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Abstract
We present the design, implementation, and evaluation of
D-GRAID, a gracefully-degrading and quickly-recovering
RAID storage array. D-GRAID ensures that most files
within the file system remain available even when an un-
expectedly high number of faults occur. D-GRAID also
recovers from failures quickly, restoring only live file sys-
tem data to a hot spare. Both graceful degradation and
live-block recovery are implemented in a prototype SCSI-
based storage system underneath unmodified file systems,
demonstrating that powerful “file-system like” function-
ality can be implemented behind a narrow block-based
interface.

1 Introduction
“If a tree falls in the forest and no one hears it, does
it make a sound?” George Berkeley

Storage systems comprised of multiple disks are the
backbone of modern computing centers, and when the
storage system is down, the entire center can grind to a
halt. Downtime is clearly expensive; for example, in the
on-line business world, millions of dollars per hour are
lost when systems are not available [26, 34].

Storage system availability is formally defined as the
mean time between failure (MTBF) divided by the sum
of the MTBF and the mean time to recovery (MTTR):

MTBF

MTBF+MTTR
[17]. Hence, to improve availability, one

can either increase the MTBF or decrease the MTTR. Not
surprisingly, researchers have studied both of these com-
ponents of availability.

To increase the time between failures of a large stor-
age array, data redundancy techniques can be applied [4,
6, 8, 18, 22, 31, 32, 33, 43, 47]. By keeping multi-
ple copies of blocks, or through more sophisticated re-
dundancy schemes such as parity-encoding, storage sys-
tems can tolerate a (small) fixed number of faults. To
decrease the time to recovery, “hot spares” can be em-
ployed [21, 29, 32, 36]; when a failure occurs, a spare disk
is activated and filled with reconstructed data, returning
the system to normal operating mode relatively quickly.

However, the narrow interface between file systems
and storage [13] has curtailed opportunities for improv-
ing MTBF and MTTR. In a RAID-5 storage array, if one
disk too many fails before another is repaired, the entire
array is corrupted. This “availability cliff” is a result of
the storage system laying out blocks oblivious of their
semantic importance or relationship; most files become
corrupted or inaccessible after just one extra disk failure.
Until a time-consuming restore from backup, the entire
array remains unavailable, although most disks are still
operational. Further, because the storage array has no in-
formation on which blocks are live in the file system, the
recovery process must restore all blocks in the disk. This
unnecessary work slows recovery and reduces availability.

An ideal storage array fails gracefully: if 1

N
th of the

disks of the system are down, at most 1

N
th of the data

is unavailable. An ideal array also recovers more intel-
ligently, restoring only live data. In effect, more “impor-
tant” data is less likely to disappear under failure, and such
data is restored earlier during recovery. This strategy for
data availability stems from Berkeley’s observation about
falling trees: if a file isn’t available, and no process tries
to access it before it is recovered, is there truly a failure?

To explore these concepts and provide a storage ar-
ray with more graceful failure semantics, we present the
design, implementation, and evaluation of D-GRAID, a
RAID system that Degrades Gracefully (and recovers
quickly). D-GRAID exploits semantic intelligence [44]
within the disk array to place file system structures across
the disks in a fault-contained manner, analogous to the
fault containment techniques found in the Hive operating
system [7] and in some distributed file systems [24, 42].
Thus, when an unexpected “double” failure occurs [17],
D-GRAID continues operation, serving those files that
can still be accessed. D-GRAID also utilizes seman-
tic knowledge during recovery; specifically, only blocks
that the file system considers live are restored onto a hot
spare. Both aspects of D-GRAID combine to improve the
effective availability of the storage array. Note that D-
GRAID techniques are complementary to existing redun-



dancy schemes; thus, if a storage administrator configures
a D-GRAID array to utilize RAID Level 5, any single disk
can fail without data loss, and additional failures lead to a
proportional fraction of unavailable data.

In this paper, we present a prototype implementation of
D-GRAID, which we refer to as Alexander. Alexander
is an example of a semantically-smart disk system [44].
Built underneath a narrow block-based SCSI storage in-
terface, such a disk system understands file system data
structures, including the super block, allocation bitmaps,
inodes, directories, and other important structures; this
knowledge is central to implementing graceful degra-
dation and quick recovery. Because of their intricate
understanding of file system structures and operations,
semantically-smart arrays are tailored to particular file
systems; Alexander currently functions underneath un-
modified Linux ext2 and VFAT file systems.

We make three important contributions to semantic disk
technology. First, we deepen the understanding of how
to build semantically-smart disk systems that operate cor-
rectly even with imperfect file system knowledge. Sec-
ond, we demonstrate that such technology can be ap-
plied underneath widely varying file systems. Third, we
demonstrate that semantic knowledge allows a RAID sys-
tem to apply different redundancy techniques based on the
type of data, thereby improving availability.

There are two key aspects to the Alexander implemen-
tation of graceful degradation. The first is selective meta-
data replication, in which Alexander replicates naming
and system meta-data structures of the file system to a
high degree while using standard redundancy techniques
for data. Thus, with a small amount of overhead, excess
failures do not render the entire array unavailable. In-
stead, the entire directory hierarchy can still be traversed,
and only some fraction of files will be missing, propor-
tional to the number of missing disks. The second is a
fault-isolated data placement strategy. To ensure that se-
mantically meaningful data units are available under fail-
ure, Alexander places semantically-related blocks (e.g.,
the blocks of a file) within the storage array’s unit of
fault-containment (e.g., a disk). By observing the natu-
ral failure boundaries found within an array, failures make
semantically-related groups of blocks unavailable, leaving
the rest of the file system intact.

Unfortunately, fault-isolated data placement improves
availability at a cost; related blocks are no longer striped
across the drives, reducing the natural benefits of paral-
lelism found within most RAID techniques [15]. To rem-
edy this, Alexander also implements access-driven diffu-
sion to improve throughput to frequently-accessed files,
by spreading a copy of the blocks of “hot” files across the
drives of the system. Alexander monitors access to data to
determine which files to replicate in this fashion, and finds
space for those replicas either in a pre-configured perfor-

mance reserve or opportunistically in the unused portions
of the storage system.

We evaluate the availability improvements possible
with D-GRAID through trace analysis and simulation,
and find that D-GRAID does an excellent job of mask-
ing an arbitrary number of failures from most processes
by enabling continued access to “important” data. We
then evaluate our prototype Alexander under microbench-
marks and trace-driven workloads. We find that the con-
struction of D-GRAID is feasible; even with imperfect
semantic knowledge, powerful functionality can be im-
plemented within a block-based storage array. We also
find that the run-time overheads of D-GRAID are small,
but that the CPU costs as compared to a standard array
are high. We show that access-driven diffusion is crucial
for performance, and that live-block recovery is effective
when disks are under-utilized. The combination of repli-
cation, data placement, and recovery techniques results in
a storage system that improves availability while main-
taining a high level of performance.

The rest of this paper is structured as follows. In Sec-
tion 2, we present extended motivation, and in Section 3,
we discuss the design principles of D-GRAID. In Sec-
tion 4, we present trace analysis and simulations, and dis-
cuss semantic knowledge in Section 5. In Section 6, we
present our prototype implementation. We evaluate our
prototype in Section 7, discuss alternative methods to im-
plementing D-GRAID and the commercial feasibility of a
semantic disk based approach in Section 8. In Section 9,
we present related work and conclude in Section 10.

2 Extended Motivation
The Case for Graceful Degradation: RAID redun-
dancy techniques typically export a simple failure model.
If D or fewer disks fail, the RAID continues to oper-
ate correctly, but perhaps with degraded performance. If
more than D disks fail, the RAID is entirely unavailable
until the problem is corrected, perhaps via a restore from
tape. In most RAID schemes, D is small (often 1); thus
even when most disks are working, users may observe a
“failed” disk system.

With graceful degradation, a RAID system can abso-
lutely tolerate some fixed number of faults (as before), and
excess failures are not catastrophic; most of the data (an
amount proportional to the number of disks still available
in the system) continues to be available, thus allowing ac-
cess to that data while the other “failed” data is restored. It
does not matter to users or applications whether the entire
contents of the volume are present; rather, what matters is
whether a particular set of files are available.

