
Improving Source Code Search with
Natural Language Phrasal Representations of

Method Signatures
Emily Hill

Deptartment of Computer Science
Montclair State University

Montclair, NJ 07043
Email: hillem@mail.montclair.edu

Lori Pollock and K. Vijay-Shanker
Deptartment of Computer and Information Sciences

University of Delaware
Newark, DE 19716

Email: {pollock, vijay}@cis.udel.edu

Abstract—As software continues to grow, locating code for
maintenance tasks becomes increasingly difficult. Software search
tools help developers find source code relevant to their mainte-
nance tasks. One major challenge to successful search tools is
locating relevant code when the user’s query contains words with
multiple meanings or words that occur frequently throughout the
program. Traditional search techniques, which treat each word
individually, are unable to distinguish relevant and irrelevant
methods under these conditions. In this paper, we present a novel
search technique that uses information such as the position of
the query word and its semantic role to calculate relevance. Our
evaluation shows that this approach is more consistently effective
than three other state of the art search techniques.

Keywords-code search; concern location; software maintenance

I. INTRODUCTION AND BACKGROUND

Similar to how we use Google to search the web, software
search tools match a developer’s query with comments and
identifiers in the source code to identify relevant program
elements [1], [2], [3], [4]. Most software search tools treat
a program as a “bag of words” [5] (i.e., words are treated as
independent occurrences with no context or relations between
them taken into account) and calculate relevance of each
document (i.e., a method) by scoring the document based on
the query and the word occurrences in the code.

Unfortunately, bag of words approaches can suffer from
reduced accuracy by ignoring the relationships between words.
For example, consider searching for the query “add item”
in a shopping cart application. The presence of “add” and
“item” in two separate statements of the same method does
not necessarily indicate that the method is performing an “add
item” action—the method may be adding an action to the
system’s queue and then getting the item field of another object
in the system. Ignoring the relationships between words causes
irrelevant results to be returned by the search, distracting the
user from the relevant results. Thus, knowing how words occur
together and where they occur can help distinguish between
relevant and irrelevant search results. We use phrasal concept
to describe a concept expressed as a sequence of words [6].

Some search technique go beyond bag of words to cap-
ture phrasal concepts. The Action-Oriented Identifier Graph
(AOIG) captures phrasal concepts in the form of <verb, direct
object> pairs from method signatures and comments to find
actions that cross-cut object-oriented systems [4]. However,
the AOIG cannot model all phrasal concepts or linguistic
relationships. In this paper, we investigate using more detailed
natural language information in phrasal concepts to increase
code search effectiveness.

This paper describes how phrasal concepts (PCs) can be
leveraged to improve software search, particularly by using
the context and semantic role of query words within the
method signature. Unlike AOIG and information retrieval-
based approaches, our PC-based search technique introduces a
relevance scoring mechanism that integrates information about
the position of query words in the code as well as the semantic
role of query words in phrasal concepts. We investigate the
effect of our PC-based score on search by comparing it with
3 state of the art search tools.

II. A PC-BASED SCORE FOR SOURCE CODE SEARCH

In this paper, we introduce a PC-based scoring function,
pc, to score the relevance of program elements by integrating
location, semantic role, head distance, and usage information:

• Location. When a method is well-named, its signature sum-
marizes its intent, while the body implements it using a variety
of words that may be unrelated. A query word in the signature
is a stronger indicator of relevance than the body.
• Semantic role. Prior research has shown that using semantic
roles such as action and theme can improve search effective-
ness [4]. We extend this idea by distinguishing where query
words occur in terms of additional semantic roles.
• Head distance. The closer a query word occurs to the head, or
right-most, position of a phrase, the more strongly the phrase
relates to the query word. For example, the phrase “image file”
is more relevant to “saving a file” than “file server manager”.
• Usage. If a query word frequently occurs throughout the rest
of the program, it is not as good at discriminating between

relevant and irrelevant results. This idea is commonly used in
information retrieval techniques [5].

A. Usage

Usage information captures how frequently a query word
appears in the rest of the source code. We capture usage
information for a word w using the common information
retrieval measure of inverse document frequency (idf) [5]:

idf(w) = 1− df(w)

N
(1)

where df is the total number of methods, or “documents”,
in which a query word appears, and N is the total number
of methods in the system. Traditionally, IDF is calculated
by taking the log of N/df(w), with values ranging from
[0, log(N)]. We modified the traditional IDF scoring function
to make it a linear function from [0, 1) to consistently limit the
contribution of a single query word regardless of the number
of methods in the program.

