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Improving statistical analysis of prospective
clinical trials in stem cell transplantation. An
inventory of new approaches in survival
analysis

Aurelien Latouche

Abstract

The CLINT project is an European Union funded project, run as a specific sup-
port action, under the sixth framework programme. It is a 2 year project aimed at
supporting the European Group for Blood and Marrow Transplantation (EBMT)
to develop its infrastructure for the conduct of trans-European clinical trials in
accordance with the EU Clinical Trials Directive, and to facilitate International
prospective clinical trials in stem cell transplantation. The initial task is to cre-
ate an inventory of the existing biostatistical literature on new approaches to sur-
vival analyses that are not currently widely utilised. The estimation of survival
endpoints is introduced, with an emphasis on recent developments which comple-
ments standard analysis. The issues raised are new regression models that allow
the estimation of time dependent effect for cause specific hazard, cumulative inci-
dence and more generally mean response. New development in multi state model,
with notably, recent regression models that assess the influence of covariates di-
rectly on transition probabilities are detailed. Some recent test for comparing
cumulative incidence function across treatment arm are introduced. The estima-
tion of centre effect in multi centric studies is also documented. Sample size
calculation in the presence of competing risks are then presented. We close with
the inventory of available packages and macro in R that implement the previous
survival models.
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Abstract

The CLINT ! is an European union-funded project, run as a specific stigjstion, under
the Sixth Framework Programme. Itis a 2 year project aimeipporting the European Group
for Blood and Marrow Transplantation (EBMT) to develop itdrastructure for the conduct of
trans-european clinical trials in accordance with the peam union clinical trials directive, and
to facilitate international prospective clinical trials stem cell transplantation. The initial task
was to create an inventory of the existing biostatistidar#iture on new approaches to survival
analyses that were not currently widely utilised.

The estimation of survival endpoints is introduced, witheamphasis on recent developments
which complements standard analysis. The issues raisedemreegression models that allow
the estimation of time dependent effect for cause speciéatta cumulative incidence and more
generally mean response. New development in multi stateemadth notably, recent regres-
sion models that assess the influence of covariates dir@etisansition probabilities are detailed.
Some recent test for comparing cumulative incidence foncticross treatment arm are intro-
duced. The estimation of centre effect in multi centric &ads also documented. Sample size
calculation in the presence of competing risks are thereptes. We close with the inventory of
available packages amdacroin Rthat implement the previous survival models.

Keywords: clinical trial; competing risks; multistate model; cendriect; sample size

1 Introduction

Patients who undergo a hematopoietic graft, can encouatara events post transplant. namely
engraftment, graft—-versus—host-disease, relapse,at@pse death, progression. To assess the effect
of a treatment on such outcome, some specific survival mageheeded. The Cox proprotional
hazards dominates the survival analysis for years, notaétause of the ease of the interpretation.
The use of this model is perfectly detailed in the classickboioTherneau and Grambsch [1]. The
topics covered are : residuals analysis to test the prapaithazards assumption, the functional form
of the covariate or influence of individuals, time—dependsfect/coefficient (time—varying effects),
correlated observations such as repeated measures dhd draiandom effects. Other textbooks
include Klein and Moeschberger [2] (with an emphasis on helogy case studies), Kalbfleish and

Establishment of infrastructure to support internatigrakpective clinical trials in stem cell transplantati@L{NT)

Hosted by The Berkeley Electronic Press



Prentice [3], Hosmer and Lemeshow [4] and the revised edidosmer et al. [5] as well as Collett
[6], Kleinbaum and Klein [7].

The hematology field is a very inspiring when it comes to stiatl developments especially in
survival analysis. A first look at the litterature confirmgstmterest notably through methodological
notes or review that populate medical reviews [8, 9, 10, Theses notes and articles focuse mostly
on comparison of regression for hazard rates and cumuleteidence functions [12, 13]. In this
inventory we will consider, alternative modelling stragesgthat complements the traditional propor-
tional hazards model as well as estimations presented ibdbk of Therneau and Grambsch [1].
Recent books covering the topics are: Handbook of Stai&Bc[14], Dynamic Regression Models
for Survival Data [15].

