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ABSTRACT

In this work we propose a solution to a signi�cant limitation of

task-oriented dialogue systems — their inability to learn and im-

prove over time during deployment. Although current popular task-

oriented systems are implemented as rule-based execution graphs,

the available solutions for improvement incorporate neural network

modules, either fully or partially, despite the poor performance of

neural architectures for the task-oriented use-case. We present an

algorithm to modify the graph-based system directly, in a manner

which improves the system automatically and is simultaneously

easy to understand by the system expert. To our knowledge, this

is the �rst method of this type towards automatically improving a

dialogue system’s coverage in production, without additional ex-

plicit labels. Though the system is still evidential, our experiments

already show promising results in its ability to usefully modify an

existing dialogue system, while improving its coverage.
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Escalation 

Node

Our 

Solution

I can’t connect at all!

Is there an error 

message?

Yes, it’s error #666.

Please restart your 

computer.

That solved the 

problem. Thanks!

I’m having

connection issues.

Is there an error 

message?

The error message

is  #666.

Please restart your 

computer.

That worked!

??? I don’t know how

to handle that!

I’ll escalate it to a 

human agent.

Figure 1: Example of an escalation log and how we adopt it

in our solution. The dialogue system fails, causing an esca-

lation to a human who resolves the case; The system then

learns from the human’s response for similar cases.
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1 INTRODUCTION

Dialogue systems, or virtual assistants, are automated systems for

interacting with users through a natural language interface. Task-

oriented1 dialogue systems are not only concerned with maintain-

ing coherent interaction with another party (e.g., chit-chat agents,

or chatbots), but also leading the interaction towards some goal

[8, 11]. These systems have a variety of useful applications, such as

customer support [35], restaurant or hotel reservation [24], online

shopping [34], and many others.

Recent advances in Natural Language Understanding (NLU), via

neural networks, have shown promise to facilitate drastic improve-

ments in such virtual task-oriented dialogue agents [1] — as a major

bottleneck in the past has been correct interpretation of the user’s

natural language utterances. However, the scope of these dialogue

systems is still limited by their inability to handle new types of

1Also referred to as “goal-oriented” or “closed-domain”.
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interactions after deployment (e.g., new software product in IT
support, or new categories in online shopping) [16].

The dominating task-oriented dialogue systems follow a rule-
based architecture where machine learning NLU techniques inter-
pret the user utterances (Figure 2), with an execution graph back-
bone for the dialogue path management [8]. Modelling such a sys-
tem requires expertise in both the backbone system and the domain
the system is planned to operate in (i.e., the concrete use case). This
combined knowledge of both the use-case and the system engineer-
ing is rare, and requires training. Consequently, as the dialogue
management system is rule-based, improving the system’s perfor-
mance based on post-deployment usage requires manual updates
by such an expert, as well.

Often, the dialogue management backbone is based on a dialogue
graph (Figure 3B). Each node in the graph represents a dialogue
state, and each edge a possible transition from one state to another
according to the user’s utterances and the condition derived from
it by the NLU system (Figure 2). Changing the dialogue system’s
behavior involves altering the dialogue system’s structure and tran-
sition table. But how can we acquire supervision for the changes
necessary for these improvements?

Towards this end, we point to a key property of our use-case:
Virtual assistants which are the topic of this work are deployed
as part of customer support centers. They work in tandem with a
fallback to human agents in cases of failure — as a way of main-
taining a su�cient service level to customers (users). At any point
during the virtual assistant to user interaction, a failure can occur,
either when the virtual assistant detects its inability to continue, or
when the user directly requests the escalation to a human agent. In
these cases, the human agent will assume control of the interaction
to properly assist the user. Naturally, a record of such interactions
is collected during the deployment of the support system, and is
used by an expert to manually modify and improve the automatic
dialogue system. We refer to these records as escalation logs, detail-
ing interactions where the dialogue system assumed initial control,
subsequently failed, and control was escalated to a human agent to
resolve the case (Figure 1).

In this work, we propose to leverage these escalation logs for
completing missing functionality in the dialogue system automati-

cally, by introducing new nodes to the dialogue execution graph.
A notable attribute of the dialogue systems discussed in this work,
based on execution graphs, is their human-readability, as they are
easy to read and understand by humans (since they are actively
designed by humans). Thus, modifying them automatically requires
maintaining the system’s human-readability by proposing modi�-
cations which are also rule-based. This enables the dialogue system
developer to thoughtfully handle these updates — adapt them and
alter them as necessary. As these systems are designed to be de-
ployed and serve a large sector, this will allow the developer a
su�cient degree of con�dence in the automatic modi�cations to
allow their usage in production. We are addressing this aspect in
the design of our algorithm and assess some readability measures
of its results.

