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Learning physics is challenging at all levels. Students’ difficulties in the introductory level 

physics courses have been widely studied and many instructional strategies have been developed 

to help students learn introductory physics. However, research shows that there is a large 

diversity in students’ preparation and skills in the upper-level physics courses and it is necessary 

to provide scaffolding support to help students learn advanced physics. This thesis explores 

issues related to students’ common difficulties in learning upper-level undergraduate quantum 

mechanics and how these difficulties can be reduced by research-based learning tutorials and 

peer instruction tools. We investigated students’ difficulties in learning quantum mechanics by 

administering written tests and surveys to many classes and conducting individual interviews 

with a subset of students. Based on these investigations, we developed Quantum Interactive 

Learning Tutorials (QuILTs) and peer instruction tools to help students build a hierarchical 

knowledge structure of quantum mechanics through a guided approach. Preliminary assessments 

indicate that students’ understanding of quantum mechanics is improved after using the research-

based learning tools in the junior-senior level quantum mechanics courses. We also designed a 

standardized conceptual survey that can help instructors better probe students’ understanding of 

quantum mechanics concepts in one spatial dimension. The validity and reliability of this 

quantum mechanics survey is discussed.  
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1.0  INTRODUCTION 

Helping students to think like physics experts is an important goal of most physics courses. But 

learning physics is difficult for students at all levels from the introductory to the advanced. Even 

in the introductory physics courses, students must draw meaningful inferences from the abstract 

principles, which are in highly compact mathematical form, and apply the few fundamental 

principles in diverse situations. Such tasks may be routine for the experts in physics but can be 

very challenging for the students. A lot of prior research has been conducted on investigating the 

differences between introductory physics students and physics experts in problem solving, 

reasoning and meta-cognitive skills (Maloney 1994, Chi et al. 1981, Touger et al. 1995). In 

general, experts start solving problems at a more abstract level and later turn to the specifics, 

while the novices may immediately focus on the surface features and get distracted. Experts can 

apply their knowledge in novel and complex problems depending on the level of their expertise, 

while novices may only be able to solve familiar problems requiring routine procedures. Experts 

have knowledge structure which is organized hierarchically, while novices’ knowledge structure 

lacks hierarchical organization.   

Novices’ difficulties in introductory physics have been widely studied and many 

instructional strategies have been developed to help introductory physics students acquire the 

content knowledge as well as the ability to solve problems in novel situations (Leonard et al. 

1996, Heller and Reif 1984, Van Heuvelen 1991, Mestre et al. 1993, Dufresne et al. 1992). 
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However, it is often assumed that the students in the upper-level physics courses have 

significantly higher expertise in learning and self-monitoring than those who have only studied 

introductory physics. Instructors usually take for granted that advanced physics students are 

independent learners with necessary cognitive and meta-cognitive skills and enough prior 

knowledge in introductory and intermediate physics. However, advanced students face additional 

challenges because they must build the upper-level physics knowledge on all of the prior 

knowledge acquired at the introductory and intermediate levels. Research also suggests that there 

is a wide diversity in advanced students’ skills such as their ability to categorize physics 

problems based upon similarity of solution or their tendency to exploit their mistakes as an 

opportunity for repairing and organizing their knowledge structure (Lin & Singh 2009, Lin & 

Singh 2010, Mason & Singh 2009, Mason & Singh 2010). Therefore, while teaching upper-level 

physics courses, treating all the advanced students as a group of experienced learners will not 

lead to designing of effective instructional strategies and scaffolding support to help them 

become physics experts.  

Indeed, once we are familiar with the prior knowledge of upper-level students, we can 

consider effective strategies to help them build on their prior knowledge and construct a 

hierarchical knowledge structure and develop skills in applying relevant knowledge in various 

situations. An important question is the following: Will the educational methods and techniques 

that have been effective in introductory physics courses be effective in the upper-level courses as 

well? In this thesis, I will discuss my research on students’ difficulties in learning upper-level 

undergraduate quantum mechanics and the impact of incorporating tutorial-based instruction and 

peer-instruction tools in helping students learn better.  



 3 

In particular, I will discuss how the findings of cognitive research and Physics Education 

Research (PER) in introductory physics can guide the investigation of students’ difficulties and 

strategies to help students learn quantum mechanics better. In the remaining paragraphs of 

chapter 1, I will first provide some motivation for why quantum mechanics is so difficult for the 

advanced students to learn and then introduce the cognitive issues and educational strategies that 

take into account the findings of learning theories that can help students learn quantum 

mechanics better. In chapter 2 to chapter 7, I will summarize and categorize students’ difficulties 

and misconceptions about quantum mechanics related to topics such as “Possible 

Wavefunctions”, “Bound and Scattering State”, “Drawing Wavefunctions”, “Quantum 

Measurement”, “Stern-Gerlach Experiment”, “Addition of Angular Momentum”, etc. Based 

upon the findings of investigation of students’ difficulties, we developed a set of research-based 

learning tutorials called the Quantum Interactive Learning Tutorials (QuILTs) and peer 

instruction tools, e.g., concept tests, to scaffold student learning of quantum mechanics and help 

them construct a hierarchical knowledge structure. The details of the development, 

implementation and findings of these research-based QuILTs and peer-instruction tools will be 

elaborated in chapters 2 to 8. In the ninth chapter, I will discuss the development and preliminary 

assessment of a standardized survey that can help instructors better probe students’ conceptual 

understanding of quantum mechanics in their classes.  Then, conclusions and future directions 

will be outlined in the final chapter.  



 4 

1.1 QUANTUM MECHANICS VS. CLASSICAL MECHANICS 

Quantum mechanics (QM) is an important topic in the physics curriculum and it is also 

important for students majoring in other sciences, e.g., chemistry or engineering, e.g., electrical 

engineering. Students who are interested in the basic rules governing the universe beyond 

Newtonian physics are often fascinated by quantum mechanics. However, quantum mechanics 

formalism is abstract and does not conform to the everyday world we are used to in which 

position and momentum are deterministic variables and their time evolution is governed by 

Newton’s laws. Quantum phenomena cannot be explained in classical ways. Talented students 

have great difficulty in mastering the fundamental concepts and principles of quantum mechanics. 

Richard Feynman said “nobody understands quantum mechanics” (Feynman, 1965). Feynman’s 

statement was referring to the difficulty in interpreting the foundational issues in quantum 

mechanics rather than the difficulty in performing a calculation based upon quantum mechanics 

formalism. However, it is important to research effective strategies to help students learn the 

standard formalism of quantum mechanics.  

As noted earlier, unlike classical mechanics, we do not have direct experience with the 

microscopic quantum world. Also, quantum mechanics has an abstract theoretical framework in 

which the most fundamental equation, the Time-Dependent Schrödinger Equation (TDSE), 

describes the time evolution of the wave function or the state of a quantum system according to 

the Hamiltonian of the system. This wave function is in general complex and does not directly 

represent a physical entity. However, the wave function at a given time can be exploited to make 

inferences about the probability of measuring different physical observables associated with the 

system. For example, the absolute square of the wave function in position-space is the 

probability density for position measurement. Since the TDSE does not describe the evolution or 
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motion of a physical entity, unlike Newton's second law, the modeling of the microscopic world 

in quantum mechanics is generally more abstract than the modeling of the macroscopic world in 

classical mechanics. 

Quantum theory provides a coherent framework for reasoning about microscopic 

phenomena and has never failed to explain observations if the Hamiltonian of the system is 

modeled appropriately to account for the essential interactions. However, the conceptual 

framework of quantum mechanics is often counter-intuitive to our everyday experiences. For 

example, according to the quantum theory, the position, momentum, energy and other 

observables for a quantum mechanical entity are in general not well-defined. We can only 

predict the probability of measuring different values based upon the wave function when a 

measurement is performed. This probabilistic interpretation of quantum mechanics, which even 

Einstein found disconcerting, is challenging for students. Moreover, according to the 

Copenhagen interpretation of quantum mechanics, which is widely taught to students, the 

measurement of a physical observable changes the wave function if the initial wave function is 

not an eigenfunction of the operator corresponding to the observable measured. Thus, the usual 

time evolution of the system according to the TDSE is separated from what happens during the 

measurement of an observable. Students often have difficulty with this notion of an 

instantaneous change or "collapse" of the wave function during the measurement. 

In quantum theory, position and momentum are not independent variables that evolve in a 

deterministic manner but are operators in the Hilbert space in which the state of the system is a 

vector. For a given state of the system, the probabilities of measuring position or momentum in a 

narrow range depend on each other. In particular, specifying the position-space wave function 

that can help us determine the probability of measuring the position in a narrow range specifies 
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(via a Fourier transform) the momentum-space wave function that tells us the probability of 

measuring the momentum in a narrow range. The eigenstates of the position or momentum 

operators span the Hilbert space so that any state of the system can be written as a linear 

combination of a complete set of position eigenstates or momentum eigenstates. The 

measurement of position (or momentum) yields a position (or momentum) eigenvalue with a 

certain probability depending upon the state of the system. These concepts are indeed 

challenging for students since they do not conform to the experiences in the classical world 

(Singh 2007). 

In addition to the lack of direct exposure to microscopic phenomena described by 

quantum theory and the counter-intuitive nature of the theory, the mathematical facility required 

in quantum mechanics can increase students’ cognitive load and make learning quantum 

mechanics even more challenging. The framework of quantum mechanics is based on linear 

algebra. In addition, a good grasp of differential equations, special functions, complex variables, 

etc., is highly desired. If students are not facile in relevant mathematics, they may become 

overwhelmed by the mathematical details and may not have the opportunity to focus on the 

conceptual framework of quantum mechanics and build a coherent knowledge structure. Earlier 

research (Singh 2007) shows that a lack of mathematical facility can hinder conceptual learning. 

Similarly, alternative conceptions about conceptual aspects of quantum mechanics can lead to 

students making mathematical errors that they would otherwise not make in a linear algebra 

course (Singh 2007). 

Many of the alternative conceptions in the classical world are over-generalizations of 

everyday experiences to contexts where they are not applicable. For example, the conception that 

motion implies force often originates from the fact that one must initially apply a force to an 
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object at rest to get it moving. People naively over-generalize such experiences to conclude that 

even an object moving at a constant velocity must have a net force acting on it. One may argue 

that quantum mechanics may have an advantage here because the microscopic world does not 

directly deal with observable phenomena in every day experience so students are unlikely to 

have alternative conceptions. Unfortunately, that is not true and research shows that students 

have many alternative conceptions about quantum physics (in the level of modern physics) and 

quantum mechanics (McKagan et al. 2008(a), McKagan et al. 2008(b), McKagan et al. 2008(c), 

McKagan et al. 2009, Jolly et al. 1998, Singh et al. 2006, Wittmann et al. 2002, Zollman et al. 

2002, Styer 1996, Johnston et al. 1998, Ireson 2000, Bao and Redish 2002, Carr and McKagan 

2009, Fischler et al. 1992, Redish et al. 2001, and the theme issue of American Journal of 

Physics 2002). These alternative conceptions are often about the quantum mechanical model 

itself and about exploiting this model to infer what should happen in a given situation. Students 

often over-generalize their intuitive notions from the classical world to the quantum world, 

which can lead to incorrect inferences. 

1.2 A SHORT REVIEW OF RELEVANT PHYSICS EDUCATION RESEARCH (PER) 

Physics education research is discipline-based research conducted mostly by physicists with 

knowledge of physics and access to students. It became an established field of research in the 

physics departments in the United States in the late twentieth century. In the 1980s through the 

1990s, the famous test to assess students’ conceptual understanding of introductory physics, the 

Force Concept Inventory (FCI) (Hestenes et al. 1992; Hestenes & Halloun 1995), made 

physicists realize that despite their sincerest effort, solely teaching via lectures is not effective in 
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helping students learn physics. They found that their students lacked conceptual understanding of 

physics even though they could solve complicated quantitative problems using a rote algorithmic 

approach. The number of physicists doing PER and developing and assessing research-based 

instructional strategies has grown steadily over the last few decades. In 1999, the American 

Physics Society (APS) published the “Statement on Research in Physics Education”, which 

announced the usefulness and the validity of PER in physics departments (Beichner, 2009). In 

2005, the Physical Review series welcomed a new journal, Physical Review Special Topics—

Physics Education Research, indicating that PER formally became an essential part of scientific 

research in physics. 

Physics education research generally focuses on two areas, the basic PER and the applied 

PER (Beichner, 2009). The basic PER concerns the assessment and determination of students’ 

difficulties in understanding physics concepts and the applied PER focuses on developing 

effective teaching strategies or instructional materials to help students overcome their common 

difficulties and build a robust knowledge structure of physics. My research on improving 

students’ understanding of quantum mechanics involves both basic and applied PER. We have 

conducted in-depth research on students’ difficulties and revealed not only the misconceptions 

that students have but also unpacked how these misconceptions originate. Based on our research 

on students’ common difficulties in learning quantum mechanics, we have designed the 

Quantum Interactive Learning Tutorials (QuILTs) and peer-instruction tools such as concept 

tests to improve students’ understanding. 
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1.3 COGNITIVE ISSUES IN PER 

PER has an active interaction with cognitive science. PER uses the theory of cognitive science as 

an important source for interpreting student learning of physics. Cognitive principles are also 

useful for the PER researchers in developing and assessing instructional strategies. On the other 

hand, PER adds to the cognitive research because cognition issues such as metacognition or the 

nature of expertise can be researched via PER since physics is a domain in which expertise can 

be assessed more readily than in the social sciences or humanities. While investigating students’ 

difficulties in learning quantum mechanics and developing research-based learning tools, we 

took into account findings of cognitive research such as those related to memory, metacognition 

and epistemology, in order to interpret students’ reasoning processes and learning outcomes after 

interventions with QuILTs and peer-instruction tools. Our research is informed by the research of 

many cognitive and social scientists. In developing research-based learning tools, several 

cognitive theories and models are carefully integrated, e.g., Piaget’s “optimal mismatch”, 

Vygotsky’s “zone of proximal development”, and the Preparation for Future Learning model of 

Bransford and Schwartz which is based upon the notions of “efficiency vs. innovation” (Smith 

1985, Piaget 1964, Raymond 2000, Bransford & Schwartz 1999, Schwartz et al. 2005). Below, I 

review some of the relevant concepts from cognitive science that have helped inform my 

research. 

1.3.1 Memory 

In cognitive science, memory refers to the brain’s ability to store, retain and retrieve information. 

Human memory consists of two major components: short-term memory (or working memory) 
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and long-term memory (Simon, 1974). In his famous paper about “the magic number seven, plus 

or minus two”, Miller claimed that the storage ability of short-term memory is limited to 5 to 9 

bits, where one bit of information is defined as “the amount of information that we need to make 

a decision between two equally likely alternatives” (Miller, 1956). Due to the limitation of short-

term memory, people cannot process many disparate bits of information at the same time. The 

short-term memory processes the information for a period of around 18 seconds without 

repetitive practice and rehearsal (Peterson and Peterson, 1959). The long-term memory is where 

the information is stored and this information can last from a few days to even a life-time. The 

capacity of long-term memory can be considered as unlimited unlike the short term memory 

which is used to process the information. Information processing and problem solving happens in 

short term memory or working memory which receives information from the sensory buffers 

(e.g., ears, eyes, hands) and also from the long term memory.   

Later research shows that the capacity of the short-term memory can be increased by 

chunking the information into meaningful groups. For example, a ten-digit number is difficult to 

remember. But people can often memorize a phone number by dividing the string into three “3 

digits – 3 digits – 4 digits” chunks so that each chunk of digits has a specific association (e.g., the 

area code). Research has also shown that expertise in a particular domain involves having large 

chunks of knowledge in the domain in which the person has expertise. In a study involving 

positions of chess pieces in a good game of chess (Chase & Simon, 1973), the chess masters 

could reproduce the setup of a chess game faster and more accurately than novices because they 

could chunk the relative positions of the pieces into offensive and defensive patterns when 

observing a good game board. However, these same experts in chess showed no more advantage 

over the novice if the setup was just a random positioning of the pieces on the chess board. These 
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findings are relevant for my research because it is important to investigate the prior knowledge 

of students and help them build on this prior knowledge and assist them in chunking relevant 

knowledge during the learning process.  

Information stored in the long-term memory can be retained longer and retrieved faster 

by practicing and creating associations. People forget what they learned at a rate which is 

exponential (known as the Ebbinghaus forgetting curve). Research shows that spaced practice 

and manipulation of repetition time are effective for retaining and retrieving knowledge 

(Landuaer & Bjork 1978, Melton 1970). Therefore, in the research-based learning tools I have 

developed for QM, the questions about key concepts occur not only in the sections in which they 

are introduced but also in the later sections to provide spaced practice. 

While solving a problem, after receiving information from the sensory buffers, the short-

term memory searches for the relevant knowledge in the long-term memory. Developing 

associations between different concepts and principles and building a robust knowledge structure 

provide additional links and pathways to activate relevant information during the problem 

solving process. For example, the momentum operator p̂  in one dimension can be represented 

by the derivative xi ∂∂− /h  in the position space, and the Hamiltonian operator of a system can 

be written as  )(/)2/(ˆ 222
xVxmH +∂∂−= h . If a student knows that the Hamiltonian operator 

corresponds to the total energy of the system, which equals the kinetic energy plus the potential 

energy, then he/she only needs to remember the representation of the momentum operator and 

the definition of the Hamiltonian. The mathematical representation of the Hamiltonian can be 

constructed with this knowledge. Association of knowledge also helps people to better chunk the 

information and often this chunking happens subconsciously. In introductory physics, the 

symbols v and m are often associated with the concepts of speed and mass, which are also 
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associated with the concept of momentum. While a novice in physics may treat speed, mass, 

velocity and momentum as four different bits and they may take four slots in the short term 

memory, for an expert physicist all these related concepts may be chunked and may only take 

one slot in the short terms memory. Thus, an expert can use his/her “compiled knowledge” and 

only one bit to process information about momentum without realizing that he/she has already 

processed a lot of related concepts.  While developing learning tools for Quantum Mechanics, we 

always do a theoretical task analysis which amounts to making a fine-grained flow chart of all 

the relevant concepts that need to be invoked to solve the problem. Then we analyze the 

difficulty of the concepts from students’ perspective because the difficulty of a problem not only 

depends on its inherent complexity but on the familiarity and intuition one has developed about it. 

1.3.2 Metacognition & Epistemology  

Metacognition is the “cognition of cognition” or “knowing about knowing” as referred in 

Metcalfe & Shimamura’s book (Metcalfe & Shimamura 1994). For example, people are engaged 

in metacognition if they discern that they have more difficulties in learning one concept than 

another or if they decide to re-examine some information before they accept it as a fact (Flavell, 

1976 p.232). Development of metacognitive skills such as reflection and self-awareness in the 

problem solving process must be addressed while students are learning physics content. Several 

researchers have investigated the factors that can influence the development of reasoning and 

metacognitive skills (Yerushalmi & Eylon 2003, Scott et al. 2007). Moving beyond an 

algorithmic plug and chug approach and focusing on conceptual understanding can help students 

develop metacognitive skills (Leonard et al. 1996). In the research-based learning tools we have 

developed for quantum mechanics, e.g., to help students learn about quantum measurement, and 
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to help them sketch a possible bound or scattering state wave function for a given potential 

energy, we emphasize the development of conceptual reasoning and metacognitive skills and 

help students focus on their knowledge structure.  

Epistemology is the theory of knowledge which attempts to make sense of the human 

intellectual achievement (Cruz 2006). Research has shown that students’ epistemological beliefs 

about physics can significantly affect what students learn (Hammer 2000; Schommer 1990, 

Redish et al. 1998, Adams et al. 2006, Gray et al. 2008). If students believe that physics is a 

collection of isolated formulas and facts, they will be reluctant to take the time to hierarchically 

organize their knowledge structure. Likewise, if students believe that their task in a physics class 

is to take notes, memorize facts and do plug and chug in the exams, they will make little effort to 

synthesize the content, build connections between new and prior knowledge, extend their 

knowledge to new areas and contemplate how principles of physics explain physical phenomena. 

It is indeed impossible for a student without a productive epistemology about the knowledge of 

physics to become an expert in physics. The research-based instructional tools I have developed 

for quantum mechanics keep students actively engaged in the learning process and force them to 

pay attention to the structure of knowledge in quantum mechanics. The learning tools help 

students realize that despite the abstractness of the subject matter, quantum mechanics is not a 

collection of incoherent facts and formulas. Students can also learn about how quantum 

mechanics can be applied to accomplish novel tasks that cannot be accomplished by classical 

means, e.g., to send a secret key for encoding and decoding data securely over a public channel.  
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1.3.3 Optimal Mismatch.  

Instructors can pose tasks to students in which common difficulties and misconceptions are 

elicited and then students observe something that contradicts their initial prediction (Smith, 

1985). Piaget emphasized “optimal mismatch” between what the student knows and where the 

instruction should be targeted in order for desired assimilation and accommodation of knowledge 

to occur. Piaget’s notion of “optimal mismatch” argues that when students encounter a cognitive 

conflict since their predictions and observations do not match, they are in a state of 

disequilibrium and they realize that there is some inconsistency in their reasoning (Piaget 1964, p. 

29). In this state, students are generally eager to resolve the discrepancies between their 

prediction and observation. Piaget suggested that at this point students should be provided with 

appropriate guidance and support commensurate with their prior knowledge to resolve the 

discrepancies and assimilate and accommodate appropriate concepts.   

Not only should students be helped to understand why the relevant concepts are 

applicable but also why their initial reasoning was not appropriate in that context. When learning 

quantum mechanics with the research-based learning tools, students are often asked to predict 

what should happen in different situations and then they use visualization tools such as computer 

simulations or graphical demonstrations to examine what actually happens. If their predictions 

are inconsistent with their observation, they are in a state of disequilibrium. Then, the learning 

tools provide scaffolding to help them resolve the discrepancies and help them build a robust 

knowledge structure. 
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1.3.4 Zone of Proximal Development (ZPD) 

 

The concept of the zone of proximal development (ZPD) was originally developed by Vygotsky 

in the early twentieth century. The definition of ZPD is commonly accepted as “the distance 

between what children can do by themselves and the learning that they can be helped to achieve 

with competent assistance” (Raymond 2000 p.176). Thus, Vygotsky's notion of the “zone of 

proximal development” refers to what a student can do on his/her own vs. with the help of an 

instructor who is familiar with his/her prior knowledge and skills. Scaffolding is at the heart of 

ZPD and can be used to stretch a student's learning far beyond his/her initial knowledge by 

carefully crafted instruction which is designed to ensure that the student makes desired progress 

and gradually develops independence. With awareness of students' initial knowledge state, the 

instructor can continuously target instruction a little bit above students' current knowledge state 

to ensure that the students have the opportunity and ability to connect new knowledge with what 

they already know and build a robust knowledge structure. 

Similar to the optimal mismatch theory, the ZPD theory emphasizes the importance of 

building students’ knowledge structure based on their prior knowledge. Teachers need to provide 

scaffolding support to stretch students’ learning process and help them overcome the gaps 

between their current knowledge and the new knowledge they are expected to acquire. 

Since all students in the advanced courses such as quantum mechanics may not have the 

same preparation and prior knowledge, it is important to align the learning tools to meet the 

needs of a diverse group of students. To prepare everyone for the QuILTs, we have designed 

warm-up materials that students can do at their own pace at home. The warm-up helps students 

review the necessary preliminary knowledge before they start using the QuILT involving the 
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quantum concepts recently learned. For example, in the QuILT related to the Stern-Gerlach 

experiment, the warm-up material asks the students to consider the basic concepts such as the 

Hamiltonian of a particle with a magnetic dipole moment in an external magnetic field, the 

forces acting on the magnetic dipole moment in a magnetic field in a classical situation, the 

matrix representation of the angular momentum, etc. By working on the warm-up materials, 

students are likely to have similar prior knowledge before working on the QuILTs.  

As stated in chapter 1.3.1, there are only 5 to 9 bits in one’s short term memory (or 

working memory) but the size of the “bit” or chunk can be different depending upon a person’s 

expertise in that domain. Therefore, it is important to be familiar with students’ prior knowledge 

and have an understanding of what constitutes a bit for them so that they do not have a cognitive 

overload. One strategy to reduce the cognitive load is having students work with each other 

because according to  the theory of distributed cognition, the cognitive load it shared between 

individuals working together. In other words, combined working memory is available for 

problem solving and learning. The instructional method involving peer learning that can scaffold 

student learning will be elaborated in the section on peer instruction (chapter 1.5). 

1.3.5 Preparation for Future Learning 

In the 1990s, Bransford and Schwartz carried out a series of research on transfer of learning from 

one situation to another (Bransford & Schwartz 1999) and proposed a framework for scaffolding 

student learning. They theorized that the preparation for future learning (PFL) and transfer of 

knowledge from the situation in which it was acquired to new situations are optimal if instruction 

includes both the elements of innovation and efficiency. In their model, efficiency and 

innovation are two orthogonal coordinates. If instruction only focuses on efficiency, the 
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cognitive engagement and processing by the students will be diminished and they will not 

develop the ability to transfer the acquired knowledge to new situations. Similarly, if the 

instruction is solely focused on innovation, students may struggle to connect what they are 

learning with their prior knowledge so that learning and transfer will be inhibited. They propose 

that the preparation for future learning and transfer will be enhanced if the instruction focuses on 

moving along a diagonal trajectory in the two dimensional space of innovation and efficiency. 

 

Out of the two essential parameters for the transfer of learning, one way to define 

“efficiency” is the ability to “rapidly retrieve and accurately apply appropriate knowledge and 

skills to solve a problem with understanding and explanation” (Schwartz et al. 2005). Generally 

speaking, the best method for increasing efficiency is, as the aphorism says, “practice makes 

perfect”. Anderson’s research on the effect of practice suggests that information can be retrieved 

faster from the long term memory while solving problems through more practice (Anderson 

1999). More practice in applying the same knowledge to different contexts also enhances 

people’s ability to break down a new task into several routine problems which can be easily 

solved (Schwartz et al. 2005). 

However, over-emphasis on efficiency in the transfer of knowledge has the serious 

disadvantage of producing “functionally fixed behaviors” (Luchins 1942) or “routine experts” 

who can quickly and accurately solve the familiar problems but are not be able to go beyond the 

routine procedures (Hatano & Inagaki 1986, Hatano & Oura 2003). People focusing on 

efficiency can be confined in their own routine task without stepping out to analyze the problems 

from a different angle. One interesting example is the story told by James Adams in the book 

“Conceptual blockbusting: A guide to better ideas” (Adams 1990). He mentions that a group of 

mechanical engineers were struggling to design a machine which could pick up tomatoes without 
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bruising them. Though these engineers tried many ways to improve the tomato picker, no 

inspiring outcome occurred. Then some botanists joined this project and provided a different 

viewpoint—cultivate stronger tomatos with thicker skin! Similarly, when we interviewed 

students in traditionally taught quantum mechanics courses about how the wave function of the 

system would evolve after a position measurement, a majority of students’ incorrect responses 

can be classified in two categories: some of them claimed that the system will be stuck in the 

position eigenstate while others claimed that it will go back to the initial state. Even if we told 

students that neither of these choices were correct, they could not think of another option, e.g., 

the wavefunction will evolve with time according to the Time-dependent Schrödinger equation 

(which is the correct answer). Instead, many students did not believe that there can be another 

choice. They would often argue with statements such as the following “if the system neither 

stays in the collapsed state nor goes back to the initial state, where could it go”? 

Therefore, for robust transfer of learning, instructional tools should include elements of 

“innovation”. Innovation sometimes originates from the stages of disequilibrium when people 

find that their routine ways of thinking does not work (Schwartz et al. 2005). Creating optimal 

mismatch opportunities via innovative learning tools can be helpful in not only building a 

knowledge structure but also in enhancing students’ innovative ability. The advanced students in 

quantum mechanics often have a reasonable expertise in introductory physics and classical 

mechanics but they are “novices” in quantum mechanics. Effective instructional tools can help 

students go beyond their routine reasoning processes in classical mechanics and learn to think in 

a quantum mechanical way. 

In physics courses, straight lectures are often used as an efficient strategy for conveying 

knowledge. However, if students are not given an opportunity to think, they may memorize the 
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algorithms and definitions of concepts without developing a functional understanding of the 

fundamental principles of physics. On the other hand, if students are given innovative tasks that 

force them to think about the physics principles involved beyond what they have been told, they 

may be able to interpret the concepts better and build a good knowledge structure. But if these 

innovative tasks are too challenging and beyond students’ zone of proximal development, 

students can get frustrated, may not pursue the task as desired and hence may not learn. Thus, a 

balance of efficiency and innovation is required for learning to be meaningful and for appropriate 

transfer of knowledge to occur (Schwartz et al. 2005). The pace of efficient instruction and the 

complexity of the innovative tasks should therefore be carefully controlled (Schwartz et al. 2005). 

By considering the issues related to innovation and efficiency together in an educational process, 

learners can become “adaptive experts” who are not only able to solve routine problems but can 

also utilize their knowledge to solve novel problems in a new domain (Hatano & Inagaki 1986). 

We note that one common element of all of these seemingly different frameworks 

discussed in this and the previous two sections is their focus on students' prior knowledge in 

order to scaffold learning. Indeed, instructional tools must be designed with students' prior 

knowledge in mind in order for instruction to be in the zone of proximal development and to 

provide optimal mismatch to ensure adequate preparation for future learning. 
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1.4 GUIDED INQUIRY APPROACH 

Traditionally, physics instruction is based on the instructors’ perspective of the course materials 

and the instructors’ anticipation of the students’ level (McDermott 1991). Instructors usually 

have expertise in physics (at least instructors at the college level). Unfortunately, without 

guidance and support related to effective teaching, many instructors have difficulty 

understanding the importance of knowing the prior knowledge of students for effective teaching. 

They have difficulty putting themselves in students’ shoes and often consider the difficulty of the 

subject matter from their perspective instead of the students’ perspective. Often, instructors do 

not use a systematic approach to problem solving which includes performing a conceptual 

analysis, planning and decision making before the implementation of the plan. Moreover, the 

instructor may automatically use problem solving as an opportunity for repairing, extending and 

organizing their knowledge, but reflection and metacognition must be taught explicitly to 

students. They themselves reflect upon why a principle of physics was suitable in one situation 

but not in another situation and how they will recognize the next time that principle is relevant in 

other situations. Without explicit guidance, students may not understand the importance of 

reflection, metacognition and knowledge organization in mastering physics. For example, most 

students in an introductory physics course know the statement of Newton’s third law that the 

action and reaction forces of two bodies are equal in magnitude and opposite in direction. 

However, many students still believe that a heavy truck exerts more force on a small car when 

they crash. While students may be given some quantitative problem asking them to find the 

accelerations of the truck and the car after collision, they may look at a solved example problem 

and obtain an answer to the quantitative question asked without internalizing that the forces on 

the truck and car are equal in magnitude. As long as they can get an answer to a quantitative 



 21 

problem, students often do not go through the deeper reasoning process to build the connections 

between the new knowledge and their previous experiences, reconcile the differences, and repair 

and build a robust knowledge structure.  

Research shows that students must be actively engaged in the learning process for 

learning to be meaningful. To overcome the disadvantages of traditional instruction, inquiry-

based teaching and learning strategy has been introduced in science education. In 1996, the 

National Science Education Standards asserted that the study of science “must emphasize student 

understanding through inquiry” (National Research Council 1996 p.212). In the National Science 

Education Standards, inquiry is defined as follows (National Research Council 1996, p.23): 

“Scientific inquiry refers to the diverse ways in which scientists study the natural world 

and propose explanations based on evidence derived from their work. Inquiry also refers to the 

activities of students in which they develop knowledge and understanding of scientific ideas, as 

well as an understanding of how scientists study the natural world.”   

Guided inquiry is a commonly used technique in an inquiry-based instruction. In the 

guided inquiry approach, the instructor provides the course materials and appropriate “guiding” 

questions for the students to investigate (Colburn 2000). The guided inquiry approach reflects 

how people understand the world and how the scientific knowledge is developed. Thus, it is a 

more natural way for the students to construct their knowledge structure with guidance from the 

questions that students are asked to investigate. In the learning cycle of a guided inquiry 

approach, students first work on the questions in the learning materials using their prior 

knowledge so that they can develop their own explanations based upon their current 

understanding of relevant scientific concepts and principles. Then, they can discuss their 

reasoning and explanations with their classmates to make sure that their interpretations are 
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consistent with others. The students can also be posed questions in other situations and asked to 

evaluate whether their reasoning is consistent with what actually happens in those situations and 

with the guidance and perspective provided by the instructor. If the students find that their 

reasoning is inconsistent with the perspective provided, they can examine possible 

misconceptions and gaps in their knowledge. After the students reconcile the differences 

between their initial reasoning and the correct perspective, another question can be posed to 

guide them to investigate a new aspect of the concepts they just learned and to help them build a 

robust knowledge structure.  

Some have argued that inquiry-based learning provides “minimal guidance” so it cannot 

be more effective than the traditional lecture or direct instruction (Kirschner et al. 2006). 

However, further research clarifies the difference between inquiry-based instruction and a 

“minimal guidance” approach in which students have very little guidance and shows evidence of 

the effectiveness of guided-inquiry approach in the learning process (Hmelo-Silver et al. 2007). 

In fact, the guided-inquiry approach provides extensive scaffolding and rich guidance for 

students learning scientific principles. When the questions used in the guided-inquiry approach 

are carefully designed, it can scaffold student learning and help them build a robust knowledge 

structure. Moreover, the role of the instructor in an inquiry-based class is not simply that of a 

person who supplies a set of questions that build on each other. He/she must pay attention to the 

students’ reasoning process and monitor students’ learning. The instructor can also respond to 

students’ questions and guide them appropriately.  

We note that inquiry-based instruction does not exclude other teaching and learning 

strategies. As noted in the National Science Education Standards, instructors should use different 

approaches to develop students’ knowledge and scientific abilities (National Research Council, 
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1996, p23). Traditional lecture still has its advantage in efficiently distributing the necessary 

information, especially when the class time is not long enough to cover everything using an 

inquiry-based approach. Therefore, when developing research-based learning tools for quantum 

mechanics, we make the guided-inquiry approach compatible with the traditional lectures. For 

example, the instructors can prepare their lectures as they used to but add QuILTs and concept 

tests as inquiry-based learning tools during the lecture to help students develop a good grasp of 

physics concepts.  

For example, to help students develop a better understanding of quantum mechanics via 

the Stern-Gerlach experiment or to help with their understanding of issues related to quantum 

measurement, we have designed the corresponding QuILTs which use a guided-inquiry approach 

based on students’ common difficulties and prior knowledge. Each QuILT typically contains 20 

to 30 guided questions. In a QuILT, we may use a group of 3 to 5 questions to address one aspect 

of the new knowledge. At the end of each group of questions, necessary feedback is provided to 

students via computer simulations, illustrations and a general class discussion of the issues. If the 

QuILT is implemented in class, the instructor can lead a discussion at the end of each group of 

questions to ensure that everybody benefits from what others have learned. The difficulty level 

of the questions as well as the connection between different groups of questions in a QuILT is 

carefully monitored. A QuILT can also be used as a homework supplement or as a self-study tool 

by students.  
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1.5 PEER INSTRUCTION 

Peer instruction was popularized by Mazur at Harvard University in the 1990s. As stated in 

Mazur’s manual of peer instruction, the fundamental goal of implementing peer instruction 

strategy in class is “to exploit student interaction during lectures and focus students’ attention on 

underlying concepts” (Mazur 1997 p.10). This statement actually points out two commonly 

existing problems in many physics classrooms. One problem is that students have little 

interaction with the instructor and their classmates so they have inadequate opportunity to benefit 

from such interactions and reflect on what they are taught. Most students just sit in the classroom 

and copy everything on the blackboard or powerpoint slides. Or in some cases, students would 

not bother to come to the class if they can download the slides online or copy the lecture notes 

from their classmates. Students are often too busy in taking notes to ask a question or discuss 

their confusions with the instructor and classmates. Then after the class, they are very likely to 

forget about their questions. Some professors ask informal questions in the class to interact with 

the students. However, usually only a small group of students in the class are willing to answer 

the questions and the silent majority in the class do not get involved.    

The other common problem in the traditional physics classes is that students pay less 

attention to the qualitative interpretation than the quantitative skills when learning physics. 

Students only learn what they are tested on. Since most of the questions in the homework and 

exams in a traditional physics course ask the students to calculate a physical quantity or derive an 

equation, things that can be done algorithmically, so that students often have the epistemological 

misunderstanding that physics is just a collection of formulas and algorithms. Without incentive, 

students make little effort to interpret the concepts and principles and learn to organize their 

knowledge hierarchically. They tend to use a plug and chug approach to solving physics 
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problems by looking for a suitable formula in which they could plug in all the variables given in 

a problem statement. But algorithmic quantitative exercises cannot automatically improve 

students’ conceptual understanding. Research has shown that high-performing students on 

quantitative tests may fall in the low-performing group on conceptual tests (Mazur 1997 p.7-10). 

Therefore, it is of great importance to help students develop conceptual understanding and build 

a robust knowledge structure of physics.   

In the peer-instruction approach, concept tests are used as a guidance to lead peer 

discussions in class. A concept test question is usually a multiple-choice question related to a 

core concept or principle that is being discussed in the course. Most of the time, the options in 

each multiple-choice question have been prepared before the lecture (with alternative choices 

often dealing with common difficulties) though in some cases the instructor can ask the students 

to provide the possible answers and then let the class vote on these ideas. For a class using the 

peer instruction method, the class hour can be divided into several pieces of presentations 

focusing on each central point (Crouch & Mazur 2001). At the end of each short presentation, the 

corresponding concept test questions are given to the class. Students discuss with a partner the 

answers to the concept test questions and then they are polled either by electronic clickers 

(Beatty et al. 2006), show of cards (with A through E written on each card) or by show of hands 

for each choice in the multiple-choice question. 

There are tremendous advantages to implementing peer instruction in class. First of all, 

students are actively engaged in the learning process instead of passively listening to the lecture 

and taking notes. During the peer discussion, students must convey their understanding about the 

relevant concepts to their peers as well as examine their peers’ interpretation and reasoning. 

Since this task is challenging, students must constantly be on their toes. They must focus on what 
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they just learned, discussing with their peers, and repair, extend and organize their knowledge in 

their long term memory. 

Secondly, in the peer instruction approach, students are encouraged to ask questions. 

Moreover, when a student gives an answer after a group discussion and the answer turns out to 

be incorrect, the student would treat it as “our” mistake instead of “my” mistake. Thus, he/she is 

less shy or awkward to ask for clarification. In addition, students can often understand each 

other’s difficulty much better than the instructor can because all students have learned the 

material recently and have gone through similar processes of reasoning and clarification of 

confusion. Since there is a large gap between the novice and the expert knowledge structure, 

some mistakes made by the students may seem puzzling to the instructor. On the other hand, 

students in the class may have experienced and overcome similar difficulty in their reasoning 

process so they can effectively guide their classmates to the right track. Research have shown 

that students can “co-construct knowledge” when they are solving problems with peers (Singh 

2005). Co-construction of knowledge occurs when neither of the two students in a discussion 

group could solve the problem individually, but they are able to solve the problem together.  

Thirdly, the instructor could have an instant feedback on how well the class understands 

the content just taught. This feedback can be easily and quickly obtained quantitatively and 

carefully analyzed later if the classroom is equipped with an electronic clicker system. Students 

use the remote answering device (clicker) to record their answers for a concept test question and 

the distribution of their selections can be shown anonymously to the whole class via computer 

projection. If most students make the right choice, then the instructor can safely move to the next 

topic. Otherwise, further discussions can take place to make sure that most students in the class 

have a correct understanding of the relevant concepts. Even if the electronic devices are not 
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available in the classroom, the peer instruction method can still be used by asking students to 

show their answers using cards or a show of hands. The instructor could prepare cards, or simply 

letter size papers, in different colors with the choices A, B, C, D & E so that the answer 

distribution can also be efficiently estimated. The drawback of showing cards or raising hands is 

the lack of anonymity. In these cases, students’ answers may be influenced by others’ responses.   

Last but not least, peer instruction with an electronic clicker system can increase the class 

attendance which may have positive implications for learning. Points can be awarded to students 

for tying to answer the clicker questions even if their selections are incorrect. Since students have 

learned the material recently, students can be awarded most of the points (e.g., 80%) for trying to 

answer the clicker questions even if they are not correct. Also instructors should make students 

realize that questions similar to the concept test questions will be asked in their midterm and 

final exams so that they take learning with peers seriously instead of randomly pressing a button 

on the clicker.  

1.6 CHAPTER REFERENCE 

Adams, J. (1990). Conceptual blockbusting: A guide to better ideas. Cambridge, MA: Perseus 

Publishing. 

Adams, W., Perkins, K., Podolefsky, N., Dubson, M., Finkelstein, N., and Wieman, C. (2006). 

"New instrument for measuring student beliefs about physics and learning physics: The 

Colorado Learning Attitudes about Science Survey." Physical Review Special Topics - 

Physics Education Research, 2(010101). 

American Journal of Physics. (2002).  The Theme Issue of American Journal of Physics, 70(3), 

March 2002 

Anderson, J. (1999). Learning and memory: An integrative approach. New York: Wiley. 



 28 

Bao, L. and Redish, E. (2002). "Understanding probabilistic interpretations of physical systems: 

A prerequisite to learning quantum physics." Am. J. Phys., 70(3), 210-217. 

Beatty, I., Gerace, W., Leonard, W., and Dufresne, R. (2006). "Designing effective questions for 

classroom response system teaching." Am. J. Phys., 74(1), 31-39. 

Beichner, R. J. (2009). An Introduction to Physics Education Research. http://www.per-

central.org/document/ServeFile.cfm?ID=8806&DocID=1147. 

Bransford, J., and Schwartz, D. (1999). "Rethinking transfer: A simple proposal with multiple 

implications", A. Iran-Nejad and P. Pearson, (eds.), Review of Research in Education. 

Washington, D.C.: American Educational Research Association, pp. 61-100. 

Carr, L. D. and McKagan, S. B. (2009). "Graduate quantum mechanics reform." Am. J. Phys., 

77(4), 308-319. 

Chase, W., and Simon, H. (1973). "Perception in chess." Cognitive Psychology, 4, 55-81. 

Chi, M., Feltovich, P., and Glaser, R. (1981). "Categorization and representation of physics 

knowledge by experts and novices." Cognitive Science, 5, 121-152. 

Colburn, A. (2000). "An Inquiry Primer." Science Scope, 23(6), 42-44. 

Crouch, C., and Mazur, E. (2001). "Peer Instruction: Ten years of experience and results." Am. J. 

Phys., 69(9), 970-977. 

Cruz, J. (2006). “Epistemology”. In Encyclopedia of Cognitive Science, edited by Nadal, L., NY: 

Wiley, published online 15 Jan 2006. 

Dufresne, R., Gerace, W., Hardiman, P., and Mestre, J. (1992). " Constraining novices to 

perform expert-like problem analyses: Effects on schema acquisition." Journal of the 

Learning Sciences, 2(3), 307-331. 

Feynman, R. (1965). The Character of Physical Law, chapter 6. London, United Kingdom: 

British Broadcasting Corp. 

Flavell, J. H. (1976). "Metacognitive aspects of problem solving", L. Resnick, (ed.) The nature of 

intelligence. Hillsdale, NJ: Erlbaum. 

Gray, K., Adams, W., Wieman, C., and Perkins, K. (2008). "Students know what physicists 

believe, but they don't agree: A study using CLASS survey." Physical Review Special 

Topics - Physics Education Research, 4(020106). 

Hammer, D. (2000). "Student resources for learning introductory physics." Am. J. Phys. 68(7), 

S52-S59. 



 29 

Hatano, G., and Inagaki, K. (1986). "Two courses of expertise", H. Stevenson, H. Azuma, and K. 

Hakuta, (eds.), Child development and education in Japan. New York: Freeman, pp. 262-

272. 

Hatano, G., and Oura, Y. (2003). "Reconceptualizing school learning using insight from 

expertise research." Educational Researcher 32(8), 26-29. 

Heller, J., and Reif, F. (1984). "Prescribing effective human problem solving processes: Problem 

description in physics." Cognition and Instruction 1(2), 177-216. 

