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Improving Speech Emotion Recognition with
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Abstract—When training data is scarce, it is challenging to train
a deep neural network without causing the overfitting problem.
For overcoming this challenge, this paper proposes a new data
augmentation network – namely adversarial data augmentation
network (ADAN) – based on generative adversarial networks
(GANs). The ADAN consists of a GAN, an autoencoder, and
an auxiliary classifier. These networks are trained adversarially
to synthesize class-dependent feature vectors in both the latent
space and the original feature space, which can be augmented
to the real training data for training classifiers. Instead of us-
ing the conventional cross-entropy loss for adversarial training,
Wasserstein divergence is used in an attempt to produce high-
quality synthetic samples. The proposed networks were applied
to speech emotion recognition using EmoDB and IEMOCAP as
the evaluation datasets. It was found that by forcing the synthetic
latent vectors and the real latent vectors to share a common
representation, the gradient vanishing problem can be largely
alleviated. Also, results show that the augmented data generated
by the proposed networks are rich in emotion information. Thus,
the resulting emotion classifiers are competitive with state-of-the-
art speech emotion recognition systems.

Index Terms: Speech emotion recognition, data augmenta-
tion, generative adversarial networks, Wasserstein divergence.

I. INTRODUCTION

In recent years, deep learning has made remarkable progress
in many areas, such as speech recognition [1], image recogni-
tion [2], and genomics [3]. Generally, deep learning models are
complex and require a large amount of data to achieve accurate
predictions or classifications. Unfortunately, the data collec-
tion process is often expensive and time-consuming, which
makes acquiring labeled data a big challenge. This problem
is particularly acute in speech emotion recognition because
an utterance may contain ambiguous or multiple emotions.
Multiple annotators are often employed to label the utterances
in speech emotion corpora to increase the annotation reliability.
Nevertheless, in some cases, even professional annotators may
not be unanimous in their decisions [4]. Therefore, it is impor-
tant to address the data sparsity problem.

Emotion recognition plays a key role in natural human-
computer interaction [5], [6]. Traditional speech emotion recog-
nition systems consist of a feature extractor in the front-end
and a classifier at the back-end. For the latter, hidden Markov
models (HMMs) and Gaussian mixture models (GMMs) have
been used to classify the instantaneous and global features
extracted from the front-end [7]. Another approach is to use
prosodic features to train a support vector machine (SVM) for
classification [8]. However, these hand-crafted features may not
be optimal for emotion recognition. Hand-crafted features are
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not robust in that their performance is highly dependent on the
evaluation set.

With the development of deep learning, using deep neural
networks to extract features gradually replaces manual feature
engineering [9]. In particular, the convolutional neural networks
(CNNs) and the long short-term memory recurrent neural net-
works (LSTM-RNN) have been used to exploit the dynamic
structure of frame-based features [10], [11]. Motivated by the
success of convolutional neural networks in image classifica-
tion [12], more and more researchers applied CNNs to extract
features from spectrograms [13–15]. For instance, Huang et
al. [13] proposed a CNN-based feature learning method to
extract emotion-salient features that are invariant to nuisance
factors. Zhao et al. [15] combined CNNs with recurrent neural
networks (RNNs) to extract language information from spec-
trograms. Luo et al. [16] proposed an HSF-CRNN system that
combines the hand-crafted high-level statistic functional (HSF)
features and the features learnt by a convolutional recurrent
neural network (CRNN). A similar strategy was proposed in
[17] in which a DNN was trained to extract emotion features
from hand-crafted features and a CNN was trained to extract
emotion features from spectrograms. The combined features
were classified by an extreme learning machine.

Recent work tends to apply an end-to-end scheme to tackle
the speech emotion recognition tasks [18–21]. Typically, spec-
trograms and class labels are respectively used as the input and
output of the end-to-end systems. In [19], feature maps pro-
duced by convolutional filters are divided into time-specific and
frequency-specific. To assign higher weights to emotion-related
parts in the spectrogram, top-down attention and bottom-up
attention were applied to the last convolutional layer.

With the widespread applications of deep learning in emotion
recognition, many effective solutions to the data sparsity prob-
lem have been investigated [22–25]. Transfer learning [26] is a
popular solution to the insufficient-data problem. In particular,
domain adaptation (a subset of transfer learning) can leverage
labeled data from the source domain to learn a model for the
unlabeled data in the target domain. Motivated by the achieve-
ments in image classification [27], this technique has been
gradually applied to speech emotion recognition as well. For
example, Deng et al. [22] explored a feature transfer learning
method in which source-domain data are transformed to the
target-domain through a sparse autoencoder trained from the
target-domain training data. Transformed data from the source
domain are then used for training an emotion classifier. The
authors found that the classifier trained by the transformed
data can significantly improve the performance of emotion
classification on the target dataset, even if the target dataset is
small. In addition to transferring knowledge within the same
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task (emotion recognition), another study demonstrates that
transferring from speaker recognition to emotion recognition
could also help improve emotion classification [28].

The introduction of generative adversarial networks (GANs)
[29] creates new possibilities for tackling the insufficient data
problem. A typical GAN consists of a generator and a dis-
criminator. Both are neural networks that act like two players
competing with each other in a zero-sum game. The generator
learns to map an arbitrary distribution to the data distribution
to confuse the discriminator, and the discriminator is trained
to distinguish whether a sample comes from the data distri-
bution (i.e., genuine) or from the generator (i.e., fake). Some
researches show that GAN-based data augmentation techniques
can help improve the performance of image recognition [30].
Zhang et al. [31] proposed an improved GAN to generate
high-dimensional representations and showed that GAN-based
data augmentation outperforms conventional data augmentation
techniques.

In [32], we proposed an adversarial data augmentation net-
work (ADAN) that combines an autoencoder with a GAN to
perform data augmentation. The ADAN not only overcomes
the gradient vanishing problem that often occurs in vanilla
GANs but also produces real-like samples that share common
latent representation with the real data. In this paper, we will
further explain the effectiveness of ADAN and extend [32]
by replacing the adversarial loss with Wasserstein divergence.
Unlike [32], we used the whole IEMOCAP dataset and used
a newer feature set in this paper. Moreover, in-depth analyses
have been added. These analyses include comparisons of dif-
ferent types of GANs, distances between the distributions of
real and synthetic data, the effect of varying the number of
augmented samples, and the efficiency of the proposed models.
Our experimental results demonstrate that the proposed data
augmentation approach can further improve the recognition
performance on the EmoDB [33] and IEMOCAP [4] datasets.

