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Abstract

TCP is a reliable transport protocol tuned to perform well in
traditional networks made up of links with low bit-error
rates. Networks with higher bit-error rates, such as those
with wireless links and mobile hosts, violate many of the
assumptions made by TCP, causing degraded end-to-end
performance. In this paper, we describe the design and
implementation of a simple protocol, called the snoop pro-
tocol, that improves TCP performance in wireless networks.
The protocol modifies network-layer software mainly at a
base station and preserves end-to-end TCP semantics. The
main idea of the protocol is to cache packets at the base sta-
tion and perform local retransmissions across the wireless
link. We have implemented the snoop protocol on a wireless
testbed consisting of IBM ThinkPad laptops and i486 base
stations communicating over an AT&T Wavelan. Our exper-
iments show that it is significantly more robust at dealing
with unreliable wireless links as compared to normal TCP;
we have achieved throughput speedups of up to 20 times
over regular TCP in our experiments with the protocol.

1. Introduction

Recent activity in mobile computing and wireless networks
strongly indicates that mobile computers and their wireless
communication links will be an integral part of future inter-
networks. Communication over wireless links is character-
ized by limited bandwidth, high latencies, high bit-error
rates and temporary disconnections that must be dealt with
by network protocols and applications. In addition, proto-
cols and applications have to handle user mobility and the
handoffs that occur as users move from cell to cell in cellu-
lar wireless networks. These handoffs involve transfer of
communication state (typically network-level state) from
one base station (a router between a wired and wireless net-

work) to another, and typically last anywhere between a few
tens to a few hundreds of milliseconds. 

Reliable transport protocols such as TCP [Pos81, Ste94,
Bra89] have been tuned for traditional networks made up of
wired links and stationary hosts. TCP performs very well on
such networks by adapting to end-to-end delays and packet
losses caused by congestion. TCP provides reliability by
maintaining a running average of estimated round-trip delay
and mean deviation, and by retransmitting any packet whose
acknowledgment is not received within four times the devia-
tion from the average. Due to the relatively low bit-error
rates over wired networks, all packet losses are correctly
assumed to be because of congestion. 

In the presence of the high error rates and intermittent con-
nectivity characteristic of wireless links, TCP reacts to
packet losses as it would in the wired environment: it drops
its transmission window size before retransmitting packets,
initiates congestion control or avoidance mechanisms (e.g.,
slow start [Jac88]) and resets its retransmission timer
(Karn’s Algorithm [KP87]). These measures result in an
unnecessary reduction in the link’s bandwidth utilization,
thereby causing a significant degradation in performance in
the form of poor throughput and very high interactive delays
[CI94]. 

In this paper, we describe the design and implementation of
a simple protocol to alleviate this degradation and present
the results of several experiments using this protocol. Our
aim is to improve the end-to-end performance on networks
with wireless links without changing existing TCP imple-
mentations at hosts in the fixed network and without recom-
piling or relinking existing applications. We achieve this by
a simple set of modifications to the network-layer (IP) soft-
ware at the base station. These modifications consist mainly
of caching packets and performing local retransmissions
across the wireless link by monitoring the acknowledgments
to TCP packets generated by the receiver. Our experiments
show speedups of up to 20 times over regular TCP in the
presence of bit errors on the wireless link. We have also
found that our protocol is significantly more robust at deal-
ing with multiple packet losses in a single window as com-
pared to regular TCP. 

The rest of this paper is organized as follows. In Section 2,
we describe and evaluate some design alternatives and
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related work that addresses this problem. In Section 3, we
describe the details and dynamics of the protocol. We
describe our implementation and the modifications to the
router software at the base station in Section 4 and the
results of several of our experiments in Section 5. Section 6
compares our protocol with some of the other alternatives
published in the literature. We discuss our future plans in
Section 7 and conclude with a summary in Section 8. 

2. Design Alternatives and Related Work

Is TCP an appropriate protocol model for wireless net-
works? We believe it is. Since many network applications
are built on top of TCP, and will continue to be in the fore-
seeable future, it is important to improve its performance in
wireless networks without any modifications to the fixed
hosts. This is the only way by which mobile devices com-
municating on wireless links can seamlessly integrate with
the rest of the Internet. 