Hestenes, D., and Halloun, I. (1995). "Interpreting the force concept inventory." The Physics 

Teacher, 33, 502-506. 

Hestenes, D., Wells, M., and Swackhamer, G. (1992). "Force concept inventory." The Physics 

Teacher, 30(3), 141-158. 

Hmelo-Silver, C., Duncan, R., and Chinn, C. (2007). "Scaffolding and Achievement in Problem-

Based and Inquiry Learning: A Response to Kirschner, Sweller, and Clark (2006)." 

Educational Psychologist 42(2), 99-107. 

Ireson, G. (2000.) "The quantum understanding of pre-university physics students." Phys. Educ. 

35(1), 15-21. 

Johnston, I. D., Crawford, K., and Fletcher, P. R. (1998). "Student difficulties in learning 

quantum mechanics." Int. J. Sci. Educ. 20, 427-446. 

Jolly, P., Zollman, D., Rebello, S., and Dimitrova, A. (1998). "Visualizing motion in potential 

wells." Am. J. Phys. 66(1), 57-63. 

Kirschner, P., Sweller, J., and Clark, R. (2006). "Why minimal guidance during instruction does 

not work: an analysis of the failure of constructivist, discovery, problem-based, 

experiential, and inquiry-based teaching." Educational Psychologist 41(2), 75-86. 

Landauer, T. K., and Bjork, R. A. (1978). "Optimum rehearsal patterns and name learning", M. 

M. Gruneberg, P. E. Morris, and R. N. Sykes, (eds.), Practical aspects of memory. 

London: Academic Press, pp. 625-632. 

Leonard, W., Dufresne, R., and Mestre, J. (1996). "Using qualitative problem-solving strategies 

to highlight the role of conceptual knowledge in solving problems." Am. J. Phys. 64, 

1495-1503. 

Lin, S. Y., and Singh, C. (2009). "Assessing Expertise in Quantum Mechanics using 

Categorization Task", In 2009 Physics Education Research Conference, C. Henderson, M. 

Sabella, and C. Singh, (eds.), AIP Conf. Proc. 1179, pp. 185-188. 

Lin, S. Y., and Singh, C. (2010). "Categorization of quantum mechanics problems by professors 

and students." Euro. J. Phys. 31, 57-68. 



 30 

Luchins, A. S. (1942). "Mechanization in problem solving." Psychological Monographs 54 

(Whole No. 248). 

Maloney, D. (1994). "Research in problem solving: Physics", D. Gabel, (ed.) Handbook of 

Research on the Teaching and Learning of Science. New York: MacMillan. 

Mason, A., and Singh, C. (2009). "Reflection and Self-monitoring in Quantum Mechanics", In 

2009 Physics Education Research Conference 1179, C. Henderson, M. Sabella, and C. 

Singh, (eds.), AIP Conf. Proc., pp. 197-200. 

Mason, A., and Singh, C. (2010). "Do advanced physics students learn from their mistakes 

without explicit intervention?" Am. J. Phys., 78(7), 760-767. 

Mazur, E. (1997). Peer Instruction: A User's Manual, Upper Saddle River, NJ: Prentice Hall. 

McDermott, L. C. (1991). "Millikan Lecture 1990: What we teach and what is learned--Closing 

the gap." Am. J. Phys. 59(4), 15. 

McKagan, S. B., Perkins K. K., and Wieman, C. E. (2008a). "A deeper look at student learning 

of quantum mechanics: the case of tunneling." Physical Review Special Topics - Physics 

Education Research, 4(020103) and the references therein. 

McKagan, S. B., Perkins K. K., Dubson, M., Malley, C., Reid, S., LeMaster, R., and Wieman, C. 

E. (2008b). "Developing and Research PhET simulations for Teaching Quantum 

Mechanics." Am. J. Phys., 76, 406-417. 

McKagan, S. B., Perkins K. K., and Wieman, C. E. (2008c). "Why we should teach the Bohr 

model and how to teach it effectively." Physical Review Special Topics - Physics 

Education Research, 4(010103). 

McKagan, S. B., Handley, W., Perkins K. K., and Wieman, C. E. (2009). "A Research-Based 

Curriculum for Teaching the Photoelectric Effect." Am. J. Phys., 77(1), 87-94 and the 

references therein. 

Melton, A. W. (1970). "The situation with respect to the spacing of repetitions and memory." 

Journal of Verbal Learning and Verbal Behavior, 9, 596-606. 

Mestre, J., Dufresne, R., Gerace, W., Hardiman, P., and Touger, J. (1993). "Promoting skilled 

problem solving behavior among beginning physics students." Journal of Research in 

Science Teaching 30, 303-317. 

Metcalfe, J., and Shimamura, A. (1994). Metacognition: knowing about knowing, Cambridge, 

MA: MIT Press. 

Miller, G. (1956). "The magical number seven, plus or minus two: Some limits on our capacity 

for processing information." Psychological Review, 63, 81-97. 



 31 

National Research Council. (1996). National Science Education Standards. Washingtion D.C.: 

National Academy of Sciences  

Peterson, L. R., and Peterson, M. J. (1959). "Short-term retention of individual verbal items." 

Journal of Experimental Psychology 58, 193-198. 

Piaget, J. (1964). "Development and learning", R. Ripple and V. Rockcastle, (eds.), Piaget 

Rediscovered. New York: Cornell University Press, pp. 29. 

Raymond, E. (2000). Cognitive Characteristics, Needham Heights, MA: Allyn & Bacon, A 

Pearson Education Company. 

Redish, E., Saul, J., and Steinberg, R. (1998). "Student Expectations in Introductory Physics." 

Am. J. Phys., 66, 212-224. 

Redish, E., Steinberg, R., and Wittmann, M. (2001). A New Model Course in Applied Quantum 

Physics, available at http://www.physics.umd.edu/perg/qm/qmcourse/NewModel 

Schommer, M. (1990). "Effects of beliefs about the nature of knowledge on comprehension." 

Journal of Educational Psychology, 82(3), 406-411. 

Schwartz, D., Bransford, J., and Sears, D. (2005). "Efficiency and Innovation in Transfer", J. 

Mestre, (ed.) Transfer of Learning: Research and Perspectives. Greenwish, CT: 

Information Age Publishing Inc., pp. 1-52. 

Scott, M., Stelzer, T., and Gladding, G. (2007) "Explicit Reflection in an Introductory Physics 

Course." In 2007 Physics Education Research Conference, L. Hsu, C. Henderson, and L. 

McCullough, (eds.), AIP Conf. Proc. 951, pp. 188-191. 

Simon, H. (1974). "How big is a memory chunk." Science, 183(4124), 482-488. 

Singh, C. (2005). "Impact of peer interaction on conceptual test performance." Am. J. Phys., 

73(5), 446-451. 

Singh, C. (2007). "Student difficulties with quantum mechanics formalism" In 2007 Physics 

Education Research Conference, L. Hsu, C. Henderson, and L. McCullough, (eds.), AIP 

Conf. Proc. 883, pp. 185-188. 

Singh, C., Belloni, M., and Christian, W. (2006). "Improving student's understanding of quantum 

mechanics." Physics Today, 8(43-49). 

Smith, L. (1985). "Making Educational Sense of Piaget's Psychology." Oxford Review of 

Education, 11(2), 181-191. 

Styer, D. (1996). "Common misconceptions regarding quantum mechanics" Am. J. Phys., 64, 31-

34. 



 32 

Touger, J., Dufresne, R., Gerace, W., Hardiman, P., and Mestre, J. (1995). "How novice physics 

students deal with explanations." International Journal of Science Education, 17(2), 255-

269. 

Van Heuvelen, A. (1991). "Overview Case Study Physics." Am. J. Phys., 59, 898-907. 

Wittmann, M., Steinberg, R., and Redish, E. (2002). "Investigating student understanding of 

quantum mechanics: Spontaneous models of conductivity." Am. J. Phys., 70(3), 218-226. 

Yerushalmi, E., and Eylon, B. (2003) "Assessing reflection on practice: a problem solving 

perspective." In 2003 Physics Education Research Conference, J. Marx, S. Franklin, and 

K. Cummings, (eds.), AIP Conf. Proc.720, pp. 153-156. 

Zollman, D., Rebello, S., and Hogg, K. (2002). "Quantum mechanics for everyone: Hands-on 

activities integrated with technology." Am. J. Phys., 70(3), 252-259. 



 33 

2.0  IMPROVING STUDENTS’ UNDERSTANDING OF POSSIBLE 

WAVEFUNCTIONS 

2.1 ABSTRACT 

In this chapter, we will describe the difficulties students have with possible wavefunctions. We 

will also discuss the development and implementation of a research-based Quantum Interactive 

Learning Tutorial (QuILT) to reduce these difficulties. The preliminary evaluation shows that the 

QuILT about possible wavefunctions is effective in improving students’ understanding of the 

concepts related to possible wavefunctions. 

2.2 BACKGROUND 

The wavefunction is one of the most fundamental concepts in quantum mechanics. In Newtonian 

mechanics, once we know the position )0( =tx and velocity )0( =tv  of a particle with mass m  

at a given time t=0 and the force ),( txF acting on it as a function of time, we can at least 

theoretically figure out the position )(tx and velocity )(tv  for all future times and from that 

information derive other dynamics variables as a function of time, e.g., momentum and kinetic 

energy. In quantum mechanics on the other hand, a particle is represented as a “probability 

wave” which is described by the wavefunction ),( txΨ  at a given time t.  The absolute square of 
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the wavefunction 
2

),( txΨ  gives the probability density of finding the particle at position x , at 

time t . The wavefunction ),( txΨ  itself is in general complex so its absolute square is 

 ),(),(),( *2
txtxtx ΨΨ=Ψ ,  (Eq 2.1) 

where ),(*
txΨ  is the complex conjugate of the wavefunction ),( txΨ .  

Any possible wavefunction of a quantum system must satisfy some basic properties. First, 

since 
2

),( txΨ  represents the probability density of finding the particle at position x  and the 

probability of finding the particle anywhere in space must be unity, the possible wavefunction 

),( txΨ  for any quantum system must be normalizable, i.e., for one spatial dimension, 

 1),(
2 =Ψ∫

+∞

∞−

dxtx . (Eq 2.2) 

This implies that the wavefunction must be square integrable and must go to zero at plus and 

minus infinity. Second, there cannot be two different values of the probability density for finding 

the particle at a given position x . So the wavefunction ),( txΨ  (both its real and imaginary parts) 

must be continuous everywhere. Also, the wavefunction must satisfy the boundary conditions of 

the quantum system. For example, ),( txΨ  must be zero at the boundary of a one dimensional 

(1D) infinite square well since the potential is infinite beyond the boundaries of the well. 

Moreover, the first derivative of the wavefunction x∂Ψ∂ /  must be continuous everywhere 

except for the positions where the potential energy )(xV  is infinite. This is because the kinetic 

energy operator depends on the second derivative of the wavefunction and  is given by 
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2
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If x∂Ψ∂ /  is discontinuous at a position where the potential energy )(xV  is finite, the 

expectation value of the kinetic energy of the particle would be infinite.  

A possible wavefunction of a quantum system can be written as a linear superposition of 

a complete set of basis vectors. Since eigenfunctions of an operator corresponding to a physical 

observable, e.g., energy, form a complete set of basis vectors, we can always write a possible 

wavefunction in terms of a linear superposition of the energy eigenfunctions for that system. The 

energy eigenfunctions )(xnψ  ( ,...3,2,1=n ) corresponding to the energies nE  satisfy the Time-

Independent Schrödinger Equation (TISE)  

 )()(ˆ xExH nnn ψψ = . (Eq 2.4) 

Since the time evolution of a quantum system is governed by the Time-Dependent Schrödinger 

Equation (TDSE), the energy eigenfunction at time t  can be represented by the energy 

eigenfunction at time 0=t  multiplied by a common phase factor, i.e., 

 
h/

)0,(),(
tiE

nn
nextx

−=ψψ . (Eq 2.5) 

When a quantum system is in an energy eigenstate, the expectation value of any observable Q̂  

(without explicit time dependence) is time-independent because the common phase factor 

cancels out, i.e., 

 )0(ˆ)0,(ˆ)0,(),(ˆ),()(ˆ //** ==== ∫∫
+∞

∞−
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tQexQextxQtxtQ
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tiE

nnn
nn hh ψψψψ . (Eq 2.6) 

Therefore, the energy eigenfunctions are also called the stationary state wavefunctions.  

However, all stationary state wavefunctions are not possible wavefunctions for a quantum 

system. For example, the stationary state wavefunction of a free particle is a plane wave ikx
e  

where k  is the wave vector. This wavefunction is not normalizable so it is not a possible 

wavefunction for a free particle. However, a normalizable free particle wave packet can be 
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constructed by taking a linear superposition of the stationary state wavefunctions ikx
e  with 

different wave vectors k .  

2.3 INVESTIGATION OF STUDENTS’ DIFFICULTIES 

In these investigations, our goal was to examine students’ difficulties with possible 

wavefunctions after traditional instruction so that we can devise strategies to improve students’ 

understanding. The investigation of students’ difficulties with possible wavefunctions was 

carried out by administering written surveys to more than a hundred advanced undergraduate and 

graduate students enrolled in quantum mechanics courses and by conducting individual 

interviews with a subset of students. Both open-ended questions and multiple-choice questions 

were administered to probe students’ difficulties. The individual interviews were conducted 

using a think-aloud protocol (Chi 1994). During the think-aloud interviews, students were asked 

to verbalize their reasoning process while they answered the questions about possible 

wavefunctions. They were not interrupted unless they remained silent for a while. At the end of 

the interview, we asked the students to clarify issues they had not made clear in their earlier 

explanations. 

2.3.1 Difficulties related to the normalization of possible wavefunctions 

One survey question asked students to draw a qualitative sketch of the ground state wavefunction 

of a particle in a 1D finite square well of width  a  and depth 0V−  ( 00 >V ) between ax ≤≤0 . 

We note that though students were provided separate spaces for drawing the wavefunction, they 
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still confused the vertical axis in the potential energy diagram with the vertical axis of the 

wavefunction. Instead of simply showing the location of 0=x  and ax =  in their sketches, many 

students redrew the potential energy diagrams and situated the wavefunction in the well without 

specifying what the vertical axes of their plots were. Such confusion between the vertical axis of 

the potential energy diagram and the vertical axis of wavefunction indicates that students may 

have difficulties with interpreting the dimension (unit) of the wavefunction. For a possible 

wavefunction ),( txΨ  corresponding to a quantum system in one spatial dimension, the 

normalization condition (Eq. 2.2) must be satisfied, which implies  

 xofunittxofunit /1),( =Ψ , (Eq. 2.7) 

in which the position x  has the unit of length.   

Another question in the investigation asked students to draw the wavefunction of the 

particle in a 1D finite square well when the energy of the particle is higher than zero (the 

potential energy )(xV of the finite square well is 0)( VxV −=  between ax ≤≤0  and 

0)( =xV elsewhere). In response to this question, some students incorrectly claimed that the 

slope of the wavefunction is zero outside the well since the potential energy there is zero (e.g., 

Figure 2.1). The student who sketched Figure 2.1 also incorrectly believed that the constant 

value of the wavefunction in the region III is lower compared to region I since it is affected by 

the potential energy in region II and “dies”. 

 

Figure 2.1 According to this student, the slope of the wavefunction is zero in the regions where 

potential energy is zero. 
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Some students also had difficulty with normalization of the wavefunction and why 

normalization is important. For example, some students were confused about the normalization 

issues of a free particle stationary state wavefunction. Since the stationary state wavefunction of 

a free particle cannot be normalized, it is not a possible wavefunction for a free particle. Some 

students were confused about whether a free particle can be in a stationary state. For a free 

particle, we can form a wave packet which is a superposition of the energy eigenstates. If these 

wavepackets are formed by taking a linear superposition of stationary states in a very narrow 

range of the energy spectrum, it can be made normalizable but still considered to be almost a 

stationary state wavefunction. Thus, although a stationary state wavefunction of a free particle is 

not a possible wavefunction, the free particle can still have its energy in a very narrow range.  

2.3.2  Difficulties related to the boundary conditions in different potential energy wells 

The one dimensional (1D) infinite square well and 1D finite square well are common models 

used to illustrate the basic machinery of quantum mechanics. However, students have difficulties 

in differentiating between the possible wavefunctions for the finite and infinite square wells. For 

example, when asked to draw the ground state wavefunction for a finite square well, some 

interviewed students claimed that the shape of the various bound state wavefunctions for the 

finite square well cannot be sinusoidal inside the well because the sinusoidal stationary state 

wavefunctions are only possible for an infinite square well. One of the students incorrectly 

sketched a Gaussian function and claimed that the ground state wavefunction should be Gaussian 

to ensure that the wavefunction has no cusp and decays to zero outside the well. However, 

solving the TISE for the finite square well, one finds that the stationary state wavefunctions 

inside the finite square well are sinusoidal functions. We find that while students noticed some 
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differences between the finite and infinite square well stationary state wavefunctions correctly, 

they overlooked some features that these two models have in common.    

When analyzing the possible wavefunctions for a finite square well, some students over-

generalize what they have learned about the stationary state wavefunctions for that potential 

energy well. For example, the stationary state wavefunctions for a finite square well have non-

zero exponential tails (bound states) or oscillatory behavior (scattering states) in the region 

outside the well. Students often incorrectly over-generalize the behavior of the stationary state 

wavefunctions and conclude that any possible wavefunction for a finite square well must have a 

non-zero part outside the well. For example, in a multiple choice question, we asked 85 students 

whether a normalized wavefunction as shown in Figure 2.2 is a possible wavefunction for a finite 

square well between ax <<0 . The wavefunction )(xψ  shown is zero in the regions 1bx <  and 

2bx > . Only 40% of the students correctly answered that such a wavefunction is a possible 

wavefunction for the finite square well. About 51% of the students chose the wrong statement 

that “it is not a possible wavefunction because the probability of finding the particle outside the 

finite square well is zero but quantum mechanically it must be nonzero”. Among those students 

who incorrectly believed that the wavefunction must be nonzero outside the well, 60% also 

claimed that the wavefunction in Figure 2.2. does not satisfy the boundary condition of the finite 

square well.   

 

Figure 2.2 A wavefunction localized inside a finite square well. Students incorrectly believed that any 

possible wavefunction in a finite square well must have non-zero value outside the well. 
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2.3.3 Difficulties related to the continuity of possible wavefunction 

Students often neglect the requirement of the continuity of the wavefunction when they sketch 

the wavefunction for a particle interacting with a piecewise continuous potential energy such as 

the finite square well. For example, in Figures 2.3(a) and (b), both students realized that the 

ground state wavefunction is sinusoidal inside the finite square well and decaying outside the 

well. However, they drew the wavefunction inside and outside the well separately without 

ensuring that the wavefunction is continuous at the boundaries between different regions. In 

Figure 2.3(c), a student sketched a scattering state wavefunction of a particle incident from the 

left side of the well. The wavefunction should be oscillatory in all the three regions (including 

inside the well) instead of exponentially decaying as drawn by the student. Also, the student who 

drew Figure 2.3(c) incorrectly sketched a discontinuous wavefunction at the left boundary of the 

well.   

 

Figure 2.3 Samples of incorrect sketches of wavefunctions which are discontinuous at the boundaries 

of the finite square well. 
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2.3.4 Difficulties related to the continuity of the first derivative of a possible wavefunction 

Compared to the continuity of the wavefunction, the continuity of the first derivative of the 

wavefunction is more difficult for the students to internalize. Many students do not correctly 

interpret the meaning of the first derivative of the wavefunction x∂Ψ∂ / . Since the derivative of 

x∂Ψ∂ /  (or the second derivative of Ψ ) is related to the kinetic energy of the system, the 

wavefunction must be smooth everywhere except where the potential energy is infinite. For 

example, in a 1D infinite square well between ax ≤≤0 , the first derivative of the stationary 

state wavefunctions are continuous between ax <<0  but discontinuous at the boundaries 0=x  

and ax = . Thus, a possible wavefunction for an infinite square well should not have any cusp 

inside the well. However, when we asked the students whether the function as shown in Figure 

2.4 was a possible wavefunction for an infinite square well, four out of seven students claimed 

that it is a possible wavefunction even though the question explicitly mentioned the discontinuity 

of x∂Ψ∂ /  at the position bx =  inside the well. Some students made similar mistakes when they 

were asked to draw the ground state wavefunction for a finite square well as shown in Figure 2.5. 

 

Figure 2.4 A wavefunction with a cusp inside the well is not allowed for an infinite square well. 

 

Figure 2.5 Wavefunction with a cusp inside the well drawn by a student. The wavefunction is not 

allowed for a finite square well. 
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Some students who did not realize that the first derivative of the wavefunction must be 

continuous where the potential energy is finite over-generalized their experience about the 

discontinuity of x∂Ψ∂ /  at the boundaries of an infinite square well and incorrectly believed that 

x∂Ψ∂ /  can be discontinuous at the boundaries of a finite square well as well. For example, 

when students were given a question asking them to draw a wavefunction that is possible for 

both infinite and finite square wells, a student sketched a stationary state wavefunction for the 

infinite square well and claimed that “it (the stationary state wavefunction for the infinite square 

well) also works for finite square wells”.  

2.3.5 Difficulties with qualitative sketch of the possible wavefunction without using 

quantitative solutions  

Some students have difficulties with qualitatively sketching the possible wavefunction if they do 

not know the quantitative solution of the Time-Independent Schrödinger Equation (TISE) for the 

system. During the interview, one student claimed that it is impossible to draw the stationary 

state wavefunctions for a finite square well because one must find the solution of a 

transcendental equation which can only be numerically solved. When the student was 

encouraged to make a qualitative sketch, he drew two coordinate axes and then drew some 

parallel curves and a straight line from the origin intercepting the curves (Figure 2.6). He 

claimed that all he can say without solving the equation numerically is that the intercepts will 

give the wavefunction. While one must solve a transcendental equation to find the finite number 

of bound states for a finite square well, the student was asked to draw a qualitative sketch of the 

wave function, something that is taught even in a modem physics course. In particular, students 

are taught that the bound state wave functions for a finite square well look sinusoidal inside the 
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well with an exponential tail outside in the classically forbidden region. It appeared that the 

student had memorized a procedure but had not developed a qualitative "feel" for what the bound 

and scattering state wave functions should look like for a finite square well. 

 

Figure 2.6 A student’s sketch to find a graphical solution of the transcendental equation which he 

believed was necessary to obtain a qualitative sketch of the ground state wavefunction for the finite square 

well potential energy. 

2.4 RESEARCH BASED LEARNING TOOLS 

Based on the investigation of students’ difficulties, we developed a QuILT to improve students’ 

understanding of possible wavefunctions. The goal of the possible wavefunction QuILT is to 

help students learn about possible wavefunctions and bridge the gap between conceptual and 

quantitative aspects. The development of the QuILT went through a cyclical iterative process 

which includes the following stages: (1) Development of the preliminary version based upon 

theoretical analysis of the underlying knowledge structure and research on students' difficulties 

with possible wavefunctions, (2) implementation and evaluation of the QuILT by administering it 

individually to students, measuring its impact on student learning and assessing what difficulties 

remained, (3) refinement and modification based upon the feedback from the implementation 

and evaluation.  
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As noted in the introduction section, the QuILT uses a guided approach to learning about 

the possible wavefunctions for a given potential energy and it takes advantage of students’ prior 

knowledge and resources about wavefunction found during investigation of students’ difficulties. 

The QuILT also uses computer-based visualization tools to help students develop physical 

intuition about the possible wavefunction for different potential energies. The simulations 

adapted in the QuILT related to the infinite square well and the free particle wave packets are 

developed by the Open Source Physics project (Christian & Belloni 2008), which is flexible and 

can be easily tailored to the desired situations in our QuILT. We also adapted a PhET Interactive 

Simulation developed at the University of Colorado in our QuILT (McKagan et al, 2009).  

2.4.1 Possible wavefunction for a 1D infinite square well  

The first part of the QuILT discusses the possible wavefunction in the simplest model involving 

an infinite dimensional Hilbert space, i.e., the 1D infinite square well. At the beginning of the 

QuILT, students get an opportunity to review the properties of the stationary state wavefunctions 

)(xnψ and judge whether the superposition of the stationary state wavefunctions (presented both 

in the mathematical and pictorial representations) are possible wavefunctions for the infinite 

square well at a given time. During the investigation of student difficulties, we found that many 

students could recognize that the superposition of the stationary state wavefunctions in the 

mathematical representation is a possible wavefunction. But they incorrectly believed that the 

same wavefunction in the graphical representation is not possible because the graph is not 

symmetric or anti-symmetric about the center of the well. Therefore, one question in the QuILT 
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is designed in the mathematical representation, e.g., [ ])()(
2

1
21 xx ψψ + , and another one in the 

graphical representation as shown in Figure 2.7.  

 

Figure 2.7 A superposition of stationary state wavefunctions for a 1D infinite square well. 

To ensure that students understand why the asymmetric wavefunction is a possible wavefunction 

even though the potential energy is symmetric about the center of the well, we help students 

connect the mathematical and graphical representations. We also ask them to consider a dialogue 

in which students have to make sense of a conversation between two people as follows:  

Sally: I don’t understand the answer to question above (Figure 2.7). The wavefunction is 

neither symmetric nor anti-symmetric about the center of the well. Why is it a possible 

wavefunction for a symmetric potential energy? 

Harry: When the potential energy is symmetric, an energy eigenfunction must be 

symmetric or anti-symmetric. But a superposition of energy eigenstates is not necessarily 

symmetric or anti-symmetric. For example, the sum of an even function and an odd function is 

neither even nor odd.  

Sally: But I think a possible wavefunction must be an eigenstate of a particular operator, 

e.g., the Hamiltonian or position operator. 

Harry: That’s not true. The possible wavefunction need not be an eigenstate of a 

particular operator. It can be a superposition of the eigenstates. 

Do you agree with Sally or Harry? Explain. 
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The QuILT also asks students to use the simulations to construct various superpositions 

of the stationary state wavefunctions for the infinite square well so that they can watch how the 

symmetric/anti-symmetric stationary state wavefunctions combine into other possible 

wavefunctions that are neither symmetric or anti-symmetric. A snapshot of the simulation is 

shown in Figure 2.8. The first window shows the absolute value of the wavefunction. Students 

can change the width of the infinite square well and start/stop the time evolution to observe how 

the wavefunction changes with time. The option “phase as color” should be selected in our 

QuILT. Unselecting this option shows the real and imaginary parts of the wavefunction 

separately. The second window shows the coefficients in the superposition. The coefficients of 

different energy eigenstates (marked by “quantum #”) can be inputted to build a wavefunction 

which is a linear superposition of stationary states. “Re” is the real part and “Im” is the 

imaginary part of the coefficients. Students can use the button “Normalize” at the bottom of the 

second window to normalize the coefficients. 

    

Figure 2.8 OSP simulation of the possible wavefunction in a 1D infinite square well. 

Students are asked to first predict the qualitative shape of various superpositions of the 

stationary state wavefunctions and then use the simulation to examine their prediction. Students 

also must reconcile the differences between their prediction and what they observe in the 

simulation. The following is a sample excerpt:  
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Predict and sketch the shape of the wavefunction [ ])()(
2

1
)( 21 xxx ψψ −=Ψ . 

Input 1 as the coefficient for the ground state and -1 for the first excited state in the 

simulation coefficient box. Click “normalize” and observe the absolute value of the 

superposition wavefunction. Is the shape the same as your prediction? Explain. (Note that the 

simulation shows the absolute value of the wavefunction.) 

After the students use the simulation to build a superposition of the stationary state 

wavefunctions, they are given several multiple choice questions to review the properties of a 

possible wavefunction in an infinite square well. For example, students often incorrectly believe 

that any possible wavefunction must satisfy the TISE. In the QuILT, we ask students to consider 

whether the wavefunction [ ])()(
2

1
)0,( 21 xxx ψψ +=Ψ  satisfies the TISE. After their prediction, 

students must check their prediction by explicitly plugging the wavefunction in the TISE. They 

are also asked to find the wavefunction at time t and then plug it into the Time-Dependent 

Schrödinger Equation (TDSE) to check whether ),( txΨ satisfies the TDSE. They learn that a 

possible wavefunction ),( txΨ  always satisfies the TDSE but not necessarily the TISE (unless it 

is a stationary state or a superposition of stationary states with the same energy). Students are 

also asked to predict how different possible wavefunctions for an infinite square well evolve with 

time and they use the simulations in the QuILT to check their prediction. This activity is 

particularly useful in helping students understand the difference between the time evolution of 

the probability density for a stationary state wavefunction and a superposition of the stationary 

state wavefunctions.  
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2.4.2 Possible wavefunction for a 1D finite square well  

The stationary state wavefunctions for an infinite square well are in the form of sinusoidal waves 

inside the well and zero outside the well. It is a simple model to help students understand that the 

possible wavefunction for a quantum system can be written as a linear superposition of the 

stationary state wavefunctions. However, the possible wavefunctions for an infinite square well 

are always zero in the classically forbidden region. Moreover, due to the potential energy being 

infinite outside the well, first derivative of the wavefunction is not continuous at the boundaries. 

These artificially constrained properties of the infinite square well are not true for more realistic 

potential energies. Therefore, students must learn the properties of the possible wavefunctions 

for more realistic potential energies, e.g., the 1D finite square well. 

While discussing the 1D finite square well, students are asked to consider whether a 

wavefunction with a discontinuous first derivative is a possible wavefunction (as shown in 

Figure 2.9). Students learn that it is a possible wavefunction for an infinite square well but not 

for a finite square well since its first derivative is discontinuous at 0=x  and ax = .  

 

Figure 2.9 The first derivative of the wavefunction is discontinuous at the boundaries so this 

wavefunction is not a possible wavefunction for a finite square well. 

Students use the simulation to observe the shape of the stationary state wavefunctions for 

a finite square well. They can also build a wavefunction which is a linear superposition of the 

stationary state wavefunctions in the simulation and compare the difference between the possible 
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wavefunctions for the finite square well and the infinite square well. We adapted the quantum 

bound state program (see snapshot in Figure 2.10) developed by the PhET team at the University 

of Colorado in the QuILT. Students can change the depth and width of the 1D finite square well 

and select a particular energy level to observe the absolute square of an energy eigenfunction. 

Students can also build various linear superpositions of stationary states by clicking the button 

“Superposition State” and inputting the coefficients as desired. Students can also observe the 

time evolution of the absolute square of the wavefunction (probability density) by clicking the 

button “Play/Pause”. In the QuILT of the possible wavefunction, students are asked to predict the 

outcomes, e.g., the qualitative shape of the superposition state [ ])()(
2

1
21 xx ψψ +  in a finite 

square well and then check their prediction using the simulation. 

 

Figure 2.10 A snapshot of the simulation of the finite square well. 

Figure 2.11 shows an example in which students are given two similar non-stationary 

wavefunctions (but one stretched to the left with respect to the other) to learn that a possible 

wavefunction in a finite square well can be nonzero beyond the well and need not be symmetric 
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about the center of the well. Earlier in the QuILT, in the context of the infinite square well, 

students are asked to consider the same two wavefunctions and determine if they are possible 

wavefunctions. As discussed in chapter 2.3.2, some students incorrectly believe that the 

wavefunction must be non-zero outside a finite square well because of the fact that the stationary 

state wavefunctions for this system always have a non-zero part outside of the well. We therefore 

also asked students whether a peaked wavefunction as shown in Figure 2.2 is a possible 

wavefunction for a finite square well. For all the three wavefunctions (Figure 2.2, Figure 2.11(a), 

Figure 2.11(b)) for a finite square well, students learn that they are possible wavefunctions 

because they are “continuous, smooth and normalizable”. They learn that just because the 

stationary state wavefunctions have a non-zero part outside of the well does not imply that we 

cannot take their linear superpositions to form possible wavefunctions that are zero outside the 

well.   

       

Figure 2.11 (a) The wavefunction is zero in the classically forbidden region of a finite square well.  

(b) The wavefunction is non-zero in the classically forbidden region of a finite square well. 

Students again use the simulations to check the time evolution of the stationary states and 

non-stationary states for a finite square well. Students are also asked to sketch, e.g., the ground 

state wavefunctions for the finite and infinite square wells and compare and explain the 

similarities and differences between these wavefunctions.  
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2.4.3 Possible wavefunction for a free particle  

In some quantum systems, e.g., a free particle, the stationary state wavefunctions are not 

normalizable. Although the possible wavefunctions in such quantum systems are a linear 

superposition of the stationary states, the stationary states themselves are not possible 

wavefunctions. In the QuILT on possible wavefunctions, we use the free particle system to help 

students understand these issues.  

In the QuILT, students are asked to choose the correct graphical representation of the 

stationary state wavefunction of a free particle and their attention is drawn to the fact that the 

stationary state wavefunctions ikx
Ae  for a free particle are not normalizable. We provided a 

dialogue question as shown below to help the students understand why an energy or momentum 

eigenstate wavefunction for a free particle is not a possible wavefunction but we can still have a 

free particle with definite energy or momentum. 

Sally: How can the energy eigenfunction not be a possible wave function for the free 

particle?  

Harry: Because the absolute square of the wavefunction must be normalizable. 

Otherwise the total probability of finding the particle would be infinite. 

Sally: I disagree. If the energy eigenfunction is not a possible wave function, that means 

we cannot have a free particle with definite value of energy or momentum. But classically we can 

always have a free particle moving with a constant momentum. 

Harry: Well, the free particles in reality exist as wave packets. The magnitude of the 

momentum of a free particle is kp h=  and the energy is 
m

k
E

2

22h
= , where 

λ
π2

=k  is the 

magnitude of the  wave vector. A wave packet could consist of plane waves 
ikx

e  with different 
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wave vectors k  in a very narrow range. Thus, we can consider the wave packet as “effectively” 

having a definite energy and momentum, if the distribution of energy/momentum is highly 

localized about a given wave vector k . 

Do you agree with Sally or Harry? Explain. 

We incorporated another simulation from Open Source Physics to help students learn that 

a free particle wave packet can be constructed using a linear superposition of the stationary state 

wavefunctions. Students can observe that the wave packet spreads out as time evolves. Students 

learn that the spreading of the wave packet is due to different stationary state wavefunctions that 

form the wave packet having different phase velocities. Students also learn that in condensed 

matter physics, the free particle model is often used for electrons in metals with periodic 

boundary conditions imposed on the system.  

2.4.4 QuILT Homework for Possible Wavefunctions  

The QuILT homework helps students review the concepts they have learned in the QuILT. In the 

homework, students must explain in their own words why the wavefunction must be continuous. 

Students are given different wavefunctions and asked to judge whether they are possible for the 

finite or infinite square well and explain their reasoning. They are also asked to differentiate 

between any possible wavefunction and the stationary state wavefunctions. In the QuILT 

homework, students are also asked to explain why they agree or disagree with statements about 

the possible wavefunctions such as the following:  

(1) Consider the following statement: For an infinite square well, all possible 

wavefunctions are energy eigenfunctions because the time independent Schrödinger equation 
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(TISE) is an eigenvalue equation for energy. Explain why you agree or disagree with this 

statement. 

(2) Consider the following statements: The energy eigenfunction 
ikx

Ae ( A  is a constant 

and k is the wave vector) for a free particle is not a possible wavefunction. Therefore, we cannot 

represent a possible wavefunction for a free particle as a superposition of functions of the 

form
ikx

Ae . Explain why you agree or disagree with this statement. 

2.5 PRE-TEST AND POST-TEST DATA 

We conducted preliminary evaluations of the QuILT about possible wavefunction in two 

junior-senior level quantum mechanics classes, first with 13 students and second with 18 

students. The two classes were taught by the same instructor. In both classes, students first 

received traditional instruction about the possible wavefunctions for different quantum systems, 

e.g., 1D infinite square well, 1D finite square well, free particle, etc. After traditional instruction, 

students took the pre-test and then worked on the QuILT. The post-test was administered in the 

following class period after students had finished the QuILT. We designed two versions of a test 

(versions A and B) to assess students’ understanding of possible wavefunctions. Both versions A 

and B have 5 questions each. Students were randomly given either version A or version B of the 

test as the pre-test after the traditional instruction. Then, each student was administered the 

version of the test he/she had not taken as the post-test after working on the QuILT. In particular, 

15 students in the two classes were administered version A as pre-test (and version B as the post-

test) whereas the other 16 students were given version B as the pre-test (and version A as the 

post-test). The average pre-test score for all 31 students was 63% and the average post-test score 
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was 89%. The average pre-test and post-test score on each question combining the two classes is 

listed in Table 2.1.  

Question A-2 asks students to consider whether a wavefunction with a cusp (as shown in 

Figure 2.4) is a possible wavefunction for an infinite square well. The improved performance 

suggests that the students are more likely to understand that a possible wavefunction must be 

smooth. Question B-3 as shown below tested whether students could recognize the discontinuous 

first derivative of the wavefunction at the boundary which is not possible for a finite square well. 

The results of question B-3 indicate that after the QuILT, students had a better understanding of 

these issues.  

Question B-3: Select all of the following wave functions which are possible for an 

electron in a one dimensional finite square well of width a between 0=x  and ax = . A is a 

suitable normalization constant. You must provide a clear reasoning for each case. 

(a) )/3sin()( axAx π=Ψ  for ax ≤≤0 , 0)( =Ψ x , otherwise.  

(b) ( ))/2sin(5/3)/sin(5/2)( axaxAx ππ +=Ψ  for ax ≤≤0 , 0)( =Ψ x , otherwise.  

(c) 
2)/)2/(()( aax

Aex
−−=Ψ . 

Questions A-4 and B-4 both asked students to consider whether the stationary state 

wavefunction for a free particle is a possible wavefunction. We gave the mathematical form of 

the stationary state wavefunction ikx
Ae  for the free particle in question A-4 but not in B-4. The 

improved performance on both questions in the post-test suggests that students have a better 

understanding of the normalization issues of the free particle stationary state wavefunctions. In 

the post-test, some students explicitly mentioned that a possible wavefunction for a free particle 

can be constructed by forming a wave packet using a linear superposition of the stationary state 

wavefunctions.     
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Question A-5 asked students to sketch a single wavefunction that is possible for both 

infinite and finite square wells of width a. Both wells are between x=0 and x=a. If students 

believed that such wavefunctions do not exist then they were asked to explain their reasoning. 

Partial scores were given to students if they only drew a correct graph but did not provide an 

explanation. In the pre-test, more than 80% of the students either sketched incorrect graphs 

which are not possible for the finite square well or incorrectly claimed that such a wavefunction 

does not exist. After the QuILT, students realized that a possible wavefunction for both infinite 

and finite square wells must be zero outside the well and smooth everywhere including at the 

boundaries of the well. Question B-5 asked the students to sketch a single wavefunction that is 

possible for the infinite square well but not for a finite square well. Students showed improved 

understanding of the properties of possible wavefunction in different potential energy wells after 

the QuILT. 

Table 2.1 The pre-test and post-test scores on each question. A and B represent the test version. 

Fifteen students were administered test A and sixteen students were administered test B in the pre-test and 

switched the test versions in the post-test.  

Question A-1 A-2 A-3 A-4 A-5 B-1 B-2 B-3 B-4 B-5

Pre-test Score in % 97% 60% 93% 67% 17% 81% 41% 44% 66% 50%

Post-test Score in % 94% 88% 97% 97% 84% 100% 93% 86% 79% 75%
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2.6 SUMMARY 

We have investigated students’ difficulties related to possible wavefunctions for different 

quantum systems and used the findings as a guide to develop the QuILT related to possible 

wavefunctions. Preliminary evaluation suggests that the QuILT about possible wavefunction is 

effective in improving students’ understanding of these concepts. 
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3.0  IMPROVING STUDENTS’ UNDERSTANDING OF BOUND & SCATTERING 

STATE WAVEFUNCTIONS 

3.1 ABSTRACT 

In this chapter, we describe the difficulties students have with the bound and scattering state 

wavefunctions. We also discuss the development and implementation of a research-based 

Quantum Interactive Learning Tutorial (QuILT) to reduce these difficulties. The preliminary 

evaluation shows that the QuILT about the bound and scattering state wavefunctions is effective 

in improving students’ understanding of the concepts related to bound and scattering states. 

3.2 BACKGROUND 

Energy eigenfunctions )(xnψ  ( ,...3,2,1=n ) corresponding to the energies nE  satisfy the Time-

Independent Schrödinger Equation (TISE) for a quantum system with Hamiltonian Ĥ , i.e.,  

 )()(ˆ xExH nnn ψψ = . (Eq 3.1) 

The energy eigenfunction at time t  can be obtained by multiplying the energy eigenfunction at 

time 0=t  by the phase factor 
h/tiEne

−
, i.e., 

 
h/

)0,(),(
tiE

nn
nextx

−=ψψ . (Eq 3.2) 
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Since the energy eigenfunctions of a quantum system form a complete set of basis vectors 

for the Hilbert space, any possible wavefunction of the system can be written as a linear 

superposition of the energy eigenfunctions for that system. Based on the comparison between the 

energy of a particle for a given quantum system and the potential energy at plus/minus infinity 

(in the position space), the energy eigenstates can be categorized into bound states and scattering 

states. If the energy of the particle is less than the potential energy at both plus and minus infinity, 

the energy eigenstate is a bound state. Otherwise, the energy eigenstate is a scattering state. 

When approaching infinity ( ±∞→x ), a bound state wavefunction for a quantum system decays 

to zero so the bound state wavefunctions are normalizable. But a scattering state wavefunction is 

oscillatory at either plus or minus infinity or both so it is not normalizable. However, although a 

possible wavefunction can be constructed by taking a linear superposition of the scattering states, 

a scattering state itself is not a possible wavefunction for the quantum system.  

3.3 INVESTIGATION OF STUDENT’S DIFFICULTIES 

In these investigations, our goal was to examine students’ difficulties with the bound and 

scattering state wavefunctions after traditional instruction so that we can devise strategies to 

improve students’ understanding. The investigation of students’ difficulties with the bound and 

scattering state wavefunctions was carried out by administering written surveys to more than two 

hundred advanced undergraduate and graduate students enrolled in quantum mechanics courses 

and by conducting individual interviews with a subset of students. We have used both open-

ended questions and multiple-choice questions to probe students’ difficulties. The individual 

interviews were conducted using a think-aloud protocol (Chi 1994). When the students answered 
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the questions in the think-aloud interviews, they were asked to verbalize their reasoning process 

and not interrupted unless they remained silent for a while. At the end of the interview, students 

were asked to make further explanations on the issues which they had not clarified earlier. 

3.3.1 Difficulties related to the classical bound state and the quantum bound and 

scattering states 

In a classical system, when the energy of an object is less than the potential energy in the local 

regions, the object is in a classical bound state. For example, as shown in Figure 3.1, if a toy car 

with energy E  is initially located between ax =  and bx = , it is bounded in that region and 

cannot move to other regions such as ax <  or bx > . The positions where the potential energy 

V  equals the total energy E  of the classical object are called the classical turning points, e.g., 

ax =  and bx =  in Figure 3.1 (at these points the kinetic energy of a classical particle is zero 

and the particle turns around). The regions beyond the classical turning points are called the 

classically forbidden regions such as the regions (I), (II) and (IV) in Figure 3.1. 

 

Figure 3.1 An example of classical bound state but quantum mechanical scattering state. 

However, for a quantum particle in an energy eigenstate, its wavefunction is non-zero in 

the classically forbidden regions except where the potential energy is infinity. Therefore, a 

quantum particle in an energy eigenstate has a finite probability of being found in the classically 
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forbidden regions. Many students have difficulties in differentiating between the classical bound 

and scattering states and the quantum mechanical bound and scattering states. Take the system 

shown in Figure 3.1 as an example. Some students in our study incorrectly claimed that a 

quantum particle must stay in region (III) for all times, while some other students mistakenly 

believed that a classical particle which was initially in region (III) can also be found in region (I).  

Many students incorrectly believed that any potential energy that allows a classical bound 

state must also allow a quantum mechanical bound state. We have given 109 students in seven 

universities a multiple-choice question asking them whether a quantum mechanical bound state 

is allowed for the potential energy as shown in Figure 3.2. Only 22% of the students correctly 

recognized that no bound state could exist in such a potential energy well since the energy of the 

quantum particle must be greater than the potential energy at plus/minus infinity.  

