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ABSTRACT
To enhance human interaction with machines, research

interest is growing to develop a ’Brain-Computer Interface’,
which allows communication of a human with a machine
only by use of brain signals. So far, the applicability of such
an interface is strongly limited by low bit-transfer rates,
slow response times and long training sessions for the sub-
ject. The Berlin Brain-Computer Interface (BBCI) project
is guided by the idea to train a computer by advanced ma-
chine learning techniques both to improve classification per-
formance and to reduce the need of subject training. In this
paper we present two directions in which Brain-Computer
Interfacing can be enhanced by exploiting the lateralized
readiness potential: (1) for establishing a rapid response
BCI system that can predict the laterality of upcoming fin-
ger movements before EMG onset even in time critical con-
texts, and (2) to improve information transfer rates in the
common BCI approach relying on imagined limb move-
ments.

1. INTRODUCTION

A brain-computer interface (BCI) is a communication chan-
nel from a human’s brain to a computer which does not re-
sort to the usual human output pathways such as muscles
[1]. A BCI could, e.g., allow a paralyzed patient to con-
vey her/his intentions to a computer application. But also
applications in which healthy users can benefit from the di-
rect brain-computer communication are conceivable, e.g.,
to speed up reaction times. Different approaches to trans-
form brain signals into control signals are possible. For in-
stance, invasive BCI systems make use of implanted elec-
trode arrays which measure local field potentials, cf. [2, 3,
4]). The non-invasive approach typically uses surface EEG
electrodes. This has the appeal of an easy applicability and
a low procedural risk. However, the precision of measure-
ment is impeded by the low skull conductivity resulting in
signal attenuation and spatial smearing.
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In the setting of man-machine interfaces, there are two
different adapting systems involved: the operator and the
computer. One approach to BCI technology is therefore to
rely on the ability of the human brain to adapt quickly to
new tasks. The strategy confronting the user with a biofeed-
back can take months until it works reliably [5, 6].

The BBCI pursues another objective in this respect, i.e.,
to impose the major part of the learning task on the machine,
which also holds the potential of adapting to specific tasks
and changing environments given suitable algorithms are
used. By the use of state-of-the-art machine learning tech-
niques [7] computers get the ability of learning and distin-
guishing patterns in complex data. However, when dealing
with few samples of data (trials of the training session) from
a high-dimensional feature space (multi-channel EEG), over-
fitting is a major concern. On one hand, the complexity
of the data should be reduced by suitable feature extraction
methods, e.g., by taking into account the neurophysiological
characteristics of the data. On the other hand, classification
methods should include careful regularization techniques.

In this paper, we will focus on the non-invasive EEG-
approach and will show that the use of the lateralized readi-
ness potential (LRP) enhances BCI performance in two di-
rections by applying machine learning techniques appropri-
ately: in the first section, we will point out that the readiness
potential can be used to classify a motor task before the ac-
tual movement even in time critical situations. In the sec-
ond part we will illustrate that the readiness potential can be
used as an add-on to a common ERD approach by feature
combination techniques that substantiate neurophysiologi-
cal a-priori knowledge. The hypothesis that essential im-
provements in classification accuracy can be reached in this
manner, will be fortified by new data.

2. RAPID RESPONSE BCI

We investigated the LRP [8, 9] in two different experimen-
tal settings. In an earlier study we recorded spontaneous
motor activity during self-paced typing on a computer key-
board and were able to classify the pre-movement potentials
of left vs. right hand finger movements before EMG onset,



cf. [10]. These findings suggested that it might be possible
to use a BCI system to enhance reaction times in time crit-
ical applications. To pursue this idea further we made an
experiment where subjects had to react with finger move-
ments in a two-alternative forced choice task under time
pressure. Here we will show how these conditions affect
the movement-related potentials, and that it is possible to
distinguish the pre-movement potentials before EMG onset
even in the reaction time task.

2.1. Neurophysiological Background

In preparation of motor tasks, a negative readiness potential
precedes the actual execution. Using multi-channel EEG
recordings it has been demonstrated that several brain areas
contribute to this negative shift (cf. [8, 9]). In unilateral fin-
ger or hand movements the negative shift is mainly focussed
on the frontal lobe in the area of the corresponding motor
cortex, i.e., contralateral to the performing hand. Based on
the laterality of the pre-movement potentials it is possible
to discriminate multi-channel EEG recordings of upcoming
left from right hand movements.