The contributions of this paper are three-fold: First, we formu-
late the node-completion problem for the dialogue execution graph
based on escalation logs; Next, we propose a method for auto-
matically deriving node transition rules based on user-to-human

Dialogue System Graph:

"I can't connect 
at all!"

"What is the 
connection error 

code?"

root

ask for 
error code

if (connection_error = TRUE)

User

Dialogue 
System

NLU system:
connection_error = TRUE

Figure 2: A schema for one step (response to a user utter-

ance) in the dialogue system [8]. Following the user’s utter-

ance, the NLU system interprets it to derive various values

and �ags. This serves the dialogue system to decide on the

response.

escalation logs; Finally, we present an automatic evaluation setup in
order to assess the quality of the suggested updates to the solution,
which can also serve other future dialogue system methods in this
area.

The rest of this paper is structured as follows: In Section 2 we
provide background on di�erent types of dialogue systems and
scope the discussion to the more prevalent type we deal with in this
paper. Then, in Section 2.2 we establish the importance of improving
such dialogue systems based on post-deployment execution logs.
In Section 3 we introduce our solution for automatically improving
these systems by means of learning from logs, a solution which
we provide implementation details for in Section 4. We evaluate
our solution in Section 5 and sum up with a short discussion and
conclusions in Section 6.

2 BACKGROUND: IMPROVING DIALOGUE
SYSTEMS IN PRODUCTION

We give a brief overview on learning-based methodologies for im-
proving and updating dialogue systems without manual annotation
by an expert.

2.1 Terminology and Notation

Execution Graph Dialogue System (Figure 3B). We focus on the
prevalent dialogue systems where the system is a directed “execu-

tion graph”, in which each node edge represents a binary decision

function (or condition) and an action. The decision function, based
on the current state of the environment (conversation), results in a
decision on whether to perform the action. If so, a change in the
environment is observed as a result of the action, and the execution
�ow proceeds to the children of the node, in a pre-de�ned order.
If the condition is not satis�ed, the action is not performed, and
the execution �ow proceeds to the next sibling of the current node.
The action to perform may be a communication with the user, or
a concrete action to perform to help the user, and the observable
result will be the user’s response to the action.
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Escalation Logs (Figure 1). The core supervision to drive learning
in production is collected in escalation logs — logs of interactions
where the deployed system assumed initial control of handling
the case, and subsequently it failed to complete the goal of the
interaction. This resulted in escalation of the case to a human agent,
who properly handled the case to its conclusion. In this work, we
propose a method to utilize the human agent’s handling of the
dialogue system’s failure in order to improve the dialogue system.

2.2 Motivation

In this section we elaborate on the core motivation behind this work
— namely, the answer to the question: Why is it valuable to develop

a method of updating dialogue systems after their deployment? We
give two central answers, detailed below.

2.2.1 Distribution Shi� Over Time. The main motivation is simple
indeed, and uncontroversial: Even in the event where the initially
manually designed dialogue system is perfect for its use case, as
time goes by and new capabilities are required, we would like the
system to be able to manifest them automatically. This motivation
also shares common themes with the areas of lifelong machine

learning [27] and never-ending learning [7].
As an example, consider the case of a technical customer sup-

port virtual agent — which attempts to help incoming users with
technical issues and requests regarding a speci�c software product.
The virtual agent, although properly designed at deployment time,
must be continuously augmented with additional information to
re�ect updates in the software product, as these updates introduce
new capabilities and issues.

2.2.2 Reference Logs Are Naturally-Occurring. Another key moti-
vation relates to the ease of obtaining these reference escalation
logs. Evidently, the system has been expertly designed to be used in
some practice, and thus, it will be deployed. As a result, instances
of escalated conversations where the bot has failed will be gath-
ered. These reference conversations can be considered “free”: they
will exist during production phase by default, and if they can be
utilized, no additional e�ort is necessary to gather supervision for
the improvement of the deployed system.

Unfortunately, as explained in Section 2, there is currently no
method available for making use of this supervision to improve a
non-neural dialogue system (the prevailing type of virtual agents in
task-oriented settings). In other words, there exists a gap between
the relative ease of obtaining reference supervision for the improve-
ment of the currently deployed solution and the lack of available
techniques to make use of it.