Before, investigating what were the advances since 200Qrinval analysis. It is of interest to
list what are up tu now the major tool at—hands. Major advamgeurvival analysis are the Survival
R-package by T. Therneau [16], Multistate modelling, Testscbmparison of cumulative incidence
functions [17], Regression model for the cumulative inoceand Fine—-Gray model, Additive hazard
model (Aalen, Scheike) [15]. All theses points will be exdifrgal in the sequel.

In the main hematological reviews there are very comprahemscommendation on the respec-
tive merits of up—to—date methods. This is mostly due to Hri{Medical College of Wisconsin) and
colleagues that disseminate appropriate methodologitee istem cell transplantation field [8, 9]. For
exemple in a review paper Kim [11] introduced the pseudatevastimation method for regressing
the cumulative incidence functions. This method is new $aliieady made available (in principle) to
applied statisticians. Another striking, exemple is thesdmination of the Fine—Gray model for the
subdistribution of a competing risk. This is mostly due te #évailability of a R—package. Indeed, the
lack of statistical software that implements novel methodgies leads to underuse models. In that
respect, in this inventory, we focused on model with reaplyu$e software or routines.

In the first part , we recall standard notation and statiktivadels. Next we introduce prognos-
tic factor analysis with the regression modelling and higpsis tests. We close with a synthesis of
statistical softwares and add—on package.

2 Statistical Models

In this section, we introduce the major statistical modetemthe interest is the analysis of time—to—
event failure.

2.1 Survival model

The standard survival model focuses on a single endpointem®ealeveloppments are numerous,
notably we identified, alternative methods (or tests) fer¢bmparison of survival curves.

Usually, comparison of survival curves among randomiragions are performed at a fixed time—
point. Klein et al. [18], investigated the performance df/adest (difference between the two survival
curves).

Logan et al. [19] focused on crossing survival curves (tloattradict the PH assumptions). A
number of methods for comparing two survival curves afterespecified time point. This situation
may be of interest when the survival curves are expectedgscso that we are only interested in late
difference. Another, recent developpments is the studftefretive endpoint, such as the Progression
Free Survival (PFS) [20].
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2.2 Multistate models

Since the papers of Klein et al. [21], Keiding et al. [22] theltkr-state approach, is becoming more
popular but remain solely in hematopoeitic stem cell tréargation (HSCT). The use of multistate

in HSCT is not particlularly new [21, 23]. One possible reagothat a multi-state model regression
analysis typically involves the modelling of each tramsitintensity separately. Each probability of
interest, namely the probability that a subject will be inigeg state at some time, is a complex
nonlinear function of the intensity regression coeffickerithus, interpertation in terms of probability
is quite complicated (even if depict the patient more clgsahd the interpretation of hypothetical

predictions from multi-state models in HSCT have to be a®did An interesting exemple of the

versatility of the multi-state model is the Current Leukarree Survival. In this exemple, the patient
move between 9 states [24, 25, 26].

There exists an extensive literature on multi-state modiin contributions include books by
Andersen et al. [27] and Hougaard [28]. Recent reviews anttigic may be found in Hougaard [29],
Andersen and Keiding [30]. An issue of the Journal Staasfitethods in Medical Research, entirely
devoted to these models, was published in 2002. Despiteitnfialities, multi-state modelling is
not used by practitioners as frequently as other survivalyais techniques. Lack of knowledge of
the available software as well as misunderstanding of wheti+state modellings advantages rely on
(compared to the simple Cox model), are probably respan$inlthis lack of popularity.

The paper of Andersen et al. [31] entitl&bmpeting risks as a multistate modghve a fresh
and unified view about multi-state model and competing rilecent developpement of Scheike and
Zhang [32] that suggested a direct modelling of regressifatts for transition probabilities should
bring this framework up—front.

R—script of the tutorial from Putter et al. [33] can be foundtt p: / / www. nsbi . nl /mul ti st ate.
For a comprehensive review, we suggest the work of Meira-Hslda and dc. nsmscript [34]. More
recently a R—packagewvna provides plots and estimates of the cumulative hazards asctidn of
time for all the transitions specified by the user.