One question is whether it is realistic to expect a catas-
trophic failure scenario within a RAID system. For exam-
ple, in a RAID-5 system, given the high MTBF’s reported
by disk manufacturers, one might believe that a second



disk failure is highly unlikely to occur before the first
failed disk is repaired. However, multiple disk failures
do occur, for two primary reasons. First, correlated faults
are more common in systems than expected [19]. If the
RAID has not been carefully designed in an orthogonal
manner, a single controller fault or other component error
can render a fair number of disks unavailable [8]; such re-
dundant designs are expensive, and therefore may only be
found in higher end storage arrays. Second, Gray points
out that system administration is the main source of failure
in systems [17]. A large percentage of human failures oc-
cur during maintenance, where “the maintenance person
typed the wrong command or unplugged the wrong mod-
ule, thereby introducing a double failure” (page 6) [17].

Other evidence also suggests that multiple failures can
occur. For example, IBM’s ServeRAID array controller
product includes directions on how to attempt data recov-
ery when multiple disk failures occur within a RAID-5
storage array [23]. Within our own organization, data is
stored on file servers under RAID-5. In one of our servers,
a single disk failed, but the indicator that should have in-
formed administrators of the problem did not do so. The
problem was only discovered when a second disk in the
array failed; full restore from backup ran for days. In this
scenario, graceful degradation would have enabled access
to a large fraction of user data during the long restore.

One might think that the best approach to dealing with
multiple failures would be to employ a higher level of re-
dundancy [2, 6], thus enabling the storage array to tolerate
a greater number of failures without loss of data. How-
ever, these techniques are often expensive (e.g., three-way
data mirroring) or bandwidth-intensive (e.g., more than 6
I/Os per write in a P+Q redundant store). Graceful degra-
dation is complementary to such techniques. Thus, stor-
age administrators could choose the level of redundancy
they believe necessary for common case faults; graceful
degradation is enacted when a “worse than expected” fault
occurs, mitigating its ill effect.

Need for Semantically-Smart Storage: Implementing
new functionality in a semantically-smart disk system has
the key benefit of enabling wide-scale deployment un-
derneath an unmodified SCSI interface without any OS
modification, thus working smoothly with existing file
systems and software base. Although there is some de-
sire to evolve the interface between file systems and stor-
age [16], the reality is that current interfaces will likely
survive much longer than anticipated. As Bill Joy once
said, “systems may come and go, but protocols live for-
ever”. A new mechanism like D-GRAID is more likely
to be deployed if it is non-intrusive on existing infrastruc-
ture; semantic disks ensure just that.

3 Design: D-GRAID Expectations
In this section, we discuss the design of D-GRAID. We
present background information on file systems, the data
layout strategy required to enable graceful degradation,
the important design issues that arise due to the new lay-
out, and the process of fast recovery.

3.1 File System Background
Semantic knowledge is system specific; therefore, we dis-
cuss D-GRAID design and implementation for two widely
differing file systems: Linux ext2 [45] and Microsoft
VFAT [30] file system. Inclusion of VFAT represents
a significant contribution compared to previous research,
which operated solely underneath UNIX file systems.

The ext2 file system is an intellectual descendant of the
Berkeley Fast File System (FFS) [28]. The disk is split
into a set of block groups, akin to cylinder groups in FFS,
each of which contains bitmaps to track inode and data
block allocation, inode blocks, and data blocks. Most in-
formation about a file, including size and block pointers,
are found in the file’s inode.

The VFAT file system descends from the world of PC
operating systems. In this paper, we consider the Linux
VFAT implementation of FAT-32, although our work is
general and applies to other variants. VFAT operations
are centered around the eponymous file allocation table,
which contains an entry for each allocatable block in the
file system. These entries are used to locate the blocks of
a file, in a linked-list fashion, e.g., if a file’s first block is
at address b, one can look in entry b of the FAT to find
the next block of the file, and so forth. An entry can also
hold an end-of-file marker or a setting that indicates the
block is free. Unlike UNIX file systems, where most in-
formation about a file is found in its inode, a VFAT file
system spreads this information across the FAT itself and
the directory entries; the FAT is used to track which blocks
belong to the file, whereas the directory entry contains in-
formation like size, permission, and type information.

3.2 Graceful Degradation
To ensure partial availability of data under multiple fail-
ures in a RAID array, D-GRAID employs two main
techniques. The first is a fault-isolated data placement
strategy, in which D-GRAID places each “semantically-
related set of blocks” within a “unit of fault containment”
found within the storage array. For simplicity of discus-
sion, we assume that a file is a semantically-related set of
blocks, and that a single disk is the unit of fault contain-
ment. We will generalize the former below, and the latter
is easily generalized if there are other failure boundaries
that should be observed (e.g., SCSI chains). We refer to
the physical disk to which a file belongs as the home site
for the file. When a particular disk fails, fault-isolated
data placement ensures that only files that have that disk



foo   12

bar   34

inode:foo

inode:bar

data:bar data:bar

data:root

data:foo

inode:root

foo   12

bar   34

inode:foo

inode:bar

data:bar

data:bar

data:root

data:foo

inode:root

inode:foo

inode:bar

data:bar

data:bar

foo   12
data:root

bar   34
data:foo

inode:root inode:root inode:root inode:root

inode:fooinode:fooinode:foo

foo   12
data:root

foo   12
data:root

foo   12
data:root

bar   34
data:foo

bar   34
data:foo

bar   34
data:foo

Figure 1: A Comparison of Layout Schemes. These figures depict different layouts of a file “/foo/bar” in a UNIX file system
starting at the root inode and following down the directory tree to the file data. Each vertical column represents a disk. For
simplicity, the example assumes no data redundancy for user file data. On the left is a typical file system layout on a non-D-GRAID
disk system; because blocks (and therefore pointers) are spread throughout the file system, any single fault will render the blocks
of the file “bar” inaccessible. In the middle is a fault-isolated data placement of files and directories. In this scenario, if one can
access the inode of a file, one can access its data (indirect pointer blocks would also be constrained within the same disk). Finally,
on the right is an example of selective meta-data replication. By replicating directory inodes and directory blocks, D-GRAID can
guarantee that users can get to all files that are available. Some of the requisite pointers have been removed from the rightmost
figure for simplicity. Color codes are white for user data, light shaded for inodes, and dark shaded for directory data.

as their home site become unavailable, while other files
remain accessible as whole files.

The second technique is selective meta-data replica-
tion, in which D-GRAID replicates naming and system
meta-data structures of the file system to a high degree,
e.g., directory inodes and directory data in a UNIX file
system. D-GRAID thus ensures that all live data is reach-
able and not orphaned due to failure. The entire directory
hierarchy remains traversable, and the fraction of missing
user data is proportional to the number of failed disks.

Thus, D-GRAID lays out logical file system blocks in
such a way that the availability of a single file depends on
as few disks as possible. In a traditional RAID array, this
dependence set is normally the entire set of disks in the
group, thereby leading to entire file system unavailabil-
ity under an unexpected failure. A UNIX-centric example
of typical layout, fault-isolated data placement, and selec-
tive meta-data replication is depicted in Figure 1. Note
that for the techniques in D-GRAID to work, a meaning-
ful subset of the file system must be laid out within a sin-
gle D-GRAID array. For example, if the file system is
striped across multiple D-GRAID arrays, no single array
will have a meaningful view of the file system. In such
a scenario, D-GRAID can be run at the logical volume
manager level, viewing each of the arrays as a single disk;
the same techniques remain relevant.

Because D-GRAID treats each file system block type
differently, the traditional RAID taxonomy is no longer
adequate in describing how D-GRAID behaves. Instead,
a finer-grained notion of a RAID level is required, as D-
GRAID may employ different redundancy techniques for
different types of data. For example, D-GRAID com-
monly employs n-way mirroring for naming and sys-
tem meta-data, whereas it uses standard redundancy tech-
niques, such as mirroring or parity encoding (e.g., RAID-
5), for user data. Note that n, a value under administrative
control, determines the number of failures under which

D-GRAID will degrade gracefully. In Section 4, we will
explore how data availability degrades under varying lev-
els of namespace replication.