2.2. Experimental Design

In the ‘self-paced’ experiments, subjects were sitting in a
normal chair with fingers resting in the typing position at
the computer keyboard. In a deliberate order and on their
own time (but instructed to keep a pace of approximately 2
seconds), they were pressing keys with their index and little
fingers.

In the second experimental setting, each subject was
confronted with a variant of the “d2”-test, [11]. Sitting on
a normal chair, facing a monitor, the subjects had to re-
spond as quickly as possible to different stimuli provided
by the computer. On encountering a “target” (a visual stim-
ulus consisting of the letter “d” with exactly two horizontal
bars that may occur in four possible positions) they should
respond by a keypress with the right index finger and on a
“non-target” with a keypress with the left index finger. Non-
targets either show the letter “b” and an arbitrary number of
bars surrounding it, or the letter “d” with a wrong number
of bars. After the subject’s keystroke the reaction time was
displayed on the screen, either in green if the response was
correct, or in red if it was erroneous. Both classes, targets
and non-targets, appeared in the same quantity. The next
trial began 1.5±0.25s later.

EEG data was recorded with 27 up to 120 electrodes,
arranged in the positions of the extended 10-20 system, ref-
erenced to nasion and sampled at 1000 Hz. The data were
downsampled to 100 Hz for further offline analyses.

Surface EMG at both forearms was recorded to deter-
mine EMG onset. In addition, horizontal and vertical elec-
trooculograms (EOG) were recorded to check for correlated

eye movements.

2.3. Feature Extraction

For both experiment types, the LRP served as the key to
distinguish between the classes “left” and “right”. We use
a band-pass filter which relies on the fast Fourier transform
(FFT): A section of 128 samples (i.e. 1280 ms) is convo-
luted with a window (w(n) := 1 − cos(nπ/128)). Then,
all bins not belonging to the frequency 0.4–3.5Hz are dis-
carded. The inverse Fourier transform gives a filtered signal,
the last 150 ms of which are downsampled to 50 Hz, such
that 3 samples per window remain. Concatenating these val-
ues over all selected channels results in the (LRP-) feature
vectors for the given time window. For more details refer to
[12, 10].

2.4. Classification

Due to our observation that LRP-data under particular move-
ment conditions are normally distributed with equal covari-
ance matrices ([10]), the classification problem meets the
assumption of the popular Fisher discriminant method. The
data processing described above preserves gaussianity, hence
we classify with linear discriminant analysis ([13],[14]). Since
we are dealing with a high-dimensional dataset with only
few samples available, we also apply regularization ([13])
to avoid overfitting; details can be found in [10].

The evaluation of the classification results is performed
by cross-validation. For a 10×10-fold cross-validation the
data is divided into 10 parts by random. 9 parts are assigned
to be the training set for the classifier, and the test is then
performed on the 10th part (i.e., on 10% of the data). As-
signing every partition of the data to be the test set once and
iterating the whole process 10 times with different division,
yields a set of 100 test error values. The mean is referred to
as the cross validation error and serves as a estimator of the
generalization error.

2.5. Results

On the left side of Fig. 1, the EEG signals at channel C3,
averaged over all “right hand” trials of subject ac, reveal
the LRP for both the d2 (light curve) and self-paced exper-
iment (dark). As its negative shift starts already at 600 ms
before the keypress, the LRP of the spontaneous movement
from the self-paced experiment develops a very regular po-
tential descent. However, the reactive potential, produced
in reaction to the stimuli of the d2 experiment, starts 250 ms
before the keypress. Then it decreases steeply, and reaches
a slightly higher negativity than in the spontaneous move-
ment.