 

Figure 3.2 A potential energy well that does not allow quantum mechanical bound states. 

3.3.2 Difficulties related to the bound and scattering states being part of the same 

wavefunction 

Some students have difficulty realizing that a bound state or a scattering state is only determined 

by comparing the total energy E  of a quantum particle in the given state and the potential energy 

V at plus/minus infinity. Instead, some students claimed that a given quantum particle is in a 

bound state between the classical turning points and in a scattering state elsewhere, which 

indicates that these students incorrectly believe that the bound and scattering state wavefunctions 

are different parts of the same wavefunction. For example, when we asked the students to draw a 
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qualitative sketch of a ground state wavefunction and a scattering state wavefunction for a one-

dimensional (1D) finite square well of width a  and depth 0V−  between ax ≤≤0 , a student 

sketched a wavefunction as shown in Figure 3.3. He believed that the part of the wavefunction 

inside the well was a bound state and the parts of the wavefunction outside the well were 

scattering states corresponding to a “free particle”.  

 

Figure 3.3 An incorrect sketch of a wavefunction with bound and scattering states simultaneously. 

We have administered a multiple-choice question to 85 students asking them to judge 

whether the energy levels 1E  and 2E  correspond to a particle in a bound state or a scattering 

state in a finite square well as shown in Figure 3.4. Nineteen percent of the students incorrectly 

believed that a single particle in a given stationary state can have energy 1E  inside the well and 

have a different energy 2E outside the well. These students failed to notice that one stationary 

state wavefunction cannot have different energies in different regions. Therefore, a quantum 

particle in a given state cannot have a bound state wavefunction in some regions and a scattering 

state wavefunction in other regions. 

 

Figure 3.4 E1 corresponds to a bound state and E2 corresponds to a scattering state. A quantum 

particle in a stationary state cannot have different energies in different regions. 



 62 

3.3.3 Difficulties related to the quantum tunneling effect 

In quantum mechanics, there is a non-zero probability for a particle to be found in the classically 

forbidden regions, which is usually called the tunneling effect. However, some students 

incorrectly believe that the tunneling effect can only exist in the scattering states. For example, 

we asked students whether a quantum particle with energy E  interacting with a piecewise 

continuous potential energy as shown in Figure 3.5 is in a bound state or a scattering state. Since 

VE <  at both plus and minus infinity, the particle should be in a bound state. But some students 

claimed that the particle is in a scattering state because “it can tunnel through the barriers”. Some 

other students believed that the particle is in a bound state in the regions (II), (III) and (V) but in 

a scattering state in the regions (I), (IV) and (VI) since “classically the particle cannot be found 

in those regions”.  

 

Figure 3.5 An example of a bound state particle tunneling into the classical forbidden regions. 

Moreover, although some students realized that a non-zero wavefunction could exist in 

the classically forbidden regions, they still mistakenly believed that it is impossible to find the 

particle in the regions where the energy of the particle is lower than the potential energy ( VE < ). 

When we asked the students where they can find the particle for a given potential energy well as 

shown in Figure 3.5, several students claimed that the particle cannot be found in regions (I), (IV) 

and (VI) because “the particle only tunneled through these barriers”. However, when the students 
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were explicitly asked about whether a bound state particle can be found outside the finite square 

well, they would answer yes with no doubt.  

3.3.4 Difficulties in determining bound states related to the maximum value of potential 

energy vs. the energy of the particle 

A particle is in a quantum mechanical bound state if and only if its energy is less than the 

potential energy at both plus and minus infinity. However, some students are confused about the 

state of the particle when its energy is lower than the maximum value of the potential energy. We 

have administered a question to 15 students asking them about the state of a particle with energy 

E  interacting with a potential energy barrier (with maximum value 0V ) as shown in Figure 3.6. 

Only seven out of the fifteen students correctly answered that the particle is in a scattering state. 

In another multiple-choice question about the same system (in Figure 3.6) administered to 85 

students, 19% of the students chose the option that the particle is in a bound state when 0VE <  

and in a scattering state when 0VE > . 

 

Figure 3.6 A scattering state particle with energy E lower than the potential energy barrier V0. 
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3.3.5 Difficulties related to the directional preference of the scattering state wavefunctions 

for a symmetric potential energy 

A scattering state wavefunction is an energy eigenfunction with energy E  higher than the 

potential energy at either plus or minus infinity or both. A scattering state wavefunction could 

have directional preference, e.g., a particle can be launched from the left hand side of a 1D finite 

square well. However, the directional preference is not necessary and a scattering state 

wavefunction can have no directional preference. For example, ikx
e  and ikx

e
−  are scattering state 

wavefunctions for a 1D free particle system with opposite wave vectors k
r

and k
r

−  but the same 

energy proportional to 
2

k
r

. So their superposition wavefunction ikxikx
ee
−+  is still an energy 

eigenfunction with the same energy as the scattering state wavefunctions ikx
e  and ikx

e
− . But there 

is no directional preference for the scattering state wavefunction ikxikx
ee
−+ , which is a standing 

wave.  

However, many students have difficulties with the issues related to the directional 

preference of a scattering state wavefunction. Some students incorrectly assumed that all 

scattering states must correspond to a particle being launched from minus or plus infinity. Such 

misconception could be due to over-generalizing their experience about the experiments of 

scattered particles in modern physics. While some other students claimed that the scattering state 

wavefunctions for a finite square well can be symmetric, their reasoning was incorrect. For 

example, some of them incorrectly sketched the scattering state wavefunction as a symmetrical 

straight line.   
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3.3.6 Difficulties related to the transmission and reflection of a quantum mechanical 

particle in the scattering state 

Classically, when a particle with energy E  moves toward a region with higher potential energy 

EV >0 , the particle will be bounced back. Or if the potential energy is lower, i.e., EV <0 , the 

particle will transmit without reflection. However, in quantum mechanics, the wavefunction in 

general has a non-zero probability of transmission and reflection simultaneously. For a particle in 

a scattering state being launched from the left side of a 1D finite square well, it could have a non-

zero probability of being bounced back by the well. Thus, the wavefunction on the left side of 

the well has components of both incident and reflected waves, e.g., ikxikx
BeAe

−+ .  

Some students have difficulties with the transmission and reflection of a quantum 

mechanical particle in the scattering states in quantum mechanics. A multiple-choice question 

about a particle launched from minus infinity with energy 0>E  interacting with a 1D finite 

square well (with the depth 00 <−V  as shown in Figure 3.7) was administered to 18 students. 

Only 67% of the students correctly selected the options that the particle not only has a non-zero 

probability of passing through the well but also a non-zero probability of being bounced back.  

 

Figure 3.7 The particle launched from the left hand side of the potential energy well has a non-zero 

probability of being bounced back by the potential energy well. 
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3.4 RESEARCH-BASED LEARNING TUTORIAL FOR BOUND & SCATTERING 

STATE WAVEFUNCTION 

Based on the investigation of students’ difficulties, we developed research-based learning tools 

such as a QuILT and peer instruction tools to improve students’ understanding of the bound and 

scattering state wavefunctions. The QuILT helps the students learn about the bound and 

scattering state wavefunctions using a guided approach. We also used computer-based 

visualization tools in the QuILT to help students develop physical intuition about the bound and 

scattering state wavefunctions for different potential energies. The simulations we adapted in the 

QuILT on bound and scattering state wavefunction were developed by the PhET team at the 

University of Colorado (McKagan et al, 2009). Before the students start using the QuILT, a 

warm-up tutorial is provided to prepare all students with the necessary preliminary knowledge.  

The peer instruction tools address students’ common difficulties related to the bound and 

scattering state wavefunctions so that the students could reduce some misconceptions and build a 

better knowledge structure through peer discussion. We have used the concept tests as our peer-

instruction tools in the junior-senior level quantum mechanics course at the University of 

Pittsburgh for two years. Students must discuss each concept test question with their peers before 

they submit the answers through the clickers (electronic system). The instructors discuss the 

concepts and principles involved in the concept test questions if the students show difficulty in 

answering the questions. 
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3.4.1 Warm-up tutorial for the bound & scattering state wavefunction 

In the warm-up tutorial, students get an opportunity to review how to derive the energy 

eigenfunctions from the TISE and why the energy eigenstates can be categorized into bound 

states and scattering states. Students are asked to write the TISE as 

 ( )Ψ−=
∂
Ψ∂

ExV
xm

)(
2 2

22h
, (Eq 3.3) 

where )(xV  is the potential energy and E  is the energy eigenvalue. When the potential energy is 

greater than the energy of the particle, the curvature of the wavefunction 22 / x∂Ψ∂  has the same 

sign as the wavefunction Ψ . Students are asked to sketch a function such that the curvature of 

the wavefunction and the value of the wavefunction are both positive (or both negative) 

everywhere. Through plotting the function, the students will realize that such a function will 

keep increasing while approaching infinity (or keep decreasing while approaching minus infinity) 

so it cannot be a normalizable wavefunction. Therefore, students could learn why the energy of a 

quantum system must be greater than the minimum value of the potential energy.  

Students are also required to qualitatively draw a wavefunction in the region near infinity 

based on the relation between the curvature and the value of the wavefunction (Eq 3.3). They 

find that the wavefunction at plus/minus infinity is oscillatory if )(±∞>VE  and decays to zero 

if )(±∞<VE . A multiple-choice question helps students learn that when the energy is less than 

the potential energy at both plus and minus infinity, the wavefunction can be considered as 

bounded in a finite range because the probability of finding the particle at plus and minus infinity 

is zero. Thus, the students are guided to understand that whether a quantum system is in a bound 

state or a scattering state depends on the energy of the quantum particle compared to  the 

potential energy value at plus/minus infinity.   
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After the students learn that the bound states and the scattering states are both energy 

eigenstates, the QuILT asks them whether a quantum particle could have different energy in 

different regions of a piecewise continuous potential energy well (e.g., Figure 3.8). The QuILT 

also contains a dialogue question to elaborate that a particle in an energy eigenstate can only 

have one energy while its wave function can extend over various regions and the energy of the 

particle is not well defined if the wavefunction is not an energy eigenstate. The warm-up 

questions also help students learn that the energy spectrum of a quantum system is discrete for 

the bound states and continuous for the scattering states.  

 

Figure 3.8 An energy eigenstate only corresponds to one energy though the potential energy could 

have different values in different regions. 

3.4.2 QuILT on the bound & scattering state wavefunction 

At the beginning of the QuILT, we ask the students a sequence of questions to help them 

distinguish between the classical bound states and the quantum bound states. Then students are 

given some questions about the 1D infinite square well and the simple harmonic oscillator (SHO) 

potential energy well which only allow bound states. Students also predict whether a quantum 

particle can be found in the classically forbidden regions of a SHO potential energy well and 

then they can use the simulation to observe the bound state wavefunctions for a SHO and 

reconcile the differences between their predictions and observations. They also compare and 
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explain the similarities and differences between the bound state wavefunctions of a 1D infinite 

square well and a SHO.  

After the students have learned the simple models, e.g., the 1D infinite square well or the 

SHO, which only allow bound states, they are guided with some targeted questions about the 1D 

finite square potential energy well ( 0)( 0 <−= VxV  between ax ≤≤0  and 0)( =xV  elsewhere) 

that allows both bound and scattering states. Students first predict the shape of a bound state 

wavefunction inside and outside the finite square well when the energy is less than zero. A 

computer simulation helps the students observe the shape of the bound state wavefunctions for a 

finite square well so that they can examine their prediction and reconcile any differences 

between the prediction and observation. Then, the students are asked to consider whether a 

scattering state wavefunction with energy 0>E  incident from the left side of the well will 

necessarily be bounced back by the well. In the simulation about the scattering state 

wavefunctions, students can watch that the amplitude of the wavefunction is a constant on the 

right hand side of the well but not on the left hand side. Students learn that the changing 

amplitude of wavefunction on the left hand side is due to the interaction between the incident 

wave and the reflected wave. In a pictorial multiple-choice question as shown in Figure 3.9, 

students are asked to select the correct shape of a scattering state wavefunction with no 

directional preference (e.g., option (II) in Figure 3.9) when the particle is not sent from one side 

of the well. A dialogue question in the QuILT helps students understand why a scattering state 

wavefunction does not necessarily have directional preference.  
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Figure 3.9 A multiple choice question asking students to choose the correct qualitative sketch of a 

scattering state wavefunction with no directional preference. The correct answer is (II) only. 

Some potential energies such as a 1D finite square barrier ( 0)( 0 >=VxV  between 

ax ≤≤0  and 0)( =xV  elsewhere) only allow scattering state wavefunctions. As discussed in 

section 3.3.4, some students mistakenly believe that a wavefunction is in a bound state when the 

energy of the particle E  is less than the maximum potential energy 0V . To reduce these 

difficulties about the scattering states for a particle interacting with a 1D finite square potential 

energy barrier, the QuILT asks the students to predict the state (bound or scattering) of a 

quantum particle when its energy is higher or lower than 0V . Then the students could use the 

simulation to change the height of a potential barrier and the energy level of a particle to observe 

the shape of the wavefunction inside and outside the barrier. Students will find that the 

wavefunction is always oscillatory on the left and right sides of the barrier no matter whether the 

energy of the particle is lower or higher than the potential barrier. Therefore, for a particle 

interacting with a finite potential energy barrier, its energy eigenfunctions always correspond to 

scattering states. Students are also asked to predict whether the wavefunction will be reflected by 

the barrier or transmit through the barrier. Their predictions can be checked via the simulation by 

comparing the amplitude of the wavefunction on the left and right sides of the barrier. The 

varying amplitude of probability density on one side of the well indicates that the incident 
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wavefunction is reflected by the potential energy barrier.  A snap shot of the simulation is shown 

in Figure 3.10. 

 

Figure 3.10 PhET simulation of a scattering state wavefunction incident from the left hand side of a 

potential energy barrier. The probability density (square of the amplitude) of the wavefunction varies on the 

left side of the well due to the interaction between the incident and reflected wavefunctions. 

In addition to the QuILT, a sequence of research-based concept test questions can be 

integrated with the lectures as peer-instruction tools to improve students’ understanding of the 

issues related to bound and scattering state wavefunctions. The concept test questions will be 

discussed in chapter 8 in this thesis.  

3.5 PRELIMINARY EVALUATION 

We conducted preliminary evaluation of the QuILT about bound and scattering state 

wavefunctions in two junior-senior level quantum mechanics classes, the first with 14 students 
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and the second with 18 students. Students first received lectures and then used the concept tests 

as peer-instruction tools in both classes when learning the topics related to bound and scattering 

state wavefunctions. After the lecture and the peer instruction in class, students took the pre-test 

and then worked on the QuILT. The post-test was administered in the following class period 

after students had finished the QuILT. To eliminate any possible differences in the difficulty 

levels of the pre-test and the post-test, we designed two versions of a test, i.e., Test A and Test B, 

each of which has six questions. Students were randomly given either Test A or Test B as the 

pre-test and then each of them was administered the version of the test he/she had not taken as 

the post-test. In particular, 18 students in the two classes were administered Test A as the pre-test 

and 17 of them (one student absent) took Test B as the post-test.  The other 14 students were 

given Test B as the pre-test and 12 of them (two students absent) took Test A as the post-test. 

The average pre-test score for all 32 students was 69% and the average post-test score for the 29 

students was 86%. The average pre-test and post-test score on each question combining the two 

classes is listed in Table 3.1. 

Questions A-1 and B-1 require the students to consider a particle with energy E  

interacting with a piecewise continuous potential energy as shown in Figure 3.5 (question B-1) 

and Figure 3.11 (question A-1). Students are asked to write down all the possible regions where a 

classical particle or a quantum particle could be found. The improved performance suggests that 

the students are more likely to understand that a quantum particle in either a bound or scattering 

state could be found in the classical forbidden regions. Questions A-3 and B-4 ask the students 

whether a quantum particle with energy E  incident from −∞=x  would be bounced back by a 

finite square well (question A-3 as shown in Figure 3.7) or a finite square barrier (question B-4 

as shown in Figure 3.12).  The results of questions A-3 and B-4 indicate that students have a 
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better understanding of the fact that an incident particle has a finite probability of reflection even 

if its energy is higher than the maximum value of the potential energy well/barrier. A statement 

about the directional preference of the scattering state for a finite square well is used in both 

questions A-6 and B-6 as shown below. The instructor did not explain the pre-test questions to 

the students before they took the post-test and the students did not know that such questions 

would be asked again in their post-test. In the post-test, students showed better understanding of 

why the scattering state wavefunction for a finite square well can be symmetric without 

directional preference. They also sketched clearer graphs of wavefunctions to support their 

reasoning.  

Question A-6/B-6: Student A says that the scattering state wavefunction for an electron 

interacting with a finite square well can never be symmetric about the center of the well because 

the electron has to be launched from either left or right. Student B says that the scattering state 

wavefunction for a finite square well can be symmetric about the center of the well because the 

electron need not be launched from left or right. Explain why you agree or disagree with each 

student. Qualitatively sketch a wavefunction to support your answer. 

 

Figure 3.11 A particle with energy E interacting with a piecewise continuous potential energy well. 
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Figure 3.12 A particle with energy E incident from the left side of a finite square barrier. 

 

Table 3.1 The pre-test and post-test scores on each question. A and B represent the test version.  

Question A-1 A-2 A-3 A-4 A-5 A-6 B-1 B-2 B-3 B-4 B-5 B-6

Pre-test  75% 94% 67% 89% 64% 56% 68% 61% 93% 50% 57% 43%

Post-test 96% 92% 92% 83% 67% 79% 82% 97% 100% 76% 76% 91%

 

Since the peer-instruction tools used in class before the pre-test may enhance students’ 

performance in the pre-test, we administered the pre-test of bound and scattering state 

wavefunctions to another group of students (the comparison group) who had only received 

traditional instruction without using the concept tests and the QuILT. In the comparison group, 

15 students took Test A and 10 students took Test B after traditional instruction. The average 

score for all the 25 students in the comparison group is 41%. The comparison group students’ 

average score on each question is listed in Table 3.2. By comparing the students’ pretest scores 

after using the peer-instruction tools (as shown in Table 3.1) with the comparison group’s scores 

(as shown in Table 3.2), we can infer that the concept test reduced students’ difficulties in some 

issues related to bound and scattering state wavefunctions. For example, the multiple-choice 

question B-3 asks the students whether a 1D finite square well allows bound states or scattering 

states. In the comparison group, only 50% of the students knew that both bound and scattering 

states could exist for a 1D finite square well and many students mistakenly believed that only 
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bound states were allowed. Question A-4 requires the students to judge the state of a particle 

with energy E  interacting with a higher potential energy barrier as shown in Figure 3.6. More 

than half of the comparison group students incorrectly believed that the particle is in a bound 

state when the energy is lower than the maximum value of potential energy. In question A-2 we 

asked the students to sketch the energy levels of the bound states and scattering states for a 1D 

finite square well. The comparison group students had difficulties in realizing that the energy of 

the particle cannot be lower than the minimum value of the potential energy. Also some students 

in the comparison group did not understand that the scattering states are energy eigenstates with 

definite energy value. A student sketched a classical scattering situation such that an incident 

particle was reflected when hitting the potential energy well (as shown in Figure 3.13). Another 

student claimed that the scattering state requires a potential energy barrier instead of a potential 

energy well and sketched a plot as shown in Figure 3.14.  

 

Figure 3.13 A student in the comparison group incorrectly sketched a classical scattering situation to 

represent the energy level for a quantum scattering state.  

 

Figure 3.14 A student in the comparison group believed only the energy barrier allows a scattering 

state and he sketched a classical scattering situation to represent the energy level for the quantum scattering 

state. 
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Table 3.2 The control group scores on each question. A and B represent the test version. 

Question A-1 A-2 A-3 A-4 A-5 A-6 B-1 B-2 B-3 B-4 B-5 B-6

After Lecture  60% 57% 7% 47% 50% 23% 55% 55% 50% 10% 50% 25%

 

3.6 CONCLUSION 

We have investigated students’ difficulties related to bound and scattering state wavefunctions 

for different quantum systems and used the findings as a guide to develop the QuILT related to 

bound and scattering state wavefunctions. Preliminary evaluation suggests that the QuILT about 

bound and scattering state wavefunctions is effective in improving students’ understanding of 

these concepts. Comparison between the class using peer-instruction tools together with the 

lectures and the class having only traditional lectures suggests that the peer-instruction tools can 

reduce students’ difficulties about bound and scattering state wavefunctions. 
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4.0  IMPROVING STUDENTS’ UNDERSTANDING OF DRAWING ENERGY 

EIGENFUNCTIONS 

4.1 ABSTRACT 

In this chapter, we describe the difficulties students have with drawing the energy eigenfunctions. 

We also discuss the development and implementation of a research-based Quantum Interactive 

Learning Tutorial (QuILT) to reduce these difficulties. The preliminary evaluation shows that the 

QuILT about drawing the energy eigenfunctions is effective in improving students’ 

understanding of the concepts related to the shape of the energy eigenfunctions. 

4.2 BACKGROUND 

As stated by the correspondence principle, when the energy of a quantum system is high enough, 

the behavior of the quantum system is close to the corresponding classical system. Therefore, we 

can use a semi-classical approach to qualitatively analyze the shape of the energy eigenfunctions 

with high energy levels. In the semi-classical approximation, the kinetic energy K  for a particle 

in a quantum system is given by )(xVEK −=  where E  is the energy eigenvalue (total energy) 

and )(xV  is the potential energy of the system. The shape of the energy eigenfunction depends 
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on the value of the kinetic energy K . In the regions where the kinetic energy K  is negative 

( 0<K ), the energy eigenfunction decays as kx
e
−  in which the magnitude of the wave vector k   

is defined by 

 
h

Km
k

2
=  ( m  is the mass of the particle and h is reduced Planck’s constant). (Eq 4.2) 

In the regions where the kinetic energy K  is positive ( 0>K ), the energy eigenfunction is 

oscillatory. In order to qualitatively sketch the oscillatory energy eigenfunction, we need to know 

the wavelength of the wavefunction. The wavelength of an energy eigenfunction can be 

expressed by the de Broglie relation p/2 hπλ =  where the magnitude of the momentum p  for 

the quantum system is proportional to the magnitude of the wave vector k , i.e.,  

 mKkp 2== h . (Eq 4.2) 

Therefore, the higher the kinetic energy K , the shorter the wavelength λ .  

If the kinetic energy K  is positive, the relative amplitude of the oscillatory energy 

eigenfunction in different regions can also be determined by the semi-classical approximation. In 

the regions where the kinetic energy of the particle is larger, the momentum of the particle is 

larger so the particle moves “faster”. Therefore, the particle will spend less time in the region 

with higher kinetic energy K  and the probability of finding the particle in that region is lower. 

Since the absolute square of the amplitude of the wavefunction 
2

)(xψ represents the probability 

density of finding the particle at the position x , the absolute value of the amplitude of the 

wavefunction )(xψ  must be lower in the region where the kinetic energy is higher.  
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4.3 INVESTIGATION OF STUDENT’S DIFFICULTIES 

In these investigations, our goal was to examine students’ difficulties with drawing the energy 

eigenfunctions after traditional instruction so that we can devise strategies to improve students’ 

understanding. The investigation of students’ difficulties with drawing the energy eigenfunctions 

was carried out by administering written surveys to many advanced undergraduate and graduate 

students enrolled in quantum mechanics courses and by conducting individual interviews with a 

subset of them. We used open-ended questions to probe students’ difficulties by explicitly asking 

them to sketch the energy eigenfunctions for a given quantum system. The individual interviews 

were conducted using a think-aloud protocol (Chi 1994). In the think-aloud interviews, students 

were asked to verbalize their reasoning process and not interrupted unless they remained silent 

for a while. At the end of the interview, they were asked to explain the issues which they had not 

clarified earlier. 

4.3.1 Difficulties related to the position of the 0)( =xψ  axis 

If the total energy E  of the particle is higher than the potential energy )(xV , the energy 

eigenfunction is oscillatory about the x-axis of the )(xψ  vs. x  plot. On the other hand, if the 

total energy E  is less than the potential energy )(xV  at plus/minus infinity, the energy 

eigenfunction decays to 0)( =xψ  at plus/minus infinity. However, some students have 

difficulties in distinguishing between the vertical axis of the potential well (which has the units 

of energy) with the vertical axis of the wavefunction so they may shift the position of the 

0)( =xψ  axis when sketching the energy eigenfunctions. For example, in a survey question, 
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students were given a potential energy diagram for a one-dimensional (1D) finite square well of 

width a  and depth 0V−  between ax ≤≤0 . Students were asked to qualitatively sketch an 

energy eigenfunction with positive energy 0>E . A student incorrectly drew the wavefunction 

to be higher in the middle of the well as shown in Figure 4.1 and claimed that “(the wavefunction 

is) higher because some of the wave is reflected at the wall”. Similar mistakes also appeared 

when we asked the students to draw an energy eigenfunction with negative energy 0<E  for a 

1D finite square potential energy well. The wavefunction should oscillate about the axis 

0)( =xψ  inside the well and decay to zero at plus/minus infinity outside the well. However, 

some students shifted the value of )(xψ  about which it oscillates to 0)( >xψ  inside the well 

even though they had noticed that the decaying axis outside the well was 0)( =xψ .  

 

Figure 4.1 An incorrect sketch of an energy eigenfunction that oscillates about different axis. 

4.3.2 Difficulties related to decaying and oscillatory wavefunctions 

The energy eigenfunction should be oscillatory in the regions where )(xVE >  and decaying in 

the regions where )(xVE < . However, some students have difficulties in determining whether 

the energy eigenfunction is decaying or oscillatory in a given region. When we asked the 

students to draw an energy eigenfunction of a particle with energy 0>E  interacting with a 1D 
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finite square well of width a  and depth 0V−  between ax ≤≤0 , some students incorrectly 

sketched decaying wavefunctions inside the well as shown in Figure 4.2. These students have not 

learned what one should observe when the potential energy )(xV  is lower in the well. Instead, 

they plotted a decaying wavefunction from rote memory that may correspond to a particle 

interacting with a potential energy barrier. Moreover, similar to the student’s plot in Figure 4.1, 

the student who sketched Figure 4.2(a) incorrectly claimed that “(the wavefunction is a) typical 

particle wavefunction but lowered by potential well” as though the oscillations on different sides 

of the well should be around different references. 

 

Figure 4.2 Incorrect sketches of an energy eigenfunction in a finite square well. 

For an energy eigenfunction with an energy eigenvalue )(xVE < , the higher is the 

potential energy, the faster the wavefunction decays. We asked 12 undergraduate students in a 

junior-senior level quantum mechanics course to sketch the energy eigenfunction for a particle 

with energy E  interacting with a piecewise continuous potential energy well as shown in Figure 

4.3. Only half of the 12 students correctly noticed that the wavefunction should decay faster in 

region (III) than in region (I) since the potential energy is higher in region (III).  
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Figure 4.3 A particle with energy E interacting with a piecewise continuous potential energy well. 

The energy eigenfunction should decay faster in region (III) than in region (I). 

Students also have difficulties with drawing the energy eigenfunction for a potential 

energy well with infinite potential energy on one side of the well. For example, when we asked 

the students to draw an energy eigenfunction for a half simple harmonic oscillator potential 

energy well ( 2)( AxxV =  for 0≤x  and +∞=)(xV for 0>x , A  is a positive constant), some 

students sketched non-zero wavefunctions in the region 0>x  where the potential energy is 

infinity. These students did not realize that a quantum particle cannot be found in the regions 

where +∞=)(xV  and the wavefunction in these regions must be zero. 

4.3.3 Difficulties related to the wavelength of oscillatory wavefunctions 

As discussed in section 4.2, for an oscillatory energy eigenfunction with energy )(xVE > , the 

wavelength of the wavefunction is shorter in the regions where the kinetic energy )(xVEK −=  

is larger. We asked 12 students to explicitly comment on the wavelength of the energy 

eigenfunction for a particle with energy 0>E  interacting with a 1D finite square well of width 

a  and depth 0V−  between ax ≤≤0  as shown in Figure 4.4. Only 3 students correctly drew an 

oscillatory wavefunction with longer wavelength in regions (I) and (III) than in region (II). Four 
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students sketched an oscillatory wavefunction with the same wavelength in all regions and other 

students mistakenly drew a decaying wavefunction in regions (I) and (III). 

 

Figure 4.4 A particle with energy E>0 interacting with a finite square well. The wavelength of the 

oscillatory energy eigenfunction is longer in regions (I) and (III) than in region (II). 

4.3.4 Difficulties related to the absolute value of the amplitude of wavefunctions 

Students have great difficulties in understanding the relation between the amplitude of the energy 

eigenfunction and the potential energy in different regions. We asked seventeen students to 

sketch the energy eigenfunction for a particle with energy 0VE >  interacting with a 1D finite 

square barrier of width a  and height 0V  between ax ≤≤0  as shown in Figure 4.5. Since the 

kinetic energy of the particle )(xVEK −=  is lower in region (II) than in regions (I) and (III), 

the probability of finding the particle should be higher in region (II) than in regions (I) and (III). 

Therefore, the absolute value of the amplitude of the energy eigenfunction is larger in region (II). 

However, only one out of the seventeen students correctly sketched a wavefunction with higher 

absolute value of amplitude in region (II). Two students incorrectly sketched a wavefunction 

with lower absolute value of amplitude in region (II) and another two students mistakenly drew a 

decaying wavefunction in region (II). The other students did not notice that the absolute value of 
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the amplitude of the energy eigenfunction should vary in different regions when they were 

drawing the plots. 

 

Figure 4.5 A particle with energy E interacting with a finite square barrier. The absolute value of the 

amplitude of the energy eigenfunction is larger in region (II) than in regions (I) and (III). 

Students also have difficulties with the issues related to the shape of the energy 

eigenfunction with directional preference. If a quantum particle is sent from the left hand side 

( −∞→x ) of a potential energy well (or barrier), its wavefunction has a finite probability of 

being bounced back. Therefore, the absolute value of the amplitude of the wavefunction on the 

left hand side of the well (a superposition of incident and reflected wavefunctions) is larger than 

the absolute value of the amplitude of the wavefunction on the right hand side of the well 

(transmitted wavefunction only). We asked twelve students to sketch the energy eigenfunction of 

a particle with energy 0VE >  incident from −∞→x  interacting with a potential energy barrier 

of height 0V . None of the twelve students expressed the difference between the absolute values 

of the amplitude of the wavefunction on the left and right sides of the potential energy barrier 

though we explicitly told them that the particle was sent from one side ( −∞→x ).  
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4.4 RESEARCH-BASED LEARNING TUTORIAL FOR DRAWING ENERGY 

EIGENFUNCTIONS 

Based on the investigation of students’ difficulties, we developed the research-based QuILT to 

improve students’ understanding of drawing energy eigenfunctions. The QuILT helps the 

students learn to sketch the energy eigenfunction through a guided approach. We also 

incorporated computer-based visualization tools in the QuILT to help students observe the shape 

of the energy eigenfunctions for different quantum systems. The simulations we adapted in the 

QuILT on drawing energy eigenfunctions are developed by the PhET team at the University of 

Colorado (McKagan et al, 2009).  

At the beginning of the QuILT, students need to consider a particle with energy E  

interacting with a 1D finite square well as shown in Figure 4.6. The energy eigenfunction for this 

system is oscillatory in all the regions (I), (II) and (III). A sequence of questions asks the 

students to rank the magnitude of momentum p  in regions (I), (II) and (III) by comparing the 

kinetic energy K  of the particle in different regions. Based on the values of p  in different 

regions, students can use the de Broglie relation to compare the wavelength of the energy 

eigenfunction in regions (I), (II) and (III). Then a question in the QuILT explains to the students 

how to use a semi-classical approach to compare the absolute value of the amplitude of the 

wavefunction in different regions.   

 

Figure 4.6 A quantum particle interacting with a 1D potential energy well. 
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After the students have learned how to determine the wavelength and amplitude of the 

oscillatory energy eigenfunctions, they are asked to sketch the energy eigenfunction of a particle 

interacting with a 1D finite square well (Figure 4.6). A separate space is provided so that the 

students do not confuse the vertical axis in the potential energy diagram with the vertical axis of 

the wavefunction. Students need to compare the wavefunction with no directional preference and 

the wavefunction for a particle incident from one side of the well. The simulation in the QuILT 

of drawing energy eigenfunctions can help the students observe the shape of the energy 

eigenfunction for a particle incident from the left or right side of a 1D finite square well. 

Students can adjust the energy level of the incident particle and the depth of the 1D finite square 

well so they can find out how the wavelength and amplitude of the wavefunction vary with the 

different values of VE −  ( E  is the total energy and V  is the potential energy). A question in the 

QuILT shows the students the correct shape of a symmetric energy eigenfunction with no 

directional preference and another question explains to the students that the energy eigenfunction 

oscillates about the axis 0)( =xψ  when VE > . By sketching the wavefunction of a particle with 

energy 0<E  interacting with a 1D finite square well, students learn that the energy 

eigenfunction decays to zero at plus or minus infinity if the total energy E  is less than the 

potential energy V at infinity.  

The QuILT also asks the students to consider the wavelength and the amplitude of the 

energy eigenfunction for a particle interacting with a 1D finite square barrier as shown in Figure 

4.7. Students need to first predict the shape of the energy eigenfunction for a particle incident 

from the left hand side of the barrier and then use the simulation to check their predictions. They 

can find that the absolute value of the amplitude of the wavefunction is larger on the left hand 

side of the well than on the right hand side. Students are asked to adjust the height of the 
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potential energy barrier 0V  and the energy level of the incident particle E  ( 0VE < ) to observe 

that the wavefunction decays faster inside the barrier when the difference between 0V  and E  

increases. They can also find that the energy eigenfunction is oscillatory in all three regions if the 

energy of the particle is higher than the potential energy barrier ( 0VE > ). A question in the 

QuILT shows the students a symmetric wavefunction for a particle interacting with the potential 

energy barrier to help students understand that energy eigenfunctions without directional 

preference are allowed in the quantum system as shown in Figure 4.7.  

 

Figure 4.7 A quantum particle interacting with a 1D potential energy barrier. 

At the end of the QuILT of drawing energy eigenfunctions, students are asked to solve a 

problem about a particle interacting with a triangular potential energy well as shown in Figure 

4.8 where +∞=)(xV  for ax < . We provide a guided approach in the QuILT to help students 

analyze the wavelength and the absolute value of the amplitude of an energy eigenfunction for 

the triangular potential energy well. Students first learn that the particle cannot be found in 

region (I) as shown in Figure 4.8 since the potential energy is infinite in that region. They also 

learn that the energy eigenfunction is oscillatory in region (II) and decays in region (III). Then 

students are asked to consider whether the kinetic energy of the particle increases or decreases as 

the position of the particle x  increases in the semi-classical approximation. Since the kinetic 

energy decreases as x  increases in region (II), the student can find that the wavelength and the 

absolute value of the amplitude of the energy eigenfunction both increase from ax =  to bx = . 



 88 

After analyzing the shape of the wavefunction, students need to qualitatively sketch the energy 

eigenfunction for the quantum system of the triangular potential energy well. 

 

Figure 4.8 A quantum particle interacting with a triangular potential energy well. 

4.5 PRELIMINARY EVALUATION 

We conducted preliminary evaluation of the QuILT about drawing energy eigenfunctions in two 

junior-senior level quantum mechanics classes. Students first took the pre-test and then worked 

on the QuILT. The post-test was administered in the following class period after students had 

learned from the QuILT. To eliminate any possible differences in the difficulty levels of the pre-

test and the post-test, we designed two versions of a test, i.e., Test A and Test B, each of which 

has four open-ended questions. Students were administered either Test A or Test B as the pre-test 

and then each of them was given the version of the test he/she had not taken as the post-test. In 

particular, 17 students (one student absent) in the two classes were administered Test A as the 

pre-test and 18 students took Test B as the post-test. The other 12 students were given Test B as 

the pre-test and Test A as the post-test. The average pre-test score for 29 students is 34% and the 

average post-test score for 30 students is 89%. 
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Questions A-1 and B-1 required the students to consider a particle with energy E  

interacting with a piecewise continuous potential energy as shown in Figure 4.3. In question B-1, 

the energy of the particle is lower than the potential energy in both the regions ax <  and bx > . 

In the pre-test, seven out of twelve students did not realize that the wavefunction should decay 

faster in the region bx >  than in the region ax < . In the post-test, 67% students correctly 

sketched the energy eigenfunction decaying more rapidly in the region bx > . In question A-1, 

the energy of the particle E  is higher than the potential energy )(xV  in the region ax <  but still 

lower than the potential energy in the region bx > . So the energy eigenfunction decays only in 

region (III) ( bx > ) and oscillates in regions (I) ( ax < ) and (II) ( bxa << ). In the pre-test, eight 

out of seventeen students sketched the energy eigenfunctions with the correct oscillatory and 

decaying regions. Among these eight students, five of them correctly sketched a longer 

wavelength in region (I) than in region (II).  Only one student noticed that the amplitude is 

higher in region (I) than in region (II). Students’ performance was much better in the post-test. 

Eleven out of twelve students knew the wavefunction is oscillatory in both regions (I) and (II). 

All of the eleven students correctly sketched the wavefunction with longer wavelength in region 

(I) and nine of them sketched higher absolute value of the amplitude of wavefunction in region 

(I). 

Questions A-2 and B-3 asked the students to consider a particle with energy E  

interacting with a potential energy barrier as shown in Figure 4.5. In question A-2, the particle is 

not launched from one side of the potential energy barrier so the energy eigenfunction is 

symmetric. In the pre-test, 41% of the students correctly sketched a symmetric wavefunction 

with longer wavelength in region (II) ( bxa << ) and only two out of the seventeen students 

knew the amplitude of the wavefunction is higher in region (II). In the post-test, 83% of the 
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students drew the energy eigenfunction with correct wavelength and 75% of the students 

sketched the wavefunction with correct amplitude. In question B-3, the particle is incident from 

the left side of the well so its energy eigenfunction is not symmetric. The amplitude on the left 

hand side of the well is higher than that on the right hand side. However, only one out of twelve 

students in the pre-test drew the wavefunction with correct amplitude and another one sketched 

the incident and reflected wavefunction on the left side of the well separately. In the post-test, 

56% of the students correctly showed the directional preference in their plots. Questions A-3 and 

B-2 also asked the students about the energy eigenfunctions with or without directional 

preference. The model used in questions A-3 and B-2 is a particle interacting with a 1D square 

potential energy well as shown in Figure 4.4. Students’ performance in questions A-3 and B-2 

showed similar improvement as in questions A-2 and B-3 after they had learned the QuILT of 

drawing energy eigenfunctions.  

Questions A-4 and B-4 tested students’ understanding of sketching the energy 

eigenfunction for a triangular potential energy well as shown in Figure 4.8 or a half simple 

harmonic oscillator (SHO) potential energy well as shown in Figure 4.9 where +∞=)(xV  for 

bx > . In question B-4, the energy eigenfunction for the half SHO potential energy well is 

oscillatory in region (II) ( bxa << ). The wavelength and the absolute value of the amplitude of 

the energy eigenfunction decrease from ax =  to bx =  since the kinetic energy of the particle 

increases in the semi-classical approximation. In the pre-test, only four out of seventeen students 

sketched the wavefunction with correct wavelength and only two students sketched the 

wavefunction with correct amplitude. In the post-test, ten out of twelve students were able to 

draw the energy eigenfunction with both correct wavelength and amplitude. Students also 

showed similar improvement after the QuILT when answering question A-4 about the triangular 
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potential energy. The improved performance indicates that the students have a better 

understanding of how to qualitatively sketch the energy eigenfunction for a given quantum 

system in the semi-classical approach after learning the QuILT.  

 

Figure 4.9 A quantum particle interacting with a half SHO potential energy well. 

4.6 CONCLUSION 

We investigated students’ difficulties related to qualitatively sketching energy eigenfunctions 

and used the findings as a guide to develop the QuILT related to drawing energy eigenfunctions. 

Preliminary evaluation suggests that the QuILT about drawing energy eigenfunctions is effective 

in improving students’ understanding of how to qualitatively sketch the energy eigenfunctions 

for different quantum systems in the semi-classical approximation. 
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5.0  IMPROVING STUDENTS’ UNDERSTANDING OF QUANTUM 

MEASUREMENT 

5.1 ABSTRACT 

We describe the difficulties advanced undergraduate and graduate students have with quantum 

measurement and the development and implementation of research-based learning tools such as 

the Quantum Interactive Learning Tutorials (QuILTs) and peer instruction tools to reduce these 

difficulties. The preliminary evaluation shows that these learning tools are effective in improving 

students’ understanding of concepts related to quantum measurement. 

5.2 INTRODUCTION 

In this chapter, we will discuss the investigation of students’ difficulties with quantum 

measurement and build upon this research to develop and assess a research-based QuILT and 

concept tests to help students develop a good understanding of the formalism of quantum 

measurement. The investigation of students’ difficulties with quantum measurement was 

conducted with the undergraduate and graduate students at the University of Pittsburgh (PITT) 

and other universities (Singh 2006, Singh 2007) by administering written tests and by conducting 

in-depth individual interviews with a subset of students. 
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The research based learning tools including the QuILT and concept tests related to 

quantum measurement were administered to students in the first semester of a full-year junior-

senior level quantum mechanics course. They strive to build on students' prior knowledge, 

actively engage them in the learning process and help them build links between the abstract 

formalism and conceptual aspects of quantum physics without compromising the technical 

content. To assess the effectiveness of the QuILT and concept tests, we gave the same 

assessment related to quantum measurement to the experimental group and a comparison group 

in different but equivalent classes at two similar universities. The comparison group only had 

traditional lectures and weekly homework in a similar two-semester quantum mechanics class in 

which the same textbook was used. Our prior investigation shows that the students’ performance 

on surveys given in the upper-level quantum mechanics courses at the two universities 

(experimental group and comparison group) were comparable when traditional instruction was 

used at both institutions. 

5.3 BACKGROUND 

Quantum measurement formalism is quite challenging. Unlike classical mechanics, where 

position and momentum of a particle evolve in a deterministic manner based upon the 

interactions, position, momentum and other observables are in general not well-defined for a 

given state of a quantum system. According to quantum theory, the Time dependent 

Schroedinger Equation (TDSE) governs the time evolution of the state which can be written as a 

linear superposition of a complete set of eigenstates of any hermitian operator corresponding to a 

physical observable. The state of the system evolves in a deterministic manner depending on the 
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Hamiltonian of the system. According to the Copenhagen interpretation, quantum measurement 

would instantaneously collapse the wavefunction (or the state of the system) to an eigenstate of 

the operator corresponding to the physical observable measured and the measured value is the 

corresponding eigenvalue. For example, if we measure the position of a quantum particle in a 

one-dimensional (1D) infinite square well, its wavefunction will collapse to a position 

eigenfunction which is a delta function in the position representation. If we measure its energy 

instead, the wavefunction of the system will collapse into an energy eigenfunction, which is a 

sinusoidal function inside the 1D well and goes to zero at the two boundaries. 

In an N dimensional Hilbert space, an operator Q̂  corresponding to a physical observable 

Q  has N eigenvalues nq  and corresponding eigenstates nq . The eigenvalue spectrum of an 

operator can either be discrete or continuous or a combination of the two. The state of the system 

at a given time t, )(tΨ , can be written as a linear superposition of a complete set of eigenstates 

of nq . By projecting the wavefunction of the system )(tΨ  at time t onto an eigenstate nq  of 

the operator Q̂ , we can find the probability 
2

)(tqn Ψ  of obtaining nq  when the observable Q 

is measured at time t. 

After the measurement of the observable Q, the time-evolution of the state of the system, 

which is an eigenstate of Q̂  right after the measurement, is again governed by the time 

dependent Schrödinger equation (TDSE). Right after the measurement of energy, the state of the 

system is an energy eigenstate, and the probability density does not change with time since the 

only change in the wavefunction with time is an overall time-dependent phase factor. If the 

system is initially in an energy eigenstate at time t=0 and we measure an arbitrary physical 

observable Q after a time t, the probability of obtaining an eigenvalue q  will be time-
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independent since the system was still in an energy eigenstate at time t at the instant the 

measurement of Q was performed. Therefore, the energy eigenstates are called the stationary 

states. On the other hand, measurement of position would collapse the system into a position 

eigenstate at the instant the measurement is made. However, since the position eigenstate is a 

linear superposition of the energy eigenstates, the different energy eigenstates in the linear 

superposition will evolve with different time-dependent phase factors, and the probability density 

will change with time. In this case, the probability of measuring a particular value of energy will 

be time-independent but the probability of measuring another physical observable whose 

operator does not commute with the Hamiltonian will depend on time. 