2.3 Competing risks model

For simplicity and tractability we will consider 2 compadievents to introduce fundamental quanti-

ties.. In HSCT setting, this will usually be relapse and déatremissiorakanon relapse mortality.
The observed data typically consist in an observation fifmehich is the minimum of a failure

time 7" and a censoring timé€' and a status indicatar £ = 0 if the observation is censored' (< T).

If T > C, thene denotes the observed cause of failure with 1 for the event of interest and= 2

for the other competing event. Most common analyses focumparing thecause—specifibazard

under the control and the experimental treatment [35], ehiee cause—specific hazard of failure from

cause 1 in treatment arm E (resp C for control) is defined as:

>\1E(7f) = dFlE(t)/SE(t)

with F1p is the cumulative incidence function of failure from the sawf interestj.e. Fip(t) =
Pr(T < t,e = 1)andSg(t) = 1 — (Fig(t) + F>g(t)) is the event free survival function. In such
a case, comparisons of cause—specific hazards betweersguoeiperformed against proportional
hazards alternatives, using a Cox model. The other straiegsists in comparing the corresponding
event probabilities (t) and Fi¢(t), either directly the Gray’s test [17] or using a Cox-like rebd
for the associated hazatd z(t) = dF1g(t)/(1— Fig(t)), referred as the subdistribution hazard [13].
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A (t) 1 | Relapse

Remission 0

A2(t) 92 | Death before relapse

Figure 1: Competing risks model with cause-specific hazardelapse\; () and cause-specific haz-
ard for death\y(¢).

The subdistribution hazard is directly related to the cuative incidence function while the re-
lation between cause—specific hazard and cumulative inc&dgvolves the cause—specific hazard of
the competing event. Another key remark is that these twoeatsochnnot hold simulatneousliye
proportional cause—specific hazards imply non—propaatisabdistribution hazards.

It seems now established that these two models should besusedtaneously to fully depict
the complex course of the patients. A detailed discussiomefelative merits of both approaches
and their interpretation can be found in the paper of Beyarsmand Schumacher [36]. Tutorial on
competing risks analysis are provided by Putter et al. [88h(EBMT data) and in other field such
time—to—seroconversion collaborative group such as CASEJ7] provide guidelines for analysis
of competing risks data.

To estimate the treatment benefit, it is recommended to amgetment comparison for potential
confounders, based on regression models. For competkgydata, two main approaches have been
used, either the Cox model [12] or Therneau and Grambschhdpt€r 8.4], or the recently proposed
Fine and Gray model [13] and Martinussen and Scheike [15pt€ha0]. Despite its rather recent ori-
gin, the Fine—Gray model has been quickly put to use in agiplics such as neutrophils recovery after
bone marrow transplantation [38], infectious complicasi@fter blood stem-cell transplantation [39].

The models take subtlety different approaches to competsks data, and it is important to
understand this for proper interpreting these respectgalts. Both the Cox and the Fine—Gray
model analyze data from a competing risks setting as disglay Figure 1. We observe a so-called
failure timeI" between start of remission and relapse/death, whateveeséinst. One can think of
time T as the time spent in the remission statentil moving into one of the competing risk states
(relapse) or2 (death without prior relapse). Attached to these competisigs are cause-specific
hazards\; (t) and \x(t); these can be thought of as ‘instantaneous forces’ that dramdividual
towards the respective competing risks. More preciselyt) multiplied by a very, very small time
interval is the probability of relapsing within this smaiiine interval under the condition that the
individual has still been relapse-free at the beginnindhi time interval.

Hazards are, in fact, a very elusive concept [40], but aisabysd interpretation is straightforward
in usual survival analysis. A usual Cox model would look atali-cause hazar®(t) = A\ (t)+ A2(t),
which has a one-to-one correspondence to the distribufittmedailure timel’ through

P(T <t)=1-—exp (—/Ot)\(u)du>,

i.e. the proportion of patients experiencing death or ga@hatever comes first), as time progresses.
Due to this one-to-one correspondence, a decreasing geasfiect found in a Cox model means a

4
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decrease in this proportion, and an increasing effectlsraniincrease in this proportion.