2.3 Related Work

2.3.1 Execution Graph Solutions. An execution graph [18] is one
of the most popular methods for modeling task-oriented dialogue
systems. The vast majority of solutions of this type are created
manually by an expert [8], and to our knowledge, after being de-
ployed, they are either static, or manually updated by an expert.
One notable exception is by Volkova et al. [31], which attempts
to create an initial graph-based model by using explicit natural-
language instructions on how the execution graph should act. This
method can be used to update the graph by redoing the process

with additional instructions. Additionally, [23] have proposed a
system designed for multi-domain sets of slot values in order to
remain scalable to new domains of conversations (we elaborate on
slots later).

2.3.2 Neural End-to-End Solutions. Recent advances in deep learn-
ing has caused a surge in proposed neural solutions for dialogue
systems in the open-domain chit-chat setting [15, 16, 21]. Unfor-
tunately, although these end-to-end models can be improved rela-
tively easily using reference conversation logs, current solutions are
ill-equipped to deal with the challenging setting of task-oriented
conversation — where the automatic solution must achieve some
purpose at the end of the interaction, via a natural language in-
terface and performing actions — and the insu�cient quantity of
data which can be gathered2. Typically these neural solutions in-
volve a component of generating responses [20, 32] or ranking and
retrieving them from data [2, 4, 29, 33].

2.3.3 Hybrid Solutions. As previously mentioned, neural models
under-perform in task-oriented settings. However, the standout
quality of these models is their ability to learn by their design from
reference conversation logs. As such, hybrid models have been
proposed to combine the strengths of an execution graph backbone
with a neural fall-back which can learn to adapt and improve after
deployment. For example, Tammewar et al. [28] propose a hybrid
model in which every decision of the execution graph has a neural
fall-back in case of no appropriate response.

Although these models are indeed able to learn from escalation
logs after deployment, in truth the only component which is able to
learn is the neural model. As mentioned before, these models are as
of yet unconvincing in their ability to uphold the task-oriented use-
case — due to their inability to rigorously conform to completing
the goal of the conversation, and requiring a signi�cant amount of
data to learn on any level.

Another alternative to the neural fall-back is a hybrid model
that o�ers redirection of the misunderstood utterance to a search
engine and returning its result, relying on an up-to-date search
index such as the search skill described in [26]. However, a search
user experience is substantially di�erent from a conversation one.

2.4 Conclusion

We have discussed three possible solutions for task-oriented sys-
tems, and their ability to learn automatically from reference logs
after deployment. Speci�cally, while execution graph-based models
are themost robust solutions, they are also rigid and require updates
by a manual expert to be continuously improved. Neural models
go to the other extreme, and are able to learn freely at any point
by optimizing their performance against reference logs. However
their overall performance at the task-oriented use-case is severely
lacking in comparison to the execution graph based models.

In order to bridge the gap, hybrid models have been proposed to
embody the best of both worlds, such that they employ an execution
graph backbone and a neural fallback in case of failure. However,
the only component which is able to learn and improve in these
models is the neural component — which is anyway of negligible

2While out of the scope of this work, neural models indeed dominate the open-domain
chit-chat settings which don’t su�er from these constraints [1].
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value in the overall usefulness of the model — and so they su�er
the same issues as all of the previous solutions.

3 OUR SOLUTION

We elaborate on our proposed solution in order to concretely im-
prove an existing execution graph dialogue system, by using ref-
erence escalation logs, obtained after deployment of the existing
virtual assistant.

The procedure is conceptually divided into �ve steps. At the
end of the procedure, the algorithm recommends new edges and
nodes (composed of decisions and actions) to be integrated into
the execution graph currently in production. These new nodes can
be integrated as-is into the execution graph, to be evaluated in a
test environment, or they can be veri�ed by an expert before being
integrated in order to guarantee their relevance before deployment.

3.1 Step 1: Gathering Failure Points

As mentioned in Section 2.2, to update the existing execution graph,
we utilize escalation logs obtained following its deployment.

(1) The before-escalation section of the log describes the dia-
logue between the user and the dialogue system and ends
at a failure point. A failure point in a conversation is the
point where the control is escalated to a human agent. This
conversation corresponds to a single path in the dialogue
execution graph, terminating at some node we refer to as
the escalation node — a graph node from which some failure
points escalated to a human agent. Figure 3A illustrates a
single escalated conversation. The dialogue system under-
stood that the user wishes to transfer money and escalated
to a human agent in the next node.

(2) The after-escalation section of the log describes the interac-
tion from the failure point on, occurring between the user
and the human agent. Since this part of the conversation is
external to the dialogue system, there is no path correspond-
ing to it in the execution graph (Figure 3B).