5.4 INVESTIGATION OF STUDENTS’ DIFFICULTIES 

Our goal was to examine students’ knowledge of quantum measurement after traditional 

instruction. To simplify the mathematics and focus on the concepts related to quantum 

measurement, we often used the 1-D infinite square well model during the investigation of 

students’ difficulties. Both open-ended questions and multiple choice questions were 

administered to probe students’ difficulties. 

5.4.1 Difficulty in Distinguishing between Eigenstates of Operators corresponding to 

Different Observables 

The measurement of a physical observable collapses the wavefunction of the quantum system 

into an eigenstate of the corresponding operator. Many students have difficulties distinguishing 
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between energy eigenstates and the eigenstates of other physical observables. To investigate the 

pervasiveness of this difficulty in distinguishing between the eigenstates of different physical 

observables, we designed the following multiple choice question. 

 Choose all of the following statements that are correct:   

(1) The stationary states refer to the eigenstates of any operator corresponding to a 

physical observable. 

(2) If a system is in an eigenstate of any operator that corresponds to a physical 

observable, it stays in that state unless an external perturbation is applied. 

(3)  If a system is in an energy eigenstate at time t=0, it stays in the energy eigenstate 

unless an external perturbation is applied. 

A. 1 only     B. 3 only     C. 1 and 3 only      D. 2 and 3 only      E. all of the above 

The correct answer is B (3 only). In statement (1), the stationary states should refer to the 

energy eigenstates only. A complete set of eigenstates of an arbitrary operator Q̂  cannot be 

stationary states if Q̂  does not commute with the Hamiltonian operator Ĥ  of the system. 

In the comparison group, none of the 25 students selected the correct choice. The most 

common incorrect choice was E (all of the above). Nearly half of the students thought that all 

three statements were correct because they had difficulty in differentiating between the related 

concepts of stationary states and eigenstates of other observables. Some students selected choice 

A (1 only) which is interesting because one may expect that students who believed statement (1) 

was correct and understood why a stationary state is called so may think that statement (2) is 

correct as well. In particular, for students who believed statement (1) is correct, statement (2) 

may be considered “a system in a stationary state stays in that state unless an external 

perturbation is applied”, which described the property of stationary state. However, students who 
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selected choice A did not relate the stationary state with the special nature of the time evolution 

in that state. In other words, they did not contemplate why the energy eigenstates are called 

“stationary states”. 

5.4.2 Difficulty with possible outcomes of a measurement 

The following multiple choice question was administered to investigate students’ understanding 

of the possible outcomes of a measurement given the state of the system for a particle in a 1D 

infinite square well when the measurement is performed. )(1 xψ and )(2 xψ are the ground state 

and first excited state wavefunctions. 

 An electron is in the state given by 
2

)()( 21 xx ψψ +
. Which one of the following outcomes 

could you obtain if you measure the energy of the electron?   

A. 21 EE +  

B. 2/)( 21 EE +  

C. Either 1E  or 2E  

D. Any of the nE  (n=1,2,3,…) 

E. Any value between 1E  and 2E  

Forty percent of the students chose the correct answer C (either E1 or E2). Because the 

energy eigenstates nψ  are orthogonal to each other, 2/1
2

=Ψnψ for n=1 or n=2 and 

0
2

=Ψnψ  for all the other energy eigenstates En (n>2). Therefore, we can only obtain E1 or 

E2 with equal probability but no other energy.  
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The most common incorrect choice, selected by 27% of the students, is B ( 2/)( 21 EE + ). 

Because the probability of measuring 1E  and 2E  is 1/2 each, the expectation value of energy is 

2/)( 21 EE + . However, these students incorrectly believe that the expectation value is the 

measured value of energy. The individual think-aloud interviews indicate that many students are 

not only confused about the distinction between individual measurements and expectation values, 

they also have difficulty distinguishing between the probability of measuring a particular value 

of an observable in a given state and the measured value or the expectation value. For example, 

during individual interviews, students often noted nn H ψψ ˆ  or even ΨΨ Ĥ  as the 

probability of measuring nE  in the state Ψ . When these students were explicitly asked to 

compare their expressions for the probability of measuring a particular value of energy and the 

expectation value of energy, some students appeared concerned. They realized that these two 

concepts were different but they generally struggled to distinguish these concepts. They could 

not write an expression for the probability of measuring nE  either using the Dirac notation or in 

the position space representation using the integral form.  

Also, some interviewed students had difficulty in connecting the probability of measuring 

each possible value and the expectation value of that observable in a given state. Since the 

expectation value in a given state equals the average of a large number of measurements of the 

physical observable on identically prepared systems, it is equal to the sum of the eigenvalues of 

the corresponding operator times their probabilities in the given state. For example, suppose we 

have an ensemble of N  identical quantum systems. If we measure the physical observable Q  

with a discrete eigenvalue spectrum in state Ψ , the estimated probability of obtaining an 

eigenvalue of Q , iq , equals Nni /  and the estimated expectation value of Q  in that state is 
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∑
i

ii

N

nq
. Many students had difficulty with the statistical interpretation of the expectation value 

of Q  as the average of a large number of measurements on identically prepared systems in 

state Ψ . A survey question was administered to 202 graduate students in seven universities as 

shown below (Singh 2008a):  

 The wavefunction of an electron in a 1D infinite square well of width a  at time t=0 is given 

by )(7/5)(7/2)0,( 21 xxx ψψ +=Ψ . Answer the following questions. 

(a) You measure the energy of an electron at time t=0. Write down the possible values of the 

energy and the probability of measuring each. 

(b) Calculate the expectation value of the energy in the state ),( txΨ . 

About 67% of the graduate students answered question (a) correctly and 7% of the 

graduate students confused the energy eigenvalues with the expectation value of energy. 

However, only 39% of the students provided the correct response for question (b). Many students 

who can calculate the probabilities for each energy eigenvalue were not able to use these 

probabilities to find the expectation value and some of them had difficulties in realizing that the 

expectation value of energy is independent of time.  

5.4.3 Difficulty with the probability of measuring energy 

When we explicitly asked undergraduate students to find the probability of obtaining energy 2E  

for the state 
2

21 ψψ +
 in a 1D infinite square well, many of them could provide the correct 

answer 1/2 by observing the coefficients. To evaluate whether students could calculate the 

probability of measuring a particular value of energy by projecting the state vector along the 
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corresponding energy eigenstate for the case where the wave function is not written explicitly in 

terms of a linear superposition of energy eigenstates, we designed the following question about a 

triangle shaped wavefunction in a 1D infinite square well: 

 The state of an electron at t=0 is given by Axx =Ψ )(  when 
2

0
a

x <<  , )()( xaAx −=Ψ  

when ax
a

<≤
2

 and 0)( =Ψ x  elsewhere. Here A  is the normalization constant. What is the 

probability that an energy measurement at time t=0 yields 2E ? (If there is an integral in 

your expression for the probability, you need not evaluate the integral but set it up properly 

with appropriate limits.) 

Unlike the wavefunction 
2

21 ψψ +
 which is composed of only two energy eigenstates, 

the triangle function state Ψ  is a superposition of infinitely many energy eigenstates, 

∑
∞

=

=Ψ
1n

nnc ψ . The expansion coefficient nc  equals ∫
+∞

∞−

Ψ=Ψ dxxxnn )()(*ψψ  and 
2

nc  is the 

probability of obtaining nE  when energy is measured for state Ψ . Thus, to answer this question 

correctly, students need to write Ψ  as a linear superposition of { nψ } and find the component 

of Ψ  along nψ . 

Only one student out of fifteen provided the correct answer for the probability of 

measuring nE . Some students left this question blank. Other students made two typical common 

mistakes. Twenty percent of the students wrote down the energy expectation value ΨΨ Ĥ  to 

represent the energy measurement probability. In further interviews with some students, we 

asked how the expression ΨΨ Ĥ  which only involves the state Ψ  will favor energy 2E  over 
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any other energy. Some of the students then changed their answers to ΨĤ2ψ  which was still 

incorrect. Another 27% of the students believed that the “probability” of measuring any physical 

observable was represented by 
2

)(xΨ  according to the interpretation of wavefunction. These 

students were confusing the probability density of measuring position with the probability of 

measuring other physical observables such as energy.  

A similar multiple-choice question about a parabola shaped wavefunction was 

administered to 76 undergraduate students in six universities as shown below: 

 Consider the following wavefunction for a 1D infinite square well: )()( xaAxx −=ψ  for 

ax ≤≤0  and 0)( =xψ  otherwise. A  is a normalization constant. Which one of the 

following expressions correctly represents the probability of measuring the energy nE  for 

the state )(xψ ? 

A. 

2

0

* )(ˆ)(∫
a

n dxxHx ψψ      B. 

2

0

* )()(∫
a

n dxxx ψψ      C. 
2

* )(ˆ)( xHxn ψψ     D. 
2

* )()( xxn ψψ    E. 
2

)(xψ  

Only 33% of the students chose the correct answer B. 45% of the students incorrectly 

selected the distractor A which is an equivalent expression for 
2

2
ˆ ΨHψ . Another multiple 

choice question given to the same 76 students asked about the energy measurement outcome for 

the state 21 7/37/4 ψψ + . 55% of the students provided the correct answer. 21% of the 

students incorrectly thought that other energies nE  besides 1E  and 2E  could also be obtained 

while the probability of measuring 1E  would be largest. Another 12% of the students thought all 

the possible energies nE  can be measured with the same probability. 
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5.4.4 Measurement and future time evolution of the wavefunction 

Within the Copenhagen interpretation of quantum mechanics, the measurement of an observable 

is treated separately from the “normal” time-evolution of the system according to the TDSE. 

When a measurement is performed, the state of the system instantaneously collapses to an 

eigenstate of the operator corresponding to the observable measured after which the system will 

evolve normally according to the TDSE. We investigated students’ understanding of the time-

development of the wavefunction according to the TDSE after the measurement of an observable 

and its effect on consecutive measurements by asking students the following consecutive position 

measurements question about a 1D infinite square well: 

 If you make a measurement of position on an electron in the ground state and wait for a long 

time before making a second measurement of position, do you expect the outcome to be the 

same in the two measurements? Explain. 

To correctly answer this question, students must know the following: (1) The ground 

state wavefunction will collapse into a position eigenfunction (a delta function) after the first 

position measurement. (2) The position eigenfunction is not a stationary state wavefunction so 

the wavefunction will evolve in time in a non-trivial manner and it will not in general be found in 

a position eigenstate at a time t. Therefore, after a long time, the second measurement of position 

in general will yield a different value from the first measurement. We note however that in an 

infinite square well, the time evolution of the system is such that the wave function repeats itself 

with a certain periodicity (A detailed discussion of this periodicity in time for an infinite square 

well is in the appendix of this chapter, i.e., section 5.10.). 
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Difficulity 1: System remains in the energy eigenstate after a position measurement. 

In response to this question, some students thought that the system will be in the ground 

state after both the first and second position measurements. Interviews suggest that students with 

these types of responses often did not realize the difference between an energy eigenstate and 

position eigenstate. In the written survey, only one student explicitly mentioned the 

wavefunction collapse after the first position measurement. However, his response was “…the 

wavefunction collapses into the measured state” and he did not elaborate that the “measured 

state” is actually a position eigenstate. 

 

Difficulty 2: System stays in the position eigenstate at any time after a position measurement. 

On the other hand, some students believed that after the first position measurement the 

system gets “stuck” in a position eigenstate and did not know that the position eigenfunction 

evolves in time in a non-trivial manner and the system does not remain a position eigenfunction 

for all future time t. These students believed that the second position measurement even after a 

long time will give the same value as the first one unless there was an “outside disturbance” 

between the two measurements. Only two students out of fifteen mentioned the correct time 

evolution of the quantum mechanical system after the position measurement. 

 

Difficulty 3: System finally goes back to the initial state 

Students were also asked another series of measurement related questions when the initial 

state of the system is )(7/5)(7/2)0,( 21 xxx ψψψ +=  for an electron confined in a 1D infinite 

square well as follows:  
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 Q1. If the energy measurement yields )2/(4 222
mahπ , what is the wavefunction right after 

the measurement? 

 Q2. Immediately after the energy measurement in Q1, you measure the position of the 

electron. What possible values could you obtain and what is the probability of each? 

 Q3. After the position measurement in Q2, you wait for time t and measure the position 

again. Would the probability of measuring each possible value be different from your 

answer to Q2? 

Q1 has been given as a multiple-choice question to 89 students in 6 universities asking 

about the state of the system long after the energy measurement. 20% of the students did not 

know the wavefunction would collapse at the instant the energy was measured. 36% of the 

students thought the wavefunction will collapse upon the energy measurement but eventually 

evolve back to the initial state )(7/5)(7/2 21 xx ψψ +  a long time after the measurement. 

During the individual interview, a student said. “…it’s like tossing a coin. You can get either 

head or tail after the measurement. But when you make another measurement, it goes back to a 

coin (with two sides).” 

 

Difficulty 4. Probability density for position measurement 

Born's probabilistic interpretation of the wavefunction can also be confusing for students. 

In Q2, we hoped that students would note that one can measure position values between x=0 and 

x=a (except at x=0, a/2, a where the wavefunction is zero), and according to Born's 

interpretation, 
2ψ dx gives the probability of finding the particle in a narrow range between x 

and x+dx. Only 38% of the students provided the correct response. Partial responses were 

considered correct for tallying purposes if students wrote anything that was correct related to the 
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above wavefunction, e.g., “The probability of finding the electron is highest at a/4 and 3a/4.”, 

“The probability of finding the electron is non-zero only in the well”, etc. 

Eleven percent of the students tried to find the expectation value of position instead of the 

probability of finding the electron at a given position. They wrote the expectation value of 

position in terms of an integral involving the wavefunction. Many of them explicitly wrote that 

dxaxxayprobabilit
a

)/2(sin)/2( 2

0
π∫=  and believed that instead of the expectation value they 

were calculating the probability of measuring the position of the electron. 

During the interview, one student said (and wrote on paper) that the probability is 

∫ dxx
2ψ . When the interviewer asked why 

2ψ should be multiplied with x and if there is any 

significance to dx
2ψ  alone without multiplying it by x, the student said, “

2ψ  gives the 

probability of the wavefunction being at a given position and if you multiply it by x you get the 

probability of measuring (student's emphasis) the position x”. When the student was asked 

questions about the meaning of the “wavefunction being at a given position”, and the purpose of 

the integral and its limits, the student was unsure. He said that the reason he wrote the integral is 

because dxx
2ψ without an integral looked strange to him. Similar confusion about probability in 

classical physics situations has been found. 

 

Difficulty 5. Use classical experience to analyze time evolution in quantum systems 

No students could answer Q3 correctly though it assesses the same concepts as in the 

consecutive position measurement question discussed earlier. In the consecutive position 

measurement question, some students used a classical description to answer this question about 

the time-evolution after the measurement such as “the electron moves around”. Such classical 
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responses reflect students’ discomfort describing the time evolution of a quantum system in 

terms of the time-development of the wavefunction. Therefore, they could not answer Q3 since 

no classical element such as “particle” was involved.  

5.4.5 An operator acting on a state corresponds to a measurement of the corresponding 

observable 

One of the questions on a survey given to more than 200 graduate students asked them to 

consider the following statement: “By definition, the Hamiltonian acting on any allowed 

(possible) state of the system ψ  will give the same state back, i.e., ψψ EH =ˆ , where E is 

the energy of the system.” Students were asked to explain why they agree or disagree with this 

statement. We wanted students to disagree with the statement and note that it is only true if ψ  

is a stationary state. In general, ∑
∞

=

=
1n

nnC ψψ , where nψ are the stationary states and 

ψψ nnC = . Then, ψψψ EECH
n

nnn ≠=∑
∞

−1

ˆ . 

Eleven percent of the students answering this question incorrectly believed that any 

statement involving a Hamiltonian operator acting on a state is a statement about the 

measurement of energy. 

Some of these students who incorrectly claimed that ψψ EH =ˆ  is a statement about 

energy measurement agreed with the statement while others disagreed. Those who disagreed 

often claimed that nnEH ψψ =ˆ  because as soon as Ĥ  acts on ψ , the wavefunction will 
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collapse into one of the stationary states nψ  and the corresponding energy nE will be measured. 

The following are two typical responses in this category: 

* Disagree. Hamiltonian acting on a state (measurement of energy) will return an energy 

eigenstate. 

* When ψ  is a superposition state and Ĥ acts on ψ , then ψ  evolves to one of the 

nψ  so we have nnEH ψψ =ˆ . 

Interviews and written reasonings suggest that these students believed that the 

measurement of any physical observable in a particular state is achieved by acting with the 

corresponding operator on the state. The incorrect notions expressed above are often over-

generalizations of the fact that after the measurement of energy, the system is in a stationary 

state so nnn EH ψψ =ˆ . 

Individual interviews related to this question suggest that some students believed that 

whenever an operator Q̂  corresponding to a physical observable Q acts on any state ψ , it will 

yield a corresponding eigenvalue λ  and the same state back, i.e., ψλψ =Q̂  or would yield 

nnQ φλψ =ˆ  (but nnnQ φλφ =ˆ  in reality). 

We further explored this issue by asking 17 and 15 graduate students at the end of their 

first semester and second semester graduate level quantum mechanics course the following 

question. The 15 graduate students were the same both semesters.  

 Consider the following conversation between Andy and Caroline about the measurement of 

an observable Q  for a system in a state ψ  which is not an eigenstate of Q̂ : 
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Andy: When an operator Q̂  corresponding to a physical observable Q  acts on the state ψ , it 

corresponds to a measurement of that observable. Therefore, ψψ qQ =ˆ  where q is the 

observed value. 

Caroline: No. The measurement collapses the state so qqQ ψψ =ˆ where qψ  on the right 

hand side of the equation is an eigenstate of Q̂  with eigenvalue q.  

 With whom do you agree? 

A.  Agree with Caroline only          B.  Agree with Andy only           C.  Agree with neither 

D.  Agree with both                        E.  The answer depends on the observable Q . 

We note that the question was not posed as a multiple-choice question at the end of the 

first semester course but students were asked to explain with whom if any they agreed and why. 

There was a brief discussion of the correct response to the question after administering the 

survey in which this question was asked. At the end of the first semester course, 12% of the 

students agreed with Andy, 47% with Caroline, 29% with neither (correct response) and 12% 

provided no response. At the end of the second semester course, 13% of the students agreed with 

Andy, 20% with Caroline, 7% with both and 53% with neither (correct response). While the 

percentage of correct response increased significantly from the first to the second administration, 

many students still had difficulty with this concept. Earlier, the version of this question not in the 

multiple-choice format was posed to 37 graduate students at the beginning of their graduate level 

quantum mechanics course (not the same students as those who answered it at the end of the first 

and second semester of their graduate level quantum mechanics course). In that group, 24% of 

the students agreed with Andy, 54% with Caroline and 22% with neither (correct response). 

Indeed this difficulty is quite common even amongst graduate students. 
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In summary, students have difficulty in differentiating between the stationary states and 

the eigenstates of an arbitrary operator. They have difficulty in determining the possible values 

one may obtain upon measurement of an observable in a given state and the possible states the 

system could collapse into upon a measurement. Moreover, they had difficulty in calculating the 

probability of obtaining a particular eigenvalue when an observable is measured in a given state. 

Students often were confused between outcomes of individual measurements, expectation value 

and probability of measuring a particular value of the observable. Many students believed that an 

operator acting on a state corresponds to the measurement of that observable. They also had 

difficulty in analyzing the time development of the eigenstates of operators corresponding to 

different observables after a quantum measurement. They often incorrectly believe that after a 

measurement, the state of the system would either be stuck in the eigenstate in which it collapsed 

or go back to the initial state before the measurement was performed (and remain there).  

5.5 WARM-UP FOR THE QUILT ON QUANTUM MEASUREMENT 

The measurement QuILT begins with warm-up exercises that students work on before working 

on the QuILT. We designed the warm-up to help students review the concept of eigenstate and to 

help them understand that the eigenstates of all physical observables are not the same. First, we 

let students consider the difference between the energy eigenstates and a possible wavefunction 

which was a linear superposition of the energy eigenstates. Questions were also designed to help 

students understand that an energy eigenstate satisfies the time independent Schrödinger 

equation (TISE) but its linear superposition with different energies does not satisfy the TISE. In 

addition to the questions in verbal and mathematical representations that asked students to 
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consider the differences between the energy eigenstates and their linear superpositions, one 

question asked them to select the energy eigenstates from three pictorial representations as 

shown in Figure 5.1 (in which the first two were sinusoidal) for a 1D infinite square well.  

 

Figure 5.1 Pictorial question in the warm-up testing about the energy eigenstates for a 1D infinite 

square well. (I) and (II) are energy eigenstates but their superposition (III) is not. 

Pictures (I) and (II) in Fig 1 correspond to the ground and first excited state 

wavefunctions 1ψ  and 2ψ  respectively. Picture (III) is one particular linear superposition of (I) 

and (II) ( 21 ψψ + ). The students learn that the energy eigenstates for this system are even or odd 

about the center of the well but their superpositions need not be. After the 1D infinite square well 

model, similar considerations were reinforced using the simple harmonic oscillator (SHO) model. 

From these two models, students learned that the eigenfunctions of different Hamiltonians have 

different shapes but they satisfy the TISE for the respective systems because they are states with 

definite energy. Students were required to summarize these characteristics of the energy 

eigenstates after they studied these two examples in the warm-up.  

The position eigenstate was also important in helping students understand the concept of 

an eigenstate and the fact that not all eigenstates are energy eigenstates. Students were asked to 

draw a position eigenfunction with an eigenvalue 0x  for a particle interacting with an infinite 

square well and a finite square well. Students learned that unlike the energy eigenfunctions, the 

position eigenfunctions have the same shape for all the 1D systems and their shape has nothing 



 111 

to do with the Hamiltonian of the system. Students learned about the mathematical representation 

of a position eigenfunction as a delta function and the eigenvalue equation for the position 

operator )()(ˆ
000 xxxx ψψ = . Students were explicitly asked to compare the position 

eigenfunction and the energy eigenfunction. In one question, they were asked to consider the 

following statement and explain why they agreed or disagreed:  

“The position eigenstate and energy eigenstate are the same for a given system. After all, 

they are all eigenstates.” Explain why you agree or disagree with this statement.” 

The warm-up helped students learn about the properties of eigenstates of the operators 

corresponding to different physical observables. Students learned that eigenstates of different 

operators are different and that they satisfy an eigenvalue equation for that operator. They also 

learned that if the system is in an eigenstate of an operator corresponding to a physical 

observable, that observable is well-defined in that state and its measurement will yield a definite 

value with 100% probability. 

5.6 QUILT FOR QUANTUM MEASURMENT PART I 

The goal of the measurement QuILT is to build connections between the formalism and 

conceptual aspects of quantum measurement without compromising the technical aspects (Singh 

2008b). The measurement QuILT can be implemented in class so that two or three students work 

together on it or it can also be given to the students as homework or self-learning materials. The 

main measurement QuILT was divided into two parts: the first part dealt with outcomes of 

measurement and the probability of obtaining those outcomes whereas the second part dealt with 

time-evolution after the measurement. 
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The measurement QuILT builds on the prior knowledge of students and was developed 

taking into account the difficulties found in the written surveys and interviews. QuILT 

development went through a cyclical iterative process which includes the following stages: (1) 

Development of the preliminary version based upon theoretical analysis of the underlying 

knowledge structure and research on students' difficulties, (2) Implementation and evaluation of 

the QuILT by administering it individually to students, measuring its impact on student learning 

and assessing what difficulties remained, (3) refinement and modification based upon the 

feedback from the implementation and evaluation. 

The individual interviews were carried out using a think-aloud protocol to better 

understand the rationale for their responses before, during and after the development of different 

versions of the measurement QuILT and the corresponding pre-test and post-test. During the 

semi-structured interviews, students were asked to verbalize their thought processes while they 

answered questions about measurement either as separate questions before the preliminary 

version of the QuILT was developed or as a part of the QuILT. Students were not interrupted 

unless they remained quiet for a while. In the end, we asked them for clarification of the issues 

they had not made clear earlier. Some of these interviews involved asking students to predict 

what should happen in a particular situation, having them observe what happens in a simulation, 

and asking them to reconcile the differences between their prediction and observation. After each 

individual interview with a particular version of the measurement QuILT (along with the pre-test 

and post-test administered), modifications were made based upon the feedback obtained from 

students' performance on the QuILT (if students got stuck at a particular point and could not 

make progress from one question to the next with the hints already provided, suitable 

modifications were made), the pre-test and the post-test. When we found that the measurement 
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QuILT was working well in individual administration and the post-test performance was 

significantly improved compared to the pre-test performance, it was administered in the quantum 

mechanics class. 

The measurement QuILT uses computer-based visualization tools to help students build a 

physical intuition about concepts related to quantum measurement. The Open Source Physics 

program was adapted as needed throughout the measurement QuILT. This program is flexible 

and can be easily tailored to the desired situations. 

One effective strategy to help students build a robust knowledge structure is by causing a 

state of “disequilibrium” in students’ minds such that the students themselves realize that there is 

some inconsistency in their reasoning and then providing them appropriate guidance and support. 

In the measurement QuILT, after predicting what they expect in various situations, students are 

asked to check their predictions using simulations. If the prediction and observations do not 

match, students reach a state of disequilibrium. At that point the QuILT provides them guidance 

to help build a good grasp of relevant concepts and reconcile the differences between their 

predictions and observations. 

5.6.1 Outcome of Quantum Measurement 

The first model in the QuILT is the 1D infinite square well. For different initial states 1ψ , 

( )21
2

1 ψψ +  and ∑=Ψ nnA ψ , students predict what value they would obtain and what 

state the system would be in after the energy measurement. After their prediction, they run a 

computer simulation to examine their responses and reconcile the differences between their 

predictions and observations. The simulation is adapted from the open source physics 
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simulations (Belloni and Christian 2003, Belloni et al. 2006). If a student’s prediction is 

inconsistent with what he/she observes in the simulation, there is a cognitive conflict and the 

student may be motivated to resolve the inconsistency. Then the QuILT provides guidance to 

students to help them build a knowledge structure about quantum measurement.  

 

Figure 5.2 Simulation program of the energy measurement on a superposition state with two energy 

eigenstate components. (a) is the superposition state, (b) is the ground state and (c) is the first excited state. 

The phase of the wavefunction is represented by different colors. 

In the simulation, one example of an initial state is ( )21
2

1 ψψ + .  The vertical axis of 

the plot in the simulation is the absolute value of the wavefunction Ψ  and the horizontal axis is 

the position x . In the simulation, students can measure position, momentum or energy. In Figure 

5.2(a), students can observe the shape of Ψ  for the superposition state  ( )21
2

1 ψψ +  at time 

t=0. When the students measure the energy of the system, the wavefunction may collapse to 1ψ  

or 2ψ  which are shown in Figure 5.2(b) and (c) respectively. Students observe and justify why 

the shape of Ψ  changed upon measurement to that of a stationary state and it does not change 

with time after that.  
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The students are also asked to reset the initial state and repeat the measurement process 

several times to check whether the measurement yields the same result (the probability is 50% 

for obtaining 1ψ  or 2ψ ). Since the state is a superposition of only two stationary states, it is 

possible for the students to obtain the same state for the repeated energy measurements of the 

initial state. Therefore, the QuILT asked students what could happen if they measured energy in 

the state ∑ nnA ψ  as shown in Fig 5.3, which is a linear superposition of nine stationary states 

1ψ  to 9ψ  with equal probability. After predicting the probability of obtaining different values 

of energy, students were asked to measure the energy, reset Ψ  to the initial state and measure it 

again. Since the probability of measuring the same energy is small (but non-zero) for this 

superposition, students appreciated this example while working on the QuILT. To ensure that the 

students understood the issues related to the energy measurement in multiple contexts, the 

QuILT also incorporated questions for the SHO Hamiltonian. 

 

Figure 5.3 Simulation program of the energy measurement on a superposition state with nine energy 

eigenstate components. 

The measurement QuILT also helps students with issues related to the position 

measurement with initial states similar to those for the energy measurement, e.g., 1D infinite 

square well and SHO with the initial states 1ψ  or ( )21
2

1 ψψ + . Students first predict 
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theoretically what state they would obtain after a position measurement and then they use the 

simulation to check their prediction. In an ideal position measurement, the state of the system 

would collapse to a delta function at a position where the probability of measuring the position is 

non-zero. As shown in Figure 5.4, the initial state 1ψ  collapses to a broad peaked Gaussian 

packet because of the computational limitations in constructing a very peaked function. However, 

the QuILT uses this opportunity to help students recognize that a delta function is a theoretical 

construction and the position measurement in real world situations, e.g., single particles in 

double slit experiment landing on the screen, would have an uncertainty in position measured.  

 

Figure 5.4 Simulation program of the position measurement on an energy eigenstate 

After asking students to predict what should happen if we perform position measurements 

on a large number of identically prepared systems, students are asked to reset the initial state of 

the system and repeat the position measurement. They observe that the center of the collapsed 

wavefunction is generally different but its shape is always the same. This notion is verified by 

the students in multiple contexts, e.g., for different quantum systems and different initial states. 

Students are explicitly asked to compare and contrast what they learned from the measurements 

of position and energy to help them understand better the outcomes of measurement for different 

physical observables.  
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5.6.2 Calculating the Probability of Measuring Different Values 

In addition to helping students learn about the possible outcomes of a measurement, the QuILT 

also teaches students how to calculate the probability of obtaining each outcomes. In surveys and 

individual interviews, we found that most students could find the probability of measuring 

different energies by observing the coefficients in an explicit superposition of stationary states, 

e.g., ( )21
2

1 ψψ + . So the QuILT first helps students use the projection of the initial state 

along an eigenstate of the operator corresponding to the observable measured to interpret these 

coefficients and how they may be calculated for cases for which the wavefunction may not be 

explicitly written as a linear superposition of stationary states. The QuILT also helps students 

make connection between the Dirac notation form and integral form of the inner product 

∫ Ψ=Ψ dxxxnn )()(*ψψ  (the most common difficulty with the position representation is that 

students do not realize that there is an integral involved in Ψnψ ). Students are asked to infer 

the dimension (unit) of the inner product Ψnψ  and the physical meaning of 
2

Ψnψ . 

Students calculate these abstract inner products in concrete contexts, e.g., ( )21
2

1 ψψ +=Ψ . 

They learn that for this concrete case, for 3≥n , the probability of obtaining energy nE  is zero 

because the projection of the state Ψ  along the eigenstate nψ  is zero, i.e., 0=Ψnψ . After 

making sense of the probability for measuring energy nE  for state ( )21
2

1 ψψ +=Ψ , 

students calculate the probabilities of measuring different energies for a general state 

∑=Ψ
n

nnA ψ  which is explicitly written as a linear superposition of stationary states. 
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Students calculate that Ψ= nnA ψ  is the probability amplitude and 
2

Ψnψ is the probability 

of measuring energy nE .  

Students then learn that any possible state Ψ which is not explicitly written as a linear 

superposition of a complete set of eigenstates of an operator corresponding to a physical 

observable, e.g., energy, could be written that way. Then, the students are asked to find the 

coefficients in the expansion of Ψ  as a linear superposition of the energy eigenstates nψ  as in 

this example: 

 The orthonormal energy eigenstates nψ  for a 1D infinite square well satisfy 

∫ =
a

mnmn dxxx
0

* )()( δψψ , where 1=mnδ  when m=n, and 0=mnδ  otherwise. Any state Ψ  can 

be expressed as ∑=Ψ
n

nnA ψ  because nψ  form a complete set of vectors for the Hilbert 

space in which the state of the system lies. Find nA  in terms of Ψ  and nψ  first in Dirac 

notation form and then in the integral form in the position representation .  

If the students did not have the mathematical skills to answer the question above, hints 

were provided, e.g., about how to use the Fourier trick and multiply both sides of the expression 

∑=Ψ )()( xAx nnψ  by )(*
xmψ  and integrate over all space. Then students calculated the 

probability of obtaining nE  for a concrete example of a parabola shaped wavefunction for a 1D 

infinite square well for which the wavefunction was not explicitly written in terms of a linear 

superposition of energy eigenfunctions. Students further contemplated these issues using 

different states for a SHO model to learn about the projection of the state along an eigenstate of 

an operator corresponding to a physical observable in multiple contexts.  
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The QuILT helps students learn that the probability of measuring other physical 

observables can be obtained by projecting the state of the system along an eigenstate of an 

operator corresponding to a physical observable. They use this projection method to analyze the 

probability density for position measurement. Earlier in the QuILT, students had already learned 

that ∫ Ψ=Ψ dxxxnn )()(*ψψ . Students were also asked to differentiate between an energy 

eigenfunction ⎟
⎠
⎞

⎜
⎝
⎛=

a

x

a
x

πψ sin
2

)(1  of a 1D infinite square well and a position eigenfunction 

)()( 0xxx −= δψ with eigenvalue 0x . They were also explicitly asked to project the ground state 

of the system 1ψ  onto the position eigenstate 0x with eigenvalue 0x  and interpret their result. 

The probability density for finding the particle at the position 0x  is 
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x
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xxx

ππδψ . (Eq 5.1) 

Moreover, by the definition of wavefunction, 
2

1 )(xψ =
2

1ψx is the probability density 

for finding the particle at position x . The QuILT required students to assimilate the Born 

interpretation for finding the probability density for finding the particle with the method of 

projecting the state vector along a position eigenstate. 

After students had learned about the probability density for position measurement using 

the projection method, the QuILT explicitly brought up a common difficulty they have in 

differentiating between the probability of obtaining a particular value, the expectation value and 

similar looking expressions. For example, students were asked to consider the following 

statement: 



 120 

 If the initial state is Ψ  for a particle in a 1-D infinite square well, 
2

1 ΨHψ  is the 

probability of obtaining energy 1E  when measuring the energy of the particle. Do you agree 

with this statement? Explain. 

Students were given hints to consider the dimension (units) of ΨH1ψ . They were also 

asked to consider the physical meaning of ΨΨ H  and ΨΨ x  (in terms of the average of a 

large number of measurements on identically prepared systems). In the warm-up, students had 

learned that the energy eigenstates nψ  satisfy the TISE nnn EH ψψ =ˆ . By decomposing the 

general state Ψ  into a linear superposition of nψ , they learn that Ψ=Ψ 111 ψψ EH  which 

has the dimension of energy. They also contemplate the fact that  ∑=ΨΨ
n

nn EAH
2

, the 

expectation value of the energy in state Ψ , is the average of a large number of measurements 

on identically prepared systems. In an analogous manner, they interpret the expectation value of 

position ΨΨ x . Explicit comparison of the expectation values with the measurement 

probabilities is designed to help students distinguish between these related concepts.  

5.7 QUILT FOR QUANTUM MEASURMENT PART II 

The second part of the measurement QuILT focuses on the time development of a quantum 

system after a measurement. After an energy measurement, the system would collapse into a 

stationary state and remain in that state till another measurement is performed. However, if we 

measure, e.g., the position of the particle, the wavefunction of the system will change with time. 
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In the QuILT, the system behaviors after the energy measurement and the position measurement 

were explicitly compared to help students learn about the differences in the time evolution in a 

stationary and a non-stationary state. 

5.7.1 Energy Measurement 

In the first part of the measurement QuILT, students learn about the possible outcomes of 

the energy measurement in a 1D infinite square well for three different cases where the states of 

the system are 1ψ , ( )21
2

1 ψψ +  and ∑ nnA ψ  at time t=0 when the measurements are 

performed. At the beginning of the second part of the measurement QuILT, we ask students 

about the possible values of the energy measurement if we started with the same three initial 

states but performed the measurement at a time t>0. Also, they are explicitly asked to write the 

states of the system right before the measurement in each case. For example, if the initial state is 

1ψ , the wavefunction at time t  would be 
h/

1
1tiE

e
−ψ , which is still the ground state, and the 

energy measurement will yield the ground state energy 1E  with 100% probability. If the initial 

state is ( )21
2

1 ψψ + , the state of the system would evolve into )(
2

1 /

2

/

1
21 hh tiEtiE

ee
−− + ψψ  

after a time t . Thus, the probability of measuring energy is unchanged (in this case 50% each for 

the ground and first excited state energies) even if the system is in a linear superposition of 

stationary states. Many students correctly predicted that the energy measurement at time t>0 

would yield the same values 1E  and 2E  as at time t=0 but they incorrectly justified it by saying 

that the wavefunction after a time t is the same as that at time t=0. Students were asked to check 

their prediction with a simulation showing the time evolution of the absolute value of the 
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wavefunction with two energy eigenstate components. After they observed that the shape of the 

wavefunction changes with time as shown in Figure 5.5, contrary to their initial prediction, they 

were in a state of disequilibrium.  

 

Figure 5.5 Time evolution on a superposition state with two energy eigenstate components. (a) is the 

absolute value of the initial state wavefunction and (b) and (c) are the absolute values of the wavefunction at 

different times. The phases of the wavefunction are represented by different colors. 

They were also asked to measure the energy several times at different times, e.g., t=2 or 3 

units after resetting the system to the same initial state after each measurement. They realized 

that the system only collapsed into 1ψ  or 2ψ . At this point, the QuILT helped them reason 

systematically about why the probability of measuring different values of energies does not 

change with time even though the shape of the wavefunction changes with time for the state 

)(
2

1 /

2

/

1
21 hh tiEtiE

ee
−− +=Ψ ψψ .  

Some students held the misconception that the state of the system after the measurement 

would eventually go back to the initial state before the measurement. In the QuILT, students 

observed the time evolution of the wavefunction after the energy measurement and found that the 

system stays in the stationary state in which it collapsed ( 1ψ  or 2ψ ), as shown in Figure 5.6(b) 

and (c), instead of going back to the initial state which is a linear superposition of these states. 

Students predict and then perform the same sequence of activities with a more general state 
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∑=Ψ nnA ψ  in which more than two coefficients are non-zero. They learn that the 

wavefunction in this superposition state keeps changing shape with time but the system collapses 

to one of the energy eigenstates and remains there after the measurement of energy. Students 

learn that while the measurement instantaneously collapses the wavefunction, the wavefunction 

after the measurement evolves in time in a deterministic manner according to the TDSE. 

Moreover, comparison of the time evolution of an energy eigenstate nψ  (after the measurement) 

and a general state which is a linear superposition of stationary states (before the measurement) 

helps build intuition about the meaning of stationary states and non-stationary states.  

 

Figure 5.6 Energy measurement on a superposition state with two energy eigenstate components 

after time t>0. (a) is the superposition state before the energy measurement. (b) and (c) are the two possible 

outcomes  of the quantum measurement. 

5.7.2 Position Measurement 

Many students held the misconception that, after the position measurement, the position 

eigenstate does not change with time and the system is stuck in a position eigenstate. In the 

QuILT, students are asked to use the simulation after their initial prediction of what should 

happen when they perform a position measurement starting from a general state. In an ideal 

measurement, at the instant the position is measured, the wavefunction of the system will 
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collapse to a delta function )( 0xx −δ  (a broad peaked function in the simulation, as shown in Fig 

5.7(a)) and the measured position is x0. The position eigenstate wavefunction can be written as a 

linear superposition of the energy eigenstates, ∑=−==Ψ
n

nn xAxxtx )()()0,( 0 ψδ . Different 

energy eigenstates will have their own time-dependent phase factors so that the wavefunction 

),( txΨ  is not a delta function )( 0xx −δ  except at some special times (as discussed in the 

appendix of this chapter). Fig 5.7(b) and (c) are the snap shots of the time evolution of the 

position eigenstate wavefunction.  

 

Figure 5.7 Time evolution of the position eigenstate wavefunction. (a) is the position eigenstate 

wavefunction right after a position measurement. (b) and (c) are the wavefunction of the system at later times 

after the position measurement. 

Besides the pictorial representation in the simulations, the QuILT helps students learn to 

interpret the time evolution of the wavefunction via the TDSE and discern the central role of the 

Hamiltonian of the system in the evolution. The following is an example question in the QuILT: 

 Given the wavefunction at time 0=t , why is it useful to write the state of a quantum system 

as a superposition of energy eigenstates to find the wavefunction after time t? 

Students must realize that the Hamiltonian governs the time evolution of the system 

according to the TDSE so the eigenstates of the Hamiltonian are special for issues related to the 

time evolution of the wavefunction. Help is provided at the end of the QuILT if students are 

struggling with these issues. 
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Though the students had learned that the position eigenstate is not a stationary state, some 

of them still held the misconception that the position eigenstate after a position measurement 

would eventually return to the initial state, e.g., 2/)( 21 ψψ + . The simulation is helpful in 

overcoming this difficulty. The students observe that the delta function does not remain a delta 

function (a broad peaked function in the simulation) as shown in Fig 5.7 (although there is 

revival of the delta function periodically for a 1D infinite square well). They perform a 

systematic analysis of the time-dependence of the wavefunction starting with a delta function to 

convince themselves that the system will not go back to the state right before the measurement. 

5.7.3 Time Dependence of the Measurement Probability 

It is important that students learn whether the probability of obtaining different energies or 

positions changes with time. For a general wavefunction ∑ −=Ψ
n

tiE

nn
nexAtx

h/
)(),( ψ  at time t, 

the probability of obtaining nE  in an energy measurement is 
22

/

n

tiE

n AeA n =− h
, which is a 

constant independent of time. Let’s consider the time evolution of the system after a position 

measurement as discussed previously. Since the delta function )( 0xx −δ  contains non-zero 

coefficients nA  for all higher energy eigenstate wavefunctions )(xnψ  (n>2), the probability of 

measuring these higher energies 
2

/htiE

n
neA

−
cannot be zero. Therefore, the system cannot return 

to the state 2/)( 21 ψψ +  after the position measurement no matter how long we wait.  

On the other hand, when position is measured, the probability of finding the particle at 

0xx =  is 
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hψ , which depends on time. This non-trivial time-
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dependence of the probability of position measurement can be observed in the simulation since 

the shape of wavefunction changes with time.  

In the QuILT, for the wavefunction 2/])()([
/

2

/

1
21 hh tiEtiE

exex
−− +ψψ  at time t, students 

learn to distinguish between the probability of measuring energy and position and whether each 

should depend on time. While the probability of measuring energy is 1/2 for the ground and first 

excited states independent of time, the probability density for position x is given by  

 ])()(][)()([
2

1
),(

/

2

/

1

/*

2

/*

1

2
2121 hhhh tiEtiEtiEtiE

exexexextx
−−++ ++=Ψ ψψψψ . (Eq 5.2) 

which depends on time. In a sample dialogue from the QuILT below, students are asked to 

explain why they agree with Harry or Sally who are discussing this issue.  

 Harry and Sally prepare the same initial state wavefunctions 2/)]()([ 21 xx ψψ +  from energy 

eigenfunctions )(1 xψ  and )(2 xψ  in their labs at time t=0. Harry measures the energy of his 

electron in a 1D infinite square well at t=1 unit and Sally measures the energy of her 

electron in an identical 1D infinite square well at time t=3 units. 

Harry: The probability that I will measure energy nE  is not the same as the probability 

that you will measure energy nE . The probability is determined by the absolute square of the 

wave function, 
2

),( txΨ , which depends on time. 

Sally: No. The probability of measuring position depends on the absolute square of the 

wave function. This time we are measuring energy. The time-dependent phase factors will cancel 

out because only one factor 
h/tiEne

−
 can contribute in calculating the probability of measuring a 

particular energy nE . Thus, the probability of obtaining nE  will be time independent. You and I 

have the same probability of measuring energy nE . 
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Harry: But there will be cross terms in the square of the wave function. The phase factors 

do not drop out for the cross terms.  