The rest of this paper is organized as follows. Section II
presents a review of common solutions to the data sparsity
problem. Section III describes the design of the proposed net-
work and provides a theoretical analysis. Section IV introduces
the details of the experiments, including descriptions of data,
features, experimental setup, and evaluation protocol. Section V
presents and analyses the experimental results. Finally, Section
VI presents the conclusions and future work.

II. RELATED WORK

Data sparsity could cause a machine learning model not able
to learn the true data distribution, which leads to the overfitting
problem. For example, overfitting would occur when training
a deep model with only hundreds of samples but each sample
has thousands of features. To solve this problem, regularization
can be used to impose constraints on the model [34]. Another
general solution is dimension reduction with sparsity constraint
[35]. This approach will be effective when redundant features
exist; otherwise it will eliminate useful information and result
in performance degradation.

To solve the data sparsity problem, the training set can be
enlarged by data augmentation. Traditional data-augmentation

methods typically transform (e.g., adding noise and reverber-
ation to speech signals and cropping, rotating, and flipping of
images) the original data, followed by augmenting the trans-
formed data to the original data [36]. More advanced methods
augment the data based on GANs or variants of GANs, such
as conditional GANs (cGANs) or adversarial autoencoders
(AAEs). Hu et al. [24] used a very deep CNN to generate
additional feature maps for training acoustic models and found
that the augmented data help build robust speech recognition
systems. Sahu et al. [23] synthesized feature vectors through
an AAE by using a mixture of Gaussian distributions as the
random source. Though the synthetic samples could help to
improve classification performance, the synthetic samples tend
to follow an arbitrary distribution rather than the actual data
distribution. Sahu et al. [25] also built a cGAN-based model to
create synthetic feature vectors. Several training tricks, such as
initializing the generator with the weights from the decoder of
the AAE [23] and updating the weights of the generator several
times before updating the discriminator in each training epoch,
have been applied to train the cGAN.

One major difficulty in training GANs is to ensure a balance
between the capability of the generator and the discriminator.
To overcome this difficulty, dynamic alternation training [31]
can be applied. This training strategy is to dynamically change
the number of training epochs between the generator and the
discriminator rather than fixing it. Instead of optimizing the
number of training epochs, our proposed network aims to
improve the learning stability by facilitating the generator to
learn the target distribution. Specifically, the generator in our
proposed network learns the distribution of a latent representa-
tion produced by a simultaneously trained encoder rather than
learning a pre-defined distribution.

III. METHODOLOGY

A. Generative Adversarial Nets

A basic GAN comprises a generator that generates real-like
data from random samples and a discriminator that attempts
to differentiate the generated data from the real ones. Given
a set of random samples z’s from a probability distribution
p(z), the generator G transforms the samples to mimic the
distribution of real data x and makes the discriminator believe
that the generated samples G(z)’s are real. Meanwhile, the
discriminator D tries to distinguish the true samples x’s from
the fake samples G(z)’s. These objectives can be expressed as
follows [29]:

min
G

max
D

V (D,G) = Ex∼pdata(x) {logD (x)}

+ Ez∼pz(z) {log (1−D (G (z)))} . (1)

In practice, rather than training the generator G to min-
imize log (1−D (G (z))), we can train G to maximize
log(D(G(z))), as suggested in [29]. This objective function can
provide stronger gradients that help to overcome the gradient
vanishing problem without changing the equilibrium point that
the generator G and the discriminator D reach. With this new
objective function, D and G are trained to minimize the losses
defined in Eq. 2 and Eq. 3.
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L(GAN)
D =− Ex∼pdata(x) {logD(x)}

− Ez∼pz(z) {log(1−D(G(z)))} (2)

L(GAN)
G =− Ez∼pz(z) {log(D(G(z)))} . (3)

B. Conditional Generative Adversarial Nets

Conditional GAN is an extension of the vanilla GAN in that
it considers extra information y, such as class labels or other
forms of data. The generator receives the concatenation of y
and random vector z as input, and the discriminator receives the
concatenation of real data x and extra information y as input.
Thus, the objective function of cGAN is [37]

min
G

max
D

V (D,G) = Ex∼pdata(x) {logD([x,y])}

+Ez∼pz(z){log(1−D([G([z,y]),y]))}, (4)

where [x,y] means concatenating vectors x and y.
Similar to the vanilla GAN, the discriminator and the gener-

ator are trained to minimize the losses defined below:

L(cGAN)
D =− Ex∼pdata(x) {logD([x,y])}

− Ez∼pz(z) {log(1−D([G([z,y]),y]))} (5)

L(cGAN)
G =− Ez∼pz(z) {log(D([G([z,y]),y]))} . (6)

C. Adversarial Autoencoders

An adversarial autoencoder (AAE) comprises an encoder, a
decoder, and a discriminator. The encoder plays a role similar
to the generator in GANs. However, instead of generating fake
samples as in GANs, the encoder in AAEs aims to match an
aggregated posterior to an arbitrary prior [38]. In addition to the
adversarial learning objective, the encoderE and the decoderR
are also trained to minimize the reconstruction error:

L(AAE)
D =− Ez∼pz(z) {logD(z)}

− Ex∼pdata(x) {log(1−D(E(x)))} (7)

L(AAE)
E =− Ex∼pdata(x) {log(D(E(x)))} (8)

L(AAE)
R = Ex∼pdata(x)

{
||x−R(E(x))||2

}
, (9)

where x represents the encoder’s input and z represents either
the encoder’s output or a sample from the prior distribution
pz(z).