3.3 Design Considerations
The layout and replication techniques required to enable
graceful degradation introduce a host of design issues. We
highlight the major challenges that arise.
Semantically-related blocks: With fault-isolated data
placement, D-GRAID places a logical unit of file system
data (e.g., a file) within a fault-isolated container (e.g., a
disk). Which blocks D-GRAID considers “related” thus
determines which data remains available under failure.
The most basic approach is file-based grouping, in which
a single file (including its data blocks, inode, and indirect
pointers) is treated as the logical unit of data; however,
with this technique a user may find that some files in a
directory are unavailable while others are not, which may
cause frustration and confusion. Other groupings preserve
more meaningful portions of the file system volume un-
der failure. With directory-based grouping, D-GRAID
ensures that the files of a directory are all placed within
the same unit of fault containment. Less automated op-
tions are also possible, allowing users to specify arbitrary
semantic groupings which D-GRAID then treats as a unit.
Load balance: With fault-isolated placement, instead
of placing blocks of a file across many disks, the blocks
are isolated within a single home site. Isolated placement
improves availability but introduces the problem of load
balancing, which has both space and time components.

In terms of space, the total utilized space in each disk
should be maintained at roughly the same level, so that
when a fraction of disks fail, roughly the same fraction
of data becomes unavailable. Such balancing can be ad-
dressed in the foreground (i.e., when data is first allo-
cated), the background (i.e., with migration), or both.
Files (or directories) larger than the amount of free space
in a single disk can be handled either with a potentially



expensive reorganization or by reserving large extents of
free space on a subset of drives. Files that are larger than
a single disk must be split across disks.

More pressing are the performance problems intro-
duced by fault-isolated data placement. Previous work in-
dicates that striping of data across disks is better for per-
formance even compared to sophisticated file placement
algorithms [15, 48]. Thus, D-GRAID makes additional
copies of user data that are spread across the drives of the
system, a process which we call access-driven diffusion.
Whereas standard D-GRAID data placement is optimized
for availability, access-driven diffusion increases perfor-
mance for those files that are frequently accessed. Not
surprisingly, access-driven diffusion introduces policy de-
cisions into D-GRAID, including where to place replicas
that are made for performance, which files to replicate,
and when to create the replicas.
Meta-data replication level: The degree of meta-data
replication within D-GRAID determines how resilient it
is to excessive failures. Thus, a high degree of replication
is desirable. Unfortunately, meta-data replication comes
with costs, both in terms of space and time. For space
overheads, the trade-offs are obvious: more replicas imply
more resiliency. One difference between traditional RAID
and D-GRAID is that the amount of space needed for
replication of naming and system meta-data is dependent
on usage, i.e., a volume with more directories induces a
greater amount of overhead. For time overheads, a higher
degree of replication implies lowered write performance
for naming and system meta-data operations. However,
others have observed that there is a lack of update activity
at higher levels in the directory tree [35], and lazy update
propagation can be employed to reduce costs [43].

3.4 Fast Recovery
Because the main design goal of D-GRAID is to ensure
higher availability, fast recovery from failure is also criti-
cal. The most straightforward optimization available with
D-GRAID is to recover only “live” file system data. As-
sume we are restoring data from a live mirror onto a hot
spare; in the straightforward approach, D-GRAID simply
scans the source disk for live blocks, examining appropri-
ate file system structures to determine which blocks to re-
store. This process is readily generalized to more complex
redundancy encodings. D-GRAID can potentially priori-
tize recovery in a number of ways, e.g., by restoring cer-
tain “important” files first, where importance could be do-
main specific (e.g., files in /etc) or indicated by users in
a manner similar to the hoarding database in Coda [27].

4 Exploring Graceful Degradation
In this section, we use simulation and trace analysis to
evaluate the potential effectiveness of graceful degrada-
tion and the impact of different semantic grouping tech-
niques. We first quantify the space overheads of D-

Level of Replication
1-way 4-way 16-way

ext21KB 0.15% 0.60% 2.41%
ext24KB 0.43% 1.71% 6.84%
VFAT1KB 0.52% 2.07% 8.29%
VFAT4KB 0.50% 2.01% 8.03%

Table 1: Space Overhead of Selective Meta-data Replica-
tion. The table shows the space overheads of selective meta-
data replication as a percentage of total user data, and as the
level of naming and system meta-data replication increases. In
the leftmost column, the percentage space overhead without any
meta-data replication is shown. The next two columns depict the
costs of modest (4-way) and paranoid (16-way) schemes. Each
row shows the overhead for a particular file system, either ext2
or VFAT, with block size set to 1 KB or 4 KB.

GRAID. Then we demonstrate the ability of D-GRAID
to provide continued access to a proportional fraction of
meaningful data after arbitrary number of failures. More
importantly, we then demonstrate how D-GRAID can
hide failures from users by replicating “important” data.
The simulations use file system traces collected from HP
Labs [38], and cover 10 days of activity; there are 250 GB
of data spread across 18 logical volumes.

4.1 Space Overheads
We first examine the space overheads due to selective
meta-data replication that are typical with D-GRAID-
style redundancy. We calculate the cost of selective
meta-data replication as a percentage overhead, measured
across all volumes of the HP trace data. We calculate the
highest selective meta-data replication overhead percent-
age possible by assuming no replication of user data; if
user data is mirrored, the overheads are cut in half.

Table 1 shows that selective meta-data replication in-
duces only a mild space overhead even under high lev-
els of meta-data redundancy for both the Linux ext2 and
VFAT file systems. Even with 16-way redundancy of
meta-data, only a space overhead of 8% is incurred in
the worst case (VFAT with 1 KB blocks). With increas-
ing block size, while ext2 uses more space (due to inter-
nal fragmentation with larger directory blocks), the over-
heads actually decrease with VFAT. This phenomenon is
due to the structure of VFAT; for a fixed-sized file system,
as block size grows, the file allocation table itself shrinks,
although the blocks that contain directory data grow.

4.2 Static Availability
We next examine how D-GRAID availability degrades un-
der failure with two different semantic grouping strate-
gies. The first strategy is file-based grouping, which keeps
the information associated with a single file within a fail-
ure boundary (i.e., a disk); the second is directory-based
grouping, which allocates files of a directory together. For
this analysis, we place the entire 250 GB of files and di-
rectories from the HP trace onto a simulated 32-disk sys-
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Figure 2: Static Data Availability. The percent of entire di-
rectories available is shown under increasing disk failures. The
simulated system consists of 32 disks, and is loaded with the
250 GB from the HP trace. Two different strategies for semantic
grouping are shown: file-based and directory-based. Each line
varies the level of replication of namespace meta-data. Each
point shows average and deviation across 30 trials, where each
trial randomly varies which disks fail.

tem, remove simulated disks, and measure the percentage
of whole directories that are available. We assume no user
data redundancy (i.e., D-GRAID Level 0).

Figure 2 shows the percent of directories available,
where a directory is available if all of its files are ac-
cessible (although subdirectories and their files may not
be). From the figure, we observe that graceful degrada-
tion works quite well, with the amount of available data
proportional to the number of working disks, in contrast
to a traditional RAID where a few disk crashes would lead
to complete data unavailability. In fact, availability some-
times degrades slightly less than expected from a strict
linear fall-off; this is due to a slight imbalance in data
placement across disks and within directories. Further,
even a modest level of namespace replication (e.g., 4-way)
leads to very good data availability under failure. We also
conclude that with file-based grouping, some files in a di-
rectory are likely to “disappear” under failure, leading to
user dissatisfaction.

4.3 Dynamic Availability
Finally, by simulating dynamic availability, we examine
how often users or applications will be oblivious that D-
GRAID is operating in degraded mode. Specifically, we
run a portion of the HP trace through a simulator with
some number of failed disks, and record what percent of
processes observed no I/O failure during the run. Through
this experiment, we find that namespace replication is not
enough; certain files, that are needed by most processes,
must be replicated as well.