Sally: I disagree. The probability of measuring energy is determined by the square of the 

coefficients of each of the energy eigenfunctions )(1 xψ  and )(2 xψ . We do not square the entire 

wave function, we only square the coefficients of each energy eigenfunction and the time 

dependence drops out. For example, the probability of measuring energy 1E  is given by: 

2
/

1 2/)( 1 htiE
eEp
−= , which is time independent. 

5.7.4 Consecutive Measurements 

After students learned about how to use the “normal” time evolution of the wavefunction 

according to the TDSE after the measurement of a physical observable, these concepts were 

reinforced by asking students questions about consecutive measurements.  For example, students 

were asked about the possible outcomes of an energy measurement after a position measurement 

for the state ( )21
2

1 ψψ + . Some students incorrectly believed that one can only obtain 

energies 1E  or 2E . However, since the position measurement will collapse the system to a 

position eigenstate which is a superposition of all of the energy eigenstates nψ  (including those 

corresponding to very high energies), the energy measurement that follows the position 

measurement could yield a very high energy value nE . After the prediction, students use the 

simulation to check their prediction and find that the wavefunction could collapse to an energy 

eigenstate nψ  with 3≥n  as shown in Figure 5.8. Students are also asked to calculate the 

probability for measuring the ground state energy. 
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Figure 5.8 Energy measurement after a position measurement of the initial state with only two 

energy eigenstate components n=1 and n=2. (a) represents the system in the initial superposition state. (b) is 

the state of the system right after a position measurement. (c) is a possible state (energy eigenstate n=5) of the 

system after the energy measurement following the position measurement in (b).  

Students also predict whether the probability of measuring different values of energy 

depends on whether we wait for a certain time after the position measurement. When students 

earlier learned about the time dependence of the measurement probability, they learned that the 

probability of obtaining a particular energy value was independent of time and that no matter 

how long one waited after the position measurement, the system would not go back to the initial 

state before position was measured. These concepts about the “normal” time evolution according 

to the TDSE are reinforced by using the simulation. Students observe in the simulation that the 

wavefunction does not return to the initial state before the measurement and when they measure 

the energy at time t>0 after the position measurement, they have a significant probability of 

collapsing the system into a high energy eigenstate nψ .  

Students are also asked to predict what would happen if they made two consecutive 

position measurements quickly so that the wavefunction does not have the time to evolve vs. 

waiting for some time before making the second measurement. Students then use simulation to 

check their prediction. They find that when the second measurement was made immediately after 

the first measurement, the particle is found approximately at the same position since the 
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wavefunction does not have time to evolve. On the other hand, the wavefunction would not be a 

peaked delta function if we waited for a reasonable time before performing the second 

measurement and we can find the particle at a different position. The simulation provides the 

flexibility of stopping or starting the time evolution at any point (or even stepping through time-

evolution slowly) so that students note the differences between the consecutive position 

measurements performed in quick succession as shown in Figure 5.9(a) and (b) vs. slowly as 

shown in Figure 5.9(c) and (d).  

 

Figure 5.9 Consecutive position measurement in quick succession (a and b) /after waiting for some 

time (c and d) 

5.8 PRELIMINARY EVALUATION 

We designed a pre-test and a post-test to assess some issues related to measurement after the 

traditional instruction, after concept tests related to measurement (pre-test) and after working on 

the measurement QuILT (post-test). To eliminate any possible differences in the difficulty levels 

of the pretest and the posttest, we divided the tests into two versions, i.e., Test A and Test B. Test 

A and Test B both had two multiple choice questions (Q1 and Q2) and four open-ended 

questions (Q3-Q6). We mixed the Test A and Test B when we distributed the pre-tests and 

posttests to students in both the comparison group and the experimental group. Similarly, in the 
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experimental group, students who obtained Test A in the pretest were given Test B in the post-

test and vice versa.  

The comparison group students only had traditional lectures in class and regular 

homework problems from the textbook. The class average was 26% including both Test A and 

Test B. The experimental group students had been using the concept tests as a peer instruction 

tool in class since the first day of the semester. The pretest was given to the students after the 

lecture and the average was 68%. The experimental group students were given the QuILT as 

homework after being administered the pretest in class. When they turned in the QuILT as 

homework, they were administered the post test. Their post test average score was 91%.  

Table 5.1 The pre-test and post-test scores on each question of Test A. The concepts involved in each 

question are shown in italic. 

Test A 

Comparison 

Group (15) 

Experimental Group 

Pre-test (6) 

Experimental Group 

Post-test (7) 

 

Traditional 

Lecture Only 

Lecture & Concept 

Test 

Lecture & Concept 

Test & QuILT 

whether a wavefunction is an energy eigenstate 
Q1 

13% 67% 71% 

energy measurement outcomes of a superposition state 
Q2 

40% 83% 100% 

sketch the shape of a position eigenstate and find the probability 
Q3 

37% 83% 86% 

probability of energy measurement 
Q4 

3% 63% 79% 

consecutive position measurement after position measurement 
Q5 

37% 71% 100% 

consecutive energy measurement after energy measurement 
Q6 

53% 58% 86% 
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To analyze students’ understanding of different concepts and principles in quantum 

measurement, we calculated the percentage of correct responses for each question in Test A and 

Test B as listed in Table 5.1 and Table 5.2. The numbers in the brackets represent the number of 

students who answered that question. The concepts involved in each question are also shown in 

the Tables.  

Table 5.2 The pre-test and post-test scores on each question of Test B. The concepts involved in each 

question are shown in italic. 

Test B 

Comparison 

Group (10) 

Experimental Group 

Pre-test (7) 

Experimental Group 

Post-test (5) 

Traditional 

Lecture Only 

Lecture & Concept 

Test 

Lecture & Concept 

Test & QuILT 

what state will the system be in after a quantum measurement 
Q1 

50% 57% 80% 

what is a stationary state 
Q2 

0% 57% 100% 

energy measurement outcomes and probabilities 
Q3 

15% 93% 100% 

sketch the shape of an energy eigenstate 
Q4 

35% 86% 100% 

consecutive position measurement after energy measurement 
Q5 

10% 36% 100% 

consecutive energy measurement after position measurement 
Q6 

0% 64% 100% 

 

From Q1 in Test A and Q2 in Test B, we observe that the concept tests in class resolved 

many of the students’ difficulties related to the concept of stationary states. Q4 in Test A and Q3 

in Test B suggest that students had understood the basic principle of the projection method when 

calculating the measurement probabilities. For the questions related to the time development of 
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the wavefunction after a measurement, e.g., Q2 in Test B and Q6 in both Test A and B, the 

QuILT led students to a better performance compared to when they used the concept tests only. 

Also, the QuILT helped the students to correctly answer the questions related to consecutive 

measurements. Due to the limitation of sample size, individual performance might affect the 

average score on each question. However, the effectiveness of the concept tests and QuILTs in 

improving students’ performance is reflected by the significant difference in the performance of 

the experimental group and the comparison group. 

5.9 SUMMARY 

We find that students have common difficulties with concepts related to quantum measurement. 

In particular, many students were unclear about the difference between energy eigenstates and 

eigenstates of other physical observables and what happens to the state of the system after the 

measurement of an observable. Students also had difficulty in distinguishing between individual 

measurements and expectation value. They struggled to distinguish between the measured value, 

the probability of measuring it and the expectation value. Students often did not think of the 

expectation value of an observable as an ensemble average of a large number of measurements 

on identically prepared systems but rather thought of it as a mathematical procedure where an 

operator is sandwiched between the same bra and ket states (the state of the system). Students 

were also confused about whether the system is stuck in the state in which it collapsed right after 

the measurement or whether it goes back to the state before the measurement was performed. In 

general, students struggled with issues related to the time evolution of the wave function after the 

measurement. 
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We developed a research-based QuILT and concept tests to improve students’ 

understanding of quantum measurement concepts. Both these learning tools keep students 

actively engaged in the learning process. They provide a guided approach to bridge the gap 

between the quantitative and conceptual issues related to quantum measurement and help 

students connect different concepts and build a good knowledge structure. The instructors could 

either use the QuILT as an in-class tutorial or assign it as homework with the pre-test and post-

test given in the class. Our preliminary results show that the QuILT and concept tests 

significantly improve students’ understanding of quantum measurement.  

5.10 APPENDIX 

For a 1-D infinite square well model, the allowed energies are labeled by integers n, i.e., 

2
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nnAtx ψ)0,(  where nA  are suitable expansion 

coefficients, the wavefunction at time t is  
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At particular equally spaced times t which satisfies ππ
Nt

ma
2

2 2

2

=
h

 ( ,...3,2,1=N ), the exponential 

terms in the wave function are all equal to one so the wavefunction goes back to the initial state. 

So we do have 100% probability of measuring the same position if we make the second 

measurement at those particular times. However, in the question asked, we were evaluating 

whether students know that the position eigenstate is not a stationary state. If a student showed 

understanding of the time evolution of the wave function and mentioned that the probability of 
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obtaining the initial value of position with 100% probability was repeated at special times only, it 

would be correct. However, no student explained the time evolution process in such a way after 

the position measurement. Some students incorrectly noted that the wavefunction goes back to 

the initial state before the measurement was made. What these students meant was that if the 

wavefunction was in a linear superposition of the ground and first excited states of the system, 

then some time after the measurement of energy or position, the wavefunction will go back to the 

initial linear superposition. 
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6.0  IMPROVING STUDENTS’ UNDERSTANDING OF QUANTUM MECHANICS 

VIA THE STERN-GERLACH EXPERIMENT 

6.1 ABSTRACT 

The Stern-Gerlach experiment (SGE) has played a central role in the discovery of spin angular 

momentum. It can also play a pivotal role in teaching the formalism of quantum mechanics using 

a concrete example involving a finite-dimensional Hilbert space. Using this context, students can 

learn about how to prepare a specific quantum state starting from an arbitrary state, issues related 

to the time evolution of the wave function, and quantum measurement. It can also be exploited to 

teach students about the distinction between the physical space where one performs the 

experiment and the Hilbert space where the state of the system lies and how the information 

about the state of the system in the Hilbert space can be exploited to interpret the possible 

outcomes of the experiment in the physical space. Students can learn the advantages of choosing 

an appropriate basis to make suitable predictions about the outcomes of experiments with 

different arrangements of Stern-Gerlach devices. This experiment can also help students 

understand that an ensemble of identically prepared systems, e.g., one in a linear superposition of 

two stationary states, is not the same as a mixture, e.g., in which half of the systems are in one 

stationary state and the other half are in the other stationary state. Here, we discuss investigation 

of students' difficulties about the Stern-Gerlach experiment by giving written tests and 
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interviewing advanced undergraduate and graduate students in quantum mechanics courses. We 

also discuss preliminary data from two quantum mechanics courses that suggest that a Quantum 

Interactive Learning Tutorial (QuILT) related to the Stern-Gerlach experiment is helpful in 

improving students' understanding of these concepts. 

6.2 INTRODUCTION 

In the SGE, a particle with mass, spin and/or orbital angular momentum (a particle with a 

magnetic dipole moment) is sent through a Stern-Gerlach Apparatus (SGA) with a non-uniform 

magnetic field. With an appropriate gradient of the external magnetic field, different components 

of the angular momentum in the wave function can be spatially separated by coupling them with 

different linear momenta. By using suitable measurement devices (e.g., detectors at appropriate 

locations in the path of the beam), we can use the SGE to prepare a quantum state which is 

different from the initial state before the particle entered the SGA. The knowledge deficiencies 

related to the SGE discussed in the next section can be broadly divided into three levels in order 

of increasing difficulty in overcoming them: (I) lack of knowledge of relevant concepts, (II) 

knowledge that cannot be interpreted correctly, (III) knowledge that is interpreted at the basic 

level but cannot be used to draw inferences in specific situations (Singh 2001).  

The SGE QuILT is based upon research on students' difficulties in learning quantum 

mechanics. It strives to build on students' prior knowledge, actively engages them in the learning 

process and helps them build links between the abstract formalism and conceptual aspects of 

quantum physics without compromising the technical content. The QuILT uses a guided inquiry 

method of learning and the various sections build on what the students did in the previous 
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sections to help them develop a robust knowledge structure. As students progress through the 

QuILT, they first make predictions about what should happen in various situations and then they 

are given guidance and support to reason through the situations appropriately and assimilate and 

accommodate productive ideas into their knowledge structure (McDermott et al. 2002). The SGE 

QuILT creates an active learning environment in which students will directly confront their 

misconceptions. At various stages of concept development, the SGE QuILT often exploits 

computer-based visualization tools. Often these tools cause a cognitive conflict if students' initial 

prediction and their observations do not match. In that case, students themselves realize that 

there is some inconsistency in their reasoning. Then, providing students appropriate guidance 

and support via the guided inquiry approach used in the QuILT is an effective strategy to help 

them build a robust knowledge structure.  

6.3 INVESTIGATION OF STUDENTS’ DIFFICULTIES WITH THE STERN-

GERLACH EXPERIMENT 

The investigation of difficulties was carried out by administering written surveys to more than 

two hundred physics graduate students and advanced undergraduate students enrolled in 

quantum mechanics courses and by conducting individual interviews with a subset of students. 

The individual interviews were carried out using a think-aloud protocol to better understand the 

rationale for their responses before, during and after the development of different versions of the 

SGE QuILT and the corresponding pre-test and post-test (Chi 1994). During the semi-structured 

interviews, students were asked to verbalize their thought processes while they answered 

questions either as separate questions before the preliminary version of the QuILT was 
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developed or as a part of the QuILT. Students were not interrupted unless they remained quiet 

for a while. In the end, we asked them for clarification of the issues they had not made clear 

earlier. Some of these interviews involved asking students to predict what should happen in a 

particular situation, having them observe what happens in a simulation, and asking them to 

reconcile the differences between their prediction and observation. After each individual 

interview with a particular version of the QuILT (along with the pre-test and post-test 

administered), modifications were made based upon the feedback obtained from students' 

performance on the QuILT (if students got stuck at a particular point and could not make 

progress from one question to the next with the hints already provided, suitable modifications 

were made), the pre-test and the post-test.  

6.3.1 Difficulty in Distinguishing between the Physical Space and Hilbert Space 

Using quantum theory, one can interpret the outcome of experiments performed, e.g., in three 

dimensional (3D) laboratory or physical space by making connection with an abstract Hilbert 

space (state space) in which the state of the quantum system or wavefunction lies. The physical 

observables that one measures in the laboratory correspond to Hermitian operators in the Hilbert 

space whose eigenstates span the Hilbert space. Knowing the initial wavefunction and the 

Hamiltonian of the system allows one to determine the time-evolution of the wavefunction 

unambiguously and the measurement postulate can be used to determine the possible outcomes 

of individual measurements of an observable and their ensemble averages (expectation values). 

It is difficult for many students to distinguish between vectors in the 3D laboratory space 

and states in Hilbert space. For example, xS , yS  and zS  denote the orthogonal components of 

the spin angular momentum vector of an electron in the 3D space, each of which is a physical 
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observable that can be measured in the laboratory. However, the Hilbert space corresponding to 

the spin degree of freedom for a spin-1/2 particle is two dimensional (2D). In this Hilbert space, 

xŜ , yŜ  and zŜ  are operators whose eigenstates span the 2D space. Thus, the eigenstates of xŜ  

are vectors which span the 2D space and are orthogonal to each other (but not orthogonal to the 

eigenstates of yŜ  and zŜ ). If the electron is in a magnetic field with the field gradient in the z-

direction in the laboratory (3D space) as in the Stern-Gerlach experiment, the magnetic field is a 

vector field in the 3D space but not in the 2D Hilbert space. It does not make sense to compare 

vectors in the 3D space with the vectors in the 2D space as in statements such as “the magnetic 

field gradient is perpendicular to the eigenstates of xŜ ”. In fact, even 1=L  orbital angular 

momentum states, which are vectors in a 3D Hilbert space, do not live in the 3D laboratory space. 

Unfortunately, these distinctions are difficult for students to make and such difficulties were 

frequently observed in response to the survey questions and during the individual interviews. 

These difficulties are discussed below in the context of the Stern-Gerlach experiment. 

6.3.2 Difficulty in Determining the Pattern on the Screen with Particles in Different Spin 

States Passing through a SGA 

Two questions we have asked the first year physics graduate students and advanced 

undergraduate students for several years related to the SGE in written tests and interviews are 

questions (1) and (2) in the Appendix (section 6.8). In one version of these questions, neutral 

silver atoms were replaced with electrons and students were told to ignore the Lorentz force.  

In question (1) in the Appendix, students have to realize that the magnetic field gradient 

in the -z direction would impart a spin-dependent momentum to the particle and one should 
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observe two spots on the phosphor screen owing to the splitting of the beam along the z-direction 

due to the particle's spin components corresponding to the 
z

↑  and 
z

↓  states. All responses in 

which students noted that there will be a splitting along the z-direction were considered correct 

even if they did not explain their reasoning. Only 41% of the more than 200 graduate students 

from different universities enrolled in a quantum mechanics course provided the correct response. 

These students were given this question as a part of a survey at the beginning of graduate level 

quantum mechanics instruction. Many students thought that there will only be a single spot on 

the phosphor screen. During the interviews conducted with a subset of students, they were often 

confused about the origin of the spin-dependent momentum imparted to the particle. The same 

question was given to 35 undergraduate students in two different classes immediately after 

instruction in the SGE. These students obtained 80% on this question, which is significantly 

better than the performance of the graduate students before instruction in the graduate-level 

course. It appears that many of the first year graduate students enrolled in the graduate level 

quantum mechanics course who took the survey had forgotten about the SGE. Moreover, 

discussions with some of the graduate students suggest that they had learned it only in the 

context of a modern physics course which was qualitative. 

Question (2) in the Appendix is challenging because students have to realize that since 

the magnetic field gradient is in the -x direction, the basis must be chosen to be the eigenstates of 

xŜ  to readily analyze how the SGA will affect the spin state. Here, the initial state, which is an 

eigenstate of zŜ , 
z

↑ , can be written as a linear superposition of the eigenstates of xŜ , i.e., 

 ( )
xxz

↓+↑=↑
2

1
. (Eq 6.1) 
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The magnetic field gradient in the -x direction will couple the 
x

↑  and 
x

↓ components in the 

incoming spin state 
z

↑  with oppositely directed x-components of the linear momentum and will 

cause two spots on the phosphor screen separated along the x-axis. 

Only 23% of the more than 200 graduate students in a survey at the beginning of 

instruction provided the correct response. The performance of 35 undergraduate students from 

two different classes who were given this question immediately after traditional instruction in 

SGE was only somewhat better (39%). Some undergraduate and graduate students were 

interviewed individually to better understand the reasoning behind their response. In some of 

these interviews, we asked students to predict the outcome of these experiments and then showed 

them what actually happens in a simulation and asked them to reconcile the differences between 

the observation and prediction. This task turned out to be extremely difficult for students. The 

most common difficulty in Question (2) was assuming that since the spin state is 
z

↑ , there 

should not be any splitting as shown in Figure 6.1. 

 

Figure 6.1 Three sample responses in which students provided incorrect explanations for why there 

should be one spot instead of two in question (2) in the Appendix. The students' comments with each figure 

are typed for clarity. 
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Many students explained their reasoning by claiming that since the magnetic field 

gradient is in the -x direction but the spin state is along the z-direction, they are orthogonal to 

each other, and therefore there cannot be any splitting of the beam. Student responses suggest 

that they were incorrectly connecting the gradient of the magnetic field in the 3D space with the 

“direction” of state vectors in the Hilbert space. Several students in question (2) drew a 

monotonically increasing function. Some of them incorrectly believed that the spin state in this 

situation will get pulled in one direction because the magnetic field gradient is in a certain 

direction (see Figure 6.2). Asking the interviewed students explicitly about whether they could 

consider a basis that may be more appropriate to analyze this problem was rarely helpful. 

 

Figure 6.2 Two sample responses in which students provided incorrect explanations for why the 

state/beam will bend as shown in response to the magnetic field gradient in question (2) in the Appendix. The 

students' comments with each figure are typed for clarity. 

One student drew the diagram shown in Figure 6.3 and described Larmor precession of 

spin but did not mention anything about the spin-dependent momentum imparted to the particle 

due to the non-uniform magnetic field as in the SGE. Written responses and interviews suggest 

that many students were unclear about the fact that in a uniform external magnetic field, the spin 

will only precess (if not in a stationary state) but in a non-uniform magnetic field as in the SGE, 
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there will be a spin-dependent momentum imparted to the particle that may spatially separate the 

components of the spin angular momentum in the wave function under suitable conditions.  

 

Figure 6.3 A diagram drawn by a student showing the Larmor precession of spin in response to 

question (2) in the Appendix. 

6.3.3 Larmor Precession of Spin involves Precession in Physical Space 

We note that the student who drew Figure 6.3 incorrectly believed that spin is due to motion in 

real space. When he was reminded that the question was not about the dynamics (as suggested by 

the arrows drawn by the student to show the direction of precession) but about the pattern 

observed on the screen, he incorrectly claimed that the pattern on the screen would be a circle 

due to the precession of the spin in the magnetic field. Similar to the difficulty of this student, we 

have found that many students have difficulty realizing that spin is not an orbital degree of 

freedom and we see two spots on the screen in questions (1) and (2) in the Appendix related to 

the SGE because of the coupling of the spin degree of freedom with the orbital degree of 

freedom (e.g., the linear momentum). 
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6.3.4 Difficulty with State Preparation 

The preparation of a specific quantum state may be challenging to achieve in the laboratory but it 

is relatively easy to conceptualize theoretically at least in a 2D Hilbert space with the SGE. We 

find that the students have difficulty with the preparation of a specific quantum state even in a 

2D Hilbert space. Students were asked questions related to state preparation using SGA in both 

written tests and interviews, e.g., question (8) in the Appendix. 

A possible correct response would be to pass the initial beam through a SGA with a 

magnetic field gradient in the x or y direction and block one component of the spatially separated 

beam that comes out of the SGA before passing it through another SGA with its field gradient in 

the z-direction. One can then block the 
z

↑  component with a detector and obtain a beam in the 

spin state 
z

↓ . 

Out of 17 first year graduate students enrolled in quantum mechanics who had instruction 

in the SGE, 82% provided the correct response to question (8) in the Appendix. However, only 

30% of undergraduate students after traditional instruction provided the correct response. 

Interviews suggest that students had great difficulty thinking about how to choose an appropriate 

basis to facilitate the analysis of what should happen after particles in a given spin state were 

sent through a SGA with a particular magnetic field gradient.  
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6.3.5 Difficulty in Differentiating between a Superposition and a Mixture 

We also asked students to think of a strategy to distinguish between a superposition in which all 

particles are in state ( )
zz

↓+↑
2

1
 from a mixture in which half of the particles are in state  

z
↑  and the other half are in state 

z
↓  as in question (9) in the Appendix. 

This question was very difficult for most students. One strategy for distinguishing 

between the superposition and the mixture given is to pass each of them one at a time through a 

SGA with the field gradient in -x direction. Then, since ( )
zz

↓+↑
2

1
 is 

x
↑ , it will 

completely go out through the upper-channel after passing through a SGA with a negative x 

gradient (SGX-). On the other hand, the equal mixture of 
z

↑  and 
z

↓  will have an equal 

probability of registering at the detectors in the lower and upper channels after the SGX- because 

these states can be written as ( )
xx

↓±↑
2

1
 in terms of the eigenstates of xŜ  and will become 

spatially separated after passing through the SGX-. 

Out of 17 first year graduate students enrolled in quantum mechanics who had instruction 

in the SGE only 24% provided the correct response to this question. In an undergraduate course 

in which the instructor had discussed similar problems with students before giving them this 

question, 31% provided the correct response after the traditional instruction. One student 

incorrectly noted: “Since the probability for an atom in the beam A to be in either state 
z

↑  or 

z
↓  is 1/2, I can’t distinguish it from B.” Another incorrect response emphasized differences in 

coupling of the spin angular momentum with the linear momentum: “The atoms in beam A will 
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have their spin coupled to the z-component of their momentum. The other beam’s atoms, 

however, will not have zP  coupled to zS .” Some students who believed that it is possible to 

separate a mixture from a superposition state using SGA provided incorrect reasoning. Figure 6.4 

provides two such examples in which students first let each of the beams pass through a SGA 

with a magnetic field gradient in the z-direction. 

 

Figure 6.4 Examples of two graduate students' responses to question (9). The students' responses are 

typed for clarity. 

6.4 SGE QUILT: WARM-UP AND HOMEWORK 

As discussed in the introductory section, the SGE QuILT builds on the prior knowledge of 

students and was developed based on the difficulties found via written surveys and interviews. 

The QuILT development went through a cyclical iterative process which includes the following 
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stages: (1) Development of the preliminary version based upon theoretical analysis of the 

underlying knowledge structure and research on students’ difficulties, (2) Implementation and 

evaluation of the QuILT by administering it individually to students, measuring its impact on 

student learning and assessing what difficulties remained, (3) refinement and modification based 

upon the feedback from the implementation and evaluation. When we found that the QuILT was 

working well in individual administration and the post-test performance was significantly 

improved compared to the pre-test performance, it was administered in quantum mechanics 

classes.  

The SGE QuILT begins with a warm-up exercise and includes homework questions that 

students work on before and after working on the QuILT, respectively. The warm-up exercise 

discusses preliminary issues such as why there is only a torque on the magnetic dipole in a 

uniform magnetic field but also a “force” in a non-uniform magnetic field (or more precisely, a 

momentum is imparted to the particle due to its angular momentum as in the SGE). It also helps 

students understand that the divergence of the magnetic field being zero according to the 

Maxwell’s equation implies that the gradient of the magnetic field cannot be non-zero only in 

one direction and if we choose the gradient to be non-zero in two orthogonal directions and also 

apply a strong uniform magnetic field in one of those directions, the rapid Larmor precession 

will make the average force in one of the directions zero. That way we can only focus on the 

magnetic field gradient in a particular direction for determining its effect on the spin state after 

passing through the SGE.  

The warm-up exercise also discusses how the overall wavefunction of the quantum 

system includes both the spatial and spin parts of the wavefunction. For simplicity, students are 

asked to assume that before passing through a Stern Gerlach device with the field gradient in the 
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z-direction (SGZ) at time t=0, the spatial wave function ),,( zyxψ  is a Gaussian localized near 

(0,0,0)),,( =zyx  and the spatial and spin parts of the wave function are not entangled. Therefore, 

the overall wave function which includes both the spatial and spin parts can be written as  

part)(spin part) (orbital)0( ×==Ψ t , i.e., χψ ),,()0( zyxt ==Ψ . Students are guided via a 

series of questions including the following: 

A silver atom in the spin state )()0(
zz

bat ↓+↑==χ  passes through a SGZ- with a 

non-uniform magnetic field kzCB ˆ
0=

r
 from time t=0 to t=T. Which one of the following is the 

wave function at time t=T when the atom just exits the magnetic field? Assume that the atom is in 

the SGZ- for a short time so that there is no change in the zyx ,,  coordinates. (Hint: The time 

development of each stationary state is via an appropriate term of the type 
h/tiE

e ±±
) 

A. 
zz

baT ↓+↑=Ψ −+ φφ)( , where ),,(),,(
2/0 zyxezyx

zTiC ψφ γ ⋅±
± =  

B. ( )
zz

bazyxT ↓+↑=Ψ + ),,()( φ  

C. ( )
zz

bazyxT ↓+↑=Ψ ),,()( ψ  

D. None of the above. 

Students further learn that in the wavefunction at time t=T, 
zz

baT ↓+↑=Ψ −+ φφ)(  the 

spatial and spin parts of the wave functions are “entangled” because spin and orbit cannot be 

factorized (i.e., cannot be written in the form ( )
zz

bazyxT ↓+↑=Ψ ),,()( ψ ). Thus, 

measurement of the orbital degrees of freedom is linked to spin and vice versa. Students are told 

that in the future discussion in the QuILT, the spatial part of the wave function ),,( zyxψ  will 

not be mentioned explicitly. However, they should understand that a SGA entangles the spatial 

and spin parts of the wave function. 
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The warm-up helps students understand how the coupling of the orbital and spin degrees 

of freedom causes the spatial separation of various spin components of the wave function. In the 

warm-up, students also learn that while the different components of spin may get spatially 

separated after passing through a SGA, the wave function will remain in a superposition of 

different spin states until a measurement is made, e.g., by placing a detector in an appropriate 

location. For example, the wave function for a spin-1/2 particle can become spatially separated 

after passing through certain orientations of SGA and if a detector placed after the SGA at an 

appropriate location detects a particle (clicks), the wave function collapses to one state vs. when 

the detector does not click (in which case we have prepared the particles in a definite spin state). 

In the SGE QuILT warm-up, students also learn about issues related to distinguishing 

between vectors in three-dimensional physical space and state vectors in Hilbert space. In this 

context, they learn that the magnetic field gradient in the z-direction is not perpendicular to a 

spin state in the Hilbert space, a common misconception among students. Students also learn 

about why choosing a particular basis is useful when analyzing particles going through a SGA 

with a particular magnetic field gradient. The SGE QuILT warm-up also helps clarify confusion 

about the x, y and z labels used to denote the orthogonal components of a vector, e.g., in classical 

mechanics, and the eigenstates of different components of spin operator ( xŜ , yŜ  and zŜ ) which 

are not orthogonal to each other.  

The SGE QuILT homework extends what students have learned in the tutorial and also 

focuses further on issues related to quantum measurement and state preparation via SGE. One 

common difficulty about SGE is that students often believe that a particle passing through a SGE 

is equivalent to the measurement of particle's spin angular momentum. These issues are clarified 

in the SGE QuILT homework. 
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6.5 SGE QUILT 

As noted earlier, the SGE QuILT uses a guided inquiry-based approach in which various 

concepts build on each other gradually. It employs visualization tools to help students build a 

physical intuition about concepts related to the SGE. The Open Source Physics SPINS program 

(Belloni et al. 2006) was adapted as needed for the SGE QuILT. The SPINS program extends 

David McIntyre's open source Java applet (McIntyre 2002) by allowing simulated experiments to 

be stored and run easily.  

One effective strategy to help students build a robust knowledge structure is to cause a 

cognitive conflict in students’ minds such that the students themselves realize that there is some 

inconsistency in their reasoning and then provide them appropriate guidance and support. In the 

SGE QuILT, after predicting what they expect in various situations, students are asked to check 

their predictions using simulations. If the prediction and observations do not match, students 

reach a state of cognitive conflict. At that point the QuILT provides them guidance to help build 

a good grasp of relevant concepts and reconcile the difference between their predictions and 

observations.  

As noted earlier, the SGE QuILT helps students learn about issues related to 

measurement, preparation of a desired quantum state, e.g., 
x

↑ , starting with an arbitrary initial 

state, time-development of the wave function, the difference between superposition and mixture, 

the difference between physical space and Hilbert space, the importance of choosing an 

appropriate basis to analyze what should happen in a particular situation, etc. The full version of 

the SGE QuILT is attached at the end of the thesis (Appendix B). Below we discuss some 

excerpts of the guidance provided by the SGE QuILT. In each situation, students have to first 
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predict what should happen in a particular situation before guidance and hints are provided to 

them. As an example, students are asked questions such as the following to help them understand 

the state preparation, which is a central concept in being able to exploit quantum mechanics in 

different applications including possibly to build a quantum computer some day.  

 You send silver atoms in an initial spin state 
z

↑  one at a time through two SGAs with 

magnetic field gradients as shown in Figure 6.5. Suitable detectors are placed as shown in 

Figure 6.5. One detector is between the two SGAs (in the lower channel) and the other after 

both SGAs (in the upper channel). What is the probability that a given single atom will cause 

the “up” detector to click after passing through this system of two SGAs?  

 

Figure 6.5 Set up for a guided example in the QuILT. 

 You collect the silver atoms that are not blocked at the end after they have passed through 

both SGAs. Which one of the following is the spin state of the silver atom you collect at the 

end in the lower channel? 

A.
z

↑    B.
z

↓    C. 
x

↓    D. You do not collect anything because all atoms passing through the 

second SGA are blocked by the detector 

Figure 6.6 shows a simulation constructed from the OSP SPINS (Belloni 2006) program 

that students work with after their initial prediction that shows that one can input 
z

↑  and obtain 

z
↓ . Students again have to reconcile the difference between their prediction and observation 

with suitable hints. 
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Figure 6.6 A snapshot of the simulated experiment constructed from the OSP SPINS program. This 

snapshot shows 493 particles are registered in the detector right after passing through the SGA with the 

magnetic field gradient in the negative x-direction (SGX-), 244 particles are registered in the detector right 

after the first SGA with the magnetic field gradient in the negative z-direction (SGZ-) and 263 particles are 

registered in the detector after the second SGZ-. 

In order to help students understand that it is possible to input 
z

↑ through the SGAs and 

prepare an orthogonal state 
z

↓  on the way out, the QuILT also draws an analogy with the 

photon polarization states. Students learn that if atoms in the state 
z

↑  pass through a SGZ only, 

the state 
z

↓  will not be obtained on the way out. However, 
z

↓  is obtained in the simulated 

experiment in Figure 6.6 because we have inserted SGX- at an intermediate stage. Students 

consider the analogy with vertically polarized light passing directly through a horizontal 

polarizer (Figure 6.7a) vs. passing first through a polarizer at 45° followed by a horizontal 

polarizer (Figure 6.7b). There is no light at the output if vertically polarized light passes directly 

through a horizontal polarizer. On the other hand, if the polarizer at 45° is present, light becomes 

polarized at 45° after the 45° polarizer, which is a linear superposition of horizontal and vertical 
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polarization. Therefore, some light comes out through the horizontal polarizer placed after the 

45° polarizer. Since the experiment with the polarizers (in the context of a photon beam not 

single photon) is familiar to students from introductory physics, this analogy can help students 

learn about the SGE using a familiar context. 

 

Figure 6.7 Analogy between spin states and photon polarization states. (a) Vertical light cannot 

directly pass through a horizontal polarizer. (b) If a 45 degree polarizer is inserted in front of the horizontal 

polarizer, some incoming vertical light could pass through both polarizers. 

While working through the QuILT, students are asked a guided sequence of questions to 

help them distinguish between superposition and mixture. The QuILT presents a common 

incorrect point of view on the issue dealing with superposition and mixture. For example, 

students are asked to explain why they agree or disagree with the following statement: 

 There is no difference between silver atoms in a “pure” state given by ( )
zz

↓+↑
2

1
 and 

an unpolarized mixture in which half of the atoms are in the 
z

↑ state and half are in the 

z
↓  state. If we had sent atoms in the superposition state ( )

zz
↓+↑

2

1
 through the SGZ, 

half of them would have registered in the “up” detector and half of them would have been 
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collected in the lower channel. The outcome will be exactly the same if we had sent a 50/50 

mixture of 
z

↑  and 
z

↓  through the SGZ. So there is no way to distinguish a mixture from a 

superposition. 

Then, the students are given an opportunity to check their predictions using computer 

simulations and reconcile the differences using more guidance and support as needed. Further 

questions such as the following are also given to students to help them understand the difference 

between a pure state and a mixture by reinforcing the analogy between the spin states of 

electrons and the polarization states of photons: 

 Remember the analogy between spin states and polarized photons. Suppose you have a beam 

of pure polarized photons with 45 degrees polarization and another beam of unpolarized 

mixture with half of the photons vertically polarized and half horizontally polarized. Will a 

vertical or horizontal polarizer tell you which beam is in a pure state? What polarizer could 

you use to differentiate the two beams of photons? 

 Based upon the analogy for distinguishing between pure polarized photons and a beam of 

photon mixture, what kind of SGA could you use to differentiate the two beams of atoms in 

the previous question (which is related to distinguishing a superposition of states from a 

mixture)? Draw a sketch below to explain your choice. Do not forget to put the detectors in 

the correct positions. 

The guidance provided to students is decreased as students make progress through the 

QuILT. In the later part of the QuILT, students are given open-ended questions such as the 

following: 

The following questions relate to the simulation “unknown state”. Run the simulation “unknown 

state” first. Then answer the following questions. 
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 Write down at least 3 different possible spin states of the incoming particles that will show 

the behavior seen in the simulation. The incoming particles do not necessarily have identical 

spin states (can be a mixture). Explain your reasoning for your choices. 

 Choose two of the different possible spin states you predicted for the simulation you saw. 

Now come up with some simulations using SGAs that would distinguish between the two 

possible spin states. You can choose one or more SGAs to find out which of the two spin 

states it is. Share your set-up with others in your class. 

6.6 PRELIMINARY EVALUATION 

We conducted preliminary evaluations of the SGE QuILT in two junior-senior level classes, the 

first with 22 and the second with 13 undergraduate students. The two classes were taught by 

different instructors. In both classes, students first received traditional instruction about the SGE, 

took a pre-test, worked on the tutorial and then took a post-test in the following class period. The 

test questions are given in the Appendix of this chapter (section 6.8). In particular, the first class 

with 22 students was given questions (1)-(4) in the pre-test and questions (5)-(7) on the post-test. 

The average pre-test score for this class was 53% and the average post-test score was 92%. 

For the second class, we designed two versions of a test (versions A and B) to assess 

student learning. Version A contained questions (1), (2), (3), (4) and (9) while version B had 

questions (1), (2), (5), (6), and (7) (see the section 6.8 for a description of all the questions). 

Students in the second class were randomly administered either version A or version B of the test 

as the pre-test after the traditional instruction. Then, each student was administered the version of 

the test he/she had not taken as the post-test after working on the QuILT. In particular, 8 students 
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in that class were administered version A as pre-test (and version B as the post-test) whereas the 

other 8 students were given version B as the pre-test (and version A as the post-test). The 

average pre-test score for this second class was 37% and the average post-test score was 84%. 

The average pre-test and post-test performance on each question combining the two groups of 

students is given in Table 6.1. Except for Question (1), on which students performed reasonably 

well even on the pre-test (after traditional instruction), students’ performance improved on all the 

other questions after working on the QuILT. 

Table 6.1 The pre-test and post-test scores on each question. The total number of students including 

both classes who answered each question is given in parenthesis.  

 

 

In Table 6.1, the improved performance on question (2) (in which students were asked 

about the pattern on the screen when neutral silver atoms in the spin state 
z

↑ were sent through 

a SGX-) after the QuILT suggests that students were much more likely to be able to predict the 

type of pattern that should form on the screen when particles in a particular spin-state pass 

through a SGA with a particular field gradient. Individual discussions with some students 

suggest that after the QuILT students had a reasonably good understanding of how to choose a 

good basis to analyze the spin state of a particle passing through a SGA with a particular field 

gradient. Some of them were not only able to write the initial spin state in an appropriate basis, 

they were also able to differentiate between the spin states which are vectors in the Hilbert space 

and the direction of the magnetic field gradient in the physical space because these are vectors in 

Question 1 2 3 4 5 6 7 8 9 

Pre-test Score(%) 

(Number of students)  

80% 

(35) 

39%

(35)

34%

(30)

47%

(30)

60%

(5)

0%

(5)

0%

(5)

30% 

(5) 

31% 

(8) 

Post-test Score(%) 

(Number of students)  

81% 

(13) 

77%

(13)

80%

(5)

80%

(5)

94%

(30)

92%

(30)

92%

(30)

100% 

(8) 

70% 

(5) 
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different spaces. In particular, during the discussions, some students correctly noted explicitly 

that the eigenstates of the z-component of spin are orthogonal to each other but not orthogonal to 

the magnetic field gradient in the z-direction in physical space. In question (3), many students 

realized after the QuILT that the given superposition of the eigenstates of the z-component of 

spin is actually an eigenstate of the x-component of spin. Student performance after the QuILT 

on question (7) (in which the incoming state was a general state) further suggests that they had a 

better understanding of how to choose a convenient basis to analyze the output of a SGA than 

before the QuILT. Students also performed reasonably well after the QuILT on questions for 

which the particle went through several SGAs in tandem (e.g., questions (4) and (6)). The 

improved performance on questions (5) and (9) (in which question (9) was open-ended) suggest 

that students had a better understanding of how a superposition of spin states and a mixture can 

be differentiated using SGAs. Furthermore, the improvement in the open-ended question about 

the preparation of a particular spin state starting from another spin-state using a SGA in question 

(8) is encouraging. 

In addition to the pre-test and post-test, students who had used the SGE QuILT were 

asked the following two questions after five months in the second semester junior-senior level 

undergraduate quantum mechanics course. The goal was to investigate whether students can 

distinguish the two situations, one of which involves a superposition and another a mixture when 

the magnetic field gradient was explicitly provided (this question is somewhat different from 

question (8) on the post-test given to students five months ago in which students had to come up 

with their own arrangement of the SGAs): 

  (a) Suppose a beam consists of silver atoms in the state ( )
zz

↓+↑
2

1
. The beam passes 

through a Stern Gerlach apparatus (SGA) with the magnetic field gradient in the x-direction. 
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What is the minimum number of detector(s) needed to detect all the silver atoms passing 

through the SGA? Draw a diagram and explain your reasoning. 

 (b) Suppose a beam consists of an unpolarized mixture of silver atoms in which half of the 

silver atoms are in state 
z

↑   and half are in state 
z

↓ . The beam passes through a SGA 

with the magnetic field gradient in the x-direction. What is the minimum number of 

detector(s) needed to detect all the silver atoms passing through the SGA? Draw a diagram 

and explain your reasoning. 

Eight out of nine students who answered these two questions at the end of the second 

semester provided the correct response for both questions. It is encouraging that the students had 

retained these concepts a full semester after working on the QuILT. This retention is in contrast 

to the performance of the graduate students on Question (1) in the Appendix at the beginning of 

graduate instruction discussed earlier (average score 41%). 

6.7 SUMMARY 

We have investigated students' difficulties in quantum mechanics via the SGE and used the 

findings as a guide to develop a SGE QuILT. The Stern-Gerlach experiment can be used to teach 

many aspects of quantum mechanics effectively including issues related to measurement, 

importance of choosing a particular basis, differentiation between Hilbert space and real space, 

and the difference between a pure linear superposition of states vs. a mixture. Preliminary 

evaluation suggests that the QuILT is effective in improving students' understanding of concepts 

related to SGE.  
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6.8 APPENDIX: THE PRE-/POST-TEST QUESTIONS 

Note: Some of the questions below (or questions similar to them) were also used during the 

investigation of students' difficulties at various stages of the development of the QuILT. 

The following information is provided in the pre-/post-test. 

Figure 6.8 shows the pictorial representations used for a Stern-Gerlach apparatus (SGA). If an 

atom with state 
z

↑ (or 
z

↓ ) passes through a Stern-Gerlach apparatus with the field gradient in 

the negative z-direction (SGZ-), it will be deflected in the +z (or -z) direction. If an atom with 

state 
z

↑ (or 
z

↓ ) passes through a Stern-Gerlach apparatus with the field gradient in the 

positive z-direction (SGZ+), it will be deflected in the -z (or +z) direction. Similarly, if an atom 

with state 
x

↑  passes through SGX- (or SGX+), it will be deflected in the +x (or -x) direction. 

The figures below show examples of deflections through the SGX and SGZ in the plane of the 

paper. However, note that the deflection through a SGX will be in a plane perpendicular to the 

deflection through an SGZ. This actual three-dimensional nature should be kept in mind in 

answering the questions. 

 

Figure 6.8 Pictorial representations used for a SGA. 
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Notation: 
z

↑  and 
z

↓  represent the orthonormal eigenstates of zŜ  (the z component of the spin 

angular momentum). SGA is an abbreviation for a Stern-Gerlach apparatus. 

(1) A beam of neutral silver atoms propagating along the y direction (into the page) in spin 

state ( )
zz

↓+↑
2

1
 is sent through a SGA with a vertical magnetic field gradient in the 

-z direction. Sketch the pattern you expect to observe on a distant phosphor screen in the 

x-z plane when the atoms hit the screen. Explain your reasoning. 

(2) A beam of neutral silver atoms propagating along the y direction (into the page) in spin 

state 
z

↑  is sent through a SGA with a horizontal magnetic field gradient in the -x 

direction. Sketch the pattern you expect to observe on a distant phosphor screen in the x-z 

plane when the atoms hit the screen. Explain your reasoning. 

(3) Chris sends silver atoms in an initial spin state ( )
zz

↓+↑=
2

1
)0(χ  one at a time 

through an SGX-. He places a “down” detector in the appropriate location as shown in 

Figure 6.9. What is the probability of the detector clicking when an atom exits the SGX-?  