D. Adversarial Data Augmentation Network

Fig. 1 shows the structure of the adversarial data augmenta-
tion network (ADAN) proposed in [32]. It comprises an autoen-
coder R(E(x)), an auxiliary classifier C(E(x)), a generator
G(z,y) and a discriminator D(h). The ADAN is designed
to achieve three goals. First, it learns a latent representation
that retains emotion information. Second, it attempts to match
the posterior distribution p(ĥ|z,y) to the posterior distribution
p(h|x). Third, it minimizes the reconstruction errors between x
and x̂. The three components in Fig. 1 are trained adversarially
to achieve these objectives. Specifically, the encoder E and
the classifier C are trained to learn the M -dimensional latent
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Fig. 1. The structure and data flow of an adversarial data augmentation network
(ADAN). The network comprises an autoencoder with an auxiliary classifier
(top), a generator (lower-left) and a discriminator (lower-right). The individual
subnetworks are DNNs. The dotted line is only used for data augmentation after
training.

representations h’s that are highly emotion-discriminative. Si-
multaneously, the decoder learns to reconstruct emotion vectors
in the original space from the latent representations. The gen-
erator takes samples drawn from an M -dimensional Gaussian
distribution and one-hot encoded emotion labels as input and
generates samples in the latent space; its goal is to generate
samples that are indistinguishable from the real samples in the
latent space, i.e., p(h|x) ≈ p(ĥ|z,y). The discriminator is
optimized to distinguish whether a latent vector comes from
the real data or from the generator. The advantage of generating
samples in the latent space instead of the original space is that
generation of high-dimensional vectors can be avoided.

To train the proposed network, we minimize the losses de-
fined below:

L(ADAN)
D = − Ex∼pdata(x) {logD(E(x))}

− Ez∼pz(z) {log(1−D(G(z,y)))} (10)

L(ADAN)
C = − Ex∼pdata(x)

{ K∑
k=1

y(k)
emo logC(E(x))k

}
(11)

L(ADAN)
R = Ex∼pdata(x)

{
||x−R(E(x))||2

}
(12)

L(ADAN)
E = Ex∼pdata(x)

{
||x−R(E(x))||2

−
K∑
k=1

y(k)
emo logC(E(x))k

}
(13)

L(ADAN)
G = Ez∼pz(z)

{
log(1−D(G(z,y)))

− α
K∑
k=1

y(k)
emo logC(G(z,y))k

}
(14)

where ()k denotes the k-th element of a vector, G stands for
the generator, R for the decoder, E for the encoder, D for the
discriminator and C for the auxiliary classifier. α determines



4

the contributions of the classification error to the loss in the
generator.

E. Wasserstein ADAN

Wasserstein GANs [39] have been proposed to overcome
the gradient vanishing problem. Given two probability distri-
butions, Pr and Pg , the Wasserstein distance is defined as:

W1 (Pr,Pg) = sup
‖f‖L≤1

E
x∼Pr

{f(x)} − E
x̃∼Pg

{f(x̃)} , (15)

where ‖f‖L ≤ 1 indicates that f satisfies the 1-Lipschitz con-
straint. Weight clipping and gradient penalty are two common
approaches to impose the 1-Lipschitz constraint. However, ac-
cording to [40], weight clipping could narrow the search space
of function f and lead to a sub-optimal solution. To overcome
the limitations of weight clipping, the gradient penalty was
introduced [41]. However, under data-sparsity conditions, it is
difficult to satisfy the k-Lipschitz constraint for the entire data
domain. With these considerations, Wu et al. [40] proposed a
novel Wasserstein divergence that can approximate the Wasser-
stein distance without imposing the Lipschitz constraint. It is
defined as follows:

LDIV = E
x∼Pr

{f(x)} − E
x̃∼Pg

{f(x̃)}+ λ E
x̆∼Pu

{‖∇f(x̆)‖p} ,
(16)

where Pu is a Radon probability measure, λ controls the
impact of the gradient term on the objective function, and p
corresponds to the Lp space for function f . In addition, λ and p
must satisfy λ > 0 and p > 1 to ensure that LDIV in Eq. 16 is a
symmetric divergence, which has been proved in [40].

Incorporating Eq. 16 into ADAN, the losses for the discrim-
inator and the generator become

L(WADAN)
D = Ep(x,z,x̆,y)

{
D(E(x))−D(G(z,y))

+λ [‖∇x̆D(x̆)‖p]
}

(17)

L(WADAN)
G = Ep(x,y,z)

{
D(G(z,y))

− α
K∑
k=1

y(k)
emo logC(G(z,y))k

}
. (18)

For other losses, they are the same as Eq. 11 – Eq. 13. The
network structure of Wasserstein ADAN (WADAN) is also the
same as Fig. 1. The difference between ADAN and WADAN
is that the final layer of the discriminator in the former uses the
sigmoid activation function, whereas linear activation is applied
to the final layer of the discriminator in WADAN.

After the training of ADAN or WADAN, we connected the
generator G to the decoder R (the dotted arrow in Fig. 1) for
data augmentation. By inputting the one-hot emotion labels and
Gaussian random vectors z to the generator, synthetic samples
can be obtained from the output of the decoder. More details of
the augmentation will be described in Section IV.

F. Advantages of ADANs and WADANs

ADANs use the Jensen-Shannon divergence (JS-divergence)
as the divergence measure. According to [39], the JS-
divergence would be a constant if the support sets of two dis-
tributions have little or no overlap, which leads to the gradient
vanishing problem. Our network structure can overcome this
issue as discussed in our previous work [32]. At the early stage
of training, the distributions of h and ĥ are largely overlapped,
which causes difficulty for the discriminator to differentiate
these two groups of latent vectors. Therefore, the discriminator
will produce high cross-entropy loss, and the generator will
receive non-zero error gradient. On the other hand, the cross-
entropy loss arising from the classifier C to the generator G
through the second term of Eq. 14 can help to avoid gradient
vanishing. This means that even if the gradient of the first term
in Eq. 14 is zero, we still have the gradient of the second term
to update G.

In addition to this advantage, ADANs can easily take the
advantages of other divergence measures such as Wasserstein
divergence (Eq. 17 and Eq. 18) to overcome the gradient
vanishing problem. Compared to JS-divergence, the advantage
of Wasserstein divergence is that it can measure the distance
between two distributions even if they do not overlap. The latent
space created by ADANs also makes the learning of emotion
information easier and faster because of its low dimension.
In addition, many applications [41–43] have shown that the
generative models with Wasserstein divergence are superior to
those with other divergence measures, such as JS-divergence
and maximum mean discrepancy. Therefore, it is believed that
WADAN can generate more meaningful emotion vectors, and
our experiments in Section IV also demonstrate this.