Our goal is to derive new nodes to attach to the execution graph
at the escalation node, so that failure points corresponding to that
node, occurring in multiple conversations, will be handled, or at
minimum delayed by an addition step in the execution graph. For a
single conversation we look at the execution path up to the escala-
tion node, and at the �rst response of the human agent after the
failure point. In order to generalize we gather multiple conversa-
tions that were escalated at that speci�c escalation node. We thus
obtain a set of conversations along with their matching path up to
the escalation node, and the appropriate response for this conver-
sation as given by the human agent. We refer to these responses as
gold responses.

3.2 Step 2: Clustering Gold Responses Into
Response Types

Given the collection of human agent responses we obtained in
the previous step, it is necessary to divide this collection into cate-
gories: Although all of these conversations passed through the same
escalation node in the execution graph, they have each possibly
originated from di�erent paths, and thus each of the human agents’

responses may be di�erent based on the context of the interaction.
For this reason, we cluster the human agent responses into response
types based on semantic similarity. Figure 4 illustrates clustering
of multiple conversations based on the agent’s responses into 3
response types.

In the case of textual responses, we utilize a neural model to
encode the text in a continuous embedding space [14] for clustering.
The clustering algorithm attempts to divide the human agents’
responses into di�erent response types.

3.3 Step 3: A�xing Actions to Response Types

Each response type will be attributed by a concrete action — such
as a text message, value retrieval from a database, and/or miscella-
neous actions. This representative action can be derived in one of
multiple possible methods:

(1) The action can be chosen by some metric (such as quantity
of similar occurrences in the cluster) from among the actions
in the response type.

(2) The action can be chosen as the closest response to the
centroid of the cluster (Figure 5).

(3) In the case of a text message, the response can be gener-
ated via some text generation component by utilizing the
collection of text responses in the cluster for the generation
process.3

3.4 Step 4: Deriving Boolean Conditions

Our next goal is to derive boolean conditions that will correctly map
a conversation to its response type, and trigger the chosen action.
In dialogue systems that use an execution graph as their dialogue
management backbone this is equivalent to adding one node per
response type with a decision function that takes the dialogue state
and context as its input.

In Figure 6 we illustrate eight conversations clustered by the
agent’s response into three response types. Each cluster is marked
by a di�erent type of line (solid, dashed, dotted). Within each cluster,
every conversation holds its own di�erent dialogue state captured
when the conversation passed through the escalation node. The
table illustrates the state of each conversation represented as a set of
features, together with the assigned cluster for each conversation. A
decision function is then learned, taking the dialogue state as input
to discriminate between the three clusters. In the illustration we
can see three boolean conditions taking into account the payment
amount and customer VIP �ag to di�erentiate between the three
response types based on the dialogue state. Note that the boolean
conditions ignore the account number feature.

3.5 Step 5: Recommending New Nodes

At the �nal step of the procedure, various nodes are derived to
model the responses of human agents at various failure points. This
step attempts to rank these nodes so that only a con�dent subset
of the suggested nodes will be recommended for integration in the
deployed dialogue system. This is done for two reasons:

3Within the scope of this work, we do not consider the text generation case.
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Escalation
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B
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Agent

A
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Escalation

After 

Escalation

Before Escalation

Figure 3: Step 1 of our solution (see Section 3.1).

Response 
type 1

Response 
type 2

Response 
type 3

Figure 4: Step 2 of our solution (see Section 3.2).

Action 1: Message “Please enter PIN to complete the 
transaction”

Figure 5: Step 3 of our solution (see Section 3.3).

(1) By choosing a speci�c amount : of nodes as the top-: nodes
in the recommendation ranking, the balance between pre-

cision and recall can be controlled: It is up to the expert to

prioritize quality of responses at the failure points versus
the potential coverage of failures.

(2) In the event that the expert will be interested in verifying the
suggested nodes before they are integrated in the deployed
dialogue system, to guarantee their validity, the procedure
must �lter the nodes by con�dence to alleviate the workload
of the expert.

We consider the quality of the suggested nodes (and speci�cally
their conditions) via several heuristics that conform to notions of
human-readability4 for two main purposes: (i) Decision functions
that are easier to understand will be preferred, as the expert may
still attempt to understand them and verify their functionality to
gain con�dence in their integration in the deployed product; (ii)
The human-readability of the boolean conditions can be viewed as
regularization to mitigate over�tting.

3.6 Solution Summary

Wepropose a �ve-step procedure for improving an execution graph’s
ability to handle failure points by using escalation logs as the source
of supervision. To our knowledge, this is the �rst method of this
type towards automatically improving a dialogue system’s coverage
after deployment, without labels that require external feedback —
outside of the already available escalation logs — and without man-
ual annotation by an expert. As mentioned, the procedure requires
a collection of escalation logs and results in a set of new nodes to be
integrated in the current dialogue system’s execution graph. These
nodes are ranked by some metric, and can be further veri�ed by
an expert with minimal overhead to guarantee their behavior for a
deployed model.