       

Figure 6.9 Sketch for question (3). 

 

(4) Silver atoms in an initial spin state 
z

↑=)0(χ  pass one at a time through two SGAs 

with the magnetic field gradients as shown in Figure 6.10. Two suitable detectors are 

placed, one after the first SGA and the second at the end to detect the atoms after they 

zz
↓+↑

2

1

2

1

SGX- 
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pass through both SGAs. The atoms that do not register in the “up” detector at the end are 

collected for another experiment. Find the fraction of atoms that are detected in the “up” 

detector at the end and the normalized spin state of the atoms that are collected for 

another experiment. 

 

Figure 6.10 Sketch for question (4). 

(5) Suppose beam A consists of silver atoms in the state ( )
zz

↓+↑=
2

1χ , and beam B 

consists of an unpolarized mixture in which half of the silver atoms are in state 
z

↑  and 

half are in state 
z

↓ . Choose all of the following statements that are correct. 

(I) Beam A will not separate after passing through SGZ-. 

(II) Beam B will split into two parts after passing through SGZ-. 

(III) We can distinguish between beams A and B by passing each of them through a SGX-. 

A. (I) only     B. (II) only     C. (I) and (II) only     D. (II) and (III) only 

E. All of the above 

 

(6) Sally sends silver atoms in state 
z

↑  through three SGAs as shown in Figure 6.11. Next 

to each detector, write down the probability that the detector clicks. The probability for 

the clicking of a detector refers to the probability that a particle entering the first SGA 

reaches that detector. Also, after each SGA, write the spin state Sally has prepared. 

Explain.     
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Figure 6.11 Sketch for question (6). 

(7) Harry sends silver atoms all in the normalized spin state 
zz

bat ↓+↑== )0(χ  

through a SGX-. He places an “up” detector as shown to block some silver atoms and 

collects the atoms coming out in the “lower channel” for a second experiment (see Figure 

6.12). What fraction of the initial silver atoms will be available for his second experiment? 

What is the spin state prepared for the second experiment? Show your work. 

           

Figure 6.12 Sketch for question (7). 

(8) Suppose you have a beam of atoms in the spin state 
z

↓=)0(χ  but you need to prepare 

the spin state 
z

↑  for your experiment. Could you use Stern-Gerlach Apparati and 

detectors to prepare the spin state 
z

↑ ? If yes, sketch your setup below and explain how 

it works. If not, explain why not. 

(9) Suppose beam A consists of silver atoms in the state ( )
zz

↓+↑=
2

1χ , and beam B 

consists of an unpolarized mixture in which half of the silver atoms are in state 
z

↑  and 

half are in state 
z

↓ . Design an experiment with Stern-Gerlach Apparati and detectors to 

differentiate these two beams. Sketch your experiment setup below and explain how it 

works. 

z
↑  

SGZ- SGX- SGZ+  

Down 

detector

zz
ba ↓+↑

SGX-
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7.0  IMPROVING STUDENTS’ UNDERSTANDING OF ADDITION OF ANGULAR 

MOMENTUM 

7.1 ABSTRACT 

We describe the difficulties advanced undergraduate and graduate students have with the 

addition of angular momentum. We also describe the development and implementation of 

research-based learning tools such as the Quantum Interactive Learning Tutorial (QuILT) to 

reduce these difficulties. The preliminary evaluation shows that these learning tools are effective 

in improving students’ understanding of concepts related to the addition of angular momentum. 

7.2 BACKGROUND 

In classical mechanics, the angular momentum vector L
r

 is defined by the cross product of the 

position vector r
r

 and the momentum p
r

. In quantum mechanics, the components of the angular 

momentum operator xL̂ , yL̂  and zL̂  do not commute with each other and therefore the different 

components of angular momentum are incompatible observables. In physics, the direction in 

which the magnetic field is applied is taken to be the z-direction for standardization. The square 

of the magnitude of the total angular momentum operator is 2
L̂  and the z-component of the 
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angular momentum operator is zL̂ . The eigenvalues of the operator 2
L̂  are 2)1( hll +  where 

)2/( πh=h  (h is the Planck’s constant) and l  is the angular momentum quantum number (the 

angular momentum quantum number can be a half-integer number for spin angular momentum, 

discussed in the next paragraph, but cannot be half integral for the orbital angular momentum). 

The eigenvalues of the z-component of the angular momentum operator zL̂  are hm  where 

lll ,...,1, +−−=m . Since 2
L̂ and zL̂  commute, we can use the quantum numbers l  and m to 

denote their simultaneous eigenstates as m,l . 

In addition to the orbital angular momentum L
r

, elementary particles such as electrons 

also carry intrinsic spin angular momentum S
r

 which is not due to the motion in physical space 

(Griffiths 1995). The algebra of the orbital and spin angular momenta is similar and the 

components of the spin angular momentum operator xŜ , yŜ and zŜ satisfy similar commutation 

relations to the commutation relation between the components of the orbital angular momentum 

Lx, Ly and Lz. The eigenvalues of the square of the magnitude of the spin angular momentum 

operator 2Ŝ  are 2)1( h+ss  where s is the spin quantum number. For a single electron, 2/1=s  

and the z-component of the spin quantum numbers are 2/1=sm  or 2/1−=sm . If we choose the 

eigenstates of the z-component of spin as the basis vectors, the operators xxS σ̂
2

ˆ h
= , yyS σ̂

2
ˆ h
= , 

and zzS σ̂
2

ˆ h
= can be represented by the Pauli matrices ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

01

10
ˆ

xσ , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

0

0
ˆ

i

i
yσ  and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
10

01
ˆ

zσ , respectively. Since 2Ŝ  and zŜ  commute, we can use the quantum numbers s  and 
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sm  to denote their simultaneous eigenstates sms, . Since s  is fixed for a particle with a given 

spin, we can use the shorthand notation ss mms =, . 

If a quantum system contains two particles with angular momentum quantum numbers 1l  

and 2l  separately, the total angular momentum quantum number of the system can range from 

the summation of  1l  and 2l  down to the absolute value of the difference between them, i.e., 

21 lll += , 121 −+ ll , …, 21 ll − . The z-component of the total angular momentum of the 

system equals the sum of the z-components of the angular momentum of the individual particles, 

i.e., 21 mmm += . For a single particle with non-zero spin, its total angular momentum quantum 

number j  can be obtained by the addition of its orbital angular momentum quantum number l  

and its spin angular momentum quantum number s , i.e., sj += l , 1−+ sl ,…, s−l . In this 

paper, we will discuss students’ understanding of the addition of angular momentum for a system 

containing two particles with non-zero spin angular momentum (or spin).  

7.3 INVESTIGATION OF STUDENTS’ DIFFICULTIES 

In this section, we discuss the investigation of students’ difficulties with the addition of angular 

momentum in quantum mechanics. The investigation of students’ difficulties with the addition of 

angular momentum was conducted with many undergraduate and graduate students at the 

University of Pittsburgh (PITT) and other universities (Singh 2006, Singh 2007) by 

administering written tests and by conducting in-depth individual interviews with a subset of 

students. 
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7.3.1 Difficulty with the Dimension of the Hilbert Space 

Difficulty 1: Confusion between the Hilbert space and the Physical space 

The dimension of a Hilbert space is equal to the number of linearly independent basis 

vectors, e.g., the number of linearly independent eigenstates of any operator that acts on the 

states in that space. For example, for a particle in a one dimensional (1D) infinite square well, the 

infinitely many energy eigenstates nψ  corresponding to the Hamiltonian operator can form a 

complete set of basis vectors for the infinite dimensional Hilbert space. We have found that these 

concepts are very difficult for the students. For example, the following multiple choice question 

was given to 15 graduate students to probe whether they could distinguish between the one-

dimensional physical space in which the particle is confined and the infinite dimensional Hilbert 

space where the state of the system lies.  

 Choose all of the following statements that are correct for a particle interacting with a one 

dimensional (1-D) infinite square well. 

(1) The appropriate Hilbert space for this system is one dimensional. 

(2) The energy eigenstates of the system form a basis in a 1-D Hilbert space. 

(3) The position eigenstates of the system form a basis in a 1-D Hilbert space. 

A. none of the above     B. 1 only    C. 2 only    D. 3 only    E. all of the above     

Many students were confused about the dimensions of the Hilbert space and the physical 

space. Only 40% of them chose the correct answer A that none of the three statements are correct. 

The Hilbert space for the system in which the state of the system lies is infinite dimensional 

while the physical space in which the particle is confined is one dimensional. However, 20% of 

the students selected choice D incorrectly and believed that the position eigenstates form a basis 
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in a 1D Hilbert space and 13% believed that the energy eigenstates form a basis in a 1D Hilbert 

space. Another 13% selected choice B and believed that the Hilbert space is one dimensional but 

they did not believe that statements (2) and (3) were correct.  

 

Difficulty 2: Incorrectly calculating the dimension of a product space by summing the 

dimensions of the subspaces 

The Hilbert space for a spin-1/2 particle is two dimensional. For example, the z-

component of the spin of an electron has only two eigenstates 2/1,2/1 == sms  and 

2/1,2/1 −== sms  (or 2/1=sm  and 2/1−=sm  for short), and the Hilbert space 

corresponding to the spin angular momentum of the electron is two dimensional. If a system 

consists of two electrons, the product space corresponding to the spin degree of freedom will be 

four dimensional. The basis vectors of the four dimensional product space in the uncoupled 

representation are 2/12/1 21 == ss mm , 2/12/1 21 −== ss mm , 2/12/1 21 =−= ss mm  and 

2/12/1 21 −=−= ss mm . We note that the dimensionality of the four dimensional product is the 

product of the dimensions of the Hilbert spaces of each of the spins separately.  

Students in general have great difficulties with the dimension of a product space 

containing two or more angular momenta. When asked about the dimension D of a product space 

consisting of two subspaces of dimensions 1D  and 2D , many students incorrectly believed that 

21 DDD +=  instead of 21 DD × . Discussions with individual students suggest that such a 

misconception often originates from the simplest example in which students learn about the 

product space for two spin-1/2 particles. In this case, the dimension of the product space is four, 

which equals 22×  but is also 22 + . When we asked students about the dimension of the product 
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space for a system containing one spin-1/2 particle and one spin-1 particle, many of them 

provided the incorrect answer 325 +=  instead of the correct answer 326 ×= . 

7.3.2 Difficulty in identifying different basis vectors for the product space 

For a system consisting of two spin-1/2 particles, there are two intuitive ways to represent the 

basis vectors for the product space. Since the spin quantum numbers 2/11 =s  and 2/12 =s  are 

fixed, we can use the “uncoupled representation” and express the orthonormal basis vectors for 

the product space as 212211 ,, mmmsms =⊗  as noted earlier. In this uncoupled 

representation, the operators related to each particle (subspace) act on their own states, e.g., 

2/12/1
2

2/12/1ˆ
1 −=−

h
zS  and 2/12/1

2
2/12/1ˆ

2 −−=−
h

zS . On the other hand, we can 

use the “coupled representation” and find the total spin quantum number of the system of two 

particles together. The total spin quantum number s for the two spin-1/2 particle system is either 

12/12/1 =+  or 02/12/1 =− . When the total spin quantum number s is 1, the quantum numbers 

sm  for the z-components of the total spin zS  can be 1, 0 or -1. When the total spin is 0, the z-

component sm  can only be 0. So the basis vectors of the system are 1,1 == sms , 0,1 == sms , 

1,1 −== sms  and 0,0 == sms . In the coupled representation, the product state of a two-spin 

system such as 0,1 == sms  is not a simple product of the states of each individual spin 

(although we can write each coupled state as a linear superposition of a complete set of 

uncoupled states).  

Difficulty 1: Difficulty in choosing a convenient basis and representing an operator as an 

NN × matrix in an N dimensional product space 



 170 

Students often have difficulty in figuring out when it would be convenient to choose the 

basis vectors for the product space in the coupled or uncoupled representations and many have 

difficulty in writing an operator in a matrix form in that chosen basis. For example, when 

students were asked to choose a basis and write down the matrix corresponding to the operator 

2

2

2

1

2

21
ˆˆˆˆˆ SSSSS −−=⋅  in that basis for two spin-1/2 particles, many students had difficulty in 

writing a complete set of basis vectors for the product space. Moreover, those who chose the 

uncoupled representation often had difficulty figuring out how to write 2Ŝ  in a matrix form. 

Many students did not realize that the basis vectors in the coupled representation are the 

eigenstates of the operator 2Ŝ  so the matrix elements of 21
ˆˆ SS ⋅  can easily be calculated in the 

coupled representation. Some students incorrectly thought that the basis vectors in the product 

space are simply a collection of the basis vectors for the subspaces. For example, for the two 

spin-1/2 particle system, some students wrote down the basis vectors as 2/1,2/1 11 == ms , 

2/1,2/1 11 −== ms , 2/1,2/1 22 == ms  and 2/1,2/1 22 −== ms . 

 

Difficulty 2: Incorrectly believing that if the operator matrix is diagonal in one representation, 

it must also be diagonal in another representation 

To evaluate students understanding of operators in coupled/uncoupled representation, the 

following multiple-choice question was given to 11 students. 

 Suppose the Hamiltonian of a two spin-1/2 particle system is )ˆˆ(ˆ
2211 BSBSH
rr

⋅+⋅= γ  in 

which the magnetic field 1B
r

 and 2B
r

 are both in the z-direction but with different magnitudes. 

Choose all of the following statements that are correct. 

(a) The Hamiltonian is a diagonal matrix in the coupled representation zSSSS ,,, 2

2

2

1

2
. 
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(b) The Hamiltonian is a diagonal matrix in the uncoupled representation zz SSSS 2

2

21

2

1 ,, . 

(c) The Hamiltonian is a 22×  matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
10

01

210

01

2
ˆ 21 BB

H
hh γγ

in the uncoupled 

representation. 

Since the basis vectors in the coupled representation zSSSS ,,, 2

2

2

1

2  are not the 

eigenstates of the Hamiltonian )ˆˆ(ˆ
2211 BSBSH
rr

⋅+⋅= γ , some of the off-diagonal elements of Ĥ  

will be non-zero. On the other hand, in the uncoupled representation, the basis vectors 

zz SSSS 2

2

21

2

1 ,,  are the eigenstates of Ĥ  and orthogonal to each other, so all of the off-diagonal 

elements are zero when the Ĥ  matrix is expressed in the uncoupled representation. While the 

correct answer is (2) only, half of the students chose both the options (1) and (2). Some students 

incorrectly believed that the Hamiltonian must be diagonal in both the coupled and uncoupled 

representations. In individual discussions, students were asked to write the operator zz SS 21
2

1
+  

for two spin-1/2 particle system in the matrix form in the product space. A student incorrectly 

believed that zz SS 21
2

1
+  is diagonal in the coupled representation. When he was told that it was 

not diagonal in the coupled representation he claimed “… zz SS 21 +  is a diagonal matrix in the 

coupled basis. How can there be any difference between that operator and the operator 

zz SS 21
2

1
+  when it is also a superposition of zS1  and zS2 ?”. The student had failed to observe 

that zz SS 21 +  is a very special superposition of zS1  and zS2 which is diagonal in both the coupled 

and uncoupled representations. 
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7.3.3 Difficulty in constructing an operator matrix in the product space 

To calculate the diagonal and off-diagonal matrix elements of an operator in the product space, 

we must sandwich the operator in between the chosen basis vectors. For example, for the 

operator zz SS 21
ˆˆ + , when we use the basis vectors in the uncoupled representation, the matrix 

elements are 212112
ˆˆ mmSSmm zz +′′  where 1m , 2m , 1m′ , 2m′  are either 1/2 or -1/2. If we 

choose the order of the basis vectors to be 2/12/1 , 2/12/1 − , 2/12/1− and 2/12/1 −− , 

the operator matrix would be 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

=+

h

h

000

0000

0000

000

ˆˆ
21 zz SS .  (Eq 7.1) 

 The basis vectors in the coupled representation sms,  are also a good choice to express 

this operator in matrix form and the matrix is diagonal since sms,  are the eigenstates of the z-

component of total spin operator zzz SSS 21
ˆˆˆ += . Thus, when we construct the operator matrix by 

using the basis vectors for coupled representation in the order 1,1 , 0,1 , 1,1 −  and 0,0 , the 

operator matrix can be expressed as  

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
=+

0000

000

0000

000

ˆˆ
21

h

h

zz SS .  (Eq 7.2) 

We can also rearrange the sequence of basis as 1,1 , 1,1 − , 0,1  and 0,0  in order to move the 

non-zero matrix elements to the upper left corner. 
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Difficulty 1: Mistakenly adding algebraically the operators in different Hilbert spaces to 

construct the operator for the product space 

We find that the students have difficulty in building the operator matrices correctly in the 

product space. For example, when the students were asked to construct the matrix of zz SS 21
ˆˆ +  in 

a suitable basis, some of them incorrectly claimed that the resulting matrix is two dimensional 

and they simply added up the matrices of the operators zS1
ˆ  and zS2

ˆ , i.e.,  

 
21

21
10

01

210

01

2
ˆˆ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=+
hh

zz SS .  (Eq 7.3) 

Some of these students placed subscripts 1 and 2 in the matrices to differentiate the two spin-1/2 

particles while others just merged them into a single matrix. Similar difficulties were found when 

students where asked to construct a matrix for the operator 21
ˆˆ SS ⋅ choosing any suitable basis. 

Some students simply multiplied the 22×  matrices corresponding to each of the spins and 

expressed the result as another 22×  matrix. Discussions with individual students suggest that 

many students have difficulty in choosing appropriate basis vectors and obtaining the matrix 

elements of an operator in the product space. 

 

Difficulty 2: The dimension of the operator matrix depends on the basis vectors 

Several students displayed an inconsistency in interpreting the dimension of the product 

space depending upon the basis chosen. For example, some students believed that the matrix for 

the operator zz SS 21
ˆˆ +  is two dimensional in the uncoupled representation. However, when asked 

to write the same operator in the coupled representation, some of them used the basis vectors  

1,1 , 1,1 − , 0,1  and 0,0  and constructed a 44×  diagonal matrix with the eigenvalues of 
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zz SS 21
ˆˆ + in the diagonal position. These students did not realize that the dimension of the product 

space is independent of the representation chosen and both the uncoupled and coupled 

representations for the two spin-1/2 particle system have four basis vectors. Discussions with 

individual students suggest that some of them were unclear about the fact that the dimension of 

the product space should always be equal to the number of linearly independent vectors in that 

space and it cannot depend on the choice of basis vectors. 

 

Difficulty 3: The Hamiltonian of the system must be known in order to construct a matrix for 

an operator other than the Hamiltonian operator 

We found that some students believed that the Hamiltonian of the system must be given 

in order for them to be able to find the matrix elements of other operators. Discussions with 

individual students suggest that this misconception originates from several facts. For example, 

some students believed that since the basis vectors are often selected to be the eigenstates of the 

Hamiltonian, these are the only basis vectors that can be used to construct the matrix for any 

operator. Also, students were taught how to construct the Hamiltonian matrix for a single 

electron spin in a uniform magnetic field (Larmor precession of spin) and later they were taught 

how to construct the matrix of a Hamiltonian such as )ˆˆ(ˆ
21 BSBSH

rr
⋅+⋅= γ in the product space. 

There was discussion about choosing a convenient basis that will make the Hamiltonian or other 

operators diagonal. There is also emphasis throughout the course on the role of the Hamiltonian 

in determining the time-evolution of the system and allowed energies. Some of the students over-

generalized the importance of the Hamiltonian in other contexts and claimed that they cannot 
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construct the matrix for the operator zz SS 21
ˆ

2

1ˆ + in the product space without knowing the 

Hamiltonian of the system.  

7.3.4 Difficulty in finding the probabilities for measuring an observable 

We find that students often have difficulty in understanding that a particular choice of basis 

vectors for the product space is suitable for questions related to the probabilities of measuring 

different observables. For example, if the question is related to the probabilities of measuring zS1  

or zS2  in a product state written in the coupled representation, it is advisable to change the basis 

to the uncoupled representation. The coefficients in front of the normalized basis vectors in the 

uncoupled representation can then be related to the probabilities of measuring  zS1  or zS2 . 

Similarly, the coupled basis may be the appropriate basis for other probabilities, e.g., the 

probability of measuring the magnitude of the total spin angular momentum.  

We found several types of difficulties related to the probabilities of measuring different 

observables in the product space. One type of difficulty in realizing an appropriate choice of 

basis in the product space for answering questions related to probabilities of measuring a 

particular observable. This difficulty was partly due to the fact that students did not realize which 

basis vectors were eigenvectors of operators corresponding to a particular observable and why it 

is easy to find the probabilities of measuring an observable if the state of the system is written in 

terms of the eigenstates of the observable. The second type of difficulty was related to 

transforming from one basis to another (e.g., from coupled to uncoupled or vice versa) using the 

Clebsch-Gordan (C-G) coefficient table and collecting all of the coefficients of similar terms 

before taking the absolute square of the coefficients to find the probabilities. This latter difficulty 



 176 

in product space is similar to those found for a single spin. It can be illustrated with the following 

example. Suppose a single spin-1/2 state is given by the following expression after certain 

manipulations:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==′+==+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−==′+==

2

1
,

2

1

2

1
,

2

1

2

1
,

2

1

2

1
,

2

1
ssss msbmsbmsamsa ,   

where a , a′ , b  and b′  are constant coefficients. When we asked students to calculate the 

probability of obtaining 2/h  for zS  (corresponding to 2/1=sm ), several students incorrectly 

responded that it is
22

ba + . However, the coefficients with the same basis vector 

2/1,2/1 == sms  should be combined first as 2/1,2/1)( ==+ smsba  to yield the correct 

probability for measuring 2/h  for zS  to be 
2

ba + . This difficulty related to finding the 

appropriate probability amplitude by combining the coefficients of the same basis vector got 

worse when dealing with a product space and using the C-G coefficients to transform from one 

basis to another because some students believed that the same basis vectors in different brackets 

related to different angular momenta.  

7.4 QUILT FOR ADDITION OF ANGULAR MOMENTUM 

7.4.1 Dimension of Hilbert space 

The QuILT related to the addition of angular momentum has two parts: one part is related to the 

coupled representation and another to the uncoupled representation. At the beginning of the first 

part of the QuILT, students are asked about the dimension of the product space for two spin-1/2 
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systems. Together with the correct answer that the dimension is 224 ×= , a distractor 224 +=  

was also given. To help students understand that the dimension of the product space is the 

product of the dimensions of the subspaces, another question asks students to consider whether 

the basis vectors in the product space are only 11, sms , only 22 , sms  or their direct 

product 2211 ,, ss msms ⊗  and the implications for the basis vectors in concrete cases. Then, the 

students go through a guided approach to constructing the basis vectors in the uncoupled 

representation for two spin-1/2 particles (each with the z-component of spin quantum numbers 

2/1± ) , e.g., 
21

2/12/1 −  or 
21

↓↑ and learn about the fact that the operators zS1
ˆ  and 

zS2
ˆ only act on their respective subspaces in the uncoupled representation.  

After help in constructing basic understanding about the uncoupled representation, 

students are given the following multiple-choice question: 

 Consider the following statements based upon what you have learned so far in this tutorial 

and choose all the statements that are correct. 

(a) 
21

2/12/1  is an eigenstate of zS1
ˆ  and zS2

ˆ  but not 
2

1Ŝ  or 
2

2Ŝ . 

(b) 
21

2/12/1  is an eigenstate of zS1
ˆ , zS2

ˆ ,
2

1Ŝ  and 
2

2Ŝ . 

(c) 
21

2/12/1  is an eigenstate of zS1
ˆ , zS2

ˆ , 1Ŝ  and 2Ŝ . 

Students learn that in the uncoupled representation, the basis vectors are eigenstates of 

the individual spin operators zS1
ˆ , zS2

ˆ , 2

1Ŝ  and 2

2Ŝ . They also learn to write the basis vectors in a 

matrix form via guided questions as follows: 
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 Which one of the following is a correct matrix representation of the basis vectors 

21
2/12/1 , 

21
2/12/1 − , 

21
2/12/1− and 

21
2/12/1 −−  for a two spin-1/2 particles 

system? 

(a) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1

1
, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
0

1
, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1

0
 and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
0

0
                (b) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0

0

0

1

, 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0

0

1

0

, 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0

1

0

0

 and 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1

0

0

0

 

(c) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0

0

0

1

, 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1

0

0

0

, 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0

1

0

1

 and 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1

0

1

0

               (d) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0

1

0

1

, 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1

0

0

1

, 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0

1

1

0

 and 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1

0

1

0

 

Students are also provided guidance in constructing various matrices in the uncoupled 

representation by helping them learn to calculate the individual matrix elements. For example, 

for zS1
ˆ  or 2

1Ŝ operators, students learn that 
21211 2/12/1)2/(2/12/1ˆ −=− hzS  and 

02/12/1)2/2/(2/12/1)ˆˆ(
212121 =−−=−+ hhzz SS . Then, the students can conclude that 

one of the matrix elements is 02/12/1)ˆˆ(2/12/1
212112
=−+− zz SS .  

In order to generalize their understanding of the product space to more complicated 

situations, students are later asked to consider the product space of a three spin-1/2 particle 

system in the uncoupled basis. One question explicitly asks them to consider the dimension in 

this case as follows: 

 What is the dimensionality of the spin space of a three spin-1/2 system? 

(a) 2         (b) 6222 =++         (c) 932 =         (d) 823 =      

Here, students are given an opportunity to think about the fact that the dimension of a 

product space is the product of the dimensions of the subspaces. They are further asked to 
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construct the eight basis vectors for the product space of three spin-1/2 systems in the uncoupled 

representation. Students construct a complete set of eight basis vectors and then calculate several 

diagonal and off-diagonal matrix elements of the operator zzz SSS 321
ˆˆˆ ++ . Then, they construct 

the entire 88×  matrix for the operator zzz SSS 321
ˆˆˆ ++  in the uncoupled representation.  

7.4.2 Constructing matrices for different operators for the product space of two spin-1/2 

systems in the uncoupled representation 

In the QuILT, students are asked to calculate the following matrices in the uncoupled 

representation: )ˆˆ)(/4(ˆ
2101 SSEH ⋅= h  and )ˆˆ(ˆ

212 BSBSH
rr

⋅+⋅−= μ . Apart from the constants μ , 

B
r

 and h/4 0E , students must compare the properties of the operators zz SS 21
ˆˆ +  and 21

ˆˆ SS ⋅ .  

Students learn that since the basis vectors in the uncoupled representation are orthonormal 

eigenstates of zS1
ˆ  and zS2

ˆ , all the off-diagonal elements of the operator zz SS 21
ˆˆ + are zero. 

Students are also asked to consider the following conceptual multiple-choice question to review 

why the operator zz SS 21
ˆˆ +  can be written as a diagonal matrix in the uncoupled representation.  

 )ˆˆ(ˆ
212 BSBSH

rr
⋅+⋅= μ  can be written as a diagonal matrix in the uncoupled representation 

because  

(a) The basis vectors are eigenstates of 2Ĥ  because 2Ĥ  commutes with the operators zS1
ˆ , 

zS2
ˆ , 

2

1Ŝ  and 
2

2Ŝ .  

(b) 2Ĥ  is a Hamiltonian operator which must be diagonal no matter what basis you choose. 

(c) We are dealing with spin-1/2 systems. 2Ĥ  will not be diagonal if we had two spin-1 

systems.  
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After learning about how to construct the matrix for the operator zz SS 21
ˆˆ + , students learn 

a more complicated case 2101
ˆˆ)/4(ˆ SSEH ⋅= h .  They are first asked the following question to 

help them think about why it is more convenient to write the operator in the form 

zzyyxx SSSSSS 212121
ˆˆˆˆˆˆ ⋅+⋅+⋅  rather than 2

2

2

1

2 ˆˆˆ SSS −−   to calculate the matrix elements when the 

uncoupled basis is used.  

 Consider the following conversation between Pria and Mira: 

Pria: Is 210
ˆˆ)/4( SSE ⋅h   or  )ˆˆˆ)(/2( 2

2

2

1

2

0 SSSE −−h  the more convenient form for writing 

1Ĥ  in the matrix form in the uncoupled representation without using a table? 

Mira: Since the basis vectors 
21 ss mm  are not the eigenstates of 1Ĥ , we have to be 

careful. It is the form 210
ˆˆ)/4( SSE ⋅h  that is more useful because we can write 

zzyyxx SSSSSSSS 21212121
ˆˆˆˆˆˆˆˆ ⋅+⋅+⋅=⋅ . Then we can write the x and y components of spin in terms 

of the raising and lowering operators and we know how they act on 
21 ss mm .  

Do you agree with Mira? Explain. 

Then, the students learn to rewrite the operator using the raising and lowering operators 

such that zz SSSSSSSS 21212121
ˆˆ2/)ˆˆˆˆ(ˆˆ ⋅+⋅+⋅=⋅ −++−   and they practice applying the raising and 

lowering operators to the basis vectors in the uncoupled representation as in the following 

example:  

 Which one of the following is correct? 

(a) 0)2/1ˆ)(2/1ˆ(2/12/1ˆˆ
22112121 == +−+− SSSS  

(b) 
21

2

22112121 2/12/1)2/1ˆ)(2/1ˆ(2/12/1ˆˆ h== +−+− SSSS  
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(c) 
21

2

22112121 2/12/12)2/1ˆ)(2/1ˆ(2/12/1ˆˆ h== +−+− SSSS  

Students learn that calculating the matrix elements of an operator in the uncoupled basis 

is relatively easy after expressing the operator by a combination of zS1
ˆ , zS2

ˆ , ±1Ŝ  and ±2Ŝ , so that 

each spin component can act on its own subspace. Students are also asked to explain the 

characteristics of the operators that will be diagonal in the uncoupled representation and they are 

given multiple opportunities to test what they predict in concrete situations and reconcile the 

differences if there are any.  

At the end of the first part of the QuILT, students are given the following question: 

 Consider the following conversation between Andy and Caroline: 

Andy: For the question about choosing a basis for two spin-1/2 systems, we do not 

necessarily have to choose a basis in the product space which is an eigenstate of  zS1
ˆ  and zS2

ˆ . 

Caroline: I disagree. We must choose a basis in the product space which is an eigenstate 

of  zS1
ˆ  and zS2

ˆ .  

Whom do you agree with? Explain. 

This question is used to help students understand that the basis vectors can be chosen 

according to our convenience. Usually, if an operator can be put into a diagonal matrix form in a 

particular basis, that basis may be more convenient than others. Discussion about these questions 

also leads to a smooth transition to other basis vectors, e.g., the coupled representation.  

7.4.3 Introducing the coupled representation 

Students are asked to list all of the possible total spin quantum numbers s for the total spin 

angular momentum 21 SSS
rrr

+=  for the product space of two spin-1/2 systems. They also list the 
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quantum numbers for the z-component of total spin sm  when s=1 and 0. Students contemplate 

why a complete set of coupled states denoted by quantum numbers s and sm  and written as 

sms,  forms a set of basis vectors for the product space for a system of two spin-1/2 particles. 

Some questions help students learn to apply different operators such as 2Ŝ , 
2

1Ŝ , 
2

2Ŝ  and zŜ  on 

the states sms, . Students also learn that the basis vectors in the coupled representation are 

orthonormal to each other. As shown in the multiple choice question below, the QuILT also 

helps students contemplate the differences between the coupled and uncoupled basis vectors. 

 Choose all of the following statements that are correct about the difference between the 

“coupled” and “uncoupled” representations of the multi-spin system. 

(a) In the coupled representation, you cannot decompose the product state of a two-spin 

system into products of states of each individual spin. 

(b) In the uncoupled representation, you can decompose the product state of a two-spin 

system into products of states of each individual spin. 

(c) The basis vectors in the uncoupled representation are eigenstates of 
2

1Ŝ , zS1
ˆ , 

2

2Ŝ  and zS2
ˆ , 

whereas the basis vectors in the coupled representation are eigenstates of 2Ŝ , 
2

1Ŝ , 
2

2Ŝ  

and zzz SSS 21
ˆˆˆ += . 

Through these types of questions, students learn that in the coupled representation, the 

basis vectors in the product space are such that the individual states of the two particles cannot 

be separated from each other. They also observe that the basis vectors in the coupled and 

uncoupled representations are not the eigenstates of the same operators. For example, the basis 

vectors in the coupled representation are the eigenstates of the square of the total spin operator 

2Ŝ  but the basis vectors in the uncoupled representations are not the eigenstates of this operator. 
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On the other hand, the basis vectors in both the coupled and uncoupled representations are 

eigenstates of the operators 2

1Ŝ  and 2

2Ŝ .  

7.4.4 Constructing matrices for different operators for the product space of two spin-1/2 

systems in the coupled representation 

In the QuILT, students are given the task of writing the same operators )ˆˆ(ˆ
211 SSH ⋅= γ  and 

)ˆˆ(ˆ
212 BSBSH

rr
⋅+⋅= μ  in the coupled representation that they had earlier learned to write in the 

uncoupled representation via a guided inquiry process. They are also asked to compare the 

matrices in the coupled representation with those in the uncoupled representation. They learn that 

in the coupled representation, it is convenient to write the operator 21
ˆˆ SS ⋅  in the form 

2

2

2

1

2 ˆˆˆ SSS −−  so the matrix elements can be easily calculated. They learn that the operator 21
ˆˆ SS ⋅  

is diagonal in the coupled representation. There are discussions in the QuILT to help students 

understand why the same operator is diagonal in one basis but non-diagonal in another basis. The 

operator )ˆˆ(ˆ
212 BSBSH

rr
⋅+⋅= μ  is diagonal in both the coupled and uncoupled representations 

since the basis vectors in the coupled representation are the eigenstates of the operator 

zzz SSS 21
ˆˆˆ += . Students are also asked to express the matrix for 2Ĥ  in the block diagonal form 

where all the non-zero terms are confined to a smaller block rather than being spread out in the 

full 44×  matrix. This process helps students understand that they can arrange the order of basis 

vectors as they wish.  
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7.5 PRELIMINARY EVALUATION 

We designed a pretest and a posttest to assess the issues related to the addition of angular 

momentum. The pretest was administered to 9 undergraduate students after traditional instruction 

and the posttest was administered to the same group of students after they had finished the 

QuILT. The questions in the pretest and the posttest were very similar but used product spaces 

for quantum systems with different spin. In particular, in the pretest, the system contained two 

spin-1/2 particles, while the system in the posttest had one spin-1/2 particle and one spin-1 

particle. The pretest question was as follows: 

 Two spin 1/2 systems (with the spin quantum numbers 2/11 =s  and 2/12 =s ) at fixed 

locations in space (only consider spin degrees of freedom) interact with each other, and with 

a uniform magnetic field B
r

 pointing in the +z direction. When the magnetic field is off, the 

interaction between the spins is given by the Hamiltonian  

))(/2()/4(ˆ 2

2

2

1

2

02101 SSSESSEH −−=⋅= h
rr

h , 

where 21
ˆˆˆ SSS +=  and 0E  is a constant. The magnetic field interacts with each spin as 

follows: 

)ˆˆ(ˆ
212 BSBSH

rr
⋅+⋅−= μ . 

(a) Write down a complete set of basis vectors for the vector space of a system of two spin-

1/2 particles. Explain the labels you are using to identify your basis states. 

(b) Express the Hamiltonian H1 in the basis you have chosen. (Hint: Write it down as an 

NN ×  matrix). 

(c) Express the Hamiltonian H2 in the basis you have chosen. 

(d) Are both H1 and H2 diagonal matrices in the basis you chose? 
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For question (a) in the pretest, 22% of the students wrote the uncoupled basis and 33% of 

them wrote the coupled basis vectors. Another 33% of them expressed the coupled singlet/triplet 

states using the uncoupled basis vectors, e.g., ↑↑=1,1  and ( )↓↓−↑↑=
2

1
0,0 . One 

student gave an incorrect response, e.g., 
1

2/1,2/1 ±  and 
2

2/1,2/1 ± , which indicated that he 

believed that the basis vectors in the product space are the same as the basis vectors in the 

subspaces. In the posttest, 45% of the students wrote the uncoupled basis vectors and 55% of 

them chose the coupled basis vectors when answering question (a) (but for the product space of a 

spin-1/2 and a spin-1 system).  

Only two out of the nine students knew how to calculate the matrices for the operators H1 

and H2 in the pretest. 22% of the students incorrectly simply added or multiplied the matrices for 

the spin operators for the subspaces. The other 55% of the students had no idea about how to 

calculate the matrix elements of the operators for a given set of basis vectors. In the posttest, one 

student could not calculate the matrix elements and another student incorrectly used the states 

↑↑  as the basis vectors to construct a 4X4 matrix although he wrote down the coupled 

representation in question (a). 77% of the students in the posttest knew that the operator matrices 

were six dimensional but two of them who chose the uncoupled basis in question (a) still had 

difficulty in constructing the matrix for the operator H1 in question (b) since they did not express 

H1 using the raising and lowering operator. For the five students who chose the coupled 

representation, all of them could correctly construct the matrices for operators H1 and H2 except 

for a few calculation errors.  

In the pretest, two students answered question (d) correctly with proper reasoning. 

Another two students who chose the coupled basis in question (a) also answered question (d) 
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correctly but they neither calculated the operator matrices nor provided an explanation. 

Altogether 77% of the students did not know whether the operator matrices should be diagonal 

or not in a particular basis. In the posttest, two students did not answer the question (d) and 

another student incorrectly believed that both H1 and H2 were diagonal matrices in the uncoupled 

representation. The other 66% of the students who had chosen either the coupled or uncoupled 

representation in question (a) correctly answered question (d). 

Questions (a), (b) and (c) all counted for 3 points and question (d) counted for 1 point in 

both the pre and post tests so that the full score is 10 for the entire test. The average correct 

percentage is 39% for the pretest and 73% for the posttest. When we interviewed some students 

individually using a think-aloud protocol, they mentioned that they believed that the uncoupled 

representation was always expressed with the up and down arrows. Moreover, they confused the 

uncoupled basis vectors zz SS 21 , which is a simplified expression of zz SSSS 2

2

21

2

1 ,,, ,  for basis 

vectors in the coupled representation. Using the feedback we modified our QuILT and we 

replaced the up-down arrows such as ↑↑  with the quantum numbers 
21

2/12/1 ±±  in order to 

clarify the role of the quantum numbers of the individual subspaces in the uncoupled 

representations so that students can generalize what they learn about the product space of two 

spin-1/2 systems to other product spaces readily.  

7.6 SUMMARY 

We find that students have many common difficulties related to the addition of angular 

momentum. For example, many students were unclear about the dimension of the product space 
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and they believed that the dimension of the product space is the sum of the dimensions of the 

subspaces. Students also had difficulty in distinguishing between the basis vectors in the coupled 

and uncoupled representations and had difficulty in determining how to choose an appropriate 

basis for the product space to answer questions related to the measurements of different 

observables. While changing basis using C-G coefficients, students also had difficulty in 

determining how to calculate the probabilities of measuring different observables. Students 

struggled to construct the matrix of an operator in a convenient basis in the product space. Some 

students believed that the dimension of a product space in the coupled and uncoupled 

representations is different. In particular, some students simply added the matrices for two spin-

1/2 particles to construct the matrix of the operator zz SS 21
ˆˆ +  such that the resulting matrix in the 

product space was still two dimensions. Some students had difficulty understanding why the 

operator zz SS 21
ˆˆ +  is diagonal in the uncoupled representation but zz SS 21

ˆ
2

1ˆ +  is not. Some 

believed that they should be given the Hamiltonian of the system to write any operator in the 

matrix form in a given basis. 

We developed the research-based QuILT and concept tests to improve students’ 

understanding of the addition of angular momentum. They provide a guided approach to bridge 

the gap between the quantitative and conceptual issues related to addition of angular momentum 

and help students connect different concepts and build a knowledge structure. Both these 

learning tools keep students actively engaged in the learning process. Our preliminary data show 

that the QuILT and concept tests help students better understand concepts related to the addition 

of angular momentum.  
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8.0  IMPROVING STUDENTS’ UNDERSTANDING OF QUANTUM MECHANICS 

BY USING PEER INSTRUCTION TOOLS IN CLASS 

8.1 ABSTRACT 

In this chapter, we describe the cognitive and social issues in learning quantum mechanics which 

are important for bridging the gap between the quantitative and conceptual aspects of quantum 

mechanics. We also discuss the development and implementation of the research-based concept 

tests as the peer instruction tools to help students build a robust knowledge structure. The 

preliminary evaluations show that the concept tests are effective in helping students develop a 

good grasp of quantum mechanics.  

8.2 BACKGROUND 

Quantum mechanics provides a coherent framework for reasoning about microscopic phenomena. 

When the Hamiltonian of the system is modeled appropriately to account for the essential 

interactions, the theory of quantum mechanics has never failed to explain observations. However, 

the conceptual framework of quantum mechanics is often unintuitive to our daily experience in 

the classical world. For example, according to the quantum theory, the position, momentum, 

energy and other observables are generally not well-defined for a quantum system. We can only 
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predict the probability of obtaining different values based upon the wavefunction when we 

perform a measurement. This probabilistic interpretation of quantum mechanics is challenging 

for students.  

Moreover, according to the widely-taught Copenhagen interpretation of quantum 

mechanics, the measurement of a physical observable changes the wavefunction if the initial 

wavefunction is not the eigenfunction of the corresponding operator. Thus, the evolution of the 

quantum system according to the Time Dependent Schrödinger Equation (TDSE) is separated 

from what happens during the measurement of an observable. Students often have difficulties 

with the collapse of the wavefunction upon a quantum measurement. Prior research (Singh 2007) 

shows that many students have common misconceptions about the collapse of the wavefunction 

during the measurement, e.g., many students incorrectly believe that either the wavefunction gets 

stuck in the eigenstate of the operator after the measurement of the observable or it goes back to 

the original wavefunction after a long time. From the discussion with the students, we found that 

many students had not internalized that the wavefunction will again evolve according to the 

TDSE starting from the collapsed eigenfunction after the measurement. 

In quantum theory, position and momentum are not independent variables that evolve in a 

deterministic way but are operators in the Hilbert space in which the states of the system are 

vectors. For a given state of the quantum system, the probability of measuring position or 

momentum depends on each other since the momentum space wavefunction can be retrieved 

from the position space wavefunction via Fourier transform, and vice versa. The eigenstates of 

the position or momentum operators span the Hilbert space so that any state of the system can be 

expressed as a linear superposition of a complete set of position eigenstates or momentum 

eigenstates. The measurement of position (or momentum) collapses the wavefunction of the 
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system into a position (or momentum) eigenfunction with a certain probability depending on the 

initial state of the system. These concepts are challenging for students. 

In addition to the lack of direct exposure to microscopic phenomena described by 

quantum mechanics, the mathematical facility required in quantum mechanics can increase 

students’ cognitive load. Students are desired to have a good grasp of linear algebra, differential 

equations and complex variables, etc. If a student is not facile in mathematics, he/she may 

become overwhelmed by the mathematical details and may not have the opportunity to focus on 

the conceptual framework of quantum mechanics. Earlier research shows that conceptual 

learning can be impeded by the lack of mathematical facility (Singh 2007). Similarly, 

misconceptions about conceptual aspects of quantum mechanics also cause mathematical errors 

which do not occur for the students in a linear algebra course.  

Many of students’ misconceptions in the introductory physics are due to an over-

generalization of everyday experiences. However, one may assume that there may be advantages 

in quantum mechanics since the microscopic world does not directly deal with observable 

phenomena in daily experience so students are unlikely to have alternative conceptions. 

Unfortunately, this assumption is not true. Students have many misconceptions about the 

quantum mechanics model itself and about exploiting this model to infer the behavior of a 

quantum system. Students often over-generalize their intuition from the classical world to the 

quantum world which can lead to incorrect inferences.  
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8.3 OVERVIEW OF CONCEPT TESTS 

As mentioned in the first chapter of the thesis, the notion of the “zone of proximal development” 

(ZPD) focuses on what students can do on their own vs. with the help of an instructional strategy 

that accounts for their prior knowledge and builds on it. The unintuitive nature of quantum 

mechanics and other issues discussed earlier imply that scaffolding is critical for helping students 

learn concepts. By carefully designed instruction, scaffolding can be used to stretch students’ 

learning far beyond their initial knowledge. We take into account the cognitive issues and 

students’ prior knowledge to develop the concept tests for peer instruction to help students build 

intuition about quantum phenomena and reduce difficulties in learning quantum mechanics.   