Recently, several reliable transport-layer protocols for net-
works with wireless links have been proposed [BB94,
BB95, CI94, YB94] to alleviate the poor end-to-end perfor-
mance of unmodified TCP in the wireless medium. We sum-
marize these protocols in this section and point out the
advantages and disadvantages of each method. In Section 6.
we present a more detailed comparison of these schemes
with our protocol.

• The Split Connection Approach: The Indirect-TCP
(I-TCP) protocol [BB94, BB95] was one of the first pro-
tocols to use this method. It involves splitting a TCP
connection between a fixed and mobile host into two
separate connections at the base station -- one TCP con-
nection between the fixed host and the base station, and
the other between the base station and the mobile host.
Since the second connection is over a one-hop wireless
link, there is no need to use TCP on this link. Rather, a
more optimized wireless link-specific protocol tuned for
better performance can be used [YB94]. The advantage
of the split connection approach is that it achieves a sep-
aration of flow and congestion control of the wireless
link from that of the fixed network and hence results in
good bandwidth at the sender. However, there are some
drawbacks of this approach, including:

1. Semantics: I-TCP acknowledgments and semantics are
not end-to-end. Since the TCP connection is explicitly
split into two distinct ones, acknowledgments of TCP
packets can arrive at the sender even before the packet
actually reaches the intended recipient. I-TCP derives
its good performance from this splitting of connec-
tions. However, as we shall show, there is no need to
sacrifice the semantics of acknowledgments in order to
achieve good performance.

2. Application relinking: Applications running on the
mobile host have to be relinked with the I-TCP library
and need to use special I-TCP socket system calls in
the current implementation.

3. Software overhead: Every packet needs to go through
the TCP protocol stack and incur the associated over-
head four times -- once at the sender, twice at the base
station, and once at the receiver. This also involves
copying data at the base station to move the packet
from the incoming TCP connection to the outgoing
one. This overhead is lessened if a more lightweight,
wireless-specific reliable protocol is used on the last
link.

• The Fast-Retransmit Approach [CI94]: This approach
addresses the issue of TCP performance when communi-
cation resumes after a handoff. Unmodified TCP at the
sender interprets the delay caused by a handoff process
to be due to congestion (since TCP assumes that all
delays are caused by congestion) and when a timeout
occurs, reduces its window size and retransmits unac-
knowledged packets. Often, handoffs complete relatively
quickly (between a few tens to a couple of hundred mil-
liseconds), and long waits are required by the mobile
host before timeouts occur at the sender and packets start
getting retransmitted. This is because of coarse retrans-
mit timeout granularities (on the order of 500 ms) in
most TCP implementations.  The fast  retransmit
approach mitigates this problem by having the mobile
host send a certain threshold number of duplicate
acknowledgments to the sender. This causes TCP at the
sender to immediately reduce its window size and
retransmit packets starting from the first missing one
(for which the duplicate acknowledgment was sent). The
main drawback of this approach is that it only addresses
handoffs and not the error characteristics of the wireless
link. 

• Link-level Retransmissions [PAL+95]: In this
approach, the wireless link implements a retransmission
protocol coupled with forward error correction at the
data-link level. The advantage of this approach is that it
improves the reliability of communication independent
of the higher-level protocol. However, TCP implements
its own end-to-end retransmission protocol. Studies have
shown that independent retransmission protocols such as
these can lead to degraded performance, especially as
error rates become significant [DCY93]. A tight cou-
pling of transport- and link-level retransmission timeouts
and policies is necessary for good performance. In par-
ticular, information needs to be passed down to the data
link layer about timeout values and policies reasonable
for co-existence with the higher transport layer policy.

In summary, several schemes have been proposed to
improve the performance of TCP in wireless networks.



However, they have the disadvantages described above. We
feel that it is possible to design a protocol to solve this prob-
lem without these drawbacks. The rest  of the paper
describes the design, implementation, and performance of
such a protocol.

3. The Snoop Protocol

Most current network applications that require reliable
transmission use TCP. Therefore, it is desirable to achieve
our goal of improving its performance in our network with-
out changing existing TCP implementations in the fixed net-
work. The only components of the network we can expect to
have administrative control over are the base stations and
the mobile hosts. For transfer of data from a fixed host to a
mobile host, we make modifications only to the routing
code at the base station. These modifications include cach-
ing unacknowledged TCP data and performing local
retransmissions based on a few policies dealing with
acknowledgments (from the mobile host) and timeouts. By
using duplicate acknowledgments to identify packet loss
performing local retransmissions as soon as this loss is
detected, the protocol shields the sender from the vagaries
of the wireless link. In particular, transient situations of very
low communication quality and temporary disconnectivity
are hidden from the sender. This results in significantly
improved performance of the connection, without sacrific-
ing any of the end-to-end semantics of TCP, modifying host
TCP code in the fixed network or relinking existing applica-
tions. This combination of improved performance, pre-
served protocol semantics and full compatibility with
existing applications is the main contribution of our work.