At the end of the integration of the new nodes, the execution
graph will be able to progress an additional step beyond what were
considered its failure points previously, thus increasing its coverage.
Once the new execution graph is deployed, more escalation logs
can be gathered to iteratively improve the system by repeating the
procedure.

4Such heuristics may include the length of the decision function, the amount of nesting
(such as “A or (B and C)”), the number of negation elements in the function, and so on.
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Response type 1 
(Conversations 1, 2)

Boolean Condition 1:
Payment amount < 1500

Boolean Condition 2:
Payment amount > 1500 and 

customer is VIP

Boolean Condition 3:
Payment amount > 1500 
and not (customer is VIP)

Root

Get 
Balance

Single 
Account

Multiple 
accounts

get 
account#

return 
balance

… …

…

Transfer 
money

… …

Escalation 
Node

…

Conv ID Account
#

Intent Is_VIP Payment
Amount

Response
Type

1 92766 Transfer Money True 350 1

2 73866 Transfer Money False 600 1

3 37298 Transfer Money True 2000 2

4 37298 Transfer Money True 1500 2

5 57632 Transfer Money True 4500 2

6 51122 Transfer Money False 1500 3

7 92766 Transfer Money False 2000 3

8 16221 Transfer Money False 1500 3

Response type 2
(Conversations 3, 4, 5)

Response type 3
(Conversations 6, 7, 8)

Figure 6: Step 4 of our solution (see Section 3.4). “Decision function” refers to boolean condition.

4 IMPLEMENTATION

To verify our suggested approach we implemented each of the 5
steps in our solution on top of IBM Watson Assistant (WA) [13].
However, we stress that while we exemplify our approach on top
of IBM Watson Assistant, it can be comfortably generalized to
other popular competing execution graph systems, such as Google
Dialog�ow [25] and Microsoft Bot Framework [5].

WA uses an execution graph as its dialogue management back-
bone. The graph is designed by the system’s author such that at
each visited node, the system interprets a user’s utterance in the
context of the current conversation using natural language under-
standing and chooses the appropriate transition to the next node
based on the execution graph design and the current dialogue state.

The dialogue state is encoded with a set of contextual variables
characterizing the user’s intents (e.g., opening a new account),
identity (e.g., account number or country of origin) and relevant
details from the user utterances (dates, times, names, etc.). Some of
these contextual variables are extracted by WA automatically from
the user’s utterances and others are "injected" from outside the
system (e.g. the account number of the logged in user). Additional
variables can be calculated based on the values of exitsing ones
during the conversation.

Each node inWA’s execution graphs contains a boolean condition
over the set of contextual variables and an action (e.g., a system
response). When the system arrives at a speci�c node during a
conversation, the next action in the conversation is chosen to be the
action attached to the �rst child node whose condition is satis�ed.

Below we describe our implementation in accordance with the 5
steps of Section 3):

(1) Step 1: Gathering Failure Points. Escalation nodes inWA’s exe-
cution graph are nodes from which dialogues were escalated
to a human agent. These nodes are in fact sink nodes for all
points in conversations that did not satisfy any condition of
the children of the current node. For each escalation node
we gather all conversations that were escalated in that node.

(2) Step 2: Clustering Gold Responses Into Response Types.We �rst
embed the agent’s response following the escalation in a
continuous space. For this purpose we use BERT [12] based

embedding. Speci�cally, we use the [CLS] token which is
the output of employing the BERT model over the responses.
We then cluster the resulting vectors using the Mean Shift
[10] clustering algorithm5.

(3) Step 3: A�xing Actions to Response Types. Each node in the
execution graph is the combination of both an entry condi-
tion and an action to follow. Each cluster from the previous
phase is associated with a centroid. For the recommended
nodes’ actions we use the human response of the nearest
neighbor to the centroid inside the cluster.

(4) Step 4: Deriving Boolean Conditions. Every point in the con-
versation is associated with a dialogue state constituting a
feature vector de�ned by the values of its contextual vari-
ables. For each cluster obtained in step 2, we train a binary
decision tree classi�er over the dialogue state at the escala-
tion node. The label of each conversation is 1 (positive) if the
decision tree associated it with the cluster, and 0 (negative)
otherwise. Speci�cally, we used the implementation o�ered
by scikit-learn [19]. This decision tree is then converted
into a boolean expression by collapsing sibling sub-trees as
or and collapsing parent-children sub-trees as and. Option-
ally, the decision tree or boolean expression can be pruned or
simpli�ed to increase generalization and readability [3, 17].
We implemented pruning using the min-leaf-size parame-
ter of scikit-learn. Notably, the decision trees are trained
to classify between a given cluster and all other clusters,
mitigating any issue with order-dependent movement along
the execution graph.