IV. EXPERIMENTS

A. Datasets

The experiments in this paper were conducted on the Berlin
Database of Emotional Speech (EmoDB) [33] and the Interac-
tive Emotional Dyadic Motion Capture (IEMOCAP) database
[4].

EmoDB is a tiny dataset that comprises 535 utterances di-
vided into seven emotion classes. All utterances were spoken
by ten actors.

IEMOCAP contains the utterances of ten actors participating
in dyadic interactions. The data can be divided into improvised
sessions and scripted sessions. In this study, we considered two
situations: four emotions – angry, happy, neutral, and sad –
in the improvised sessions and the entire dataset. For the first
situation, 2280 utterances – with 289 angry, 284 happy, 1099
neutral, and 608 sad – are involved. For the latter one, a total
of 10,039 utterances with 11 emotion classes are considered.
The entire dataset is severely imbalanced in that the smallest
class has two samples, while the largest class has around 2000
samples.

By using datasets of different sizes, we can investigate the
capability of GAN-based augmentation in two scenarios: (1)
the number of samples is significantly less than the feature
dimensions and (2) the number of samples is slightly larger than
the feature dimensions.
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B. Emotion Features

OpenSmile [44] was used to extract emotion features speci-
fied in Interspeech 2011 Speaker State Challenge [45], which
gives a 4368-dimensional feature vector for each utterance.
This feature set is an extension of the Interspeech 2009 Emotion
Challenge [46] and Interspeech 2010 Paralinguistic Challenge
[47]. The former one mainly focuses on addressing the short-
time emotional states and the latter one deals with speaker
traits such as age and gender. The 2011 Challenge considers the
short-time states and long-time traits. As a result, the features
can represent emotions well and the number of features is
suitable for studying the data sparsity problem.

The feature set in Interspeech 2011 Challenge comprises
low-level descriptors, such as root-mean-square (RMS) frame
energies, mel-frequency cepstrum coefficients (MFCCs), zero-
crossing rates, voice probabilities, fundamental frequencies,
and so on [48]. To extract these features, 25-ms frames with
10-ms frame shift were extracted from the waveforms. The low-
level descriptors were then processed by statistical functionals –
such as maximum, minimum, range, standard deviation, kurto-
sis, the slope of contour, etc. – to extract high-level descriptors
of the speech signals. By applying these statistical functionals
to the low-level descriptors, frame-level features can be summa-
rized and converted to utterance-level suprasegmental features.
More details can be found in the website of openSMILE.1 For
both datasets, we removed the features with zero variances and
normalized the remaining features independently by z-norm.

C. Evaluations

Because we focused on speaker-independent emotion
recognition, we applied leave-one-speaker-out cross-validation
(LOSO-CV) to evaluate the performance of the emotion clas-
sifiers. There are ten speakers in each dataset. For each fold
in EmoDB, we used the utterances of nine speakers for training
and the utterances of the remaining speaker for testing. Because
IEMOCAP consists of five sessions, each with a male and a
female speaker, we extended the leave-one-speaker-out cross-
validation to leave-one-session-out cross-validation. Specifi-
cally, for each fold in the LOSO-CV, we used four sessions
for training and the remaining one for testing, which is equiv-
alent to using utterances from eight speakers for training and
utterances from the remaining two speakers for testing. Thus,
we performed 10-fold cross-validation on EmoDB and 5-fold
cross-validation on IEMOCAP. The LOSO-CV can ensure that
no testing data were involved in either data augmentation or
training of emotion classifiers. For performance comparison,
we used both weighted accuracy (WA) and unweighted average
recall (UAR), defined as follows:

WA =

∑K
k=1 true-positivesk∑K
k=1 total-positivesk

(19)

UAR =
1

K

K∑
k=1

true-positivesk
total-positivesk

(20)

1https://www.audeering.com/opensmile/

where true-positivesk is the number of correctly classified sam-
ples for emotion category k, and total-positivesk is the actual
number of samples with this emotion. K is the number of
emotion categories.

openSMILE

Data Augmentation Network

Classifier
TrainingUtterances Feature vectors

Synthetic 
feature vectorsRandom vectors

Emotion 
Classifier

Fig. 2. Pipeline for the data augmentation and classifier training.

D. Experimental Setup

Fig. 2 shows the pipeline for the whole system, and the
ADAN and WADAN were trained according to the algorithm
shown in Algorithm 1 in the appendix.

We set the dimension of the random vectors and latent
vectors to 100, i.e., M = dim(h) = dim(ĥ) = 100. The
parameter α in Eq. 14 was set to 1 when the training data are
from EmoDB or the improvised sessions in IEMOCAP. To deal
with the class imbalance problem, different class weights were
assigned to the classification loss (Eq. 11). If the largest class
has nm samples, and class k has nk samples, then the weight
assigned to this class will be nm

nk
. The parameter α in Eq. 14

and Eq. 18 was set to 0.1 when the entire set of IEMOCAP was
used in the cross-validation. Based on experience, the values
of coefficients λ and p were set to 10 and 5, respectively.
When the network converged, the generator was connected
to the decoder to generate synthetic samples. We presented
the one-hot emotion labels and Gaussian random vectors z
to the generator. The synthetic latent vectors output from the
generator were then passed to the decoder (the dashed arrow
in Fig. 1) to produce augmented data in the original space. In
our experiments, we created ten augmented sets, each of which
has the same size and label distribution as the original set. The
synthetic data was then augmented to the initial training set to
train the emotion classifiers.