However, things become surprisingly difficult with competirisks. We may still fit Cox models,
but as is apparent from Figure 1 we will need to fit two Cox msdehe for each cause-specific
hazard, see, e.g., [1, p. 177]. The interpretation of theselts then becomes involved, because the
CIF for relapse, say, depends on both cause-specific hazardst does so in a rather complicated
way [41]. In fact, we have for the CIF of relapse

CIF(t) = P(T < t,Relapse at) = /Ot exp (— /Ou A1 (v) + A2 (v) dv) A1 (u) du

These difficulties have led to the Fine—Gray model [13], i aim of doing a Cox-type analysis for
a quantititywhich reestablishes the one-to-one correspondence tolthefCelapse

This quantitity has come to be known as the subdistributamand for relapse, and we writd (¢)
for it. The aim is to reestablish

t
CIF(t) = P(T <t,Relapse al’) = 1 — exp (—/ MG () du)
0

for the CIF of relapse.

Finally, we should note that the Fine and Gray model for tHediiribution hazard\"“(¢) and
classical Cox models for the cause-specific hazaids) of relapse and\»(¢) of death are different
models [42].

3 Regression Models

In this section we introduce recent regression models midantiable quantities namely, cause spe-
cific hazard, cumulative incidence and conditional prolitgfiunction. It should be pointed out that
novel methodologies translate faster in medical journal. éxemple, the pseudo value approach in-
troduced in 2003 is exemplified in a practical context in roabjournal such aBiology of Blood and
Marrow Transplantatior{10] or [11].

3.1 Proportional hazards model

To relate the cause-specific hazard on the exposure cav#rjdhe Cox proportional hazards model
is often used while a similar model was proposed for the sitidiition hazard [13]. The Cox model
expresses the cause-specific hazard as a multiplicatiatidarof the baseline instantaneous hazard,
Ako(t) @ Ak(t) = Apo(t) exp (BZ), whereg is the covariate effect. The Fine and Gray model focuses
on the hazard associated with the CIF and similarly expseasey, (t) = ayo(t) exp (vZ).

The Fine—Gray model, draw a lot of attention (from 2002) siits first use in HSCT. As a result
several publications investigated the interpretationhef $ubdistribution hazard ratio [43]. The fol-
lowing references extand the Fine—Gray model or adapt atdndethodologies to it [43, 44, 45, 46,
47, 36, 48]. Sun et al. [49] suggested a flexible additive iplidative hazard model for modeling the
subdistribution hazard.

In a recent paper Peng and Huang [50] propose a natural digatom of the Cox regression
model, in which the regression coefficients have directjpratations as temporal covariate effects on
the survival function. Second-stage inferences with tiragring coefficients are developed accord-
ingly. Simulations and a real example illustrate the pcattutility of the proposed method.
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3.2 Andersen—Klein model

A method based on pseudo-values has been proposed for igeession modeling of the survival

function [51, 52, 53, 19]. The pseudo value method is an esing method. It enables the estimations
of the following regression parameter, in a linear modeltfier CIF that was proposed by Fine [54].
The model for the CIF of type 1 is

9(F1(t; Z)) = h(t) — ZB. )

The parameter h(t) is the baseline failure probabilitypetsfied, invertible and stricly increasingtn
This general transformation model includes the Fine—Graglehtakingg(x) = log{—log(1 — x)}.

The Andersen—Klein model is an alternative estimationrigples for the model 1. Recently, in a
series of papers, a method based on pseudo-values has bpesgat for direct regression modeling
of the survival function, the restricted mean and cumutaincidence function with right censored
data.

g(F1(t)) = Fio(t) + R(t)Z(t) )

Note that this model encompasses time-dependent covatlaieughZ(¢) but requires that a grid
or series of time points be specified. Usually 5 to 10 time {soguffice to adequately model the
CIF . The regression estimator of the paramétér) is based on pseudovalues from the cumulative
incidence function. Interestingly, the model (2), once piseudo-values have been computed, can
be fit using standard generalized estimating equation softwThe use of these routines to obtain
regression estimates for a study of bone marrow transpéignis is detailed in Klein et al. [53]. The
model 2 is implented in thpseudo R—package.