The right side of Fig. 1, shows the relation between clas-
sification on EEG and on EMG data for the “d2” experiment
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Fig. 1: The figure on the left shows the averaged readiness poten-
tial of subject ac in the case of spontaneous (dark) and reactive
finger movement. The figure on the right shows the classification
error with RLDA in relation to the time point of classification; the
light-colored line indicates classification on EEG channels only,
the dark line classification on EMG.

for subject ac. Classification was performed in sliding win-
dows for “left” vs. “right” hand trials and the value on the
horizontal axis specifies the endpoint of the window. We no-
tice that the classification precision on EMG is in the range
of 50%, as long as the causal window lies at least 110 ms
before keypress, whereas the decrease in the classification
error curve for EEG is almost monotone, starting already at
200 ms before the movement. It grows even steeper until it
reaches 12% at t =−110 ms, a point where classification on
EMG is still almost at chance level.

While the BCI system will use only EEG signals, we
analyzed the EMG classification to determine the average
point in time of EMG onset (in the case of Fig. 1, we set
it to 110 ms before keypress) for every subject. For that
point, we calculated the (causal window) classification re-
sults which are shown in table 1.

3. CONTINUOUS CONTROL BCI

Most BCI research for continuous control is done on the
so called ERD (Event-Related Desynchronizations) effects,
cf. [15]. Recent studies ([16]) offer the opportunity to re-
duce error rates by using LRPs additionally to the ERD fea-
tures. The gain of using the combined LRP/ERD approach
is demonstrated on recent BCI experiments.

aa ab ac ad ae af ag ah ∅

cl 12.8 16.8 9.4 14.8 25.7 26.3 12.5 27.7 18.3
rt 539 434 556 477 551 504 497 529 511
os -80 -70 -110 -100 -100 -120 -120 -110

Table 1: The first row shows for 8 different subjects the classi-
fication error (left vs. right hand, cl) and their mean in percent
on a 10 × 10-fold cross validation on LRP features using linear
discriminant analysis with regularization (RLDA) in the “d2”-
experiments. The second row shows mean reaction times (rt) and
the third row shows the point in time of EMG onset (os), which
is the rightmost point for the EEG classification window of each
subject.

3.1. Neurophysiological Background

During imagination or execution of a movement, a later-
alized attenuation of the µ- and/or central β -rhythm can
be observed localized in the corresponding motor resp. so-
matosensory cortex. Besides a usual spectral analysis, this
effect can be visualized by plotting ERD curves [17] which
show the temporal evolution of the band-power in a speci-
fied frequency band.

One of the problems when using LRP for BCI control is
the disturbance of these signals by eye movements. Espe-
cially horizontal eye movements generate a lateralized DC
shift in the EEG channels that is similar to LRPs. This holds
the problems that the BCI classifier could be susceptible to
EOG artifacts, or even could be controlled by left vs. right
side eye movements. In order to antagonize such effects we
used an experimental setting (see training approach (2) be-
low) which enforces eye movements that are uncorrelated
to the motor imagery condition. This leads to an LRP clas-
sifier that is invariant to eye movements. Furthermore we
checked the classification results not being influenced by
EOG activity.

In [18], first indications that movement-related poten-
tials and event-related desynchronizations contain different
information during brisk, self-paced finger and foot move-
ments were presented. These studies were also supported
by the finding of Babiloni et al. [19], that different spatio-
temporal activation patterns across primary (sensori-)motor
cortex (M-1), supplementary motor area (SMA) and the pos-
terior parietal cortex (PP) can be observed.

3.2. Experimental Design

We present results from recent experiments with 6 healthy
subjects performing motor imagery. The subjects were sit-
ting comfortably in a chair with their arms in a relaxed posi-
tion on an arm rest. Two different sessions of data collection
were provided: In both a target “L”, “R” and “F” (for left,
right hand and foot movement) is ordered for the duration
of 3.5 seconds to the subject on a computer screen. In the
first session type this is done by visualizing the letter on the
middle of the screen. In the second session type the left,
right or lower triangle of a moving gray rhomb is colored
red. For the whole length of this period, the subjects were
imagining a sensorimotor sensation/movement in left hand,
right hand resp. one foot. After stimulus presentation, the
screen was blank for 1.5 to 2 seconds. In this manner, 35
trials per class per session were recorded. After 25 trials,
there was a short break for relaxation. Four sessions (usu-
ally two of each training type, but for two subjects only one
of the first and three of the latter according to their request)
were performed.