In this experiment, we set the degree of namespace
replication to 32 (full replication), and vary the level of
replication of the contents of popular directories, i.e.,
/usr/bin, /bin, /lib and a few others. Figure 3
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Figure 3: Dynamic Data Availability. The figure plots the per-
cent of processes that run unaffected under disk failure from one
busy hour from the HP trace. The degree of namespace repli-
cation is set aggressively to 32. Each line varies the amount of
replication for “popular” directories; 1-way implies that those
directories are not replicated, whereas 8-way and 32-way show
what happens with a modest and extreme amount of replication.
Means and deviations of 30 trials are shown.

shows that without replicating the contents of those direc-
tories, the percent of processes that run without ill-effect
is lower than expected from our results in Figure 2. How-
ever, when those few directories are replicated, the per-
centage of processes that run to completion under disk
failure is much better than expected. The reason for this
is clear: a substantial number of processes (e.g., who, ps,
etc.) only require that their executable and a few other
libraries are available to run correctly. With popular di-
rectory replication, excellent availability under failure is
possible. Fortunately, almost all of the popular files are in
“read only” directories; thus, wide-scale replication will
not raise write performance or consistency issues. Also,
the space overhead due to popular directory replication is
minimal for a reasonably sized file system; for this trace,
such directories account for about 143 MB, less than 0.1%
of the total file system size.

5 Semantic Knowledge
We now move towards the construction of a D-GRAID
prototype underneath a block-based SCSI-like interface.
The enabling technology underlying D-GRAID is seman-
tic knowledge [44]. Understanding how the file sys-
tem above utilizes the disk enables D-GRAID to imple-
ment both graceful degradation under failure and quick
recovery. The exact details of acquiring semantic knowl-
edge within a disk or RAID system have been described
elsewhere [44]; here we just assume that a basic under-
standing of file system layout and structures is available
within the storage system. Specifically, we assume that
D-GRAID has static knowledge of file system layout, in-
cluding which regions on disk are used for which block
types and the contents of specific block types, e.g., the
fields of an inode.



5.1 File System Behaviors
In this paper, we extend understanding of semantically-
smart disks by presenting techniques to handle more gen-
eral file system behaviors. Previous work required the file
system to be mounted synchronously when implementing
complex functionality within the disk; we relax that re-
quirement. We now describe our assumptions for general
file system behavior; we believe that many, if not all, mod-
ern file systems adhere to these behavioral guidelines.

First, blocks in a file system can be dynamically typed,
i.e., the file system can locate different types of blocks
at the same physical location on disk over the lifetime
of the file system. For example, in a UNIX file system,
a block in the data region can be a user-data block, an
indirect-pointer block or a directory-data block. Second,
a file system can delay updates to disk; delayed writes at
the file system facilitate batching of small writes in mem-
ory and suppressing of writes to files that are subsequently
deleted. Third, as a consequence of delayed writes, the or-
der in which the file system actually writes data to disk can
be arbitrary. Although certain file systems order writes
carefully [14], to remain general, we do not make any
such assumptions on the ordering. Note that our assump-
tions are made for practical reasons: the Linux ext2 file
system exhibits all the aforementioned behaviors.

5.2 Accuracy of Information
Our assumptions about general file system behavior im-
ply that the storage system cannot accurately classify the
type of each block. Block classification is straightfor-
ward when the type of the block depends upon its location
on disk. For example, in the Berkeley Fast File System
(FFS) [28], the regions of disk that store inodes are fixed
at file system creation; thus, any traffic to those regions is
known to contain inodes.

However, type information is sometimes spread across
multiple blocks. For example, a block filled with indi-
rect pointers can only be identified as such by observing
the corresponding inode, specifically that the inode’s indi-
rect pointer field contains the address of the given indirect
block. More formally, to identify an indirect block B, the
semantic disk must look for the inode that has block B in
its indirect pointer field. Thus, when the relevant inode
block IB is written to disk, the disk infers that B is an in-
direct block, and when it later observes block B written,
it uses this information to classify and treat the block as
an indirect block. However, due to the delayed write and
reordering behavior of the file system, it is possible that
in the time between the disk writes of IB and B, block
B was freed from the original inode and was reallocated
to another inode with a different type, i.e., as a normal
data block. The disk does not know this since the op-
erations took place in memory and were not reflected to
disk. Thus, the inference made by the semantic disk on

the block type could be wrong due to the inherent stale-
ness of the information tracked. Implementing a correct
system despite potentially inaccurate inferences is one of
the challenges we address in this paper.

6 Implementation:
Making D-GRAID

We now discuss the prototype implementation of D-
GRAID known as Alexander. Alexander uses fault-
isolated data placement and selective meta-data replica-
tion to provide graceful degradation under failure, and
employs access-driven diffusion to correct the perfor-
mance problems introduced by availability-oriented lay-
out. Currently, Alexander replicates namespace and sys-
tem meta-data to an administrator-controlled value (e.g.,
4 or 8), and stores user data in either a RAID-0 or RAID-
1 manner; we refer to those systems as D-GRAID Lev-
els 0 and 1, respectively. We are currently pursuing
a D-GRAID Level 5 implementation, which uses log-
structuring [39] to avoid the small-write problem that is
exacerbated by fault-isolated data placement.

In this section, we present the implementation of grace-
ful degradation and live-block recovery, with most of the
complexity (and hence discussion) centered around grace-
ful degradation. For simplicity of exposition, we focus on
the construction of Alexander underneath the Linux ext2
file system. At the end of the section, we discuss differ-
ences in our implementation underneath VFAT.

6.1 Graceful Degradation
We now present an overview of the basic operation of
graceful degradation within Alexander.

6.1.1 The Indirection Map
Similar to any other SCSI-based RAID system, Alexan-
der presents host systems with a linear logical block ad-
dress space. Internally, Alexander must place blocks so as
to facilitate graceful degradation. Thus, to control place-
ment, Alexander introduces a transparent level of indi-
rection between the logical array used by the file system
and physical placement onto the disks via the indirection
map (imap); similar structures have been used by others
[12, 46, 47]. Unlike most of these other systems, this
imap only maps every live logical file system block to its
replica list, i.e., all its physical locations. All unmapped
blocks are considered free and are candidates for use by
D-GRAID.

6.1.2 Reads
Handling block read requests at the D-GRAID level is
straightforward. Given the logical address of the block,
Alexander looks in the imap to find the replica list and is-
sues the read request to one of its replicas. The choice of
which replica to read from can be based on various crite-
ria [47]; currently Alexander uses a randomized selection.



Figure 4: Anatomy of a Write This figure depicts the control flow during a sequence of write operations in Alexander. In the
first figure, an inode block is written; Alexander observes the contents of the inode block and identifies the newly added inode.
It then selects a home site for the inode and creates physical mappings for the blocks of the inode, in that home site. Also, the
inode block is aggressively replicated. In the next figure, Alexander observes a write to a data block from the same inode; since it
is already mapped, the write goes directly to the physical block. In the third figure, Alexander gets a write to an unmapped data
block; it therefore defers the block, and when Alexander finally observes the corresponding inode (in the fourth figure), it creates
the relevant mappings, observes that one of its blocks is deferred, and therefore issues the deferred write to the relevant home site.

6.1.3 Writes
In contrast to reads, write requests are more complex to
handle. Exactly how Alexander handles the write request
depends on the type of the block that is written. Figure 4
depicts some common cases.

If the block is a static meta-data block (e.g., an inode
or a bitmap block) that is as of yet unmapped, Alexander
allocates a physical block in each of the disks where a
replica should reside, and writes to all of the copies. Note
that Alexander can easily detect static block types such
as inode and bitmap blocks underneath many UNIX file
systems simply by observing the logical block address.

When an inode block is written, D-GRAID scans the
block for newly added inodes; to understand which inodes
are new, D-GRAID compares the newly written block
with its old copy, a process referred to as block differenc-
ing. For every new inode, D-GRAID selects a home site to
lay out blocks belonging to the inode, and records it in the
inode-to-homesite hashtable. This selection of home site
is done to balance space allocation across physical disks.
Currently, D-GRAID uses a greedy approach; it selects
the home site with the least disk space utilization.

If the write is to an unmapped block in the data re-
gion (i.e., a data block, an indirect block, or a direc-
tory block), the allocation cannot be done until D-GRAID
knows which file the block belongs to, and thus, its ac-
tual home site. In such a case, D-GRAID places the block
in a deferred block list and does not write it to disk un-
til it learns which file the block is associated with. Since
a crash before the inode write would make the block in-
accessible by the file system anyway, the in-memory de-
ferred block list is not a reliability concern.