B. Head Distance

Head distance approximates how strongly a phrase (i.e.,
phrasal concept) relates to a query word. For example, consider
the concept of “adding an auction” in an auction sniping
program that allows users to place proxy bids on online auction
sites such as eBay. The query to search for this concept would
be “add auction”. If the head distance of the query word is not
taken into account, the following 3 methods are all considered
to be equally relevant:

AuctionServerMgr.addAuctionServerMenus()
HTMLDump.addAuctionLink()
JBidMouse.addAuction(String auctionSrc)

Clearly, the last method, JBidMouse.addAuction, is more
relevant than the first two methods. Specifically, addAuction-
ServerMenus() is not adding an auction but a server menu,
and addAuctionLink is adding a link. In both cases, the query
word is being used to modify the theme’s head. Head distance
allows us to differentiate between strong occurrences of query
words in the head position, and less relevant occurrences to
the left of the head.

Given a phrase p and a query word q:

head(q, p) =

{
0, if q /∈ p

1
1+min distance(q,p) , if q ∈ p (2)

where min distance is the minimum distance of the query
word from the head position of the phrase. Equation 2 takes
the inverse of the minimum distance +1 so that a query word
in the head of a phrase has a maximum impact of 1, getting
progressively smaller as the query word drifts farther from the
head. If the query word does not appear, head = 0. We use the
minimum distance of the query word from the head position
because a single query word may occur multiple times in a
single phrasal concept.

C. Semantic Role

Prior research has shown that using semantic roles such as
action and theme can improve search effectiveness [4]. We
extend this idea by scoring relevance based on 4 semantic
roles: action (verb), theme (i.e., direct object), secondary
arguments (indirect objects), and any auxiliary arguments. We
capture the semantic roles for a given method signature using
a novel Software Word Usage Model (SWUM) [7].

The binary relevance score used in prior work only looked
for query words in the action or theme semantic roles [4].
We generalize beyond this idea by taking advantage of query
words in secondary or auxiliary roles, and associating rele-
vance weights with each semantic role.

Given a query Q and a method x, semantic role information
is scored by function swum:

swum(x,Q) =
∑
q∈Q

(
idf(q) ∗max

i
(βi ∗ head(q, i))

)
(3)

where i ∈ {action(x), theme(x), secondaryArgs(x),
auxArgs(x)}. Each semantic role is assigned a different
weight, βi, and we sum the maximum contribution for each
query word. We ensure a query word can only contribute to
the swum score once by taking the maximum contribution for
any semantic role’s head distance score and weight.

As observed in our prior work with verb-direct object
search [4], occurrences of query words in a method’s action
or theme are an important indicator of relevance. Thus, we
give the action and theme the highest weights of βaction = 1
and βtheme = 1. Although secondary and auxiliary arguments
are less likely to capture the main intent of a method,
they can help differentiate between relevant and irrelevant
results. For example, consider searching for “sort style”
with methods getStyle and sortXMLByStyle. Based only
on action and theme, getStyle would be as highly ranked
as sortXMLByStyle. By taking secondary arguments into
account, sortXMLByStyle would get the higher score. Thus,
we define βsecondaryArgs = 0.5 for secondary arguments
found in the name, and βauxArgs = 0.25 for any remaining
auxiliary arguments in the signature.

D. Location

Because a method’s signature typically summarizes its
intent, while the body may implement it using unrelated
words, we score query word occurrences in signature and body
locations differently. Given a query Q and a method x, we
define our scoring function, pc(x,Q) to be:

pc(x,Q) = signature(x,Q) + body(x,Q) (4)

signature(x,Q) = max(βswum ∗ swum(x,Q),

βsig ∗ lex(xsig, Q))
(5)

body(x,Q) = βbody ∗
lex(xbody, Q)

|Q|
(6)

In Equation 5, we take the maximum of our PC-based score
of the signature (swum) and a best-effort lexical score (lex).
In Equation 6, we use the same lexical score normalized by
the number of query words. The body includes all words from
the method’s comments, identifiers, and literals.

