointing to
another element in the same array (Assumption 4).
Unless it is proven otherwise, the cons model assumes
that a computed pointer may point to anywhere in the
object pointed to by the source pointer.

5. pcp assumes that memcpy will only copy data up to the
end of the largest field type pointed to by the source
pointer, and only to structurally equivalent fields in
the destination. (Assumption 5). cons copies data
beyond the end of the largest field, and the destination
location does not need to be structurally equivalent.

4. TYPE INFERENCE
The declared type of a C variable may not reflect its actual

type, since the address can be arbitrarily cast and derefer-
enced. However, we can infer the actual type of objects from
their uses. Such information helps programmers understand
the code, as conflicts between declared and inferred types
flag dubious coding practice that can lead to obscure bugs.
Also knowing the types of objects can be useful for code
optimizations.

From the results of our pointer analysis, we can trivially
determine which fields of an object are accessed. We can
infer the type of an object by looking up the type or set
of types which contain the accessed fields. Practically all
objects that violate their declared types have multiple types.
An object has multiple types unless all its accessed fields
belong to the same type. This information can be easily
gathered with a small number of Datalog rules.

5. OPTIMIZED CRED
The CRED bounds checker imposes two kinds of runtime

overheads. The first occurs from maintaining the object ta-
ble as stack and heap objects are allocated and deallocated.
The second occurs as address computations and string ma-
nipulations are checked for OOB addresses. We optimize
the first kind of overhead by only entering objects which
can possibly be referenced by string operations.

The overhead of inserting objects into the table can be
large. CRED inserts all dynamically created objects into the
table, as well as all stack-allocated variables whose addresses
have been taken in the code. Even though the strings-only
version of CRED only checks for overflows in strings, CRED
enters all addressed objects into the object table, for fear
that non-string objects may be dynamically cast as strings.

We identify objects containing strings by finding the ref-
erent objects of operations that operate on strings with the
results of our points-to analysis. Any object addressed by
pointer p must be entered into the table if:

1. p is the base address in a char* pointer arithmetic
expression (including those converted from int arith-
metic expressions).

2. p is used as an argument to a string-manipulating ex-
ternal library function such as strcat or the memcpy

family of routines.

Having identified all possible string-containing objects, we
inform CRED so that it can omit the rest from the object
table.

6. FORMAT STRING VULNERABILITIES
The detection of format string vulnerabilities requires a

taint analysis to determine which object fields may contain
data originally derived from user input. Perl provides a dy-
namic taint analysis, whereby user inputs and derived data
are considered to be tainted. A dynamic analysis can only
detect a problem given the right test inputs, and will incur a
runtime overheads if used as a preventative measure. Static
analysis, on the other hand, has the benefit of finding all
potential vulnerabilities before the program is run.

We define source objects to be all objects directly under
user control which originate taint. These include elements
of the argv array, the return results of IO functions, and
functions interacting with the environment such as getenv.
We find source objects using parameter and return value
references from selected system functions.

Every field in a source object is considered to be tainted.
Taint is propagated to other object fields through direct and
indirect assignments found by our pointer analysis. Objects
referenced by the format string argument of a function such
as printf are considered sink objects. A tainted sink object
indicates a potential format string vulnerability.

7. EXPERIMENTAL RESULTS
We have implemented and run the described analyses on

a suite of 12 benchmarks. In this section we discuss the re-
sults of our pointer analysis, static type inference query, dy-
namic type verification, dynamic string-buffer bounds check-
ing, and static format string vulnerability query.

7.1 Experimental Setup
We have chosen a suite of 12 benchmarks, including com-

monly used Unix systems software, security-critical dae-
mon programs, and standardized SPEC 2000 benchmarks.
ffingerd is a finger daemon, polymorph is a filename con-
version program, bzip2 is a compression utility, pcre is a
regular expression library, bftpd is an FTP server, gzip is
a compression utility, mcf is a scheduling program, muh is a
network game, monkey is a Web server, enscript is a pro-
gram for converting text to PostScript, crafty is a chess
playing program, and hypermail is a program for convert-
ing mailbox files into HTML. Table 1 shows the versions of
the programs analyzed, the number of lines of code in the
program source as well as the number of lines after prepro-
cessing with blank lines ignored. Runtime measurements
were taken on an AMD Opteron 150 machine with 1GB
of memory running Linux. We used the test cases provided;
when test cases were not available, we created appropriately
large test files composed of common inputs.