Another appealling regression strategy is the Direct BilabfRegression [55] suggesting a new
simple approach for estimation and assessment of covafffaiets for the cumulative incidence curve
in the competing risks model. They consider a semiparametgression model where some ef-
fects may be time-varying and some may be constant over fitmeir estimator can be implemented
by standard software. Their simulation study shows thatestenator works well and has finite-
sample properties comparable with the subdistributionmragagh. This methodology was exemplified
to estimate the cumulative incidence of death in complatdssion following a bone marrow trans-
plantation. Interestingly, this regression model extetmgsFine—Gray model, with time—dependent
coefficients.

3.3 Time—dependent effects: The additive approach

A comprehensive description of additive model can be founlartinussen and Scheike [15]. This
class of model alternative is The Cox-Aalen additive-nplittative intensity model that comprise a
multiplicative part (Like a Cox model) and an additive péikg Aalen model). One interesting feature
is that time-dependent effect and time-dependent coeaaigd easily handle indeed such properties
violate the PH hazards assumptions.

Another important motivation for alternative modellingpsinted out in the recent work of Klein
[56] the proportional hazard transition in multistate mlockn lead to inconsistencies. The additive
models for either the hazard rates or the cumulative incedonctions are moraatural and that
these models properly partition the effect of a covariatéreatment failure into its component parts.
These models are illustrated on data from a study of the effich two preparative regimens for
hematopoietic stem cell transplantation. Such findingsttnasslate rapidly in HSCT.
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Methods for fitting the Cox model with time—varying effecidst [57, 58, 59], but they all require
some kind of smoothing thus depending on some smoothingnedea or sieve approximation. The
obtained results may depend on the particular choice. THgias hazards regression model is an
alternative (or supplement) to the Cox model. It was progdseAalen [60], and is is very flexible
non parametric model. It results in plots that are informeatiegarding the effect of covariates on
survival. The additive model of Aalen [60] specify the follmg relation betwen hazard and covariates

Ai(t) = Bo(t) + Br(t) X (t) + ... + Bp(t) Xip(t)
An interesting submodel was suggested by Mckeague andnegd§ig]

Xi(t) = exp (B(t)" Xi(t) + " Zi(1)).

As pointed out by Klein [56], there is no guarantee that thimeged hazard is positive but this
situation is very unlikely. The Martinussen—Scheike [62]dal is a new additive-multiplicative hazard
model which consists of two components. The first componentains additive covariate effects
through an additive Aalen model while the second componeamiiains multiplicative covariate effects
through a Cox regression model. The Aalen model allows floetvarying covariate effects, while the
Cox model allows only a common time-dependence throughdkelime. This model is implemented
inthet i mer eg R—package.

3.4 Temporal process regression

This temporal process regression is a functional genethlisear model which specifies the mean of
aresponsé&’(t) at timet conditionally on a vector of possibly timedependent catasZ (t), that is

E(Y()] Z(t)) = g~ (Bt) Z(t)), ®3)

where the link functiory is monotone, differentiable and invertible. This is a veepgral model that
encompass as particular case models such as logistic @neeainodel. This model is implemented in
the R—package tpr. A case study of this model can be founceinettent work of Allignol et al. [63]
where this general regression framework was used to asses$ect of covariate on the conditional
probability of a competing event [64].

4 Centre effect

A common question arising in multi-centre prospective ichhtrials and in collaborative registry
studies, is whether some heterogeneity in outcomes coudfiected across centres, and, if such an
heterogeneity exists, whether some statistical adjudtiserquired when estimating the prognostic
effects of fixed covariates or not.

Recent developpments with an emphasis in HSCT are [65, 6& 745Centre-effects are usually
investigated with shared frailty models, and this presuthasthis effect is constantly present during
the follow-up, even when the follow-up is very long. More lrgiéc are models with time-varying
frailties. Therefore, the constant centre-specific fyaittodel was extended to allow time dependence
of the frailties [66]. Notably, the center effect was addpiethe Fine—Gray model [45] introducing a
random-effects model for the subdistribution hazard. Wosk was exemplified on data provided by
the EBMT.
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5 2-Sample Tests