D-GRAID also looks for newly added block pointers
when an inode (or indirect) block is written. If the newly
added block pointer refers to an unmapped block, D-
GRAID adds a new entry in the imap, mapping the logical
block to a physical block in the home site assigned to the
corresponding inode. If any newly added pointer refers to
a block in the deferred list, D-GRAID removes the block
from the deferred list and issues the write to the appropri-
ate physical block(s). Thus, writes are deferred only for

blocks that are written before the corresponding owner in-
ode blocks. If the inode is written first, subsequent data
writes will be already mapped and sent to disk directly.

Another block type of interest that D-GRAID looks
for is the data bitmap block. Whenever a data bitmap
block is written, D-GRAID scans through it looking for
newly freed data blocks. For every such freed block, D-
GRAID removes the logical-to-physical mapping if one
exists and frees the corresponding physical blocks. Fur-
ther, if a block that is currently in the deferred list is freed,
the block is removed from the deferred list and the write
is suppressed; thus, data blocks that are written by the
file system but deleted before their corresponding inode is
written to disk do not generate extra disk traffic, similar to
optimizations found in many file systems [39]. Removing
such blocks from the deferred list is important because in
the case of freed blocks, Alexander may never observe an
owning inode. Thus, every deferred block stays in the de-
ferred list for a bounded amount of time, until either an
inode owning the block is written, or a bitmap block indi-
cating deletion of the block is written. The exact duration
depends on the delayed write interval of the file system.

6.1.4 Block Reuse
We now discuss a few of the more intricate issues involved
with implementing graceful degradation. The first such
issue is block reuse. As existing files are deleted or trun-
cated and new files are created, blocks that were once part
of one file may be reallocated to some other file. Since D-
GRAID needs to place blocks onto the correct home site,
this reuse of blocks needs to be detected and acted upon.
D-GRAID handles block reuse in the following manner:
whenever an inode block or an indirect block is written,
D-GRAID examines each valid block pointer to see if its
physical block mapping matches the home site allocated
for the corresponding inode. If not, D-GRAID changes
the mapping for the block to the correct home site. How-
ever, it is possible that a write to this block (that was made
in the context of the new file) went to the old home site,
and hence needs to be copied from its old physical loca-
tion to the new location. Blocks that must be copied are
added to a pending copies list; a background thread copies



the blocks to their new home site and frees the old physi-
cal locations when the copy completes.

6.1.5 Dealing with Imperfection
Another difficulty that arises in semantically-smart disks
underneath typical file systems is that exact knowledge
of the type of a dynamically-typed block is impossible to
obtain, as discussed in Section 5. Thus, Alexander must
handle incorrect type classification for data blocks (i.e.,
file data, directory, and indirect blocks).

For example, D-GRAID must understand the contents
of indirect blocks, because it uses the pointers therein to
place a file’s blocks onto its home site. However, due to
lack of perfect knowledge, the fault-isolated placement of
a file might be compromised (note that data loss or cor-
ruption is not an issue). Our goal in dealing with imper-
fection is thus to conservatively avoid it when possible,
and eventually detect and handle it in all other cases.

Specifically, whenever a block construed to be an indi-
rect block is written, we assume it is a valid indirect block.
Thus, for every live pointer in the block, D-GRAID must
take some action. There are two cases to consider. In
the first case, a pointer could refer to an unmapped logi-
cal block. As mentioned before, D-GRAID then creates
a new mapping in the home site corresponding to the in-
ode to which the indirect block belongs. If this indirect
block (and pointer) is valid, this mapping is the correct
mapping. If this indirect block is misclassified (and con-
sequently, the pointer invalid), D-GRAID detects that the
block is free when it observes the data bitmap write, at
which point the mapping is removed. If the block is al-
located to a file before the bitmap is written, D-GRAID
detects the reallocation during the inode write correspond-
ing to the new file, creates a new mapping, and copies the
data contents to the new home site (as discussed above).

In the second case, a potentially corrupt block pointer
could point to an already mapped logical block. As dis-
cussed above, this type of block reuse results in a new
mapping and copy of the block contents to the new home
site. If this indirect block (and hence, the pointer) is valid,
this new mapping is the correct one for the block. If in-
stead the indirect block is a misclassification, Alexander
wrongly copies over the data to the new home site. Note
that the data is still accessible; however, the original file to
which the block belongs, now has one of its blocks in the
incorrect home site. Fortunately, this situation is transient,
because once the inode of the file is written, D-GRAID
detects this as a reallocation and creates a new mapping
back to the original home site, thereby restoring its cor-
rect mapping. Files which are never accessed again are
properly laid out by an infrequent sweep of inodes that
looks for rare cases of improper layout.

Thus, without any optimizations, D-GRAID will even-
tually move data to the correct home site, thus preserving
graceful degradation. However, to reduce the number of

times such a misclassification occurs, Alexander makes an
assumption about the contents of indirect blocks, specifi-
cally that they contain some number of valid unique point-
ers, or null pointers. Alexander can leverage this assump-
tion to greatly reduce the number of misclassifications,
by performing an integrity check on each supposed indi-
rect block. The integrity check, which is reminiscent of
work on conservative garbage collection [5], returns true
if all the “pointers” (4-byte words in the block) point to
valid data addresses within the volume and all non-null
pointers are unique. Clearly, the set of blocks that pass
this integrity check could still be corrupt if the data con-
tents happened to exactly evade our conditions. However,
a test run across the data blocks of our file system indi-
cates that only a small fraction of data blocks (less than
0.1%) would pass the test; only those blocks that pass the
test and are reallocated from a file data block to an indirect
block would be misclassified.

6.1.6 Access-driven Diffusion
Another issue that D-GRAID must address is perfor-
mance. Fault-isolated data placement improves availabil-
ity but at the cost of performance. Data accesses to blocks
of a large file, or, with directory-based grouping, to files
within the same directory, are no longer parallelized. To
improve performance, Alexander performs access-driven
diffusion, monitoring block accesses to determine which
are “hot”, and then “diffusing” those blocks via replica-
tion across the disks of the system to enhance parallelism.

Access-driven diffusion can be achieved at both the log-
ical and physical levels of a disk volume. In the logical ap-
proach, access to individual files is monitored, and those
considered hot are diffused. However, per-file replication
fails to capture sequentiality across multiple small files,
for example, those in a single directory. Therefore we
instead pursue a physical approach, in which Alexander
replicates segments of the logical address space across the
disks of the volume. Since file systems are good at allocat-
ing contiguous logical blocks for a single file, or to files in
the same directory, replicating logical segments is likely
to identify and exploit most common access patterns.

To implement access-driven diffusion, Alexander di-
vides the logical address space into multiple segments,
and during normal operation, gathers various statistics
about the utilization and access patterns to each segment.
A background thread selects logical segments that are
likely to benefit most from access-driven diffusion and
diffuses a copy across the drives of the system. Subse-
quent reads and writes first go to these replicas, with back-
ground updates sent to the original blocks. The imap entry
for the block indicates which copy is up to date.

The amount of disk space to allocate to performance-
oriented replicas presents an important policy decision.
The initial policy that Alexander implements is to reserve
a certain minimum amount of space (specified by the sys-



tem administrator) for these replicas, and then opportunis-
tically use the free space available in the array for addi-
tional replication. This approach is similar to that used by
AutoRAID for mirrored data [47], except that AutoRAID
cannot identify data that is considered “dead” by the file
system once written; in contrast, D-GRAID can use se-
mantic knowledge to identify which blocks are free.

6.2 Live-block Recovery
To implement live-block recovery, D-GRAID must under-
stand which blocks are live. This knowledge must be cor-
rect in that no block that is live is considered dead, as that
would lead to data loss. Alexander tracks this information
by observing bitmap and data block traffic. Bitmap blocks
tell us the liveness state of the file system that has been re-
flected to disk. However, due to reordering and delayed
updates, it is not uncommon to observe a write to a data
block whose corresponding bit has not yet been set in the
data bitmap. To account for this, D-GRAID maintains a
duplicate copy of all bitmap blocks, and whenever it sees
a write to a block, sets the corresponding bit in the local
copy of the bitmap. The duplicate copy is synchronized
with the file system copy when the data bitmap block is
written by the file system. This conservative bitmap table
thus reflects a superset of all live blocks in the file system,
and can be used to perform live-block recovery. Note that
we assume the pre-allocation state of the bitmap will not
be written to disk after a subsequent allocation; the lock-
ing in Linux and other modern systems already ensures
this. Though this technique guarantees that a live block is
never classified as dead, it is possible for the disk to con-
sider a block live far longer than it actually is. This sit-
uation would arise, for example, if the file system writes
deleted blocks to disk.