The components in the ADAN are fully-connected neural
networks with two hidden layers. The number of hidden neu-
rons is 800 for the encoder and the decoder, while it is 100
for the remaining parts. The size of hidden layers is chosen
according to the number of input neurons and the number of
output neurons such that no overfitting occurred. Support vector
machines (SVMs) and simple deep neural networks (DNNs)
were trained for emotion classification. ReLU was applied to
every layer except for the last layer of the DNNs and the
ADAN. Linear kernels were used in the SVM classifiers. The
Xavier algorithm [49] was used to initialize the weights of the
DNNs, and the Adam optimizer [50] with a learning rate of
0.0001 was used to train them. The SVMs were implemented
using the scikit-learn package while the DNNs were imple-
mented by using Tensorflow.
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V. RESULTS

A. Methods Comparison

Fig. 3 shows the loss curves of different models. If training
the GAN based on the original objective (Eq. 1), the gradient
vanishing problem would occur, as Fig. 3(a) shows. In order
to provide more gradients to the generator, GANs are usually
trained based on Eq. 2 and Eq. 3. However, it is still difficult
to train a GAN with this improved objective. The increase in
the generator loss (Eq. 3) in Fig. 3(b) suggests that the GAN
fails to produce synthetic vectors that deceive the discrimina-
tor. The steady decrease in the discriminator loss (Eq. 2) in
Fig. 3(b) suggests that the discriminator is strong enough to
detect the synthetic samples produced by the generator. All
of these evidences suggest that the GAN fails to converge.
Several remedies – including choosing a smaller learning rate
for the discriminator and increasing the number of iterations
for training the generator – have been tried. But, all of them
failed to make the GAN converge. The availability of class
labels in cGAN (Fig. 3(c)) improves the situation slightly as the
generator loss tends to flatten out. Nevertheless, convergence
is still unstable. The generator loss of cGAN fluctuates widely
because it is unable to achieve a real balance between the
generator and the discriminator. It seems that the discriminator
has been optimized and converged too early while the generator
is still struggling for optimization. This reflects the difficulty
in training a standard GAN in which the learning between
the generator and the discriminator needs to be carefully bal-
anced. Since the generated samples are very different from the
real samples, especially when high dimensional synthetic data
points are produced from a low dimensional random distribu-
tion, the discriminator can distinguish them easily.

Following [23], [38], the input to the AAE was obtained by
sampling a 2-dimensional Gaussian mixture model in which
each Gaussian component represents one emotion class. The
corresponding loss curves are shown in Fig. 3(d). Different
from the GAN and cGAN, the increase in the discriminator
loss of AAE, ADAN, and WADAN suggests that the synthetic
samples cause adversity in the discriminator. The loss curves of
ADAN and WADAN in Fig. 3(e) and Fig. 3(f) also suggest that
gradient vanishing did not occur even though the discriminator
loss dropped to a small value.

The t-SNE [51] tool was used to project the data onto a
2-dimension embedded space for visualization, as shown in
Fig. 4. We plotted the same number of real and synthetic sam-
ples in the graphs. In the figure, emotional states are represented
by different colors, with darker and lighter colors corresponding
to synthetic and genuine vectors, respectively. Except for the
standard GAN, all networks can generate reasonable synthetic
samples. Because the random samples input to the generator of
GAN and cGAN were sampled from a Gaussian distribution, it
seems to be difficult for the generator to learn the multi-class
data distribution without label information. The figure also re-
veals that the cGAN can capture the entire dataset’s distribution,
but it is unable to match the distribution of individual classes. It
is evident that the generated data from the AAE follow the pre-
defined mixture of Gaussian distributions rather than the actual
data distribution. For the proposed model (ADAN), not only

are clusters formed in the latent space but also the synthetic
samples follow the real data distribution. The t-SNE plots for
WADAN are similar to those for ADAN, so we present one of
them due to the page limit.

(a) Original data (b) AAE (c) ADAN

Fig. 5. Histograms of a randomly selected vector component in (a) original
data, (b) AAE-generated data, and (c) ADAN-generated data.

We further investigated the properties of ADAN and AAE by
analyzing their feature distributions. Fig. 5 shows the histogram
of a randomly selected feature. The bin width was selected
according to the Freedman-Diaconis rule. It is obvious that
the distribution of the selected feature produced by ADAN is
closer to the real data distribution. In addition, we measured
the distances between the feature distributions of real data and
those of synthetic data using the maximum mean discrepancy
[52]:

MMD =
1

N2

N∑
n1=1

N∑
n′
1=1

k
(
xrn1

,xrn′
1

)

+
1

N2

N∑
n2=1

N∑
n′
2=1

k
(
xfn2

,xfn′
2

)
− 2

N2

N∑
n1=1

N∑
n2=1

k
(
xrn1

,xfn2

)
,

where xr’s are real samples and xf ’s are synthetic samples.
k(xr,xf ) represents the kernel function. The mixture of the
radial basis function (RBF) kernels was applied, i.e., k(x,y) =∑K
q=1 exp

(
− 1

2σ2
q
‖x− y‖2

)
. The parameters σq’s were set to

0.1, 1.0, 5.0, 10.0, and 100, respectively.
Using the above settings, the average MMDs for AAE,

ADAN, and WADAN are 0.0244, 0.0057, and 0.0054, re-
spectively. Smaller MMD means smaller differences, which
indicates that the synthetic samples generated by ADANs or
WADANs are closer to the actual data distribution.

B. Performance on EMODB

As EmoDB is a small dataset, it is expected that it can benefit
a lot from data augmentation. The original and the augmented
data were used to train DNN classifiers and SVM classifiers.
The DNNs are fully connected neural networks with two hidden
layers, each with 100 neurons. L2 regularization was applied to
train the DNNs.

To analyze the effect of data augmentation, we increased the
number of synthetic samples gradually. The synthetic samples
were shuffled and randomly selected with the same category
ratio as that of the original data. Because the performance of
the classifiers could be affected by the selected samples, we
repeated the experiments 3 times for each trial of random se-
lection and took the average performance as the final accuracy.
Fig. 6 shows the unweighted average recall of SVM and DNNs
on EmoDB.
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(c) cGAN
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(d) AAE

ℒ"#"#$(&'. 10)
ℒ,#"#$(&'. 11)
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Fig. 3. Losses during the course of training of (a) original GAN corresponding to Eq. 1; (b) GAN corresponding to Eq. 2 and Eq. 3; (c) cGAN corresponding to
Eq. 5 and Eq. 6; (d) AAE corresponding to Eq. 7 and Eq. 8; (e) ADAN corresponding to Eq. 10, Eq. 11, Eq. 12, and Eq. 14; and (f) WADAN corresponding to
Eq. 17, Eq. 11, Eq. 12, and Eq. 18. All graphs are based on EmoDB.