Our analysis begins by transforming a program into a col-
lection of simplified operations and building a set of BDD
relations. After compiling and linking using the SUIF 2
compiler framework [1], we number objects (distinguishing
between SSA versions), normalize types and field names,
and map legal field paths to canonical paths. We use the
BuDDy BDD libraryto build BDD relations which represent
program operations and path relationships. The time spent
creating the initial program representation is reported in the
fifth column of Table 1.

7.2 Pointer Analysis
Implementing the basic context-insensitive pcp analysis

required 32 Datalog inference rules. In addition, we de-



BDDs Solver time (seconds)
Benchmark Version Line Preproc. creation Context-Insensitive Context-Sensitive

count lines time pcp cons pcp cons

ffingerd 1.28 328 1,706 5.6 2.0 2.2 2.8 3.0
polymorph 0.4.0 582 3,984 7.1 3.4 2.3 3.9 3.5
bzip2 spec’00 3,923 4,609 9.0 0.6 1.3 3.3 4.2
pcre 3.9 6,875 8,441 14.8 2.8 10.4 10.0 37.0
bftpd 1.0.12 901 8,887 8.6 2.4 3.9 4.4 5.8
gzip 1.2.4 6,571 14,070 17.9 5.3 11.3 7.4 15.5
mcf spec’00 1,511 19,993 8.9 1.2 4.1 3.9 9.3
muh 2.05d 4,264 30,427 8.9 2.8 5.0 9.2 10.0
monkey 0.8.4-2 3,982 34,027 20.1 7.2 11.6 11.1 28.4
enscript 1.6.1 27,724 58,003 53.1 9.9 26.4 26.6 136.3
crafty spec’00 19,189 73,442 301.2 14.1 29.5 45.5 146.4
hypermail 2.1.5 29,912 93,606 48.2 48.1 170.7 185.0 735.7

Table 1: Analysis times of the benchmark suite. In this and other tables in the paper, benchmarks are sorted
by the preprocessed line count. Blank lines are not included in the line counts.

fined 200 external system calls through the use of additional
rules which model each system call as inlined program oper-
ations. Implementing a context-sensitive analysis required
converting the existing rules to augment each occurrence of
an object variable with an accompanying context variable,
as well as augmenting the assignments of actual arguments
to formal parameters with a proper context numbering. Im-
plementing cons analysis required adding an additional 26
rules to the base pcp versions. The pcp model requires fewer
rules thanks to its simplistic assumptions. The cons anal-
ysis must define additional rules for each case that the pcp
model ignores. These rules create new relations which can
propagate further, and increase the runtime of the cons an-
alysis. The choice of BDD variable domain ordering can sig-
nificantly affect the performance of a Datalog program. We
used the ordering automatically discovered by the bddbddb

tool [20].
In context-insensitive pcp mode, most of the benchmarks

take under 6 seconds to run, except for our largest 4 bench-
marks, of which hypermail solves in 48.1 seconds. cons
modes, on average, takes about 2.5 times as long as pcp
modes, with the worst case of enscript taking 5 times as
long in context-sensitive cons mode. As noted, cons anal-
yses may take longer due to an increased ruleset and ad-
ditional iterations of rule applications as non-pcp relation
tuples propagate. The context-sensitive analyses take, on
average, almost 3 times as long as the context-insensitive
analyses. This is a small slowdown in return for points-to
results for an exponential number of calling contexts.