The concept test for quantum mechanics contains about 500 multiple-choice questions. 

All the concept test questions focus on the conceptual aspects of quantum mechanics. In some of 

the concept test questions, students are expected to have the basic knowledge about calculus and 

linear algebra. However, complicated mathematical skills are not involved in any of the concept 

test questions. When a concept test question is presented in the class, students need to first 

consider the question by themselves and then discuss it with their partners. Students are usually 

given one to two minutes to answer each concept test question. After the students have submitted 

their answers using the clickers, the instructor can explain the correct answer to the students and 

lead further discussion according to the distribution of students’ answers. To encourage students 

to submit the answers according to their intuition of physics, most of the credits (e.g., 80%) are 

awarded to the students for trying to answer the question even if they select the wrong choice.  
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8.4 SAMPLE CONCEPT TEST QUESTIONS 

The concept test questions related to a particular concept or principle of quantum mechanics are 

usually developed in a sequence to explain the same concept from different perspectives. For 

example, we can use mathematical representation in one question and graphical representation in 

the next question to help students build intuition about the abstract concepts in quantum 

mechanics. Many concept test questions are designed in “easy-moderate-difficult” or “easy-

difficult-difficult” types (Reay et al. 2008) to help the students learn the concepts in a guided 

approach. As mentioned in Chapter 3 about bound and scattering state wavefunctions, using a 

concept test in class can improve students’ understanding of the related concepts. In this section, 

I will discuss several concept test questions about the bound and scattering state wavefunctions 

which have been used for a junior-senior level quantum mechanics course in the 2010 fall 

semester. The concept test questions were presented in the lecture before the students had used 

the QuILT on bound and scattering state wavefunctions. All the sample questions can be found 

in the appendix of this chapter.  

The first concept test question (CT1) is a relatively easy question which shows the 

students a basic model of a bound state. Most students correctly recognized that the energy level 

given in CT1 corresponds to a bound state for a 1D finite square well. Only 2 out of 18 students 

incorrectly chose the option A which represents an alternative conception that the energy 

eigenfunction for a given quantum system can be a bound state and a scattering state 

simultaneously. 

The second concept test question (CT2) asked the students to review several models of 

potential energies and judge which model allows both bound and scattering states. The difficulty 

level of this question was moderate. About 72% of the students chose the correct models, i.e., the 
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1D finite square potential energy well and the 1D delta function potential energy well. The third 

concept test question (CT3) also asked the students to choose the potential energies that allow 

both bound and scattering states. However, unlike the verbal representation of the basic models 

in CT2, we use graphical representation to show the new models of potential energy wells in 

CT3. Since the students had not directly learned about these potential energies before, they must 

apply their previous knowledge about bound and scattering states to these novel situations in 

CT3. Only 33% of the students chose the correct answer C and 50% of the students incorrectly 

believed that the option (3) also allows both bound and scattering state wavefunctions. In fact, 

only scattering state wavefunctions can exist in the potential energy in option (3) because the 

possible energy levels must be higher than the potential energy at plus and minus infinity. 

Students had an active discussion before they submitted the answer of CT3. When some students 

found their ideas were incorrect, they were in a state of disequilibrium (Piaget 1964) and eager to 

resolve the discrepancy between their previous knowledge and the new situation.  

8.5 PRELIMINARY EVALUATION 

We have conducted many tests and surveys to investigate the effectiveness of the concept tests in 

helping students learn quantum mechanics. We found that students’ understanding of quantum 

mechanics improved after using the concept tests as their peer instruction tools. To illustrate 

students’ improvement after the concept tests, in this chapter we show the results of a quiz about 

the 1D infinite square potential energy well which is designed to examine students’ 

understanding of some basic concepts and principles in quantum mechanics. Some other test and 
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survey results about the effectiveness of the concept tests are discussed in Chapter 3 and Chapter 

5 of this thesis. 

The quiz on the 1D infinite square well was administered to three classes (experimental 

groups) taking a junior-senior level quantum mechanics course with concept tests in 2008, 2009 

and 2010. The numbers of students in these classes are 25, 13 and 20 respectively. The concept 

test questions used in the three experimental groups were not exactly the same because we kept 

refining the concept tests based on both the professors’ suggestions and students’ responses. We 

also gave the quiz to a comparison group of 18 students receiving traditional instruction about 

quantum mechanics without using concept tests. There is a significant difference (p value less 

than 0.0001) in students’ performances between the experimental groups (with lectures and 

concept tests) and the comparison group (with only traditional lectures). We have also observed 

continuous improvement in the experimental groups of students through 2008 to 2010 as we 

refine our concept tests.  

The quiz contained 7 multiple-choice questions and 3 open-ended questions, all of which 

tested the basic quantum mechanical concepts related to the model of a 1D infinite square 

potential energy well, e.g., possible wavefunctions allowed in an infinite square well, time 

evolution of the wavefunction in the well, energy or position measurement, etc. Each question is 

assigned one credit and the total score for this quiz is 10. The average score for the three 

experimental groups in 2008, 2009 and 2010 are 5.5, 7.0 and 7.6, respectively. The average score 

for the comparison group students is only 1.8. The distribution of students’ individual scores is 

shown in Figure 5.1. The horizontal axis represents the possible scores that a student can obtain 

and the vertical axis represents the percentage of students in each of the four groups who 

obtained a particular score. The comparison group and the experimental groups in 2008, 2009 
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and 2010 are marked in the colors of red, blue, yellow and green respectively. For example, the 

green bar on the rightmost of Figure 8.1 indicates that 30% of the students in the experimental 

group in 2010 got the full score (10 points) in the quiz. In the comparison group with only 

traditional instruction, most students got scores below 3 points and only one student got 6 points 

as the highest score. However, in each of the experimental groups with concept tests, most 

students obtained scores greater than 4 points. As we refined the concept tests through 2008 to 

2010, higher percentages of students obtained high scores (9 points and 10 points) in the quiz on 

the 1D infinite square well. 
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Figure 8.1 The distribution of students’ individual scores on the 1D infinite square well quiz. The 

horizontal axis represents the possible scores on the quiz that a student can obtain and the vertical axis 

represents the percentage of students in each of the four groups who obtained a particular score. The 

comparison group and the experimental groups in 2008, 2009 and 2010 are marked in the colors of red, blue, 

yellow and green, respectively. 



 197 

8.6 CONCLUSION 

We have used the concept tests as the peer instruction tools in junior-senior level quantum 

mechanics courses for three years. The comparison between the classes using concept tests and 

the class having only traditional lectures suggests that the concept tests are effective in 

improving students’ understanding of quantum mechanics. We also observed continuous 

improvement of students’ performance in the conceptual surveys of quantum mechanics as we 

refined our concept tests through 2008 to 2010. 

8.7 APPENDIX 

 

Concept Test Question 1 

Which one of the following statements is correct about an electron in a finite square well 

with a definite energy E as shown in Figure 8.2. 

A. The electron is in a bound state between x=0 and x=a and is in a scattering state 

everywhere else. 

B. The electron is in a bound state.  

C. The electron is in a scattering state. 

D. Whether the electron is in a bound or scattering state cannot be determined without 

knowing the wavefunction of the electron. 

E. None of the above 

 

Figure 8.2 An electron with energy E interacting with a 1D finite square well. 
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Concept Test Question 2 

Choose all of the following 1D potential energy functions that allow both bound and 

scattering states. 

(1) Finite square well 

(2) Delta function potential energy well 

(3) Delta function potential energy barrier 

(4) Simple harmonic oscillator potential energy 

 

A. 1 only   B. 2 only   C. 1 and 2 only    D. 1, 2 and 3 only   E. all of the above 

 

Concept Test Question 3 

Choose all of the following 1D potential energies (Figure 8.3) that allow both bound and 

scattering states. 

 

A. all    B. 2 only   C. 2 and 4 only    D. 3 and 4 only    E. 2, 3 and 4 only 

 

Figure 8.3 Potential energies that may allow bound states or scattering states or both. 
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9.0  SURVEYING STUDENTS’ UNDERSTANDING OF QUANTUM MECHANICS 

9.1 ABSTRACT 

Development of conceptual multiple-choice tests related to a particular physics topic is important 

for designing research-based learning tools to reduce the difficulties. We explore the difficulties 

that the advanced undergraduate and graduate students have with non-relativistic quantum 

mechanics of one particle in one spatial dimension. We developed a research-based conceptual 

multiple-choice survey that targets these issues to obtain information about the common 

difficulties and administered it to more than a hundred students from seven different institutions. 

The issues targeted in the survey include the set of possible wavefunctions, bound and scattering 

states, quantum measurement, expectation values, the role of the Hamiltonian, time-dependence 

of the wavefunction and time-dependence of the expectation value. We find that the advanced 

undergraduate and graduate students have many common difficulties with these concepts and 

that research-based tutorials and peer-instruction tools can significantly reduce these difficulties. 

The survey can be administered to assess the effectiveness of various intructional strategies. 
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9.2 INTRODUCTION 

Learning quantum mechanics (QM) is challenging. The QM formalism is not very intuitive and 

it is very different from classical mechanics that students are used to from their everyday 

experiences and previous courses (Singh 2001, Jolly et al. 1998, Wittmann et al. 2002, Singh et 

al. 2006, Singh 2008a & 2008b). Moreover, a good understanding of the QM formalism requires 

a good grasp of mathematics including linear algebra, differential equations and special functions. 

Despite the mathematical facility required to master QM, the formalism of QM has a coherent 

conceptual framework. For learning to be meaningful, it is critical that the goals of a QM course, 

the instructional design and the assessment of learning are all aligned with each other. Since the 

students focus on what they are assessed on, the assessment of learning in QM should not only 

rely on measuring their facility with solving differential equations, it should also focus on their 

understanding of the conceptual framework and knowledge structure of QM. Without a coherent 

framework, students are unlikely to retain much after the QM course is over. 

Research-based conceptual multiple choice surveys are useful tools for evaluating 

students’ understanding of various topics (Aubrecht & Aubrecht 1983, Nitko 1996). The multiple 

choice surveys are easy to administer and grade. Their scores are objective and amenable to 

statistical analysis so that different instructional methods or different student populations can be 

readily compared. The Force Concept Inventory (FCI) is a conceptual multiple-choice test 

(Hestenes et al. 1992) that helped many instructors recognize that many introductory physics 

students were not developing a functional understanding of force concepts although they 

performed reasonably well on quantitative problems (often using an algorithmic approach). 

Other conceptual surveys have also been designed for many physics topics, e.g., electricity & 

magnetism (Maloney et al. 2001). These surveys reveal that students have many common 
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conceptual difficulties with different topics in classical physics. Research-based instructional 

strategies have been shown to improve students’ conceptual understanding of some of these 

topics significantly (Hake 1998). 

The conceptual difficulties that students have in the upper-level undergraduate courses 

(and even graduate students) are manifested even within the most stripped-down versions of 

quantum mechanics, i.e., non-relativistic quantum mechanics of one particle in one spatial 

dimension.  We developed the Quantum Mechanics Survey (QMS), which is a 31-item multiple 

choice test covering various topics. The survey was developed by consulting with many QM 

instructors about the goals of their course, the topics their students should have definitely 

mastered and by iterating different versions of the open-ended and multiple-choice questions 

with a subset of them at various stages of the development of the survey. To investigate students’ 

difficulties with various concepts, we administered free-response and multiple-choice questions 

and conducted interviews with individual students using a think-aloud protocol (Chi 1994). 

Individual interviews with the students during the investigation of the difficulties and the 

development of the survey were useful to obtain an in-depth understanding of students’ thought 

processes. 

9.3 SURVEY DESIGN 

The QMS focuses on assessing students’ understanding of the conceptual framework of QM 

instead of assessing their mathematical skills. One can reason about all of the questions in the 

QMS conceptually and one need not necessarily perform any complicated integrals in order to 

answer them. Since the QMS focuses on quantum systems in one spatial dimension, the concept 
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of orbital angular momentum was excluded from the survey. We also deliberately excluded the 

spin angular momentum and the Dirac notation from the QMS to ensure that the survey can be 

used after most of the first semester junior-senior level QM courses regardless of the textbook, 

the institution or the instructor. 

We paid particular attention to the issues of reliability and validity (Aubrecht & Aubrecht 

1983, Nitko 1996) while designing the QMS. Reliability refers to the relative degree of 

consistency between the test scores if an individual repeats the test procedures. Validity refers to 

the appropriateness of interpreting the test scores. To ensure that the survey is valid, the opinions 

of 12 instructors about the goals of a junior-senior level QM course and the concepts their 

students should have definitely learned were taken into account during the development of the 

QMS. Apart from asking the instructors about these issues in online surveys, we discussed these 

issues individually with several instructors at the University of Pittsburgh (Pitt) who had taught 

QM at the junior-senior undergraduate level and/or at the graduate level. 

The QMS includes a wide range of topics that the instructors expected their students to 

know such as the set of possible wavefunctions for a quantum system, the expectation value of a 

physical observable and its time dependence, the role of the Hamiltonian of a system, the 

stationary states and the non-stationary states and issues related to their time development, and 

quantum measurements. The quantum mechanical models in the QMS are all confined to one 

spatial dimension (1D), e.g., the 1D infinite/finite square well, the 1D simple harmonic oscillator 

(SHO) and the free particle. Before developing the questions for the QMS, we first developed a 

test blueprint based upon the instructors’ feedback which provided a framework for deciding the 

desired test attributes. The specificity of the test plan helped us to determine the extent of content 

covered and the cognitive complexity levels of the questions. 
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In developing good alternative choices for the multiple-choice questions, we took 

advantage of the prior investigations of advanced students’ difficulties with various topics in 

quantum mechanics at the junior/senior level, e.g., the set of possible wavefunctions, quantum 

measurements, time dependence of the wavefunction and expectation values (Singh 2001, Jolly 

et al. 1998, Wittmann et al. 2002, Singh et al. 2006, Singh 2008a & 2008b). The alternative 

choices for each question often had distractors which reflected students’ common 

misconceptions to increase the discriminating properties of the questions. Having good 

distractors in the alternative choices is important so that the students do not select the correct 

answer for the wrong reason. To further investigate students’ difficulties with some concepts 

before designing the multiple-choice questions for the QMS, we developed and administered to 

the students open-ended (or free-response) questions. The answers to the open-ended questions 

were summarized and categorized and helped us develop good alternative choices for the 

multiple-choice questions in the QMS. Statistical analysis such as distribution of choices and 

correlation between distractors was conducted on the multiple-choice questions as they were 

developed and refined. 

We also interviewed individual students using a think-aloud protocol (Chi 1994) to 

develop a better understanding of students’ reasoning process when they were answering the 

open-ended and multiple-choice questions. During these interviews, some previously unnoticed 

difficulties and misconceptions were revealed. These common difficulties were incorporated into 

the newer version of the written tests and ultimately into the multiple-choice questions in the 

survey developed. Four professors at Pitt reviewed the different versions of the QMS several 

times to examine its appropriateness and relevance for the upper-level undergraduate QM 

courses and to detect any possible ambiguity in item wording. Many professors from other 
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universities have also provided valuable comments to fine tune the survey. Some of the questions 

were inspired by the learning tools for QM such as the concept tests and Quantum Interactive 

Learning Tutorials (QuILTs) we have developed (Singh 2008b). Students’ feedback to these 

questions is also an important resource for us to improve the clarity of QMS. Since we wanted 

the QMS to be administered within one class period, the final version of the QMS is limited to 

31 multiple-choice questions. Each question has one correct and four alternative choices. 

9.4 THE SURVEY RESULTS 

The QMS was administered to 109 students from seven universities (8 different classes were 

involved since both the upper-level undergraduate and graduate classes took the QMS at one 

institution). Among the 109 students, 15 were first-year graduate students enrolled in a full year 

graduate QM course and they were administered the QMS after their first-semester graduate 

level QM course. The others were undergraduate students who had taken at least a one-semester 

QM course at the junior-senior level. One of these junior-senior level classes in which students 

were enrolled for a full-year course used research-based learning tools such as concept tests and 

QuILTs (Singh 2008b). The QMS was given twice to this class, at the end of the first semester 

(11 students) and at the end of the second semester (9 students). 

The average score on the QMS for 109 students (only includes the first score of the 

students who took it twice) is 37.5%. The reliability coefficient α  (Aubrecht & Aubrecht 1983, 

Nitko 1996) for the survey is 0.87, which is reasonably good from the standards of test design. 

The item difficulty of each question (percentage of students who correctly answered each 

question), shown in Figure 9.1, approximately ranged between 0.2 and 0.8. Most of the item 
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difficulties (26 out of 31) were below 0.5. Figure 9.2 shows the item discrimination which 

represents the ability of a question to distinguish between the high and low performing students 

in the overall test. One measure of item discrimination is the point biserial discrimination (PBD) 

coefficient (Aubrecht & Aubrecht 1983, Nitko 1996), which is the correlation between “the score 

on a particular question” for each student and “the total test score minus the score on that 

question” for each student. The PBD approximately ranged from 0.2 to 0.6 with half of the 

questions with PBD higher than 0.4 and two items with PBD lower than 0.2. The standards of 

test design (Aubrecht & Aubrecht 1983, Nitko 1996) indicate that the QMS questions have 

reasonably good PBD. 
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Figure 9.1 Item Difficulty (fraction correct) for each item on the test for 109 students 
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Figure 9.2 Item Discrimination (PBD coefficient) for each item on the test for 109 students 

The average score for the upper-level undergraduate class that used the concept tests and 

the QuILTs throughout the semester was 71.8% at the end of the first semester in which all of the 
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relevant concepts were covered and 74.9% at the end of the second semester of QM. During the 

second (spring) semester, these students were enrolled in the QM II course, which included 

identical particles and approximate methods such as the time-independent and dependent 

perturbation theories, variational method, scattering theory and WKB approximation. The course 

did not directly involve the contents in the QMS. It is encouraging that the average student 

performance did not deteriorate after a whole semester. In classes that did not use the research-

based learning tools, the average score was 48.4% for the graduate course (15 students) and 

31.0% for the undergraduate courses. The reliability coefficients α  were greater than 0.8 for 

both the class that used the research-based learning tools and the group that did not use them. 

9.5 ITEM ANALYSIS 

Table 9.1 shows one particular categorization of the questions in the QMS based upon the 

concepts. The table provides only one of the several possible ways to classify the questions. Our 

prior research shows (Lin & Singh, 2010) that different instructors categorize a given QM 

question in different ways so the categorization shown in Table 9.1 is only one of them that we 

found convenient. The group “Other” includes questions about the uncertainty principle, the 

concept of degeneracy in the context of a free particle, and the Ehrenfest theorem that says that 

the expectation value of a physical observable obeys the classical laws (Singh 2001, Jolly et al. 

1998, Wittmann et al. 2002, Singh et al. 2006, Singh 2008a & 2008b). Below, we summarize the 

common difficulties found via the QMS in the sub-category of the time dependence of 

expectation values. The full version of the QMS can be found in the Thesis Appendix C. 



 208 

Table 9.1 A possible categorization of the QMS questions and the number of questions belonging to each 

category. The same questions may address multiple categories. 

Concepts Number 

Possible Wavefunctions 

Bound/Scattering States 

5 

5 

Measurement 9 

Expectation Values 

Time Dependence of expectation values 

3 

4 

Stationary vs. Non-Stationary States 8 

Role of the Hamiltonian  3 

Time Dependence of Wavefunction 7 

Other 3 

 

Table 9.2 shows the percentages of students selecting the choices A-E on two problems 

related to the time dependence of expectation values. The correct responses are in bold italicized 

font. X refers to the percentage of students who did not attempt that question (left that question 

blank). 

Table 9.2 Students’ responses for the two questions about the time dependence of expectation values 

 A B C D E X 

Q2 8% 7% 5% 17% 63% 0% 

Q23 8% 9% 14% 41% 18% 10% 

 

Questions (2) and (23) ask students about the time dependence of the expectation values 

of different physical observables in a stationary or a non-stationary state, respectively. The 

questions are as follows: 

 Q2. Suppose that at time t=0, System I (1D infinite square well) is in the first excited state. 

Choose all of the following expectation value(s) that depend on time. 
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(1) <x>     (2) <p>   (3) <H> 

A. 1 only      B. 2 only      C. 3 only       D. 1 and 2 only    E. None of the above  

 Q23. Suppose at time t=0, System III (1D SHO) is in the state ( ) 2/21 ψψ + . Choose all of 

the following expectation values that depend on time.  

(1) <x>     (2) <p>   (3) <H> 

A. 1 only      B. 2 only      C. 3 only       D. 1 and 2 only    E. All of the above 

In Question (2), the initial state is an energy eigenstate, so the expectation value of any 

time-independent operator is time-independent. The most common mistake in Question (2) was 

that the students believed that the expectation values of position and momentum depend on time 

in a stationary state. The initial state in Question (23) is a linear superposition of the stationary 

states ( ) 2/21 ψψ + . The expectation value of energy is still time independent because the 

probability of obtaining energies 1E  or 2E  is always 50%. But the expectation values of position 

and momentum depend on time. Students need not evaluate the integrals to determine the correct 

response. Instead, if they realize that for a non-stationary state, the probability density changes 

with time, they can conclude that the expectation value of position and momentum must change 

with time. Another way to reason is to realize that the position and momentum operators do not 

commute with the Hamiltonian so their expectation values will depend on time in a non-

stationary state. In Question (23), 18% of the students mistakenly thought that all the expectation 

values (position, momentum and energy) depend on time and 14% chose option C (only <H> 

depends on time) which is the opposite to the correct answer D (by contrast, for Question (2) 

only 5% of the students believed that <H> depends on time but <x> and <p> do not when the 

system was in a stationary state).  
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9.6 SUMMARY 

Identification of students’ difficulties can help catalyze the design of better instruction strategies 

and learning tools to improve students’ understanding of QM. We have developed a research-

based multiple-choice survey to assess students’ conceptual understanding of QM. The survey 

explores students’ proficiency with the formalism of QM in 1D. During the development of the 

survey, we obtained feedback from QM instructors at various institutions, administered free-

response and multiple-choice questions to students and conducted individual interviews with a 

subset of students to elucidate the difficulties students have with the concepts. The alternative 

choices for the multiple-choice questions on the survey often deal with the common difficulties 

found in these investigations. 

   The 31-item QMS was administered to 109 students in advanced undergraduate and 

graduate QM courses in seven different institutions to get a quantitative understanding of the 

universal nature of the difficulties. We found that the advanced students have common 

difficulties about various topics including the set of possible wavefunctions, quantum 

measurement, expectation values, stationary vs. non-stationary states, and time dependence of 

wavefunctions and expectation values. We also investigated the extent to which research-based 

learning tools can help students learn these concepts and found that the difficulties were 

significantly reduced when students used concept tests and QuILTs. 

The QMS can be administered to students in the upper-level undergraduate courses after 

instruction. It can also be used as a preliminary test for the graduate students to evaluate their 

background knowledge in QM before they take the graduate-level QM courses. Those 

developing instructional strategies to improve students’ understanding of QM can also benefit 

from taking into account the difficulties highlighted by the QMS.  
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10.0  CONCLUSIONS AND FUTURE CONSIDERATIONS 

In this thesis, I discussed investigations of students’ common difficulties in learning quantum 

mechanics. Based on these investigations, we developed research-based learning tutorials 

(QuILTs) and peer instruction tools that strive to reduce the difficulties and help students build a 

good knowledge structure of quantum mechanics. We also designed the Quantum Mechanics 

Survey (QMS) as an assessment tool to evaluate students’ conceptual understanding of various 

topics in quantum mechanics.   

10.1 QUANTUM INTERACTIVE LEARNING TUTORIALS (QUILTS) 

Due to the non-intuitive nature of quantum mechanics, scaffolding is particularly important for 

helping students build a hierarchical knowledge structure of quantum mechanics. The QuILTs 

provide a guided approach to improving students’ understanding of the basic concepts in 

quantum mechanics. In order to develop students’ intuition about quantum mechanics, computer-

based visualization tools are employed in several QuILTs to help students take advantage of the 

visual representation of the quantum mechanical concepts. Preliminary assessments indicate that 

the QuILTs are effective in improving students’ understanding of the targeted concept and 

principles. 
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Further research is needed to evaluate students’ self-monitoring and meta-cognitive skills 

when they learn from the QuILTs on their own as a self-study tool. This study will be 

particularly useful because some instructors may be unwilling to use the class time to have 

students work on them as a group and may simply make them available as a self-study tool. Also, 

future study can investigate the retention of the students’ knowledge of the concepts targeted in 

the QuILTs after a long time period, e.g., several years. It will also be useful to explore the 

facility of advanced students in transferring what they learned in one context to another context 

in quantum mechanics. Research can also be carried out to investigate if students are able to 

transfer relevant learning in the quantum mechanics course to other upper-level physics courses 

or whether such transfer is challenging. 

10.2 CONCEPT TESTS 

We designed the concept tests as a peer instruction tool. By discussing the concept test questions 

with their classmates, students are likely to learn quantum mechanics better. The concept tests 

are easy to integrate with traditional lectures and are likely to be adapted in a widespread manner. 

The results of the quizzes and surveys about various topics in quantum mechanics indicate that 

the students who used the concept tests in class have a better conceptual understanding of 

quantum mechanics than those who had only traditional lectures.   

 Prior research (Singh 2005) has shown that the introductory physics students can benefit 

from peer instruction even with minimal guidance from the instructors. In this study, the students 

who worked with peers not only outperformed an equivalent group of students who worked 

alone on the same problems, but collaboration with a partner led to “co-construction” of 
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knowledge in 29% of the cases. Co-construction of knowledge occurs when neither student who 

engaged in the peer collaboration was able to answer the questions by him/herself, but both gave 

the correct answer after working with each other on a post-test given individually to each person. 

Similar research using the concept tests on quantum mechanics would be very helpful in 

highlighting whether advanced students are more likely to co-construct knowledge than the 

introductory students without instructors’ support. It will also be useful to explore if students in 

the upper-level courses such as quantum mechanics are more advanced in their communication 

about physics with peers compared to introductory physics students. 

10.3 QUANTUM MECHANICS SURVEY (QMS) 

Valid and reliable multiple-choice tests related to quantum mechanics concepts are important for 

evaluating learning and designing research-based learning tools to reduce these difficulties. We 

developed a research-based conceptual multiple-choice survey that targets various basic topics in 

quantum mechanics to obtain information about students’ common difficulties. The Quantum 

Mechanics Survey (QMS) focuses on the fundamental concepts and principles underlying the 

behavior of one-dimensional quantum systems. The topics covered in the QMS were determined 

by collecting the opinions of many instructors in different universities about the “must-learns” in 

their quantum mechanics courses. The QMS was administered in seven universities. We found 

that the students in the junior-senior level quantum mechanics courses have common difficulties 

about various topics including quantum measurement, stationary vs. non-stationary states, 

possible wavefunctions, etc. The results of the QMS also indicated that the research-based 

learning tools can help students better learn these concepts and significantly reduce their 
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common difficulties. Future research using this assessment tool can focus on comparing 

students’ conceptual understanding of quantum mechanics with different teaching strategies and 

learning tools. It will be useful to find out whether certain difficulties and misconceptions can be 

effectively reduced by certain types of learning tools but not reduced by other types of learning 

tools.  
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APPENDIX A 

QUILT FOR QUANTUM MEASUREMENT* (CHAPTER 5) 

*The warm-up of the tutorial for quantum measurement is not included in Appendix A. 

Part 1 Quantum measurement without time evolution after measurement 

Note:  

 In the simulations, the y-axis represents )(xψ  (the absolute value of the wavefunction) 

instead of )(xψ . 

 

What is quantum measurement? 

No matter what the initial state of the quantum system is, when we measure an 

observable, the system collapses into an eigenstate of the corresponding operator. Therefore, 

measurement of an observable can be considered as projecting the initial state onto an eigenstate 

of the operator. For example, suppose we measure the energy of a particle in the initial state Ψ  

which is not an energy eigenstate. Let the energy eigenstates (eigenstates of the Hamiltonian) be 

denoted in order of increasing energy as 1ψ , 2ψ , 3ψ , ..., nψ , …, where n is a positive 

integer. Then, to find the probability of measuring energy nE , we can project the initial state Ψ  

onto the energy eigenstate nψ  as Ψnψ  and then calculate the probability as 
2

Ψnψ .  
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Now answer the following questions.  

(1) Write Ψnψ  in the position representation? (Hint : Spectral decomposition of identity 

gives 1∫ =xxdx ) 

 

 

(2) What is the dimension /unit of Ψnψ ? 

A. Length, e.g., nanometer ( nm ) 

B. Inverse length, e.g., nm/1  

C. Inverse square length, e.g., 2/1 nm  

D. Dimensionless / Unitless  

 

(3) What is the physical meaning of 
2

Ψnψ  ? 

 

 

Now let’s use the idea of projecting a general state along an energy eigenstate to find the 

probability of measuring a particular energy for a 1-D infinite square well.  

 

 

1-D infinite square well 

For a particle in a 1-D infinite square well with Hamiltonian )(
2

ˆˆ
2

xV
m

p
H +=  ( 0)( =xV  

when ax <<0  and +∞=)(xV  otherwise), the n
th

 energy is 
2

222

2ma

n
En

hπ
=  (n=1,2,3,…), and the 

energy eigenfunction corresponding to 
n

E  is ⎟
⎠
⎞

⎜
⎝
⎛=

a

xn

a
xn

πψ sin
2

)(  when ax <<0  and 

0)( =xnψ  elsewhere. Answer the following questions. (Questions 1--10) 
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1. Suppose the initial state of the particle is 1ψ . If we measure the energy of the particle, what 

result(s) can we obtain? 

A. Only 1E  

B. Any of 
n

E , n=1,2,3,… 

C. 
n n

c E∑ , 
n

c  are constants and at least two of 
n

c  are non-zero, n=1,2,3,… 

D. Any value of energy E is possible as long as 1EE ≥  

 

2. In the previous problem (problem 1), after the measurement of energy, what state will the 

particle be in? 

A. Definitely in the state 1ψ  

B. Any of the states nψ , n=1,2,3, … 

C. ∑
n

nnA ψ , 
n

A  are constants and at least two of 
n

A  are non-zero, n=1,2,3,… 

D. None of the above 

 

Simulation 1 

Double click the simulation “psi1” on the left column of the program window. The initial 

state of the system in this simulation is 1ψ . Next, choose “E” (energy) at the lower right corner 

of the new window. Click the button “measure” in the lower middle part of the window. Does 

the shape of the absolute value of the wave function change? Is this result consistent with your 

answer to question 2? What is the measured energy corresponding to the wave function you have 

obtained? 

 

3. Suppose the initial state of the particle is )(
2

1
21 ψψ + . If we measure the energy of the 

particle, what result can we obtain? 

A. ( ) 2/21 EE +  

B. 1E  or 2E  

C. Any of 
n

E , n=1,2,3,… 

D. 
n n

c E∑ , 
n

c  are constants and at least two of 
n

c  are non-zero, n=1,2,3,… 
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4. In the previous problem (problem 3), after the measurement of energy, what state will the 

particle be in? 

A. )(
2

1
21 ψψ + . 

B. Only 1ψ  or 2ψ  

C. Any of nψ  with non-zero probability, n=1,2,3,… 

D. ∑
n

nnA ψ , 
n

A  are constants and at least two of 
n

A  are non-zero, n=1,2,3,… 

E. None of the above 

 

5. Suppose the initial state is )(
2

1
21 ψψ +=Ψ .  If you measure the energy of the system, 

what is the probability of measuring energy nE  in Dirac notation? For the given initial state, 

the probability of measuring which of the energies is non-zero? Is this result consistent with 

your answers to question 3? 

 

Simulation 2 

Choose the simulation “psi1+psi2”. The initial state of the system in this simulation is 

)(
2

1
21 ψψ + . Next, choose “E” (energy) at the lower right corner of the window. Then click 

the button “measure” in the lower middle of the window. Does the shape of the absolute value of 

the wave function change?  

Now click the button with a curved arrow (just to the left of the measure button) to reset 

the initial state to )(
2

1
21 ψψ + . Then measure the energy again. Do you obtain the same state 

after this second measurement of energy as what you obtained after the first measurement of 

energy in the state )(
2

1
21 ψψ + ? If yes, do you expect that you may obtain a different state 

when you measure energy in the next trial after resetting the initial state to )(
2

1
21 ψψ +  ?  Is 

this result consistent with your answer to question 4? 
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Since 1ψ and 2ψ  are orthogonal ( 021 =ψψ ), 11211
2

1

2

1 ψψψψψ =⎟
⎠
⎞

⎜
⎝
⎛ +  and 

the probability of measuring 1E  and the initial state collapsing into 1ψ  after the measurement of 

energy is 
2

1

2

1
2

11 =ψψ . Similarly, the probability of measuring 2E  and collapsing the initial 

state into 2ψ  after the measurement of energy is 
2

1

2

1

2

1
2

22

2

212 ==+ ψψψψψ . For any 

other energy eigenstate 
n

ψ , 021 =+ψψψ n , so the probability is zero for those states and the 

system cannot collapse to any nψ  other than 1ψ  or 2ψ  when we measure the energy for the 

state )(
2

1
21 ψψ + . 

Now use the method of projecting the general state along an energy eigenstate to 

answer the following questions (questions 6-8). 

6. Suppose the normalized initial state of the particle is ∑
n

nnA ψ , where 
n

A  are constants and 

at least two of 
n

A  are non-zero (n=1, 2, 3, …). If we measure the energy of the particle, what 

result can we obtain? 

A. Any of 
n

E for which 0≠nA . 

B. 
n n

A E  

C. ∑
n

nnEA  

D. ∑
n

nn EA
2

 

 

7. In the previous problem (question 6), what is the probability of measuring energy
n

E  in the 

state ∑
n

nnA ψ ? Note that 
n

A  can be a complex number. 

A. 
n

A  

B. 
n

A  

C. 2( )
n

A  

D. 
2

n
A  
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8. In problem 6, after the measurement of energy, what normalized state will the particle be in? 

A. Any one of the energy eigenstates nψ  corresponding to the energy measured. 

B. Any one of the states nnA ψ . 

C. ∑
n

nnA ψ  

D. ∑
n

nnA ψ2
 

E. None of the above 

 

Simulation 3 

Choose the simulation “psi1+psi_n”. The initial state of the system in this simulation is 

∑
n

nnA ψ  with equal coefficient nA  for 9≤n  and 0=nA  for 9>n . Next, choose “E” (energy) 

at the lower right corner of the window. Then click the button “measure” in the lower middle of 

the window. What state do you obtain? Set back the simulation to the initial state and measure 

again to check whether you can get a different state. Explain what is the probability of obtaining 

a particular state nψ . 

9. The orthonormal energy eigenfunctions nψ  for a 1D infinite square well satisfy 

∫
+∞

∞−

= mnmn dxxx δψψ )()(* , where 1=mnδ  when m=n, and 0=mnδ  otherwise. Any state Ψ can 

be expressed as ∑=Ψ
n

nnA ψ  because nψ  form a complete set of vectors for the Hilbert 

space in which the state of the system lies. Find 
n

A in terms of Ψ  and nψ  first in the Dirac 

notation form and then in the integral form in the position representation. (The hint is on the 

last page of part 1, after question 25.) 
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10. Suppose the wavefunction of the particle in the initial state is )()( xaAxx −=Ψ  (A is a 

normalization constant) when ax <<0  and 0)( =Ψ x  otherwise. If we measure the energy 

of the particle, what is the probability of obtaining 
n

E ? (n=1,2,3,…) Use the idea of 

projecting the initial state along an energy eigenstate to find the probability of measuring 

energy 
n

E  . Write down your answer in both the Dirac notation and integral form in the 

position representation You need NOT evaluate the integral but you should show suitable 

limits for the integral.  

 

 

 

For a particle interacting with a simple harmonic oscillator (SHO) potential energy, the 

energies are 
1

( )
2

nE n ω= + h  (n=0,1,2,…), and the energy eigenfunctions corresponding to 
n

E  

are 2/

4/1
2

)(
!2

1
)( ξξ

π
ωξψ −⎟
⎠
⎞

⎜
⎝
⎛= eH

n

m
n

n
n

h
, where )(ξnH  is the n

th
 Hermite polynomial  and 

x
m

h

ωξ ≡  is a dimensionless variable. The first three Hermite polynomials are 1)(0 =xH , 

xxH 2)(1 = , 24)( 2

2 −= xxH . Answer  questions 11 & 12. 

 

11. Suppose the wavefunction of a simple harmonic oscillator in the initial state is a Gaussian 

function 2/2

)( ξξψ −= Ae , where A  is a normalization constant. If we measure the energy of 

the simple harmonic oscillator, what energy can we obtain?  

A. ωh=E  only 

B. ∑
∞

=

+=
0

)
2

1
(

n

nE ωh  

C. ωh
2

1
=E  only 

D. Any of the energies ωh)
2

1
( += nEn , n=0,1,2,… 
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12. Suppose the initial state of a simple harmonic oscillator is a Gaussian function not centered 

around 0=x  (where the potential energy is minimum). The initial state can be expressed as 
2/)( 2

0)(
ξξξψ −−= Ae , where A  is a normalization constant and 00 ≠ξ . If we measure the 

energy of the simple harmonic oscillator, what result(s) can we obtain?  

A. ωh=E  only  

B. ∑
∞

=

+=
0

)
2

1
(

n

nE ωh  

C. Only ground state energy ωh
2

1
0 =E  since the wavefunction is still Gaussian 

D. Any of the energies ωh)
2

1
( += nEn , n=0,1,2,… 

 

No matter what the initial state is, when we measure the energy of a quantum SHO, we 

always measure an energy eigenvalue (allowed energy) and collapse the wavefunction into an 

energy eigenstate of the SHO. It is the Hamiltonian of the system that determines the energy 

eigenstates and allowed energies of the system. The initial state determines the possibility of 

collapsing into different energy eigenstates and measuring the corresponding energy when 

measuring the energy of the system. 

 

Measurement of the position when the initial state is an energy eigenstate, 

Consider an electron in a 1-D infinite square well with 0=V  when ax <<0  and 

+∞=V  otherwise. Answer the following questions (questions 13 -- 18). 

13. Suppose the initial state of the particle is the ground state 1ψ . If we measure the position of 

the particle, what possible values can we obtain? Will we obtain the same value if we 

perform position measurements on a large number of identically prepared systems? Explain. 

A. ax = only 

B. 2/ax =  only 

C. ax <<0  

D. Any value between −∞  and +∞  
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14. In the previous problem (question 13), after the measurement of position, which one of the 

following wavefunctions will the particle be in if we find the particle at 0x x= ? 

A. ⎟
⎠
⎞

⎜
⎝
⎛=

a

x

a
x

πψ sin
2

)(  

B. ⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

xx

a
x

)(
sin

2
)( 0πψ  

C. )()( xx δψ =  

D. )()( 0xxx −= δψ  

 

15. Let’s find the probability density of measuring the position of the particle in state 1ψ  

(questions 13&14) using the projection method in the Dirac notation and in the position 

representation. First write down the wavefunction (in the position representation) of the 

particle in the initial state 1ψ  (the ground state). Then, consider the wavefunction of the 

position eigenstate 0x  with eigenvalue 0x . Calculate the projection 10 ψx  of the state 

1ψ  along the position eigenstate 0x  in the position represenation by writing down the 

integral explicitly. What is the probability density 
2

10 ψx  for finding the particle at the 

position 0xx = ? Is this result consistent with Born’s interpretation of the wavefunction? 

Explain. (Hint: The spectral decomposition of identity is 1=′′′∫
all

xxxd .)  

 

16. Born’s statistical interpretation of the wavefunction says that dxtx
2

),(ψ  gives the 

probability of finding the particle between x and x+dx at time t. Does your result in question 

15 support this statistical interpretation? Explain. 

 

Simulation 4 

Double click the simulation “QM measurement”. Then choose the simulation “psi1”. The 

initial state in this simulation is 1ψ . Next, choose “x” (position) and click the button “measure” 

in the lower middle of the window. What is the (approximate) position of the particle measured? 

Set back the simulation to the initial state 1ψ  and measure the position again. Is the particle 

found at the same position as your first measurement? Explain your observation. Is this result 

consistent with your answer to question 13? 



 225 

(Note that the position eigenfunction in the simulation is not a perfect delta function 

due to constraints in the simulation. However, the delta function is an ideal model which does 

not exist in the real world. For example, when an electron in a double slit experiment hits the 

far away screen, it leaves a spot with a finite width.) 

 

17. Suppose the initial state of the particle is )(
2

1
21 ψψ + . If we measure the position of the 

particle, what result can we obtain? 

A. ax =  only 

B. 2/ax =  only 

C. ax ≤≤0   

D. Any value between −∞  and +∞  

 

18. In the previous problem (question 17), after the measurement of position, what state will the 

particle be in if we find the particle at 0x x= ? Write down this state in Dirac notation and in 

position representation. What is the probability density for measuring the position 0xx = ? 

(Hint: 1=∫
all

xxdx . You can calculate the projection Ψ0x  in the position representation 

by writing down the integral ∫∫ Ψ−=Ψ
allall

xxxdxxxxdx )()( 00 δ .) 

 

Simulation 5 

Double click the simulation “QM measurement”. Then choose the simulation “psi1+psi2”. 

The initial state of the system in this simulation is )(
2

1
21 ψψ + . Next, choose “x” (position) 

and click the button “measure” in the lower middle of the window. What is the (approximate) 

position of the particle? Set back the simulation to the initial state )(
2

1
21 ψψ +  and measure 

the position again. Is the particle found at the same position as your first measurement? Explain 

your observation. Is this result consistent with your answer to question 17? 
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Measurement of the position when the initial state is an energy eigenstate of the SHO, 

Consider a particle interacting with a simple harmonic oscillator potential energy well. 

Answer questions 19 & 20. 

19. A simple harmonic oscillator is in the ground state with 

a normalized Gaussian wave function as shown. If we 

measure the position of the particle, what results can 

we obtain? The classical turning points are a±  where 

ωm
a

h
=                                 

A. 0=x  only 

B. ax ±=  only 

C. Any value between a−  and a  

D. Any value between −∞  and +∞  

 

 

20. In the previous problem (question 19), after the measurement of position, what state will the 

particle be in if we find the particle at 0x x= ? Write down this state in position 

representation. Use the idea of projection to write the probability density of measuring 

0x x=  in Dirac notation and in the position representation when the position measurement 

was performed in the ground state of the SHO. 

 

 

Measurement of the position when the initial state is arbitrary 

Consider a particle in a 1-D infinite square well with 0=V  when ax <<0  and +∞=V  

elsewhere. Answer the following questions (21 & 22). 

21. Suppose the wavefunction of a particle in the initial state is )/(sin)( 2
axAx π=Ψ  where A is 

a normalization constant. If we measure the position of the particle, what is the probability 

density for finding the particle at 0x x= ? Use the idea of projection to explain your answer 

by writing down the probability density in Dirac notation and in the position representation. 
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22. In the previous problem (question 21), immediately after the measurement of position, what 

state will the particle be in? Write down the wavefunction of the particle in this state 

mathematically and also sketch it graphically in the position representation.  

 

23. Choose all of the following statements that are correct.  

(1) The shape of the position eigenfunction depends on the Hamiltonian.  

(2) The shape of the energy eigenfunction depends on the Hamiltonian. 

(3) No matter what kind of Hamiltonian the system has, the position eigenfunction is always 

a delta function in position space. 

A. 1 only 

B. 3 only 

C. 1 and 2 

D. 2 and 3 

E. None of the above 

24. Consider the following statement: If the initial state is Ψ  for a particle in a 1-D infinite 

square well, 
2

1 ΨHψ  is the probability of obtaining energy 1E  when measuring the 

energy of the particle. Do you agree with this statement? Explain. (Hint : Consider the unit 

of ΨH1ψ .) 

 

25. For a particle in a 1-D infinite square well, suppose its initial state is Ψ . What are the 

physical meanings of ΨΨ H  and ΨΨ x ? 