(a) GAN (b) cGAN (c) AAE (in latent space)

(d) AAE (in original space) (e) ADAN (in latent space) (f) ADAN (in original space)

Fig. 4. T-SNE plots of (a) data in the original feature space after GAN-based augmentation, (b) data in the original feature space after cGAN-based augmentation,
(c) real data in the latent space based on AAE, (d) data in the original feature space after AAE-based augmentation, (e) data in the latent space after ADAN-based
augmentation, and (f) data in the original feature space after ADAN-based augmentation.
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Fig. 6. Unweighted average recall (UAR) achieved by different data augmentation techniques when the amount of augmented data on EmoDB is progressively
increased. (a) copying real observations, (b) randomly adding Gaussian noise to the features, (c) SMOTE [53], (d) ADAN, (e) WADAN, and (f) GAN and its
variants.

To highlight the effectiveness of ADAN, we compared its
performance against some common data augmentation tech-
niques, such as duplicating the samples, randomly adding noise
to the feature values, and the synthetic minority over-sampling
technique (SMOTE) [53]. Because the feature dimension is
much larger than the number of training samples, non-linear
classifiers are prone to over-fitting. Therefore, linear SVMs
were used for classification.

Better DNNs can be trained, as shown in Fig. 6. Duplicating
samples helps the DNN to learn the data distribution better, but
more repeated samples would not lead to better performance.
Augmenting data by adding noise to the features vectors can
be considered as transforming the original data. A better DNN
classifier can be trained but its performance depends on the
amount of noise, resulting in performance fluctuation. The per-
formance of SMOTE is relatively stable. SMOTE is designed
for increasing the number of minority-class samples. It is not
very effective for generating samples for all classes.

For the ADAN-based approach, with more synthetic data
adding to the training set, a better emotion recognizer can
be trained. It is also interesting to see that the ADAN-based
method can help to improve the performance of SVMs as
well. This suggests that the synthetic data from ADAN can
help the SVM to find better separation hyperplanes. The per-
formance can be improved further with the WADAN-based
data augmentation approach, as Fig. 6(e) shows. The UAR
increases gradually with more synthetic samples augmented to
the training set. In the 10-fold cross-validation, one of them
can always reach an extraordinary result of 100% UAR when
the number of augmented sets is greater than 5. These results
suggest that the ADAN and WADAN can generate novel and
meaningful emotion vectors, which can help to improve the
performance of emotion recognition.

We also trained the DNNs using augmented data from GAN,

TABLE I
COMPARISON OF DIFFERENT METHODS IN TERMS OF HIGHEST WEIGHTED

ACCURACY (WA) AND UNWEIGHTED AVERAGE RECALL (UAR) ON THE
EMODB DATASET.

Methods WA (%) UAR
Baseline

SVM with IS11 Speaker State (Mak [54]) 80.56 -
DNN with IS11 Speaker State (Mak [54]) 80.19 -
Copying observations (DNN) 82.06 80.96
Adding noise to features (DNN) 82.06 80.85
SMOTE (DNN) 82.43 81.58
GAN (DNN) 80.37 78.60
cGAN (DNN) 81.50 79.93
AAE (DNN) 81.12 79.73

Related state-of-the-art approaches
GMM/SVM (Luengo et al. [8]) 78.30 -
2-D ACRNN (Chen et al. [55]) - 79.38
3-D ACRNN (Chen et al. [55]) - 82.82

Proposed
ADAN + SVM 81.50±0.05 80.39±0.09

ADAN + DNN 83.55±0.19 82.80±0.03

WADAN + SVM 81.87±0.26 81.04±0.23

WADAN + DNN 84.49±0.19 83.31±0.20

cGAN and AAE, and compared their performance as shown
in Fig. 6(f). The performance is almost the same when training
the DNNs with a small number of generated samples. However,
when more augmented data generated from GAN or cGAN
were used for training, the classifiers tended to make decisions
by random guessing. For the AAE, no obvious performance
gain was observed when the amount of augmentation increased.
The mode collapse problem seems to occur such that the
generated data fail to capture the whole picture of the actual
data distribution, which can also be observed in Fig. 4(d).

Table I shows the highest weighted accuracy (WA) and
unweighted average recall (UAR) obtained by different ap-
proaches. They were obtained by using different amounts of
augmented data, which correspond to the peaks in Fig. 6
(as indicated by the red arrows). For example, the result of
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Fig. 7. Unweighted average recall (UAR) achieved by different data augmentation techniques when the amount of augmented data on IEMOCAP is progressively
increased. (a) copying real observations, (b) randomly adding Gaussian noise to the features, (c) SMOTE [53], (d) ADAN, (e) WADAN, and (f) GAN and its
variants.

ADAN+DNN was obtained by augmenting the training data
with ten augmented sets, while that of SMOTE was obtained
by augmenting the original data with nine augmented sets.
For GAN, cGAN, and AAE, the original data were augmented
with one augmented set because performance drops when the
number of augmented sets increases. Table I shows that after
ADAN-based data augmentation, we can train a better DNN to
recognize emotions. The performance can be further improved
when training the classifiers with the augmented samples gen-
erated from the WADAN, which is much better than the result
obtained from Luengo et al. [8] that trained SVM classifiers
using hand-crafted features. The UAR is even higher than that
of Chen et al. [55], which uses a 3-D convolutional recurrent
neural networks to generate discriminative features.

Bitouk et al. [56] and Vlasenko et al. [57] have found
that feature selection can greatly improve the performance of
emotion recognition. However, because the number of training
samples used in these studies is different from ours, their
results have not been added to Table I. Nevertheless, our work
demonstrates that data augmentation is a prospective solution
to the data sparsity problem, especially when training DNN
classifiers. The promising results obtained from our proposed
networks suggest that our proposed ADAN and WADAN can
generate real-like samples, which can help to train better clas-
sifiers for speech emotion recognition.

C. Performance on IEMOCAP (improvised only)

Because the emotions in EmoDB have relatively clear bound-
aries, it may be easy to synthesize the emotion data. To obtain
more convincing results, we conducted experiments on the
IEMOCAP dataset in which different emotions do not have
clear boundaries. Thus, to mimic its data distribution is more
challenging.