7.3 Static Type Checking
In Table 2 we present the results of our static type infer-

ence Datalog query. We have separately counted the number
of stack and heap-allocated objects with multiple types, and
have provided the total number of stack and heap objects
for comparison. The results using pcp and cons modes
are listed in separate columns, and context-insensitive re-
sults are listed in parentheses where different from context-
sensitive results.

In every benchmark, additional objects are found with
multiple types in cons mode than those found in pcp mode.
However, the vast majority of stack objects have single
types. This is also true for heap objects in pcp mode, but

Stack Heap
Benchmark Multi-type Total Multi-type Total

pcp cons pcp cons

ffingerd 0 7 226 0 0 0
polymorph 0 4 699 0 0 4
bzip2 1 7 1,035 2 2 10
pcre 0 6 995 5 9 19
bftpd 0 14(15) 941 0 1 5
gzip 2 22 2,813 1 3 7
mcf 1 1 2,214 0 4 4
muh 0 10 838 3 40 42
monkey 8 15 3,447 14(15) 21 25
enscript 26 69 2,320 11 23 27
crafty 0 77 10,121 0 11 12
hypermail 53(102) 105(136) 5,935 23 25 128

Table 2: Number of multi-type objects found
with context-sensitive pointer analysis. Context-
insensitive results are shown in parenthesis where
different.

a large proportion of heap objects have multiple types in
cons mode. These results show that we can determine the
actual type of most program objects. Only a small number
require closer attention, which is more often in regards to
user-allocated objects.

7.4 Dynamic Type Checking
We perform dynamic type checking to identify program

behavior which violates the actual type of program objects.
We have instrumented our benchmarks to verify that every
object is treated as having a single type over its lifetime,
and that every dereference, array element- and field- ad-
dress calculation is consistent with its type. We also test
that source and destination types match in routines such as
memcpy. Dynamic checking can only show that a program is
type safe for the given input, not for all possible runs.

We have implemented a dynamic type checker using the
CRED buffer overflow detection framework. We augment
the CRED object table to track each object’s type, which
we represent as a linear sequence of bytes. Types are deter-
mined statically for local variables. The type of a global or
dynamically allocated object is taken to be the type of its
first dereference. This imprecision can result in false positive
type violations, which we remove by hand.



Benchmark Heap Stack Bounds Non-strings
allocs allocs checks % Heap % Stack

ffingerd 0 313,605 88,201 0.0 87.5
polymorph 0 1,464 96,904 0.0 0.0
bzip2 12 63,050 0 41.7 99.6
pcre 1,052,003 145,405,004 20,218,005 2.3 93.4
gzip 31,292 22,802 14,386 100.0 (0.0) 84.8
mcf 3 36 1 100.0 88.9
monkey 382 146,327 83,694 1.3 (0.0) 100.0
enscript 279,282 977,239 44,130,077 6.2 (0.0) 31.3
crafty 37 2,458,970 7,688,896 13.5 63.3
hypermail 36,065 19,620,748 145,968,123 0.0 56.3

Table 3: Overhead operations introduced by strings-only CRED and percentage of non-string objects in
programs found with pcp analysis. Numbers in parentheses are for cons results, when different. Choice of
context sensitivity does not affect the results.

Base Unopt. Optimized

Benchmark runtime overhead overhead(%)

(seconds) (%) pcp cons

ffingerd 14.4 2 0 0
polymorph 28.2 -1 -2 -1
bzip2 13.6 -2 -1 -2
pcre 12.5 144 -1 -1
gzip 10.9 3 2 1
mcf 11.8 39 39 39
monkey 33.8 -1 0 0
enscript 9.1 19 19 20
crafty 1.7 27 12 12
hypermail 1.8 387 270 260

Table 4: Reducing the runtime overhead of strings-
only CRED by entering only strings in the object
table.

If an object’s type contains union-typed fields, we keep a
list of possible variant types. We remove variant types from
this list as we find them to be incompatible with subsequent
operations. If the list of candidate union fields is exhausted,
we report a type violation.