(5) Step 5: Recommending NewNodes.Clustering high-dimensional
vectors is likely to result in a long tail of very small clus-
ters pertaining to outlier responses. To mitigate this, we
bound the minimum size of a cluster (as a percentage of
the number of responses) to be considered for new node
recommendation. Our recommendations constitute : nodes
resulting from the : largest clusters.

5Although any other clustering algorithm is applicable, we chose Mean Shift since it
does not require the number of clusters to be prede�ned.
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5 EVALUATION

Qualitative evaluation of dialogue systems, and particularly task-
oriented systems, is a very challenging open problem [11]. Deriu
et al. [11] emphasize the need for automated evaluation methods as
collecting human judgement for the quality of a dialogue system is
laborious and costly. To this end, we devised an automated evalua-
tion method for our solution which does not involve measurement
of the dialogue system performance during deployment, but rather
utilizes current dialogue systems’ logs without the escalation to
human agents for evaluating the method itself.

Instead of adding a new node and evaluating its quality, we take
an existing dialogue system as reference and destructively mod-
ify it by choosing a node (which we refer as simulated escalation

node) and removing all its outgoing nodes (descendants) from the
execution graph. We then use our method to predict the removed
outgoing nodes, and compare the behavior of the system prior to
the removal with its behavior after adding the predicted nodes.
We then measure the quality of our recommendations in an auto-
mated manner. A “high quality” node should capture a previously
unhandled case, properly act upon it, and be human-readable. Our
automatic evaluation is based on the following observation: in the
original (unmodi�ed) graph, the removed nodes induce a partition
of the conversations that went through the simulated escalation
node. We call this partition the reference partition.

Similarly, the predicted nodes induce a partition on the same set
of conversations. The nodes’ conditions and execution order may
not necessarily resemble the original ones, but the functionality of
the system should be preserved. This preservation can be measured
by the level of similarity of the two partitions, the one induced by
the removed nodes, and the one induced by the predicted nodes.
Our simulated escalation node can be viewed as an escalation node
in the human agent escalation case. Once we remove the outgoing
nodes, we consider only the conversation log before escalation,
ignoring the dialogue state and the continuation of the paths in the
execution graph.

We also use the original node conditions to assess the quality
of our recommendations for example by comparing the length of
the recommended conditions to the original ones in terms of the
number of variables in the condition.

Our experiments include two evaluation methods: (1) Automatic
evaluation of our solution to assess the quality of the partition
and the readability of the conditions. We experiment with di�erent
hyperparmeters and implementations of the components in our
solution. This evaluation is performed on an internal dataset, using
our method for simulating escalation nodes. (2) Human evaluation
of the recommended conditions and clustering. This evaluation is
performed on a public dataset.

The evaluation method proposed in this paper is standalone, and
is neither contingent upon the dialogue system nor the embedding,
clustering, and condition inference techniques.

5.1 Datasets

For our evaluation we use di�erent datasets for each evaluation
method. For the automatic evaluation we use an internal real-life
(non-public) dataset from the banking domain. The dataset includes

7605 real-world conversations of users with a WA dialogue sys-
tem without escalations to human agents during a period of 10
days of operation. Each conversation includes an average of 6.05
turns between a user and the dialogue system. The execution graph
includes 135 intents with 62 entities. It has 1528 nodes and an av-
erage depth of 2.59. The dataset handles several customer service
issues, such as opening a new account and transferring money. We
use this dataset by simulating escalation nodes as explained above.
We consider only escalation nodes with at least 50 conversations
passing through them. This results in a total of 39 escalation nodes
with an average of 535.98 conversations passing through each of
them (stdev: 760.12, min: 55, max: 3386) and an average of 2.46 child
nodes each. The feature vector used for training the decision tree
in step 4 of our solution includes 1070 features.

In order to experiment with a di�erent type of data, which re-
�ects a prevailing use case of task oriented dialogue systems, we
use the MultiWOZ dataset. [6]. The dataset contains 10,000 con-
versations of humans in multiple domains (including hotels, taxi
and restaurant booking). Each conversation in MultiWOZ is labeled
using contextual variables similar to those of WA. Moreover, each
agent response is labeled with the actual agent’s action. For ex-
ample, many agent responses ask the user, in di�erent ways, to
specify a certain area. All these responses are labeled as an “area”
action in the dataset. Despite the fact that MultiWOZ does not
include a built-in backbone execution graph, we simulated the state
of conversations by querying the agent actions’ labels.