We applied the same procedure as described in Section V-C
to the IEMOCAP dataset. We used the original and augmented
data to train DNNs with four hidden layers, each with 512
nodes. The same set of data was also used for training linear
SVM classifiers. Due to the imbalanced training data, we as-
signed different class weights to the classification loss. Fig. 7
shows the performance of the DNNs and the SVM classifiers
when the amount of augmented data is progressively increased.
The results show that the traditional data augmentation tech-
niques could not improve the performance much when more
weights assigned to the losses of the smaller classes. In most
instances, the performance is degraded when adding more data
generated from the traditional methods, especially the SMOTE-
based data augmentation. The ADAN-based approach performs
better than the traditional methods, while WADAN-based data
augmentation performs the best among all methods. This sug-
gests that the WADAN-based method can generate novel data
that helps the classifier to better recognize the emotions.

For the SVMs, increasing the amount of augmented data
generated from the traditional approaches could not help the
classifiers to better recognize the emotions. Duplicating training
samples will not affect the decision boundary of linear SVMs,
which explains why the accuracy does not change with respect
to the amount of augmented data in Fig. 7(a). Having more
noisy samples, as depicted in Fig. 7(b), could hurt performance.
SMOTE uses interpolation to create novel samples for the
minority class. But when it is used for creating samples for all
classes, it could not produce effective samples for training the
classifiers.

The comparison between GAN-based, cGAN-based, AAE-
based, and ADAN-based data augmentation is shown in
Fig. 7(f). Different from EmoDB, for IEMOCAP, the cGAN-
based approach outperforms the GAN-based approach more
significantly. A possible reason is that IEMOCAP has more data
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Fig. 8. Unweighted average recall (UAR) achieved by training the DNN
classifiers with synthetic samples only.

and fewer categories than EmoDB, which would help to train
better data augmentation networks. However, the performance
of ADAN is stable for both datasets, which suggests that ADAN
is capable of handling datasets of different scales.

To evaluate the quality of the generated samples, we also
used synthetic samples only to train the DNN classifier and
evaluated it with the real test data. As shown in Fig. 8, the
DNN classifier trained using only synthetic samples as input
is competitive to a DNN trained using the real samples. When
the number of training samples increases, the performance is
also better. This suggests that the generated samples contain
emotion information useful for emotion classification.

Table II compares the best performance of different systems.
For the traditional approaches and our proposed methods, the
results correspond to the peaks in Fig. 7 (as indicated by the red
arrows). For the variants of GAN-based approaches, the results
were obtained after adding one augmented set to the original
data. There are many other approaches that achieve outstanding
performance, but we only selected those using the same training
data as ours. Variable-Length DNN and 3-D ACRNN are end-
to-end systems that use spectrograms as input and produce
emotion labels as output. The results show that ADAN-based
methods outperform the baseline methods but could not beat
the end-to-end methods in [21] and [55].

End-to-end systems can make use of discriminative training
to extract emotion features from raw data. These features are
more discriminative than the hand-crafted features extracted by
OpenSMILE. Therefore, classifiers based on OpenSMILE fea-
tures can hardly compete with these end-to-end systems. One
may argue that it is also difficult to train an end-to-end system
with such a small dataset. However, it has been shown that
many techniques can reduce the number of parameters in CNN
or RNN, which facilitates the training of end-to-end systems.
In [19], the author proposed a novel pooling method that can
downsample the feature maps to avoid over-parametrization.
The author also argued that weights sharing can help to reduce
the number of parameters in CNN. Nevertheless, our proposed
WADAN-based system is not only superior to other traditional
data augmentation technique, but it can also compete with the
end-to-end system. Although we have only used OpenSMILE
features to demonstrate the capability of ADANs, the method is
general enough for creating augmented data to further improve

TABLE II
COMPARISON OF DIFFERENT METHODS IN TERMS OF WEIGHTED

ACCURACY (WA) AND UNWEIGHTED AVERAGE RECALL (UAR) ON THE
IEMOCAP DATASET.

Methods WA (%) UAR
Baseline

SVM with IS11 Speaker State 63.20 58.81
DNN with IS11 Speaker State 64.47 62.86
Copying observations (DNN) 65.79 62.90
Adding noise to features (DNN) 64.43 63.49
SMOTE (DNN) 65.83 62.50
GAN (DNN) 55.09 60.23
cGAN (DNN) 55.79 61.78
AAE (DNN) 63.86 62.01

Related state-of-the-art approaches
Variable-Length DNN (Ma et al. [21]) 71.45 64.22
2-D ACRNN (Chen et al. [55]) - 62.40
3-D ACRNN (Chen et al. [55]) - 64.74

Proposed
ADAN + SVM 64.78±0.07 60.07±0.03

ADAN + DNN 63.55±0.37 63.96±0.27

WADAN + SVM 63.82±0.03 59.79±0.02

WADAN + DNN 66.92±0.20 64.51±0.15

(a) ADAN (b) WADAN

Fig. 9. Latent representations obtained from (a) ADAN, and (b) WADAN. Each
marker represents one class, and there are 11 classes in total. Lighter colors
represent the real samples, while darker colors represent the synthetic samples.

the performance of the end-to-end systems.

D. Performance on IEMOCAP (Entire dataset)

It is challenging to mimic the distributions of a severe im-
balanced dataset. As mentioned in Section IV, different class
weights were assigned to the classification loss (Eq. 11) when
training the ADAN or WADAN. This can ensure that each
class can form a cluster, even if it only has one sample. Fig. 9
shows the latent representations extracted from the ADAN and
WADAN, respectively. The synthetic samples generated from
the WADAN cover the real ones completely, while the synthetic
samples generated from the ADAN only cover a part of the
real data. In Fig. 9(a), there are two classes in green, but
their corresponding synthetic representations cover only one of
them. This indicates that ADAN fails to learn the distributions
of some classes. From the perspective of the t-SNE plots,
WADAN performs better than ADAN.