Out of 10 benchmarks (we were unable to test bftpd or
muh using the CRED system), only two were found to con-
tain objects treated with more than one type. This is an
unusual event in portable programs, as it requires making
assumptions about the size and alignments of C’s types.
hypermail was found to cast a double to an array of charac-
ters in order to access it byte by byte. bzip2 casts an array
of 32-bit integers to an array of 16-bit shorts. In both of
these cases, assumptions are violated to get at the low-level
representation of numeric data. Fortunately, though these
casts would violate the pcp model, code inspection showed
that they were not involved in the propagation of pointer
values.

7.5 Optimization of CRED
We have timed program runs using CRED, counted the

number of instances of stack and heap objects entered and
removed from the object table, and counted the number of
checked operations performed. We compiled each program
normally, then with CRED, and then with an optimized
version of CRED for each variation of our pointer analy-
sis. Optimized versions of CRED are provided with lists

of variable identifiers and allocation sites corresponding to
non-string objects.

The first two columns of Table 3 display the number of
object table insertions and deletions performed by CRED
for stack and heap variables CRED does not insert unad-
dressed stack variables into the object table. The third
column lists the number of bounds checks performed, for
comparison with object table modifications. The next two
columns list the percentage of CRED object table modifica-
tions pertaining to non-string objects under pcp and cons.

For the most part, our pcp and cons analyses identified
the same objects as non-strings. However, in gzip, 100% of
inserted heap objects were determined to be non-strings by
our pcp analysis, while 0% were found to be non-strings by
our cons analysis. enscript showed a smaller disagreement
in the number of non-string heap objects. Most stack objects
were determined to be non-string objects, with proportions
higher than 87% in 8 out of 10 benchmarks.

We were able to optimize the performance of CRED by
preventing it from inserting non-string objects. Table 4 dis-
plays the normal runtime for each program, the percentage
overhead due to CRED, and the percentage overhead due
to each optimized version of CRED. We find that ffingerd,
bzip2, polymorph, gzip, and monkey have a negligible over-
head. At the other extreme, hypermail’s overhead is over 3
times the base runtime, and the overhead for pcre is about
1.5 times the base runtime. The other benchmarks have
around a 30% overhead. Our optimizations caused a com-
plete reduction in overhead for pcre. crafty’s overhead is
reduced by more than half, and hypermail’s overhead is re-
duced by a third.

We also investigated how well these optimizations com-
bined with alternative optimization techniques. After ex-
amining the most frequently fired checks in hypermail and
enscript, we manually optimized the heavily executed por-
tions of the programs using two strategies. We first elimi-
nated redundant bounds checks dominated by earlier checks.
Often, a pointer would be dereferenced twice or more in
an inner loop, latter dereferences were removed if we as-
certained that they were redundant. Comparisons in test
conditions were also a common source of redundant checks.

For loops with monotonically increasing or decreasing in-
dex variables, we performed code motion to move checks
outside the loop. This way, a check fired multiple times was
replaced with a single check for an entire range of indices.



Benchmark Source Tainted objects Sink Sink Vulnerabilities
calls pcp cons calls objects pcp cons

ffingerd 3 23 23 15 0 0 0
polymorph 2 28 28 25 0 0 0
bzip2 1 19 19 71 0 0 0
pcre 4 96 165 130 0 0 0
bftpd 13 25 (26) 26 67 1 1 1
gzip 6 230 294 76 0 0 0
mcf 3 134 206 26 0 0 0
muh 4 93 97 15 5 5 5
monkey 14 298 (300) 310 46 5 12 21
enscript 24 510 (538) 578 (583) 652 0 0 0
crafty 10 832 (837) 949 842 0 0 0
hypermail 27 891 (971) 1,034 (1,069) 0 0 0 0

Table 5: Results of the format string vulnerability detector. Numbers in parentheses indicated context-
insensitive answers, when different.

enscript relied heavily on simple inner loops which could
be optimized in this manner. String processing loops that it-
erated through each character until the null terminator was
found were frequently optimized using this strategy.