In this section we introduce recent test statistics thabhgeeat interest in the field of HSCT. Notably
because, theses test have higher power to detect crdsaaagds In this section the terminology
hazardwill refer to CSH or SH. The major tests used in survival as@lare the log—rank test for
comparing the equality of cause—specific hazards and th@rdue test for the comparison of subdis-
tribution hazards. Crossing survival curves may be a caressze of crossing hazards and it is well
known that for this situation many standard tests, sucheasottrank or Wilcoxon tests, will fail to
pick up differences in survival curves [18]. Freidlin andrK¢35] formally compared the performance
of log—rank and Gray'’s test. Small sample behaviour of vaeaestimator were investigated in Braun
and Yuan [68]. Renyi type test was proposed as an alternatiywering users to detect differences
between crossing hazards. It is a censored-data analoghe Kblmogorov-Smirnov statistic and is
based on the supremum of the absolute value of the entireop#tb log-rank test statistic.

Bajorunaite and Klein [69] proposed a 2—sample tests forpasing cumulative incidence The
test statistic is based on the maximum difference betweerctwnulative incidence functions and a
second test based on the integrated weighted differengeebrtthe cumulative incidence functions
for the event of interest in two samples (based on Pepe [#3t3.

6 Sample size calculation

We have seen that numerous derivation of regression moeejg@posed for the analysis of effect of
covariates. An essential step when planning a trial is thautzion of the sample size or the number
of patients to recruit to detect a relevant effect with sigfi¢ power. In HSCT, patients enrolled in a
clinical trial may experience exclusive failure causesiohtdefines a competing risk setting. For in-
stance, in hematology patients receiving a bone marrowgptantation may experience two exclusive
events such as relapse and non-relapse death. Planniabvehtein competing endpoints are acknowl-
edged to exist thus requires appropriate methodology. bloterhen some (primary) endpoints rely
on cumulative incidence inference, this must be accourtted/iien calculating a required number of
events.

For both proportional cause—specific hazard and subdisivib hazards, sample size where de-
rived in the presence of competing events [43, 71]. Both aseth on Schoenfeld [72]'s formula
and rely on similar key parameters, namely the hazard rasibguantifies the treatment effect to be
detected and the proportion of patients who are expectedltisdm the cause of interest.

A sample size formula for the supremum log-rank test has ladsm recently presented in the
classical survival framework [73]. It may be useful to aipiite possible departures from proportional
hazards by using a test statistic less sensitive to thisoptiopality assumption. This is the case of
Renyi-type tests also know as supremum log-rank tests irldssical survival framework [1416].
Recent work on sample size has shown that this test is nesudjfiaient as the log-rank test when
hazards are proportional, and can accommodate broadex cdiradternatives where the log-rank has
no power to distinguish between groups. Additionally, Reygpe test statistics have already been
extended to the comparison of CIFs in the unpublished Pinégsid of R. Bajorunaite. The Renyi-
type tests are based on supremum integrated weightededifferof CIFs. We will refer to this test as
the adapted Renyi-type test. More recently, Latouche anchieo[47] suggested the use of supremum
log—rank test and supremum Gray test .
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7 Survival Analysis in R

A mandatory aspect for disseminating new statistical nodethe availability of implementation.
For exemple thesur vi val package enables standard analysis for Cox model and Kap&iar
estimations [16].

To facilitate dissemination d®—package, we producedrask Viewthat enable user to easily install
the whole packages related to survival analysis. To aufoaligtinstall these views, the ctv package
needs to be installed, e.g., via

>i nstal |l . packages("ctv")
>l ibrary("ctv")

and then the views can be installed via install.views or tgdeews install.views("Survival”) or up-
date.views("Survival”)

The Survival Viewislocated &t t p: / / cran. r - proj ect . or g/ web/ vi ews/ Sur vi val .
ht m . This was done thanks to the collaboration of Arthur Allig(ereiburg).

8 Conclusion

We have attempted to review recent developments in sureivalysis and competing risks , with
an emphasis on HSCT. The relevance of the use of such recatglsnare now established in the
HSCT. In that respect the journiifetime Data Analysitas published a dedicated issue on Statistical
analysis of HSCT Data [74, 75]. A question raised by thisimgey, is to know whether or not recent
developpments that bring new insights will reach applietisticians/ clinicians. One solution would
be to give statistical courses or educational session eaahagn a regular basis. The CLINT portal
could be the core of this training/teaching infrastructiote p: / / cl i nt. ebmt . org.
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