To implement live-block recovery, Alexander simply
uses the conservative bitmap table to build a list of blocks
which need to be restored. Alexander then proceeds
through the list and copies all live data onto the hot spare.

6.3 Other Aspects of Alexander
There are a host of other aspects of the implementation
that are required for a successful prototype but that we
cannot discuss at length due to space limitations. For
example, we found that preserving the logical contiguity
of the file system was important in block allocation, and
thus developed mechanisms to enable such placement.
Directory-based grouping also requires more sophistica-
tion in the implementation, to handle the further deferral
of writes until a parent directory block is written. “Just
in time” block allocation prevents misclassified indirect
blocks from causing spurious physical block allocation.
Deferred list management introduces some tricky issues
when there is not enough memory. Alexander also pre-
serves “sync” semantics by not returning success on inode
block writes until deferred block writes that were waiting

on the inode complete. There are a number of structures
that Alexander maintains, such as the imap, that must be
reliably committed to disk and preferably, for good perfor-
mance, buffered in a small amount of non-volatile RAM.

The most important component that is missing from
Alexander is the decision on which “popular” (read-only)
directories such as /usr/bin to replicate widely, and
when to do so. Although Alexander contains the proper
mechanisms to perform such replication, the policy space
remains unexplored. However, our initial experience in-
dicates that a simple approach based on monitoring fre-
quency of inode access time updates may likely be ef-
fective. An alternative approach allows administrators to
specify directories that should be treated in this manner.

One interesting issue that required a change from our
design was the behavior of Linux ext2 under partial disk
failure. When a process tries to read a data block that is
unavailable, ext2 issues the read and returns an I/O fail-
ure to the process. When the block becomes available
again (e.g., after recovery) and a process issues a read to
it, ext2 will again issue the read, and everything works
as expected. However, if a process tries to open a file
whose inode is unavailable, ext2 marks the inode as “sus-
picious” and will never again issue an I/O request to the
inode block, even if Alexander has recovered the block.
To avoid a change to the file system and retain the abil-
ity to recover failed inodes, Alexander replicates inode
blocks as it does namespace meta-data, instead of collo-
cating them with the data blocks of a file.

6.4 Alexander the FAT
Overall, we were surprised by the many similarities we
found in implementing D-GRAID underneath ext2 and
VFAT. For example, VFAT also overloads data blocks, us-
ing them as either user data blocks or directories; hence
Alexander must defer classification of those blocks in a
manner similar to the ext2 implementation.

However, there were a few instances where the VFAT
implementation of D-GRAID differed in interesting ways
from the ext2 version. For example, the fact that all point-
ers of a file are located in the file allocation table made
a number of aspects of D-GRAID much simpler to im-
plement; in VFAT, there are no indirect pointers to worry
about. We also ran across the occasional odd behavior in
the Linux implementation of VFAT. For example, Linux
would write to disk data blocks that were allocated but
then freed, avoiding an obvious and common file system
optimization. Although this was more indicative of the
untuned nature of the Linux implementation, it served as
yet another indicator of how semantic disks must be wary
of any assumptions they make about file system behavior.

7 Evaluating Alexander
We now present a performance evaluation of Alexander.
We focus primarily on the Linux ext2 variant, but also
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Figure 5: Errors in Placement. The figure plots the number of
blocks wrongly laid out by Alexander over time, while running
a busy hour of the HP Trace. The experiment was run over 4
disks, and the total number of blocks accessed in the trace was
418000.

include some baseline measurements of the VFAT system.
We wish to answer the following questions:
• Does Alexander work correctly?
• What time overheads are introduced?
• How effective is access-driven diffusion?
• How fast is live-block recovery?
• What overall benefits can we expect from D-GRAID?
• How complex is the implementation?

7.1 Platform
The Alexander prototype is constructed as a software
RAID driver in the Linux 2.2 kernel. File systems mount
the pseudo-device and use it as if it were a normal disk.
Our environment is excellent for understanding many of
the issues that would be involved in the construction of
a “real” hardware D-GRAID system; however, it is also
limited in the following ways. First, and most importantly,
Alexander runs on the same system as the host OS and
applications, and thus there is interference due to compe-
tition for resources. Second, the performance character-
istics of the microprocessor and memory system may be
different than what is found within an actual RAID sys-
tem. In the following experiments, we utilize a 550 MHz
Pentium III and four 10K-RPM IBM disks.
Does Alexander work correctly? Alexander is more
complex than simple RAID systems. To ensure that
Alexander operates correctly, we have put the system
through numerous stress tests, moving large amounts of
data in and out of the system without problems. We
have also extensively tested the corner cases of the sys-
tem, pushing it into situations that are difficult to han-
dle and making sure that the system degrades gracefully
and recovers as expected. For example, we repeatedly
crafted microbenchmarks to stress the mechanisms for de-
tecting block reuse and for handling imperfect informa-
tion about dynamically-typed blocks. We have also con-
structed benchmarks that write user data blocks to disk
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Figure 6: Time Overheads. The figure plots the time overheads
observed on D-GRAID Level 0 versus RAID Level 0 across a se-
ries of microbenchmarks. The tests are run on 1 and 4 disk sys-
tems. In each experiment, 3000 operations were enacted (e.g.,
3000 file creations), with each operation on a 64 KB file.

that contain “worst case” data, i.e., data that appears to be
valid directory entries or indirect pointers. In all cases,
Alexander was able to detect which blocks were indirect
blocks and move files and directories into their proper
fault-isolated locations.

To verify that Alexander places blocks on the appro-
priate disk, we instrumented the file system to log block
allocations. In addition, Alexander logs events of interest
such as assignment of a home site for an inode, creation of
a new mapping for a logical block, re-mapping of blocks
to a different homesite and receipt of logical writes from
the file system. To evaluate the behavior of Alexander on
a certain workload, we run the workload on Alexander,
and obtain the time-ordered log of events that occurred at
the file system and Alexander. We then process this log
off-line and look for the number of blocks wrongly laid
out at any given time.

We ran this test on a few hours of the HP Traces, and
found that in many of the hours we examined, the num-
ber of blocks that were misplaced even temporarily was
quite low, often less than 10 blocks. We report detailed
results for one such hour of the trace where we observed
the greatest number of misplaced blocks, among the hours
we examined. Figure 5 shows the results.

The figure has two parts. The bottom part shows the
normal operation of Alexander, with the capability to re-
act to block reuse by remapping (and copying over) blocks
to the correct homesite. As the figure shows, Alexander
is able to quickly detect wrongly placed blocks and remap
them appropriately. Further, the number of such blocks
misplaced temporarily is only about 1% of the total num-
ber of blocks accessed in the trace. The top part of the
figure shows the number of misplaced blocks for the same
experiment, but assuming that the remapping did not oc-
cur. As can be expected, those delinquent blocks remain
misplaced. The dip towards the end of the trace occurs



Run-time Blocks Written
(seconds) Total Meta Unique

data
RAID-0 69.25 101297 – –
D-GRAID1 61.57 93981 5962 1599
D-GRAID2 66.50 99416 9954 3198
D-GRAID3 73.50 101559 16976 4797
D-GRAID4 78.79 113222 23646 6396

Table 2: Performance on postmark. The table compares
the performance of D-GRAID Level 0 with RAID-0 on the Post-
mark benchmark. Each row marked D-GRAID indicates a spe-
cific level of metadata replication. The first column reports the
benchmark run-time and the second column shows the number
of disk writes incurred. The third column shows the number of
disk writes that were to metadata blocks, and the fourth column
indicates the number of unique metadata blocks that are written.
The experiment was run over 4 disks.

because some of the misplaced blocks are later assigned
to a file in that homesite itself, accidentally correcting the
original misplacement.
What time overheads are introduced? We now ex-
plore the time overheads that arise due to semantic infer-
ence. This primarily occurs when new blocks are writ-
ten to the file system, such as during file creation. Fig-
ure 6 shows the performance of Alexander under a sim-
ple microbenchmark. As can be seen, allocating writes
are slower due to the extra CPU cost involved in tracking
fault-isolated placement. Reads and overwrites perform
comparably with RAID-0. The high unlink times of D-
GRAID on FAT is because FAT writes out data pertaining
to deleted files, which have to be processed by D-GRAID
as if it were newly allocated data. Given that the imple-
mentation is untuned and the infrastructure suffers from
CPU and memory contention with the host, we believe
that these are worst case estimates of the overheads.