Since some classes only have 2 or 3 samples, it is hard
to recognize all the emotions using 5-fold cross-validation.
Therefore, we only considered four emotions and added the cor-
responding augmented data generated from the network trained
with the entire dataset. The generated data were augmented to
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Fig. 10. Unweighted average recall (UAR) achieved by ADAN and WADAN
when the amount of augmented data on the entire IEMOCAP is progressively
increased.

the improvised set only. This means that our real data used
to train the classifiers are the same as those in Section V-C,
but the synthetic samples are generated differently. From the
results shown in Fig. 10, it can be observed that the WADAN
still performs well and its performance is much better than
that of ADAN. This implies a better generalization capability
of WADAN, even under extreme data-imbalance scenarios.
However, the performance is worse than that in Fig. 7. A
possible reason is that the networks were trained with the data
including samples from the scripted sessions, which may affect
the distributions of the generated samples.

E. Efficiency Analysis

The time complexity of the feedforward operation of a fully-
connected (FC) network is O(Nw), where Nw is the number
of connection weights. This is because each neuron computes
the linear weighted sum of its input. Our ADAN and WADAN
fall into this category. The time complexity of training an FC
network, however, is more complicated as it depends on a
number of factors, including the kind of activation function,
whether the network is over-specified (larger than needed),
and whether regularization is applied [58], [59]. Instead of
analyzing the theoretical time complexity, we estimated the
actual computation time on a GTX1080Ti GPU by inputting a
single sample to the networks. The average computation time is
0.02s and 0.07s for ADAN and WADAN, respectively. We also
recorded the execution time of each training epoch with a batch
size of 128 in ADAN and WADAN. The results are shown in
Table III.

The number of epochs needed to achieve convergence de-
pends on the number of training samples. Our observation is
that to train an ADAN for EmoDB, IEMOCAP (improvised
only) and IEMOCAP (entire set), at least 800, 200, and 100
epochs are respectively needed. For the WADAN, we found
that the performance is better if the number of epochs is set to
1500. In summary, it is more efficient to use ADAN to generate
synthetic samples, and our proposed networks may also be
efficient for big data.

VI. CONCLUSIONS

Insufficient data could prevent deep learning models from
reaching their full potential, which is a serious problem in

TABLE III
THE EXECUTION TIME OF EACH EPOCH WHEN TRAINING THE ADAN AND

WADAN WITH DIFFERENT SIZES OF TRAINING DATA.

No. of Samples Execution time (s)
ADAN WADAN

∼ 400 (EmoDB) 0.067 0.15
∼ 2, 000 (IEMOCAP improvised only) 0.3 0.67

∼ 10, 000 (IEMOCAP) 1.4 3.14

DNN-based emotion recognition. Typically, the lack of training
data will lead to overfitting in complex models. In this paper,
we proposed a novel data augmentation network to produce
synthetic samples that share the common latent representations
with the original data. Instead of learning the emotion-aware
vectors in the high-dimensional space, the proposed method can
create an emotion-aware latent space and reconstruct samples
in the original space. The results demonstrate that the proposed
method can overcome the gradient vanishing problem in typical
GANs, and produce emotion-rich augmented samples that are
beneficial for training better emotion classifiers.

Other data augmentation techniques, such as duplicating the
observations, transforming data, and SMOTE, were employed
for comparison. The results reveal that the effects of differ-
ent methods on nonlinear models are different. SMOTE can
generate significant synthetic samples of the minority classes.
Adding noise to the original samples can help when the original
samples are reasonably distinguishable but will hurt perfor-
mance when they are entangled with each other. The proposed
ADAN and WADAN can generate valuable and novel samples
that help to improve the recognition of emotions. Compared
to other data augmentation techniques, our proposed method
can achieve better performance. It can also make simple linear
SVM classifiers trained with OpenSmile features on par with
non-linear SVM classifiers trained with more advanced emotion
features.

Our proposed model can overcome the difficulties in training
standard GANs. The two dynamic inputs of the discriminator
help to avoid gradient vanishing and training imbalance. The
strategy of generating emotion-aware samples in the latent
space followed by reconstructing samples in the original space
facilitates the generator to confuse the discriminator. It also
ensures that the generated samples can follow the actual data
distribution. By replacing the cross-entropy adversarial loss
by Wasserstein divergence, we have successfully made the
proposed ADAN amendable to imbalanced datasets.

We have only considered the simple case in which the inputs
to the data augmentation network are OpenSmile emotion vec-
tors. Nevertheless, the augmentation network is general enough
for other scenarios in which data augmentation is beneficial.

The proposed model still has limitations in that the syn-
thetic samples follow closely the training data distribution.
As a result, the augmented data would not be helpful if the
distribution of test data is largely different from the training data
distribution. In future research, we may consider generalizing
the autoencoder and incorporating transfer learning into our
proposed data augmentation model to make it more robust
across different acoustic environments.
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APPENDIX

Algorithm 1 Algorithm of ADAN and WADAN
Require: Batch size m, encoder E, decoder R, classifier C,

generator G, discriminator D, coefficient α, coefficient λ,
power p, training iterations n, and other hyperparameters

1: for i← 0 to n do
2: Sample real data x1, . . . ,xm from Pr
3: Sample Gaussian noise z1, . . . , zm from N (0, 1)
4: Sample emotion labels y1, . . . ,ym from Pr
5: (WADAN) Sample vector µ = (µ1, . . . , µm) from

uniform distribution U [0, 1]
6: (WADAN) x̆j = (1− µj)xj + µjG

(
zj ,yj

)
7: Update the weights wC of C by descending Eq. 11:

wC ← Adam

∇wC

 1

m

m∑
j=1

LjC

 ,wC


8: Update the weights wD of D by descending Eq. 10 for

ADAN or Eq. 17 for WADAN:

wD ← Adam

∇wD

 1

m

m∑
j=1

LjD

 ,wD


9: Freezing the weights of D.

10: Update the weights wR of R by descending Eq. 12:

wR ← Adam

∇wR

 1

m

m∑
j=1

LjR

 ,wR


11: Update the weights wE of E by descending Eq. 13:

wE ← Adam

∇wE

 1

m

m∑
j=1

LjE

 ,wE


12: Update the weights wG of G by descending Eq. 14 for

ADAN or Eq. 18 for WADAN:

wG ← Adam

∇wG

 1

m

m∑
j=1

LjG

 ,wG


13: end for
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