5.2 Experimental Setup

As we noted earlier, our solution is to the best of our knowledge the
�rst to tackle the problem of improving dialogue systems’ coverage
in production, without explicit external feedback. We thus have no
baselines to compare our solution to.

Our solution contains (in step 4) a decision tree (DT) classi�er.
We compare it to reference solutions employing other classi�cation
models — Random Forest (RF) and the state-of-the-art XGBoost
(XGB) [9]. Note that both of these models do not �t our complete
solution, as they do not o�er an interpretable mechanism from
which node conditions can be derived. Nevertheless we use these
references as an unrealistic upper-bound for the classi�cation part.

To evaluate various aspects of our solutionwe experimentedwith
di�erent values of the the hyper-parameter g in the decision tree
and random forest models de�ning the ratio of minimum number
of samples required to be at a leaf node.

5.3 Automatic Evaluation

In this section we detail an experimental setup for automatically
evaluating our solution. These automatic methods allow a straight-
forward veri�cation of the e�ectiveness of our solution.

We use the following evaluation metrics:
(1) Adjusted Rand Index (ARI). [22] To evaluate the partition
induced by our model’s recommended conditions, we use the ARI
between the recommended partition and the gold reference par-
tition, which measures the level of similarity between the two
clusterings. (2) Clustering Coverage. Ratio of failure points that
were eventually mapped to one of the response type clusters. Note
that our solution does not require that every failure point is mapped.



KDD Converse’20, August 2020,

Alon Jacovi, Ori Bar El, Ofer Lavi, David Boaz, David Amid, Inbal Ronen, and Ateret Anaby-Tavor

(3) #Child Nodes. Compares the number of recommended nodes
to the original number of nodes in the execution graph. (4) COND-
Length. Evaluates the level of readability of the conditions in our
solution (this is relevant only for the decision tree model). We com-
pare the length of the recommended conditions of the nodes to the
original conditions of the nodes in the execution graph. The length
is calculated by the number of variables in the condition.

5.3.1 Results. We evaluated di�erent versions of our model and
di�erent reference classi�ers as mentioned in Section 5.2 over the
banking dataset as shown Table 1.

In spite of the decision tree being the weakest classi�cation
model in our comparison, it outperformed all other models in terms
of ARI. Moreover, in contrast to the random forest model, the deci-
sion tree got consistently high ARI scores independently of g . The
clustering coverage of all variants was above 0.9, with the decision
tree model only slightly worse than the other models. Our decision
tree solution also outperformed the other models in terms of the
number of child nodes, being closest to the expected average num-
ber of nodes in the dataset, 2.46. Regarding the condition length
measure, only a high value of g achieved conditions with length
close to the original length of the conditions. However, our experi-
ments showed that this metric tended to have a high variance due
to extreme outliers. These outliers were conditions corresponding
to “outlier clusters” of all conversations that did not map to any of
the other clusters. When discarding in step 5 all nodes with condi-
tions of length ≥ 10 with g = 0.01, our coverage of conversations
decreased to 95% of the original clustering coverage. In this case
the average condition length was only 1.88. As expected, the lower
g , the more aggressive our pruning becomes, which results in less
number of child nodes, shorter conditions, but also lower clustering
coverage.

Figure 7 shows the distribution of the Adjusted Rand Index (ARI)
for the decision tree for g = 0.01. Our solution achieved high ARI
scores for most of the escalation nodes. Note that in our scenario the
number of child nodes is quite small (as can also be seen in Table 1
in comparison to the number of conversations that are clustered (at
least 50). This fact sometimes results in low ARI scores (and even a
score of 0) and is a known drawback of ARI [30]. Nevertheless, we
use the ARI measure as it is the de facto standard to estimate the
level of similarity between two clusterings. Note that our �ndings
are consistent for all decision tree con�gurations.

5.4 Experimenting with human-to-human logs

Our proposed solution for suggesting conditions assumes a dialog
graph as a backbone model. We are aware that this is not the only
dialog system backbone representation possible and that human-
to-human conversation logs may not re�ect any backbone at all.
Yet, we wanted to both evaluate our solution on human-to-human
logs, and extend the method so we can learn such a backbone
from human-to-human logs. We started with the modest task of
recovering conditions for single nodes.