Another cost of D-GRAID that we explore is the over-
head of metadata replication. For this purpose, we choose
Postmark [25], a metadata intensive file system bench-
mark. We slightly modified Postmark to perform a sync
before the deletion phase, so that all metadata writes are
accounted for, making it a pessimistic evaluation of the
costs. Table 2 shows the performance of Alexander un-
der various degrees of metadata replication. As can be
seen from the table, synchronous replication of metadata
blocks has a significant effect on performance for meta-
data intensive workloads (the file sizes in Postmark range
from 512 bytes to 10 KB). Note that Alexander performs
better than default RAID-0 for lower degrees of replica-
tion because of better physical block allocation; since ext2
looks for a contiguous free chunk of 8 blocks to allocate a
new file, its layout is sub-optimal for small files.

The table also shows the number of disk writes incurred
during the course of the benchmark. The percentage of ex-
tra disk writes roughly accounts for the difference in per-
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Figure 7: Access-driven Diffusion. The figure presents the per-
formance of D-GRAID Level 0 and standard RAID-0 under a
sequential workload. In each experiment, a number of files of
size x are read sequentially, with the total volume of data fixed
at 64 MB. D-GRAID performs better for smaller files due to bet-
ter physical block layout.

formance between different replication levels, and these
extra writes are mostly to metadata blocks. However,
when we count the number of unique physical writes to
metadata blocks, the absolute difference between different
replication levels is small. This suggests that lazy propa-
gation of updates to metadata block replicas, perhaps dur-
ing idle time or using freeblock scheduling, can greatly
reduce the performance difference, at the cost of added
complexity. For example, with lazy update propagation
(i.e., if the replicas were updated only once), D-GRAID4

would incur only about 4% extra disk writes.
We also played back a portion of the HP traces for 20

minutes against a standard RAID-0 system and D-GRAID
over four disks. The playback engine issues requests at
the times specified in the trace, with an optional speedup
factor; a speedup of 2× implies the idle time between re-
quests was reduced by a factor of two. With speedup fac-
tors of 1× and 2×, D-GRAID delivered the same per-
second operation throughput as RAID-0, utilizing idle
time in the trace to hide its extra CPU overhead. How-
ever, with a scaling factor of 3×, the operation throughput
lagged slightly behind, with D-GRAID showing a slow-
down of up to 19.2% during the first one-third of the trace
execution, after which it caught up due to idle time.
How effective is access-driven diffusion? We now show
the benefits of access-driven diffusion. In each trial of
this experiment, we perform a set of sequential file reads,
over files of increasing size. We compare standard RAID-
0 striping to D-GRAID with and without access-driven
diffusion. Figure 7 shows the results of the experiment.

As we can see from the figure, without access-driven
diffusion, sequential access to larger files run at the rate
of a single disk in the system, and thus do not benefit
from the potential parallelism. With access-driven diffu-
sion, performance is much improved, as reads are directed
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Figure 8: Live-block Recovery. The figure shows the time to
recover a failed disk onto a hot spare in a D-GRAID Level 1
(mirrored) system using live-block recovery. Two lines for D-
GRAID are plotted: in the worst case, live data is spread across
the entire 300 MB volume, whereas in the best case it is com-
pacted into the smallest contiguous space possible. Also plotted
is the recovery time of an idealized RAID Level 1.

to the diffused copies across all of the disks in the sys-
tem. Note that in the latter case, we arrange for the files to
be already diffused before the start of the experiment, by
reading them a certain threshold number of times. Inves-
tigating more sophisticated policies for when to initiate
access-driven diffusion is left for future work.
How fast is live-block recovery? We now explore the
potential improvement seen with live-block recovery. Fig-
ure 8 presents the recovery time of D-GRAID while vary-
ing the amount of live file system data.

The figure plots two lines: worst case and best case
live-block recovery. In the worst case, live data is spread
throughout the disk, whereas in the best case it is com-
pacted into a single portion of the volume. From the
graph, we can see that live-block recovery is successful
in reducing recovery time, particularly when a disk is less
than half full. Note also the difference between worst case
and best case times; the difference suggests that periodic
disk reorganization [41] could be used to speed recovery,
by moving all live data to a localized portion.
What overall benefits can we expect from D-GRAID?
We next demonstrate the improved availability of Alexan-
der under failures. Figure 9 shows the availability and
performance observed by a process randomly accessing
whole 32 KB files, running above D-GRAID and RAID-
10. To ensure a fair comparison, both D-GRAID and
RAID-10 limit their reconstruction rate to 10 MB/s.

As the figure shows, reconstruction of the 3 GB volume
with 1.3 GB live data completes much faster (68 s) in D-
GRAID compared to RAID-10 (160 s). Also, when the
extra second failure occurs, the availability of RAID-10
drops to near zero, while D-GRAID continues with about
50 % availability. Surprisingly, after restore, RAID-10
still fails on certain files; this is because Linux does not
retry inode blocks once they fail. A remount is required
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Figure 9: Availability Profile. The figure shows the operation of
D-GRAID Level 1 and RAID 10 under failures. The 3 GB array
consists of 4 data disks and 1 hot spare. After the first failure,
data is reconstructed onto the hot spare, D-GRAID recovering
much faster than RAID 10. When two more failures occur, RAID
10 loses almost all files, while D-GRAID continues to serve 50%
of its files. The workload consists of read-modify-writes of 32 KB
files randomly picked from a 1.3 GB working set.

before RAID-10 returns to full availability.
How complex is the implementation? We briefly quan-
tify the implementation complexity of Alexander. Table 3
shows the number of C statements required to implement
the different components of Alexander. From the table,
we can see that the core file system inferencing module
for ext2 requires only about 1200 lines of code (counted
with number of semicolons), and the core mechanisms of
D-GRAID contribute to about 2000 lines of code. The
rest is spent on a hash table, AVL tree and wrappers for
memory management. Compared to the tens of 1000’s of
lines of code already comprising modern array firmware,
we believe that the added complexity of D-GRAID is not
that significant.

8 Discussion
In this section, we first compare our semantic-disk based
approach to alternative methods of implementing D-
GRAID, and then discuss some possible concerns about
the commercial feasibility of such semantic disk systems.

8.1 Alternative Approaches
Our semantic disk based approach is one of few dif-
ferent ways of implementing D-GRAID, each with its
own trade-offs. Similar to modern processors that in-
novate beneath unchanged instruction sets, a semantic
disk level implementation facilitates ease of deployment
and inter-operability with unchanged client infrastructure,
perhaps making it more pragmatic. The cost of this ap-
proach, however, is the complexity in rediscovering se-
mantic knowledge and being tolerant to inaccuracies.

An alternative approach is to change the interface be-
tween file systems and storage, to convey richer informa-
tion across both layers. For instance, the storage system
could expose failure boundaries to the file system [9], and



Semicolons Total
D-GRAID Generic

Setup + fault-isolated placement 1726 3557
Physical block allocation 322 678
Access driven diffusion 108 238
Mirroring + live block recovery 248 511
Internal memory management 182 406
Hashtable/Avl tree 724 1706

File System Specific
SDS Inferencing: ext2 1252 2836
SDS Inferencing: VFAT 630 1132

Total 5192 11604

Table 3: Code size for Alexander implementation. The num-
ber of lines of code needed to implement Alexander is shown.
The first column shows the number of semicolons and the second
column shows the total number of lines, including white-spaces
and comments.

then the file system could explicitly allocate blocks in a
fault-isolated manner. Alternatively, the file system could
tag each write with a logical fault-container ID, which can
then be used by the storage system to implement fault-
isolated data placement. These techniques, while being
intrusive on existing infrastructure and software base, are
conceivably less complex than our approach.