EEG data was recorded with 128 electrodes together
with EMG from both arms and the involved foot, and EOG



as described in Section 2. No artifact rejection or correction
was employed.

3.3. Feature Extraction and Classification

The CSP (Common Spatial Patterns) algorithm is especially
well suited to extract ERD effects from multi-channel record-
ings, cf. [20]. Applying the CSP method to band-pass fil-
tered signals (from different conditions) reveals spatial fil-
ters that optimally reflect class-differences in band-power.
The algorithm is based on the idea of simultaneous diag-
onalization and can in this way be extended to multi-class
problems, cf. [21]. After applying the spatial filter we ex-
tract the feature vectors from a given time window by cal-
culating the logarithm of the variance of the projected chan-
nels. Since only a few CSP filters (1 to 3 per class) pro-
vide enough discriminative information, the resulting fea-
ture vectors are low-dimensional and classification can be
done by simple LDA without regularization. (In evaluat-
ing the classification performance it has to be noted that the
calculation of the CSP filters is class dependent and must
hence be done within the cross-validation.) Free parameters
like window length and frequency band are chosen appro-
priately by analyzing spectra and ERD curves.

To extract LRP features, we have to modify the algo-
rithm described above. To be invariant w.r.t. artifactual DC-
shifts we subtract moving averages of the last 1 s in the on-
going EEG. As window we choose 500–3500ms after stim-
ulus and calculate on the channels of the motor cortex five
equidistant and non-overlapping means. The concatenated
vector over time and channel forms the features which we
are classifying by regularized LDA (see above).

In [16] different methods of combining features for the
classification of EEG imagery trial were investigated. It
turned out that the typical approach of concatenating fea-
tures did hardly improve classification when compared to
the best single feature result. The key idea was to incorpo-
rate the independence between the LRP and the ERD fea-
tures into an algorithm called PROB, which minimizes the
misclassification risk under the assumptions that the fea-
tures for each class are gaussian distributed with equal co-
variances, and that the features of different type are inde-
pendent. Here we used the PROB method to combine the
CSP and LRP features.

3.4. Results

In our experiment two classes were chosen for each subject
that gave the best binary classification results for CSP fea-
tures. For the chosen class combination, table 2 shows the
cross-validation error for classification on the single (CSP
resp. LRP) features and for the combined classification method
PROB. The last column indicates the increase (or decrease)

classes LRP ERD PROB gain

aa L-R 15.6± 0.9 21.1± 1.1 10.4± 1.0 -33 %
al L-F 9.1± 1.1 2.1± 0.0 1.1± 0.0 -48 %
av L-F 19.3± 1.4 22.0± 0.6 14.1± 3.9 -27 %
aw R-F 23.1± 1.4 6.6± 0.3 5.9± 0.4 -11 %
ay L-R 37.2± 1.5 2.0± 0.4 3.0± 1.4 +50 %

Table 2: The table shows for the 5 subjects the classification error
in percent on a 10×10-fold cross validation on LRP and on ERD
with CSP calculated features and the used best binary class combi-
nation for the ERD features. Furthermore the combination results
and the gain to the best single feature are presented.

[%] of the combination result compared to best single fea-
ture result. Since one subject did not produce any mean-
ingful results on both features (classification is on chance
level), we have omitted his results.

A significant decrease of error could be obtained by the
feature combination method PROB for 3 out of 5 subjects,
and a slight decrease for one further subject. In the extrem
case of subject ay where classification for the LRP feature
was at chance level feature combination could not increase
the already very good CSP result.

4. DISCUSSION

In the first part of this paper, the use of readiness poten-
tials for early classification of motor tasks (even before the
actual EMG onset) was exemplified with classification on
data from different experimental setups. These properties
of readiness potentials establish its value for the use in time-
critical BCI applications.

In the second part, we have shown that also in combina-
tion with the widely used ERD features, readiness potentials
can improve the classification and result in an increased ro-
bustness. The application of the PROB algorithm, which
combines LRP and ERD features based on an independence
assumption, substantially enhanced the classification per-
formance in comparison to the sole use of CSP in a motor
imagery BCI data set.
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