To this end, we used the MultiWOZ dataset which contains both
the dialog utterances, and context variables extracted throughout
the conversation by human annotators and is aligned with each turn
in the conversation. We simulated a single node by collecting all
agent utterances asking for a speci�c detail based on annotations

Table 1: Automatic evaluation results for the Banking

Dataset (averaged over all escalation nodes). The values in

parentheses refer to the original graph

Model g ARI Clustering

Coverage

#Child

Nodes

(2.46)

COND-

Length

(1.40)

DT

0.001 0.68 0.95 2.79 8.05

0.01 0.71 0.95 2.58 6.32

0.05 0.64 0.92 2.02 1.64

RF

0.001 0.68 0.97 4.97 -

0.01 0.47 0.95 4.12 -

0.05 0.27 0.95 2.33 -

XGB - 0.66 0.97 2.33 -
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Figure 7: Distribution of ARI over escalation nodes in Bank-

ing Dataset for the decision tree with g = 0.01.

supplied with the dataset. In particular in the MultiWOZ hotel
booking scenario, we use the action annotation "area" to collect
all utterances where the agent asks about the booking area. We
declare all turns in this collection as if they are assigned to the
same simulated node, e.g. "ask area node". Our task then is to create
additional nodes corresponding to actions taken in the consecutive
turn following that node in di�erent conversations, and to recover
the conditions to be used for directing a dialogue system towards
the correct action.

The actions taken consider the user’s answer and the context
of the conversation so far. For example, one action could be to ask
for more constraints from the user such as hotel grade, another
could be to suggest a small set of speci�c hotels matching the
user’s constraints supplied so far, and a third option could be to
ask the user to relieve a constraint because no hotels matching the
constraints were found. Applying our solution, it clusters the agent
responses to their types, and then discovers the condition, based on
the context of the conversation and the user’s response, that would
lead to each of these types.

We created such simulated nodes and found that clustering the
agent responses resulted with a small number of clusters, and the
corresponding conditions turned out to be long and hard to inter-
pret. Inspecting them we saw that they consist of conjunctions of
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clauses connected with an "or" operator. This re�ects multiple, and
sometimes disjoint paths reaching our simulated node, with very
di�erent contexts leading to the same node. We suspect this is due
to the slot-�lling nature of the MultiWOZ dataset, where di�erent
combinations of �lled slots lead to the same question asking for
a speci�c slot not �lled yet. This result led us to add a calculated
context feature, counting the number of hotels that satisfy all con-
straints set by the �lled slots so far. Adding this feature yielded
clear conditions that separate the conversations into distinct actions
based on this feature.

While we saw that following our solution in this hotel booking
use case data set resulted in hard to interpret conditions, the process
taught us how to analyze conversations with respect to the context
variables, and come up with an extra variable that may lead to an
interpretable condition, albeit some additional manual analysis. A
complete fully automated solution would probably employ means
to automatically detect these missing variables for example by
analyzing agents’ actions which could be queries to an external
back-end system.

6 CONCLUSION AND FUTUREWORK

We presented a method to automatically improve goal-oriented
dialogues after deployment. The method o�ers a way for ongoing
learning, utilizing the data that is collected in the customer care
center. We challenge a fatal limitation of deployed task-oriented
dialogue systems: These systems, while initially useful, cannot
improve during production without manual updates by an expert.
Previous methods have attempted to incorporate learning into the
systems via neural network fall-backs, which has shown to be an
ine�ective band-aid solution, as neural models have little guarantee
to the correctness of their behavior, and are seldom deployed in
practice.

We propose a �ve-step procedure, which can be employed on a
deployed system and uses conversation logs collected during run
time. These logs named “escalation logs” include interactions where
the dialogue system assumed initial control, subsequently failed,
and control was escalated to a human agent to resolve the case.
Our procedure yields an improved version of the system, where the
modi�cations ful�ll additional behaviors in cases where the system
failed to provide a satisfactory response.

Future Work. This research is aimed to help in real customer care
environments in which human agents and virtual assistants work in
tandem. We propose a �rst step towards relieving the need of man-
ual expert annotations for the improvement of the system. Future
work on this topic will naturally involve a thorough evaluation in
a production setting, where the system is deployed, improved, and
evaluated for its quality in comparison to the previous version. This
procedure can be repeated multiple times to iteratively improve the
system.

The MultiWOZ dataset poses a real-life scenario of slot �lling,
in which a user needs to provide several slots of information before
the system can respond. The system will then consider the entire
context, e.g. all slots �lled so far, the new value from the current
user utterance, and evaluate the current state to decide on an action.
This dependency between the system response and the anticipated
result of its action (based on slot value �lled and the system state),

makes the prevalent slot �lling case a challenging scenario for our
clustering step, which needs to take into account not only the agent
response but also the context of the conversation, the current user
utterance and the state of the system. On top of the calculated
feature we suggest in the paper, we plan an in-depth analysis of
such cases in future work.
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