 

 

Hint for question 9: In position representation, ∑=
n

nn xAx )()( ψψ . Use Fourier trick. 

Multiple both sides by *

mψ , integrate over all space and use orthonormality of energy 

eigenstates. Note that ∫ ∑ ∫
+∞

∞−

+∞

∞−

=Ψ
n

nmnm dxAdxxx ψψψ ** )()(  and ∑ =
n

mmnn AA δ . Alternatively, in 

Dirac notation, m

n

mnn

n

nmnm AAA === ∑∑ δψψψψ . We can use 1=∫
all

dxxx  to write 

ψψ m  in position representation.  
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Part 2 Quantum measurement and time evolution 

For a particle in a 1-D infinite square well ( 0)( =xV  when ax <<0  and +∞=V  

elsewhere), the energies are 
2

222

2ma

n
En

hπ
=  (n=1,2,3,…) and the energy eigenstate corresponding 

to each 
n

E  is ⎟
⎠
⎞

⎜
⎝
⎛=

a

xn

a
xn

πψ sin
2

)(  when ax <<0  and 0)( =xnψ  otherwise. Answer the 

following questions. (Question 26~34) 

 

26. At time 0t = , the initial state of the particle is the ground state 1ψ . If we measure the energy 

of the particle at time t , what result(s) can we obtain? 

A. Only 1E  

B. Only 
h/

1
1tiE

eE
−

  

C. Any of the energies
n

E , n=1,2,3,… 

D. Any of 
h/tiE

n
neE

−
, n=1,2,3,… 

E. ∑ nnEc , nc  are constants and at least two of 
n

c  are non-zero, n=1, 2, 3, … 

 

27. In the previous problem (question 26), after the measurement of energy, what state will the 

particle be in? 

A. The ground state 1ψ  

B. Any of the states nψ , n=1,2,3,… 

C. ∑
n

nnA ψ , 
n

A  are constants and at least two of 
n

A  are non-zero, n=1,2,3,… 

D. None of the above 

 

Simulation 6 

♦ Choose the simulation “psi1”. The initial state in this simulation is 1ψ . Next, click the 

triangular button (to start and stop the time evolution) on the lower left corner of the window. 

You can see a clock at the lower right corner of the window showing the time. Does the 

shape of the absolute value of wavefunction change with time? Why is an energy eigenstate 

called a “stationary state”? 

 

♦ Now measure the energy around t=2 units. What is the state of the system after the energy 
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measurement? Set back the simulation to the initial state 1ψ  and measure the energy again 

around t=3 units. Is the result the same as your first measurement (around t=2 units)? Is this 

result consistent with your answer to question 26? 

 

 

28. Suppose the initial state of the particle is the first excited state 2ψ . When you measure the 

energy of the particle, is it possible to obtain the ground state energy 1E ? Explain. 

 

29. At time 0t = , the initial state of the particle is )(
2

1
21 ψψ + . If we measure the energy of 

the particle after time t , what result(s) can we obtain? 

A. ( ) 2/21 EE +  

B. 1E or 2E  

C. ( ) 2/
/

2

/

1
21 hh tiEtiE

eEeE
−− +  

D. h/

1
1tiE

eE
−

 or 
h/

2
2tiE

eE
−

 

E. Any of 
n

E , n=1,2,3,… 

 

30. In the previous problem (question 29), right BEFORE the measurement of energy, what state 

will the particle be in? 

A. )(
2

1
21 ψψ +  

B. 1ψ  or 2ψ  

C. )(
2

1 /

2

/

1
21 hh tiEtiE

ee
−− + ψψ  

D. h/

1
1tiE

e
−ψ  or 

h/

2
2tiE

e
−ψ  

 

31. In the previous problem (question 29), after the measurement of energy, what state will the 

particle be in? 

A. )(
2

1
21 ψψ +   

B. Either 1ψ  or 2ψ  

C. Any of nψ , n=1,2,3,… 

D. ∑
n

nnA ψ , 
n

A  is constant and at least two of 
n

A  are non-zero, n=1,2,3,… 

E. None of the above 
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Simulation 7 

♦ Open the simulation “psi1+psi2”. The initial state in this simulation is )(
2

1
21 ψψ + . Start 

the time evolution. Does the shape of the absolute value of the wavefunction change with 

time? Is the state )(
2

1
21 ψψ +  a stationary state? 

 

♦ Now measure the energy around t=2 units. What is the state of the particle after the energy 

measurement? Suppose you obtain state iψ  ( i=1 or 2) in the first measurement of energy. 

If you set back the simulation to the initial state )(
2

1
21 ψψ +  and measure the energy 

again around the same time t=2 units, do you think you have the same probability of 

obtaining iψ  as in your first measurement? Does the probability of obtaining iψ  change 

if you re-initialize the state and measure the energy around the time t=3 units? (Note that 

you only need to write down your conclusion and explanation without measuring the energy 

repeatedly to estimate the probability.) 

 

32. At time 0t = , the initial normalized state of the particle is 
n nAψ∑ , where 

n
A  are 

normalized non-zero constants. If we measure the energy of the particle at time t , what 

result can we obtain? 

A. Any of 
n

E , n=1,2,3,… 

B. Any of 
n n

A E  

C. Any of 
/niE t

n n
A E e

− h
 

D. ∑ −

n

tiE

nn
neEA

h/
 

E. ∑ −

n

tiE

nn
neEA

h/2
 

 

33. In problem 32, right BEFORE the measurement of energy, what state will the particle be in? 

A. ∑
n

nnA ψ  

B. nψ  

C. ∑ −

n

tiE

nn
neA

h/ψ  

D. h/tiE

n
ne

−ψ   
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34. In problem 33, what is the probability of measuring energy
n

E ? 

(1) 
/niE t

n
A e

− h
 

(2) 
2

n
A  

(3) 
2

/niE t

nA e
− h

 

A. 1 only    B. 2 only    C. 3 only    D. 2 and 3 only    E. all of the above 

 

Simulation 8 

♦ Choose the simulation “psi1+psi_n”. The initial state in this simulation is ∑
n

nnA ψ . Start 

the time evolution. Does the shape of the absolute value of the wavefunction change with 

time?  

 

 

♦ Reset the simulation to the initial state ∑
n

nnA ψ  and make an energy measurement at time 

t=0. Sketch the wave function you observed in the simulation. Which energy eigenstate iψ  

do you obtain? Which energy have you measured? 

 

 

♦ Now reset the simulation to the initial state ∑
n

nnA ψ  and start the time evolution. Measure 

the energy around t=2 units. What is the state of the particle after the energy measurement? 

What is the energy that you measured? Write down how the state ∑
n

nnA ψ  evolves with 

time and calculate the probability of measuring energy nE . Does the probability of 

measuring a particular energy nE  and collapsing into an energy eigenstate nψ  change with 

time? Explain. (You only need to write down your conclusion and explanation without 

measuring the energy repeatedly to estimate the probability.) 
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For a particle interacting with a simple harmonic oscillator (SHO) potential, the allowed 

energies are 
1

( )
2

nE n ω= + h  (n=0,1,2,…), and the energy eigenstate corresponding to each 
n

E  

is 2/

4/1
2

)(
!2

1
)( ξξ

π
ωξψ −⎟
⎠
⎞

⎜
⎝
⎛= eH

n

m
n

n
n

h
, where )(ξnH  is the n

th
 Hermite polynomial and 

x
m

h

ωξ ≡  is a dimensionless variable. The first three Hermite polynomials are 1)(0 =xH , 

xxH 2)(1 = , 24)( 2

2 −= xxH . Answer the following questions (questions 35 & 36). 

Measurement of the energy of SHO at time t>0. 

35. At time 0t = , suppose the initial state of a simple harmonic oscillator is a Gaussian function 
2/2

)( ξψ −= Aex , where A  is a positive constant. If we measure the energy of the simple 

harmonic oscillator at time t , what result can we obtain? 

A. ωh=E  only 

B. ∑
∞

=

+=
0

)
2

1
(

n

nE ωh , n=0, 1, 2, … 

C. ωh
2

1
=E  only 

D. Any of the energies ωh)
2

1
( += nEn , n=0,1,2, … 

 

36. In the previous problem (question 35), after the measurement of energy, what state will the 

particle be in? 

A. ⎟
⎠
⎞

⎜
⎝
⎛=

a

x

a
x

πψ sin
2

)(  

B. ⎟
⎠
⎞

⎜
⎝
⎛=

a

xn

a
x

πψ sin
2

)( , n=1,2,3,… 

C. 2/

4/1
2

)(
!2

1
)( x

n
n

exH
n

m
x −⎟

⎠
⎞

⎜
⎝
⎛=

hπ
ωψ , n=0 only 

D. Any of 2/

4/1
2

)(
!2

1
)( x

n
n

exH
n

m
x −⎟

⎠
⎞

⎜
⎝
⎛=

hπ
ωψ , n=1,2,3,… 

E. ∑= nncx ψψ )( , where 2/

4/1
2

)(
!2

1
)( x

n
n

n exH
n

m
x

−⎟
⎠
⎞

⎜
⎝
⎛=

hπ
ωψ , n=0,1,2,… 
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Now consider a particle in a 1-D infinite square well ( 0)( =xV  when ax <<0  and 

+∞=)(xV  otherwise). Answer the following questions (question 37-40). 

37. Suppose at time 0t =  the initial state wavefunction of the particle is )()( xaAxx −=Ψ for 

ax <<0  and 0)( =Ψ x  otherwise. If you measure the energy of the particle at time t , what 

is the probability of obtaining 
n

E ? You can leave the probability as an integral. (Hint: Recall 

question 9 in the first part of this tutorial. You can write )(xΨ  in the basis of energy 

eigenfunctions as ∑=Ψ
n

nnAx ψ)(  and find the coefficients nA by projecting the state Ψ  

along the energy eigenstate nψ  or by using the Fourier trick. ) 

 

 

38. Given the wavefunction at time 0=t , why is it useful to write the state of a quantum system 

as a superposition of energy eigenstates to find the wavefunction after time t? (The answer is 

on the last page of the tutorial.) 

 

 

 

Measurement of postion 

39. Harry and Sally prepare the same initial wavefunction 
2

)()( 21 xx ψψ +
 which is a linear 

superposition of the energy eigenfunctions )(1 xψ  and )(2 xψ  in their labs at time t=0. 

They each make a measurement of the position of the electron after different time t. 

The wave function at time t is 
2

)()(
),(

/

2

/

1
21 hh tiEtiE

exex
tx

−− +
=Ψ

ψψ
. Harry measures the 

position of his electron at time t=1 unit and Sally measures the position of her electron 

at time t=3 units. Consider the following conversation between Harry and Sally. 

 

Harry: The probability that I will find my electron between 0x  and dxx +0  is not the 

same as the probability that you will find your electron between 0x  and dxx +0 . The probability 

is determined by the absolute square of the wave function, dxtx
2

0 ),(Ψ , which depends on time. 
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Sally: I agree that the probability density for measuring position depends on 
2

0 ),( txΨ . 

But when you calculate 
2

0 ),( txΨ , the time dependent phase factors will cancel out and the 

probability density will be time independent. You and I have the same probability of measuring 

the position between 0x  and dxx +0 .  

Harry: The time-dependent phase factors do not drop out of the cross terms. We need to 

square the whole wave function, not only the coefficients of )(1 xψ  and )(2 xψ  separately. That 

is why we get time dependent cross terms. 

 

With whom do you agree? Explain. Use the simulation “psi1+psi2” to justify your 

answer. (In this simulation, the position eigenfunction is drawn as a narrow function (but not a 

delta function) due to constraints in the simulation. It is an approximation for a delta function 

obtained in an ideal position measurement which has an infinitely high peak and infinitesimal 

width.)  

 

Measurement of energy 

40. Harry and Sally prepare the same initial state wavefunctions 
2

)()( 21 xx ψψ +
 from energy 

eigenfunctions )(1 xψ  and )(2 xψ  in their labs at time t=0. Harry measures the energy of 

his electron in a 1D infinite square well at t=1 unit and Sally measures the energy of 

her electron in an identical 1D infinite square well at time t=3 units. Consider the 

following conversation between Harry and Sally. 

 

Harry: The probability that I will measure energy nE  is not the same as the probability 

that you will measure energy nE . The probability is determined by the absolute square of the 

wavefunction, 
2

),( txΨ , which depends on time. 
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Sally: No. The probability of measuring position depends on the absolute square of the 

wave function. This time we are measuring energy. The time-dependent phase factors will 

cancel out because only one factor 
h/tiEne

−
 can contribute in calculating the probability of 

measuring a particular energy nE . Thus, the probability of obtaining nE  will be time 

independent. You and I have the same probability of measuring energy nE . 

Harry: But there will be cross terms in the square of the wave function. The phase 

factors do not drop out for the cross terms.  

Sally: I disagree. The probability of measuring energy is determined by the square of the 

coefficients of each of the energy eigenfunctions )(1 xψ  and )(2 xψ . We do not square the entire 

wavefunction, we only square the coefficients of each energy eigenfunction and the time 

dependence drops out. For example, the probability of measuring energy 1E  is given by: 

2

1

2
)(

2
/

1

1

==
− htiE

e
Ep , which is time independent. 

With whom do you agree? Explain. 

 

Simulation 9* (Complete if time is available) 

If you are not sure about the answer to question 40, you may check it with the simulation. 

Measure the energy at t=1 unit for 20 trials, and estimate the probability of obtaining 1E . Then 

measure the energy at t=3 units for 20 trials and estimate the probability of obtaining 1E . 

Combine your data with other groups’ to make the result statistically reliable. 
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Consecutive measurements 

Measure the energy of the system first and then measure the energy again. 

41. At time 0t = , the initial state of the particle is )(
2

1
21 ψψ + . We first measure the energy 

of the particle at time t  and obtain the energy 1E . Then we immediately measure the energy 

again. What result can we obtain in the second measurement? Explain your choice. 

A. Only 1E  

B. Either 1E  or 2E  

C. Only 
h/

1
1tiE

eE
−

 

D. Either
h/

1
1tiE

eE
−

 or 
h/

2
2tiE

eE
−

 

E. Any of 
n

E , n=1,2,3, … 

 

42. In the previous problem (question 41), after the second measurement of energy, what state 

will the particle be in? 

A. 1ψ  or 2ψ  

B. Any of nψ , n=1,2,3,… 

C. 1ψ  

D. )(
2

1
21 ψψ +  

E. None of the above 

 

Simulation 10 

Choose the simulation “psi1+psi2”. The initial state in this simulation is )(
2

1
21 ψψ + . 

Start the time evolution. Around t=2 units, first click the start/stop button to pause the time 

evolution and then measure the energy. What state do you obtain? Then measure the energy 

again without re-initializing the wavefunction. Is the state the same as the state you observed 

after your first measurement? 
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43. In question 41, if the time interval between the first and second energy measurement is 

0>Δt , what is the measured energy and state of the particle after the second measurement? 

 

Simulation 11 

Choose the simulation “psi1+psi2”. The initial state in this simulation is )(
2

1
21 ψψ + . 

Start the time evolution. Around t=2 units, first click the start/stop button to pause the time 

evolution and then measure the energy. What state do you obtain? Then start the time evolution 

and measure the energy again at t=3 units without re-initializing the wavefunction. Is the state 

the same as your first measurement? (Note that the clock would return to zero when you restart 

the time evolution.) 

 

First measure the energy of the system and then measure the position after the energy 

measurement. . 

44. At time 0t = , the initial state of the particle is )(
2

1
21 ψψ + . We first measure the energy 

of the particle at time 0t t=  and obtain the result 1E . Then we immediately measure the 

position of the particle (also at time 0t t= ). What is the probability of finding the particle in 

the region between 0x  and 0x dx+ ? 

 

45. In the previous problem (question 44), if the measurement of position is made at 1t t=  

instead of 0t (not immediately after the energy measurement), what is the probability of 

finding the particle in the region between 0x  and 0x dx+ ? If the particle is found at 0x x= , 

what is the state of the particle after the position measurement in Dirac notation and in the 

position representation? 
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Simulation 12  

♦ Choose the simulation “psi1+psi2”. The initial state in this simulation is )(
2

1
21 ψψ + . 

Start the time evolution. Around t=2 units, first click the start/stop button to pause the time 

evolution and then measure the energy. What state do you obtain? Explain 

 

♦ Start the time evolution. Does the shape of the absolute value of wave function change with 

time? According to your wave function, what is the most probable position for finding the 

particle? Does this most probable position change with time? Explain 

 

First measure the position of the system and then measure the position again.  

46. We first measure the position of a particle in a 1-D infinite square well at time 0t =  and find 

the particle at 0x x= . At time t(>0) after the position measurement, what state will the 

particle be in? Write your answer in terms of an expansion in a complete set of energy 

eigenstates. Use nψ  and nE  to denote the energy eigenstates and energy eigenvalues. (Hint: 

refer to question 37)  

 

47. In question 46, when we make a second measurement of position at time t(>0), what is the 

probability density of finding the particle at 0x x= ? Does the probability density depend on 

time t when the measurement was performed? 

 

 

48. In question 46, if the second measurement of position is made immediately after the first 

position measurement at time 0t = , what is the probability density of finding the particle at 

0x x= ?  

 

Simulation 13 

♦ Choose the simulation “psi1+psi2”. The initial state in this simulation is )(
2

1
21 ψψ + . 

Start the time evolution. Around t=2 units, first click the start/stop button to pause the time 

evolution and then measure the position. What state do you obtain? Then measure the 

position again after the first position measurement without starting the time evolution, will 

you obtain the same state as the first position measurement? Explain. 
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♦ Then start the time evolution. Does the shape of wave function change with time? Will the 

wave function go back to the state )(
2

1
21 ψψ + ? According to your wave function at 

t=10 units, what is the most probable position for finding the particle? Does this most 

probable position change with time? Explain. 

 

(Note that if you make the second position measurement immediately after the first 

position measurement, you may find that the wavefunction after the second measurement shifts 

its position somewhat. This is because the wavefunction in which the system collapses after the 

position measurement in our simulation is not an ideal position eigenfunction (it is not a delta 

function). If we had a delta function, the position eigenfunction would be highly localized and the 

second measurement of position in immediate succession would give us the same result as the 

first position measurement.) 

 

First measure the position of the system and then measure the energy after the position 

measurement. 

49. Suppose we measure the position of a particle for the initial state )(
2

1
21 ψψ +  in a 1-D 

infinite square well at time 0t =  and find the particle at 0x x= . Then we measure the energy 

of the particle immediately after the position measurement. What is the probability of 

obtaining the ground state energy? (Hint: In order to find the probability of measuring 

energy, the wavefunction must be expanded in term of a complete set of energy eigenstates.) 

 

 

50. In question 49, if we perform the measurement of energy after time 0t t= , what is the 

probability of measuring the ground state energy? Is the result the same as the result for the 

immediate energy measurement? (Hint: Find the wavefunction after time t and then calculate 

the probability of measuring ground state energy.) 
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Simulation 14 

♦ Choose the simulation “psi1+psi2”. The initial state in this simulation is )(
2

1
21 ψψ + . 

Start the time evolution. Around t=2 units, first click the start/stop button to pause the time 

evolution and then measure the position. Draw the shape of the wavefunction you obtain 

after the position measurement. Is this what you expected? 

 

♦ Then measure the energy without restarting the time evolution. Can you predict what energy 

you will obtain (which energy eigenstate your system will collapse to) after the energy 

measurement? Will you obtain any energy eigenstates other than 1ψ  and 2ψ ? Explain. 

 

 

 

Answer to question 38 

The Hamiltonian governs the time evolution of the system according to the time 

dependent Schrödinger equation (TDSE). Since energy eigenstates nψ  are eigenstates of the Ĥ  

operator, the energy eigenstates have a simple time evolution of the form 
h/tiE

n
ne

−ψ . When we 

write a general state as a superposition of the energy eigenstates (or stationary states), each 

term in the superposition evolves according to a different phase of the type 
h/tiEne

−
(assuming no 

degeneracy) so that the state at time t is ∑ −

n

tiE

nn
neA

h/ψ where nA can be calculated by using 

the Fourier trick in position representation or by projecting the initial state along the energy 

eigenstate nψ . 
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APPENDIX B 

QUILT FOR STERN-GERLACH EXPERIMENT* (CHAPTER 6) 

* The warm-up and homework parts of the tutorial for Stern-Gerlach experiment are not included 

in Appendix B. 

In this tutorial, we will learn about the basics of quantum mechanics via Stern-Gerlach 

experiment and use simulations to check the results of Stern-Gerlach experiment after making 

predictions. Let’s do some practice first. 

Prediction: 

A beam of atoms in the initial state 
z

↑  passes the SGZ- (magnetic field gradient in the –z 

direction). Two detectors are placed after the SGZ- to count the atoms coming out of the upper and lower 

channel. What is the probability that each detector clicks when an atom passes? (The pictorial 

representations of the Stern-Gerlach apparatus are plotted in Figure 6.8 (Section 6.8), which is also a part 

of the QuILT for Stern-Gerlach experiment. It is not reproduced here.) 
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Simulation:  

Double click the green arrow “z-up pass SGZ-” on the left column to check your answer. 

On the top of the simulation window, click the green button “GO” to start the simulation and click 

the red button “STOP” to pause the simulation. The “RESET” button clears all the detector counts 

to zero. The buttons “STEP1”/“STEP1000” send 1 or 1000 particles, respectively, through the SGA 

(Stern-Gerlach apparatus). 

 

 

 

Now let’s get started with the tutorial. Note that for all the SGAs used in the simulation, the 

magnetic field gradient is always in the negative direction. The gradient directions of SGX, SGY 

and SGZ shown in the simulation are along –x, –y and –z axes. So they will deflect the spin-up 

state to the upper channel and the spin-down state to the lower channel. 
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First predict the answers to the following problem. After that, the tutorial will provide 

systematic guidance in solving this problem. 

You send silver atoms in an initial spin state 
z

↑  one at a time through two SGAs with magnetic 

field gradients as shown below. Suitable detectors are placed as shown. One detector is between the two 

SGAs (in the lower channel) and the other after both SGAs (in the upper channel). What is the probability 

that a given single atom will cause the “up” detector to click after passing through this system of two 

SGAs? What is the spin state of the atoms collected in the lower channel after SGZ-? 

 

 

Step1: Write the initial state in a basis most suitable for analyzing the effects of passing 

through SGX-. [Hint: The time evolution of a system is convenient to analyze choosing the 

energy eigenstates as the basis vectors. If the Hamiltonian Ĥ  commutes with the xŜ , the 

energy eigenstates are 
x

↑  and 
x

↓ ]. 

1. Which one of the following gives the correct relationship between the normalized eigenstates of zŜ  

and xŜ . 

A. ( )
xxz

i ↓+↑=↑
2

1
 , ( )

xxz
i ↓−↑=↓

2

1
 

B. ( )
xxz

↓+↑=↑
2

1
 , ( )

xxz
↓−↑=↓

2

1
 

C. ( )
xxz

ba ↓+↑=↑
2

1
 , ( )

xxz
ba ↓−↑=↓

2

1
, where a  and b  can be any complex 

numbers that satisfy 1
22 =+ ba  

D. 
xz

↓=↑  , 
xz

↑=↓  
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2. John sends silver atoms in the 
z

↑  state through an SGX-. He places a “down” detector to 

block some silver atoms and collects the atoms coming out in the “upper channel”. Which 

one of the following normalized spin states has John prepared in the “upper channel”? Think 

about how you can use the SGAs to check the state. Draw a figure below and explain. Hint: 

if all of the atoms passing through an SGX are collected by the upper (or lower) detector, 

the spin state of the atoms is purely 
x

↑  (or 
x

↓ ).  

A. 
z

↑  

B. 
x

↑  

C. 
z

↑
2

1
 

D. 
z

↑
2

1
 

☆Simulation: Now use the two simulations “z-up pass SGX-1” and “z-up pass SGX-2” to 

check your answers. In the first simulation, the atoms prepared in the “upper channel” passed 

through a SGZ-. In the second simulation, the atoms prepared in the upper channel passed through 

a SGX-. Is your prediction in question 2 consistent with the observations in these simulations? If not, 

reconcile the difference. 

 

 

Step2: Find the fraction of atoms that would pass through the second SGA (which 

were not absorbed by the first detector). 

 

3. In question 2, what is the probability of the “down” detector clicking when John sends a 

silver atom? Does this probability depend on how much time the atom has stayed in the non-

uniform magnetic field so long as the detectors are placed in appropriate locations after the 

SGA? Explain. 

A. 1 

B. 0 

C. 0.5 

D. It is between 0 and 0.5, but the exact probability cannot be inferred from the given 

information. 
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☆Simulation: After you have predicted the answer to the previous question, click on the 

simulation “z-up pass SGX-” to check your answers. In this simulation, we use detectors in both 

channels to estimate the probability. But if you want to prepare the atoms in 
x

↑  or 
x

↓  state, 

then you should use only one detector to block the unwanted component. 

4. In question 2, if John measures xŜ  for the atoms he prepared in the “upper channel”, what is the 

probability of measuring 
2

h
+ ? 

A. 1 

B. 0 

C. 0.5 

D. It is between 0 and 0.5, but the exact probability cannot be inferred from the given 

information. 
 

☆Simulation: Now you can use “z-up pass SGX-2” to check your answers. Explain how 

your observation is consistent with your prediction. If it is not consistent, reconcile the difference. 

 

In questions 1 to 4, you have learned the relationship between the eigenstates of zŜ  and xŜ . 

Now apply similar ideas to zŜ  and yŜ . Answer questions 5 to 8. 

5. Which one of the following gives the correct relationship between the normalized eigenstates of zŜ  

and yŜ . 

A. ( )
yyz

i ↓+↑=↑
2

1
 , ( )

yyz
i ↓−↑=↓

2

1
 

B. ( )
yyz

i ↓−↑=↑
2

1
 , ( )

yyz
i

i
↓+↑

−
=↓

2
 

C. ( )
xxz

ba ↓+↑=↑
2

1
 , ( )

xxz
ba ↓−↑=↓

2

1
, where a  and b  can be any complex 

numbers that satisfy 1
22 =+ ba  

D. 
yz

↓=↑  , 
yz

↑=↓  
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6. Check that 0=↓↑
zz

 by expressing 
z

↑  and 
z

↓ in the yŜ  basis as above.  

 

7. John sends silver atoms in the 
z

↑  state through a SGY-. He places a “down” detector to 

block some silver atoms and collects the atoms coming out in the “upper channel”. What is 

the probability of the “down” detector clicking for each atom sent when John sends the 

silver atoms?  

A. 1 

B. 0 

C. 0.5 

D. It is between 0 and 0.5, but the exact probability cannot be inferred from the given 

information. 

 

☆Simulation: Now you can click on the simulation “z-up pass SGY-” to check your answers. 

Explain how your observation is consistent with your prediction. If it is not consistent, reconcile the 

difference. 

 

8. In the previous experiment, which one of the following normalized spin states has John 

prepared in the “upper channel”? 

A. 
z

↑  

B. 
y

↑  

C. 
y

↑
2

1
 

D. John has not prepared anything. Everything gets blocked by the “down” detector. 
 

☆Simulation: Now try two simulations “z-up pass SGY-1” and “z-up pass SGY-2” to check 

your answers. In the first simulation, the atoms prepared in the “upper channel” passed through a 

SGZ-. In the second simulation, the atoms prepared in the upper channel passed through a SGX-. 

Based upon the observations in the two simulations, is your prediction in question 8 consistent with 

the simulation? 
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Step3: As in Step 1, write the spin state of atoms before SGZ in a proper basis which 

helps to analyze the time evolution in SGZ.  

9. The “down” detector between SGX and SGZ will collapse the state of the silver atoms. If the 

detector clicks, the atom gets absorbed by the detector. If the detector does not click, write 

down the spin state after passing through the SGX right before entering SGZ. Express this 

spin state in a basis that is most suitable for determining the time evolution after the atoms 

have passed through the SGZ. 

 
Now let’s solve the problem given at the beginning of this tutorial. 

10. You send silver atoms in an initial spin state 
z

↑  one at a time through two SGAs with magnetic 

field gradients as shown below. Suitable detectors are placed as shown. One detector is between the 

two SGAs (in the lower channel) and the other after both SGAs (in the upper channel). What is the 

probability that a given single atom will cause the “up” detector to click after passing through this 

system of two SGAs?  

 

A. 1 

B. 0 

C. 0.5 

D. 0.25 

 

☆Simulation : Now you can click the simulation “z-up pass SGX-1” to check your answer. 

Note that instead of collecting atoms, we have put detectors in both the upper and lower channels at 

the end to estimate the probability. Explain whether your prediction is consistent with the 

observation. 

 

11. Consider the following conversation between Andy and Caroline: 
Andy: I don't understand the answer to the previous question (question 10). 

Caroline: When an atom in the state ( )
xxz

↓+↑=↑
2

1
 passes through the SGX, each 

eigenstate of xŜ  gets spatially separated. If the detector between SGX and SGZ does not click, the state of 
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that silver atom must have collapsed to 
x

↑ . Since the atom in this state passes through SGZ next, we 

must write ( )
zzx

↓+↑=↑
2

1
. You can see that 

x
↑  is a superposition of the eigenstates of zŜ  

with equal weight to 
z

↑  and 
z

↓ . This helps us find the probability that the second detector clicks. 

Andy: Is an eigenstate of any one component of spin, say 
y

↑  for yŜ , a superposition of the 

eigenstates of any of the other two components, say zŜ  or xŜ , with equal weight? 

Caroline: Yes. There may be a phase factor such as “i” (where 1−=i ) when you write 
y

↑ in 

terms of the superposition of 
z

↑  and 
z

↓  but the probability is the same for both eigenstates of zŜ . 

Do you agree with Caroline? Explain. 

 

 

12. In the previous experiment (question 10), you collect the silver atoms that are not blocked at the end 

after they have passed through both SGAs. Which one of the following is the spin state of the silver 

atom you collect at the end in the lower channel? 

A. 
z

↑  

B. 
z

↓  

C. 
x

↓  

D. You do not collect anything because all atoms passing through the second SGA are blocked by the 

detector 
 

☆Simulation : Now you can click on the simulation “z-up pass SGX- and SGZ-” to check 

your answers. Explain any discrepancy between your prediction and observation. Note that the 

SGZ is only inserted to check the final state. 
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13. Consider the following conversation between Andy and Caroline: 

Andy: There must be something wrong with the answer to the previous question (question 12). 

How can the 
z

↑  that we inputted give 
z

↓  on the way out? 

Caroline: I disagree. If you let atoms in the state 
z

↑  pass through SGZ only, you will never 

obtain 
z

↓  on the way out. However, 
z

↓  is obtained in the above experiment because we have inserted 

SGX at an intermediate stage. Think of the analogy with vertically polarized light passing directly 

through a horizontal polarizer vs. passing first through a polarizer at 45
o
 followed by a horizontal 

polarizer. There is no light at the output if vertically polarized light passes directly through a horizontal 

polarizer. On the other hand, if the polarizer at 45
o
 is present, light becomes polarized at 45

o
 after the 45

o
 

polarizer which is a linear superposition of horizontal and vertical polarization. Therefore, some light 

comes out through the horizontal polarizer placed after the 45
o
 polarizer. 

Do you agree with Caroline? Explain. Also, comment on how good is the analogy between the 

spin-1/2 state of the atoms and the polarization state of photons.  
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Now consider the following problem. Questions 14 to 16 provide the steps to solve this 

problem. 

Consider two situations as below.  

Situation 1: The beam of atoms is in the pure state ( )
zz

↓+↑
2

1
.  

Situation 2: The beam of atoms is an unpolarized mixture, half of which is 
z

↑  and 

the other half 
z

↓ .  

Design an experiment to differentiate these two beams of atoms. (You should be able to 

tell after your experiment that one of the beams is in a pure state and the other is a mixture.)  

 

14. Read the following statement and answer the questions.  

Andy: There is no difference between silver atoms in a “pure” state given by ( )
zz

↓+↑
2

1
 

and an unpolarized mixture in which half of the atoms are in the 
z

↑ state and half are in the 
z

↓  state. If 

we had sent atoms in the superposition state ( )
zz

↓+↑
2

1
 through the SGZ, half of them would have 

registered in the “up” detector and half of them would have been collected in the lower channel. The 

outcome will be exactly the same if we had sent a 50/50 mixture of 
z

↑  and 
z

↓  through the SGZ. So 

there is no way to distinguish a mixture from a superposition. 

Question : Is the statement above correct? Explain. 
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15. Remember the analogy between spin states and polarized photons in question 13. Suppose 

you have a beam of pure polarized photons with 45 degrees polarization and another beam 

of unpolarized mixture with half of the photons vertically polarized and half horizontally 

polarized. Will a vertical or horizontal polarizer tell you which beam is in a pure state? What 

polarizer could you use to differentiate the two beams of photons?  

 

 

16. Based upon the analogy for distinguishing between pure polarized photons and a beam of 

photon mixture, what kind of SGA could you use to differentiate the two beams of atoms in 

question 14? Draw a sketch below to explain your choice. Do not forget to put the detectors 

in the correct positions. (Hint: Use the simulations “z-up pass SGX” and “z-up+z-down pass 

SGX” to check your answer. In the simulation “z-up+z-down pass SGX”, the incoming 

particles are in the pure state ( )
zz

↓+↑
2

1
.) 

 

 

 

 

Questions 18 and 19 relate to the simulation “unknown state”. Run the simulation 

“unknown state” first. Then answer the following questions. 

 

18. Write down at least 3 different possible spin states of the incoming particles that will show the 

behavior seen in the simulation. The incoming particles do not necessarily have identical spin states. 

Explain your reasoning for your choices. 

 

 

 

19. Choose two of the different possible spin states you predicted for the simulation you saw. Now come 

up with some simulations using SGAs that would distinguish between the two possible spin states. 

You can choose one or more SGAs to find out which of the two spin states it is. Share your set-up 

with others in your class. 
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Instructions on building your own SGA:  

(1) Open the simulation “unknown state” or any other existing simulation. 

(2) Choose “File New” on the simulation menus. Then you would have a white board. 

(3) Click the first button “New Gun” to add a particle source to the white board. You can click the 

icon on the white board and drag it to a new position.  

(4) Choose “Initialize User State” to set up the initial spin state of the particle source. You can 

choose the basis X, Y or Z regarding spin Sx, Sy and Sz. And then you can input the coefficient of spin-

up and spin-down in the table. Take Sx as an example.  

 

System Real 1 Imag 1 Real 2 Imag 2 

Spin 1/2 1 2 3 4 

The coefficient in the table above means the initial state is xx ii ↓++↑+ )43()21(  

*Remember to press “Enter” on the keyboard after you have input all the numbers. 

5.  Click the second button “New Analyzer” to add the Stern-Gerlach apparatus. The letter “X”, 

“Y” and “Z” represent the direction of the magnetic field gradient. You can change the letter by clicking 

it. The letter “n” represent a customized direction which could be defined by “Design Change Angles”. 

6.  Click the fourth button “New Counter” to add the detector. Drag it to the proper position. 

7.  Connect the particle source and the SGA by clicking the end on the right side of the particle 

source and dragging a line to the left side of the SGA. Then click the upper or lower channel of the SGA 

and drag a line to the detector to connect them together. 

8. Click “Go” to test whether the simulation works well. 
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APPENDIX C 

QUANTUM MECHANICS SURVEY (CHAPTER 9) 



 254 

 



 255 

 



 256 

 



 257 

 



 258 

 



 259 

 



 260 

 



 261 

 



 262 

 



 263 

 



 264 

 



 265 

 



 266 

 


	TITLE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1.0  INTRODUCTION 
	1.1 QUANTUM MECHANICS VS. CLASSICAL MECHANICS 
	1.2 A SHORT REVIEW OF RELEVANT PHYSICS EDUCATION RESEARCH (PER) 
	1.3 COGNITIVE ISSUES IN PER 
	1.3.1 Memory 
	1.3.2 Metacognition & Epistemology  
	1.3.3 Optimal Mismatch.  
	1.3.4 Zone of Proximal Development (ZPD) 
	1.3.5 Preparation for Future Learning 

	1.4 GUIDED INQUIRY APPROACH 
	1.5 PEER INSTRUCTION 
	1.6 CHAPTER REFERENCE 

	2.0  IMPROVING STUDENTS’ UNDERSTANDING OF POSSIBLE WAVEFUNCTIONS 
	2.1 ABSTRACT 
	2.2 BACKGROUND 
	2.3 INVESTIGATION OF STUDENTS’ DIFFICULTIES 
	2.3.1 Difficulties related to the normalization of possible wavefunctions 
	2.3.2  Difficulties related to the boundary conditions in different potential energy wells 
	2.3.3 Difficulties related to the continuity of possible wavefunction 
	2.3.4 Difficulties related to the continuity of the first derivative of a possible wavefunction 
	2.3.5 Difficulties with qualitative sketch of the possible wavefunction without using quantitative solutions  

	2.4 RESEARCH BASED LEARNING TOOLS 
	2.4.1 Possible wavefunction for a 1D infinite square well  
	2.4.2 Possible wavefunction for a 1D finite square well  
	2.4.3 Possible wavefunction for a free particle  
	2.4.4 QuILT Homework for Possible Wavefunctions  

	2.5 PRE-TEST AND POST-TEST DATA 
	2.6 SUMMARY 
	2.7 CHAPTER REFERENCE 

	3.0  IMPROVING STUDENTS’ UNDERSTANDING OF BOUND & SCATTERING STATE WAVEFUNCTIONS 
	3.1 ABSTRACT 
	3.2 BACKGROUND 
	3.3 INVESTIGATION OF STUDENT’S DIFFICULTIES 
	3.3.1 Difficulties related to the classical bound state and the quantum bound and scattering states 
	3.3.2 Difficulties related to the bound and scattering states being part of the same wavefunction 
	3.3.3 Difficulties related to the quantum tunneling effect 
	3.3.4 Difficulties in determining bound states related to the maximum value of potential energy vs. the energy of the particle 
	3.3.5 Difficulties related to the directional preference of the scattering state wavefunctions for a symmetric potential energy 
	3.3.6 Difficulties related to the transmission and reflection of a quantum mechanical particle in the scattering state 

	3.4 RESEARCH-BASED LEARNING TUTORIAL FOR BOUND & SCATTERING STATE WAVEFUNCTION 
	3.4.1 Warm-up tutorial for the bound & scattering state wavefunction 
	3.4.2 QuILT on the bound & scattering state wavefunction 

	3.5 PRELIMINARY EVALUATION 
	3.6 CONCLUSION 
	3.7 CHAPTER REFERENCE 

	4.0  IMPROVING STUDENTS’ UNDERSTANDING OF DRAWING ENERGY EIGENFUNCTIONS 
	4.1 ABSTRACT 
	4.2 BACKGROUND 
	4.3 INVESTIGATION OF STUDENT’S DIFFICULTIES 
	4.3.1 Difficulties related to the position of the   axis 
	4.3.2 Difficulties related to decaying and oscillatory wavefunctions 
	4.3.3 Difficulties related to the wavelength of oscillatory wavefunctions 
	4.3.4 Difficulties related to the absolute value of the amplitude of wavefunctions 

	4.4 RESEARCH-BASED LEARNING TUTORIAL FOR DRAWING ENERGY EIGENFUNCTIONS 
	4.5 PRELIMINARY EVALUATION 
	4.6 CONCLUSION 
	4.7 CHAPTER REFERENCE 

	5.0  IMPROVING STUDENTS’ UNDERSTANDING OF QUANTUM MEASUREMENT 
	5.1 ABSTRACT 
	5.2 INTRODUCTION 
	5.3 BACKGROUND 
	5.4 INVESTIGATION OF STUDENTS’ DIFFICULTIES 
	5.4.1 Difficulty in Distinguishing between Eigenstates of Operators corresponding to Different Observables 
	5.4.2 Difficulty with possible outcomes of a measurement 
	5.4.3 Difficulty with the probability of measuring energy 
	5.4.4 Measurement and future time evolution of the wavefunction 
	5.4.5 An operator acting on a state corresponds to a measurement of the corresponding observable 

	5.5 WARM-UP FOR THE QUILT ON QUANTUM MEASUREMENT 
	5.6 QUILT FOR QUANTUM MEASURMENT PART I 
	5.6.1 Outcome of Quantum Measurement 
	5.6.2 Calculating the Probability of Measuring Different Values 

	5.7 QUILT FOR QUANTUM MEASURMENT PART II 
	5.7.1 Energy Measurement 
	5.7.2 Position Measurement 
	5.7.3 Time Dependence of the Measurement Probability 
	5.7.4 Consecutive Measurements 

	5.8 PRELIMINARY EVALUATION 
	5.9 SUMMARY 
	5.10 APPENDIX 
	5.11 CHAPTER REFERENCES 

	6.0  IMPROVING STUDENTS’ UNDERSTANDING OF QUANTUM MECHANICS VIA THE STERN-GERLACH EXPERIMENT 
	6.1 ABSTRACT 
	6.2 INTRODUCTION 
	6.3 INVESTIGATION OF STUDENTS’ DIFFICULTIES WITH THE STERN-GERLACH EXPERIMENT 
	6.3.1 Difficulty in Distinguishing between the Physical Space and Hilbert Space 
	6.3.2 Difficulty in Determining the Pattern on the Screen with Particles in Different Spin States Passing through a SGA 
	6.3.3 Larmor Precession of Spin involves Precession in Physical Space 
	6.3.4 Difficulty with State Preparation 
	6.3.5 Difficulty in Differentiating between a Superposition and a Mixture 

	6.4 SGE QUILT: WARM-UP AND HOMEWORK 
	6.5 SGE QUILT 
	6.6 PRELIMINARY EVALUATION 
	6.7 SUMMARY 
	6.8 APPENDIX: THE PRE-/POST-TEST QUESTIONS 
	6.9 CHAPTER REFERENCE 

	7.0  IMPROVING STUDENTS’ UNDERSTANDING OF ADDITION OF ANGULAR MOMENTUM 
	7.1 ABSTRACT 
	7.2 BACKGROUND 
	7.3 INVESTIGATION OF STUDENTS’ DIFFICULTIES 
	7.3.1 Difficulty with the Dimension of the Hilbert Space 
	7.3.2 Difficulty in identifying different basis vectors for the product space 
	7.3.3 Difficulty in constructing an operator matrix in the product space 
	7.3.4 Difficulty in finding the probabilities for measuring an observable 

	7.4 QUILT FOR ADDITION OF ANGULAR MOMENTUM 
	7.4.1 Dimension of Hilbert space 
	7.4.2 Constructing matrices for different operators for the product space of two spin-1/2 systems in the uncoupled representation 
	7.4.3 Introducing the coupled representation 
	7.4.4 Constructing matrices for different operators for the product space of two spin-1/2 systems in the coupled representation 

	7.5 PRELIMINARY EVALUATION 
	7.6 SUMMARY 
	7.7 CHAPTER REFERENCE 

	8.0  IMPROVING STUDENTS’ UNDERSTANDING OF QUANTUM MECHANICS BY USING PEER INSTRUCTION TOOLS IN CLASS 
	8.1 ABSTRACT 
	8.2 BACKGROUND 
	8.3 OVERVIEW OF CONCEPT TESTS 
	8.4 SAMPLE CONCEPT TEST QUESTIONS 
	8.5 PRELIMINARY EVALUATION 
	8.6 CONCLUSION 
	8.7 APPENDIX 
	8.8 CHAPTER REFERENCE 

	9.0  SURVEYING STUDENTS’ UNDERSTANDING OF QUANTUM MECHANICS 
	9.1 ABSTRACT 
	9.2 INTRODUCTION 
	9.3 SURVEY DESIGN 
	9.4 THE SURVEY RESULTS 
	9.5 ITEM ANALYSIS 
	9.6 SUMMARY 
	9.7 CHAPTER REFERENCE 

	10.0  CONCLUSIONS AND FUTURE CONSIDERATIONS 
	10.1 QUANTUM INTERACTIVE LEARNING TUTORIALS (QUILTS) 
	10.2 CONCEPT TESTS 
	10.3 QUANTUM MECHANICS SURVEY (QMS) 
	10.4 CHAPTER REFERENCE 

	APPENDIX A
	APPENDIX B
	APPENDIX C