Using these techniques, we were able to decrease the num-
ber of string checks fired in hypermail by 52%, and in
enscript by 25%. enscript’s CRED overhead was reduced
from 19% to 16%, with no further improvement due to our
string-object optimizations. hypermail’s CRED overhead
was reduced from 387% to 246%, and optimized CRED over-
head was reduced from about 270% to only 170%.

7.6 Format String Vulnerabilities
Table 5 shows the results of our format string vulnerability

analysis. Column 1 lists the number of calls to functions
which provide source pointers to tainted user data. The next
two columns display the number of objects found to contain
tainted data after our taint analysis. Column 4 lists the
number of calls to functions with format strings, and column
5 lists the number of sink objects passed as format string
arguments to these calls. We do not count constant strings,
the majority of format string arguments, which is reflected
by the low number of sink objects in these benchmarks. The
last two columns report the number of vulnerabilities. We
count a tainted format string once for each callsite which
uses it, which explains why monkey can have more than 5
vulnerabilities.

The six vulnerabilities found in bftpd and muh are real.
Those found in monkey are false positives, and the analysis
based on cons results generates additional false positives.
The remaining programs do not have non-constant format
string objects to be considered vulnerable.

Given the low number of sink objects, we can learn more
about the acccuracy of this analysis by looking at the
number of tainted objects. The cons model clearly pro-
duces more tainted objects than the pcp model. Context-
insensitive pointer relations also produce additional tainted
objects, which is most dramatic for hypermail. If there were
more sink objects, it is possible that these modes would gen-
erate additional false positives.

8. RELATED WORK
Space limitations preclude us from reviewing the large vol-

ume of research on pointer alias analysis in detail. Since

this paper presents a field-sensitive, context- and flow-
insensitive, inclusion-based analysis, we shall limit our dis-
cussion to similar projects.

Inclusion-based analyses [2] generate significantly more
precise results than equivalence-based ones [16]. Zhu [24]
and Berndl et al. [3] showed that BDDs can be used ef-
fectively to implement inclusion-based points-to analysis.
Their algorithm can be formulated as and implemented by
simply applying a set of inference rules until they converge.
This simplicity makes it relatively easy for us to experi-
ment with the intricate semantics of C. Prior to the use of
BDDs, scalable inclusion-based algorithms had to include
optimizations to compute closures of points-to relations [8,
10]. Context-sensitive versions of BDD-based points-to an-
alysis for Java and C have been proposed recently [20, 25].

A number of field-sensitive inclusion-based analyses have
been proposed for Java [3, 13, 14, 19]. Because of type-
safety, however, Java is much easier to handle. Field sen-
sitivity is more complicated with C because of casting and
pointer arithmetic. A number of proposed algorithms dis-
tinguish between fields of structures in C, but do not handle
casting [2, 6, 7]. Steensgaard’s algorithm handles casting;
however, it is an equivalence-based rather than an inclusion-
based analysis and is therefore less precise [16]. Yong et al.
[23] propose the use of common initial sequences; Ryder et
al. [12] and Wilson and Lam [22] propose using an offset-
based approach.

9. CONCLUSIONS
In this paper, we presented a context-sensitive, inclusion-

based, and field-sensitive points-to analysis for C. We used
the analysis to find objects that potentially have multiple
types, to improve a dynamic bounds checker, and to stati-
cally detect format string vulnerabilities.

To gain precise C pointer analysis results, we proposed
a pcp model which captures the common usage of C. We
compared pcp with a cons analysis which finds more points-
to relations than the pcp model, many of which are likely to
be spurious. The pcp model found fewer multi-type objects
than the cons model, a result which was more consistent
with results we obtained from a dynamic type checker. We
also found that the pcp model improved the accuracy of the
format string vulnerability detector.

We showed that C pointer alias analysis can be used



to reduce the overhead of a dynamic string-buffer bounds
checker. It significantly reduced the overhead for programs
dominated by the insertion of non-string objects into the
bounds checker’s obejct table. Finally, our analysis found
six actual format string vulnerabilities in the programs we
analyzed.
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