To calculate lex in Equations 5 and 6, we first split and
stem all the identifiers in the signature. Then, we lexically
search for the query term or the stemmed query term. Similar
to Equation 3, we sum the idf score of each lexically matched
query word. Using a lexical search allows us to give non-zero
scores to method signatures that have insufficient identifier
splitting for extracting semantic role information.

Unlike traditional information retrieval techniques, which
count the frequency of each query word’s contribution, lex
uses a binary score for each query word. In general, using
frequency-based scores will bias the search in favor of long
methods, since longer documents are more likely to contain
more occurrences of the query words. If length normalization
is used, the search will instead be biased in favor of very short
methods. In contrast, our goal is to bias the search to methods
containing the query terms, regardless of length. For example,
consider a method related to sorting, populateTreeByStyle,
which is 1500 lines long and contains just 1 relevant statement
that calls the sort function. Later, the programmer decides
to refactor the long populateTreeByStyle method into a
number of smaller methods. The call to the sort function is
now located within a short 5-line method, called getResults.
We believe that both the original 1500 line method and the
refactored 5 line method are equally relevant for containing a
call to the sort function.

We tuned the pc scoring function using a training set
of 5 manually-mapped search tasks. Based on our training
sample, we define weights for the coefficients as βswum = 1,
βsig = 0.05, and βbody = 0.1. We multiply lex by a very
small βsig coefficient to ensure properly parsed signatures
with semantic role information are always ranked more highly
than signatures only matched with lex. For example, using
lex to search for the word “adds” with stem “add” would
return irrelevant matches like “padding” in addition to relevant
signatures like the unsplit “additem” or splittable “addsItem”.
In contrast, using lex ensures that when an identifier is
consistently not split correctly, pc will still find relevant results
(e.g., matching textfield with query “text field”).

As shown in Equation 6, we also analyze body information
with lex. We use a small coefficient (βbody = 0.1) to
ensure body information is only used to break ties between
similarly ranked methods. To keep the contribution of lex
bounded to a maximum of βbody in Equation 6, we normalize
lex by the number of query words. We investigated more
sophisticated and expensive ways of using body information,
such as calculating a PC-based body score, but results did not
improve on our training data.

III. EVALUATION

We evaluate our pc scoring function by comparing it with
existing state of the art search techniques on 8 search tasks.

A. Design

In this study, we compare 5 search techniques: ELex, GES,
FindConcept, and two variants of pc:
• ELex is a regular expression search similar to UNIX grep
that returns an unranked list of methods, with no threshold.
• GES [2] is based on Google Desktop Search, takes a natural
language query as input and returns a ranked list of methods.
We select the top 10 results for this study.
• FindConcept [4] searches in method signatures and com-
ments for verb and direct object pairs using a unique query
mechanism that requires the user to enter a verb and a direct
object. Results are ordered by structural connectedness to
other results, and the top 10 methods returned.
• PC10 is our pc score using the top 10 ranked results.
• PCT uses the same pc scoring function as PC10, but with
a more sophisticated threshold that takes the average of the
top 20 results to determine relevance.

a) Subjects: We use 8 of 9 search tasks used in a previous
concern location study [4]. The tasks are from 4 programs
ranging in size from 23 to 75 KLOC. Since the “add auction”
task was used in pc’s training set, it was excluded.

The queries for ELex, GES, and FindConcept come from a
previous concern location study where each task-tool com-
bination was replicated by 6 human subjects [4]. Because
we are interested in investigating the differences between the
techniques, and not how well the human subjects could use
the tools, we selected the most effective queries for each
technique, per task: the query that had the top precision, the top
recall, and the top F measure. We followed a similar technique
for PC10 and PCT, using the queries from a prior study [8].
Thus, the results in this study represent each search technique
at its best, given a human user.

b) Measures: We measure effectiveness using the com-
mon information retrieval measures of precision, recall, and
F measure [5], where precision (P) is the percent of search
results that are relevant, recall (R) is the percent of all
relevant results that were returned as search results, and the
F measure (F) is high only when both precision and recall
are similarly high. Because precision and recall are inversely
related, a single query typically captures either high recall (by
returning many results) or high precision (by returning few,
but very relevant results) [5]. Thus, it is unusual for a single
query to yield both high precision and high recall.

c) Threats to Validity: We tried to ensure a fair compar-
ison across search techniques by using only the most effective
queries for each task. The results may not generalize beyond
Java, although we expect the results to be consistent across
other object-oriented languages.