Object-based storage [16] is one such new interface be-
ing considered, which makes the file boundaries more vis-
ible at the storage layer. However, even with an object-
based interface, semantically-smart technology might still
be relevant to discover relationships across objects; for in-
stance inferring that a directory object points to a set of file
objects which need to collocated.

8.2 Commercial Feasibility
By definition, D-GRAID and other semantically-smart
storage systems have more detailed knowledge of the file
system that is using them. Embedding a higher degree
of functionality within the storage system leads to some
concerns on the commercial feasibility of such systems.

The first concern that arises is that placing semantic
knowledge within the disk system ties the disk system too
intimately to the file system above. For example, if the
file system’s on-disk structure changes, the storage sys-
tem may have to change as well. We believe this issue
is not likely to be problematic. On-disk formats evolve
slowly, for reasons of backwards compatibility. For exam-
ple, the basic structure of FFS-based file systems has not
changed since its introduction in 1984, a period of almost
twenty years [28]; the Linux ext2 file system, introduced
in roughly 1994, has had the exact same layout for its life-
time. finally, the ext3 journaling file system [45] is back-
wards compatible with ext2 on-disk layout and the new
extensions to the FreeBSD file system [10] are backwards
compatible as well. We also have evidence that storage
vendors are already willing to maintain and support soft-
ware specific to a file system; for example, the EMC Sym-
metrix storage system [11] comes with software that can

understand the format of most common file systems.
The second concern is that the storage system needs

semantic knowledge for each file system with which it in-
teracts. Fortunately, there are not a large number of file
systems that would need to be supported to cover a large
fraction of the usage population. If such a semantic stor-
age system is used with a file system that it does not sup-
port, the storage system could detect that the file system
does not conform to its expectations and turn off its spe-
cial functionality (e.g., in the case of D-GRAID, revert to
normal RAID layout). Such detection can be done by sim-
ple techniques such as observing the file system identifier
in the partition table.

One final concern that arises is that too much process-
ing will be required within the disk system. We do not be-
lieve this to be a major issue, because of the general trend
of increasing disk system intelligence [1, 37]; as process-
ing power increases, disk systems are likely to contain
substantial computational abilities. Indeed, modern stor-
age arrays already exhibit the fruits of Moore’s Law; for
example, the EMC Symmetrix storage server can be con-
figured with up to 80 processors and 64 GB of RAM [11].

9 Related Work
D-GRAID draws on related work from a number of differ-
ent areas, including distributed file systems and traditional
RAID systems. We discuss each in turn.
Distributed File Systems: Designers of distributed file
systems have long ago realized the problems that arise
when spreading a directory tree across different machines
in a system. For example, Walker et al. discuss the impor-
tance of directory namespace replication within the Locus
distributed system [35]. The Coda mobile file system also
takes explicit care with regard to the directory tree [27].
Specifically, if a file is cached, Coda makes sure to cache
every directory up to the root of the directory tree. By do-
ing so, Coda can guarantee that a file remains accessible
should a disconnection occur. Perhaps an interesting ex-
tension to our work would be to reconsider host-based in-
memory caching with availability in mind. Also, Slice [3]
tries to route namespace operations for all files in a direc-
tory to the same server.

More recently, work in wide-area file systems has also
re-emphasized the importance of the directory tree. For
example, the Pangaea file system aggressively replicates
the entire tree up to the root on a node when a file is ac-
cessed [42]. The Island-based file system also points out
the need for “fault isolation” but in the context of wide-
area storage systems; their “one island principle” is quite
similar to fault-isolated placement in D-GRAID [24].

Finally, p2p systems such as PAST that place an entire
file on a single machine have similar load balancing is-
sues [40]. However, the problem is more difficult in the
p2p space due to the constraints of file placement; block



migration is much simpler in a centralized storage array.
Traditional RAID Systems: We also draw on the long
history of research in classic RAID systems. From Au-
toRAID [47] we learned both that complex functionality
could be embedded within a modern storage array, and
that background activity could be utilized successfully in
such an environment. From AFRAID [43], we learned
that there could be a flexible trade-off between perfor-
mance and reliability, and the value of delaying updates.

Much of RAID research has focused on different re-
dundancy schemes. While early work stressed the ability
to tolerate single-disk failures [4, 32, 33], later research
introduced the notion of tolerating multiple-disk failures
within an array [2, 6]. We stress that our work is comple-
mentary to this line of research; traditional techniques can
be used to ensure full file system availability up to a cer-
tain number of failures, and D-GRAID techniques ensure
graceful degradation under additional failures. A related
approach is parity striping [18] which stripes only the par-
ity and not data; while this would achieve some fault iso-
lation, the layout is still oblivious of the semantics of the
data; blocks will have the same level of redundancy irre-
spective of their importance (i.e., meta-data vs data), so
multiple failures could still make the entire file system in-
accessible. A number of earlier works also emphasize the
importance of hot sparing to speed recovery time in RAID
arrays [21, 29, 32]. Our work on semantic recovery is also
complementary to those approaches.

Finally, note that term “graceful degradation” is some-
times used to refer to the performance characteristics of
redundant disk systems under failure [22, 36]. This type
of graceful degradation is different from what we discuss
in this paper; indeed, none of those systems continues op-
eration when an unexpected number of failures occurs.

10 Conclusions
“A robust system is one that continues to operate
(nearly) correctly in the presence of some class of
errors” Robert Hagmann [20]

D-GRAID turns the simple binary failure model found
in most storage systems into a continuum, increasing the
availability of storage by continuing operation under par-
tial failure and quickly restoring live data after a fail-
ure does occur. In this paper, we have shown the po-
tential benefits of D-GRAID, established the limits of
semantic knowledge, and have shown how a successful
D-GRAID implementation can be achieved despite these
limits. Through simulation and the evaluation of a pro-
totype implementation, we have found that D-GRAID
can be built underneath a standard block-based interface,
without any file system modification, and that it deliv-
ers graceful degradation and live-block recovery, and,
through access-driven diffusion, good performance.

We conclude with a discussions of the lessons we have
learned in the process of implementing D-GRAID:

• Limited knowledge within the disk does not imply
limited functionality. One of the main contributions of
this paper is a demonstration of both the limits of seman-
tic knowledge, as well as the “proof” via implementation
that despite such limitations, interesting functionality can
be built inside of a semantically-smart disk system. We
believe any semantic disk system must be careful in its
assumptions about file system behavior, and hope that our
work can guide others who pursue a similar course.
• Semantically-smart disks would be easier to build
with some help from above. Because of the way file
systems reorder, delay, and hide operations from disks, re-
verse engineering exactly what they are doing at the SCSI
level is difficult. We believe that small modifications to
file systems could substantially lessen this difficulty. For
example, if the file system could inform the disk whenever
it believes the file system structures are in a consistent on-
disk state, many of the challenges in the disk would be
lessened. This is one example of many small alterations
that could ease the burden of semantic disk development.
• Semantically-smart disks stress file systems in unex-
pected ways. File systems were not built to operate on top
of disks that behave as D-GRAID does; specifically, they
may not behave particularly well when part of a volume
address space becomes unavailable. Perhaps because of
its heritage as an OS for inexpensive hardware, Linux file
systems handle unexpected conditions fairly well. How-
ever, the exact model for dealing with failure is inconsis-
tent: data blocks could be missing and then reappear, but
the same is not true for inodes. As semantically-smart
disks push new functionality into storage, file systems
would likely have to evolve to accommodate them.
• Detailed traces of workload behavior are invaluable.
Because of the excellent level of detail available in the
HP traces [38], we were able to simulate and analyze
the potential of D-GRAID under realistic settings. Many
other traces do not contain per-process information, or
anonymize file references to the extent that pathnames are
not included in the trace, and thus we could not utilize
them in our study. One remaining challenge for tracing
is to include user data blocks, as semantically-smart disks
may be sensitive to the contents. However, the privacy
concerns that such a campaign would encounter may be
too difficult to overcome.
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