B. Results and Analysis

Figures 1, 2, and 3 show box and whisker plots capturing
the overall Precision (P), Recall (R), and F Measure (F)
results for the 5 search techniques. Based on the F Measure,
ELex appears inferior to the other search techniques. The
PC-based techniques, PC10 and PCT, appear to be more

 0

 20

 40

 60

 80

 100

ELex GES FindConcept PC10 PCT

Pr
ec

is
io

n
(%

)

Search Technique

Fig. 1. Precision results for state of the art search techniques.

 0

 20

 40

 60

 80

 100

ELex GES FindConcept PC10 PCT

R
ec

al
l (

%
)

Search Technique

Fig. 2. Recall results for state of the art search techniques.

consistently effective than FindConcept or GES. These results
are confirmed by the precision and recall results in Figures 1
and 2. In terms of precision, PCT is a clear front-runner closely
followed by FindConcept. For recall, PC10, PCT, and GES
appear to have similar results. We also analyzed results by
search task. We found that PC outperforms the other search
techniques for 3 tasks, GES outperforms the others for 3 tasks,
FindConcept is the best for 1 task, and they all tie for 1.

For most queries in this study, ELex typically returns too
many results. This ensures ELex finds many relevant results,
but too many irrelevant ones. In Figure 2, PC10 and PCT begin
to approach ELex’s high recall, without sacrificing precision.

Overall, PCT is a very competitive search technique when
the query words match relevant signatures. However, when
body information is important to locating the relevant code,
GES is the best state of the art technique in this study.
Although GES outperformed PCT, PC10, and FindConcept
for some of the tasks, its performance in general seems to be
unpredictable. When GES did not have the best performance,
it tended to be little better, and sometimes even worse, than
ELex. In contrast, even though PCT did not always have the
best results, it was usually competitive.

To investigate this observation, we ranked the approaches
from 1–5 based on their maximum F Measure score for each
task, giving ties the same rank. Using this measure, PCT is the
most highly ranked technique with an average rank of 2.38 and

 0

 20

 40

 60

 80

 100

ELex GES FindConcept PC10 PCT

F
M

ea
su

re
 (%

)

Search Technique

Fig. 3. F Measure results for state of the art search techniques.

a standard deviation (std) of 1.18. GES has an average of 2.75
(std 1.19), PC10 an average of 2.88 (std 1.64), FindConcept
an average of 3.00 (std 0.93), and ELex and average of 3.50
(std 1.41). From these results we can see that PCT and GES are
the best overall techniques in this study, with PCT consistently
ranked more highly overall.

IV. CONCLUSION

In this paper, we presented a novel scoring function (PCT)
for source code that weights query words based on their
location, semantic role, head distance, and usage information.
We compared our PCT score with three state of the art search
techniques. Our results show that PCT and GES are the
best overall techniques in the study, with PCT consistently
ranked more highly overall. GES typically performed best
when body information was important to locating the relevant
code, whereas PCT performed best when signature information
was more useful. In future, we plan to compare with additional
search techniques on more search tasks, as well as explore the
role of signature vs. body information in locating source code.

ACKNOWLEDGMENTS

This material is based upon work supported by National Sci-
ence Foundation Grant Nos. CCF-0702401 and CCF-0915803.

REFERENCES

[1] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” in Proc. Work.
Conf. Rev. Eng., 2004.

[2] D. Poshyvanyk, M. Petrenko, A. Marcus, X. Xie, and D. Liu, “Source
code exploration with Google,” in Proc. Int’l Conf. Soft. Maint., 2006.

[3] D. Poshyvanyk and A. Marcus, “Combining formal concept analysis with
information retrieval for concept location in source code,” in Proc. Int’l
Conf. Prog. Comp., 2007.

[4] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker,
“Using natural language program analysis to locate and understand action-
oriented concerns,” in Proc. Int’l Conf. Aspect-Oriented Soft. Dev., 2007.

[5] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval. New York, NY: Cambridge University Press, 2008.

[6] R. Jackendoff, Semantic Structures. Cambridge, MA: MIT Press, 1990.
[7] E. Hill, “Integrating natural language and program structure information

to improve software search and exploration,” Ph.D. dissertation, Univer-
sity of Delaware, Aug. 2010.

[8] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of NL-queries for software maintenance and reuse,”
in Proc. Int’l Conf. Soft. Eng., 2009.