A preliminary design of a protocol based on these ideas
appeared in [ABSK95]. Simulations of the protocol indi-
cated that it was capable achieving the same throughput as
unmodified TCP at 10 times higher bit-error rates. These
promising results indicated that an implementation would
be worthwhile. The simulated protocol was used as the basis
of the initial implementation. Several parts of the protocol
were changed based on measurements and our experience
with it.

3.1  Data Transfer from a Fixed Host

We first describe the protocol for transfer of data from a
fixed host (FH) to a mobile host (MH) through a base sta-
tion (BS). The base station routing code is modified by add-
ing a module, called the snoop, that monitors every packet
that passes through the connection in either direction. No
transport layer code runs at the base station. The snoop
module maintains a cache of TCP packets sent from the FH
that haven’t yet been acknowledged by the MH. This is easy
to do since TCP has a cumulative acknowledgment policy
for received packets. When a new packet arrives from the
FH, snoop adds it to its cache and passes the packet on to

the routing code which performs the normal routing func-
tions. The snoop module also keeps track of all the acknowl-
edgments sent from the mobile host. When a packet loss is
detected (either by the arrival of a duplicate acknowledg-
ment or by a local timeout), it retransmits the lost packet to
the MH if it has the packet cached. Thus, the base station
(snoop) hides the packet loss from the FH by not propagat-
ing duplicate acknowledgments, thereby preventing unnec-
essary congestion control mechanism invocations. 

T h e  sn o o p  mo d u l e  h a s  tw o  l i n k ed  p r o ce d u r e s ,
snoop_data() and snoop_ack(). Snoop_data() processes
a n d  ca c h es  p a c ke ts  i n t e n d ed  f o r  th e  M H  w h i le
snoop_ack() processes acknowledgments (ACKs) coming
from the MH and drives local retransmissions from the base
station to the mobile host. The flowcharts summarizing the
algorithms for snoop_data() and snoop_ack() are shown
in Figures 3 and 2 and are described below. 

3.1.1  Snoop_data().

Snoop_data() processes packets from the fixed host. TCP
implements a sliding window scheme to transmit packets
based on its congestion window (estimated from local com-
putations at the sender) and the flow control window (adver-
tised by the receiver). TCP is a byte stream protocol and
each byte of data has an associated sequence number. A
TCP packet (or segment) is identified uniquely by the
sequence number of its first byte of data and its size. At the
BS, snoop keeps track of the last sequence number seen for
the connection. One of several kinds of packets can arrive at
the BS from the FH, and snoop_data() processes them in
different ways:
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2. Reset local rexmit
    counter

In-sequence?

Yes
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Congestion loss

Common case

Sender rexmission
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Figure 1. Flowchart for snoop_data().

 



1. A new packet in the normal TCP sequence: This is the
common case, when a new packet in the normal
increasing sequence arrives at the BS. In this case the
packet is added to the snoop cache and forwarded on to
the MH. We do not perform any extra copying of data
while doing this. We also place a timestamp on one
packet per transmitted window in order to estimate the
round-trip time of the wireless link. The details of
these steps are described in Section 4.

2. An out-of-sequence packet that has been cached ear-
lier: This is a less common case, but it happens when
dropped packets cause timeouts at the sender. It could
also happen when a stream of data following a TCP
sender fast retransmission arrives at the base station.
Different actions are taken depending on whether this
packet is greater or less than the last acknowledged
packet seen so far. If the sequence number is greater
than the last acknowledgment seen, it is very likely that
this packet didn’t reach the MH earlier, and so it is for-
warded on. If, on the other hand, the sequence number
is less than the last acknowledgment, this packet has
already been received by the MH. At this point, one
possibility would be to discard this packet and con-
tinue, but this is not always the best thing to do. The
reason for this is that the original ACK with the same
sequence number could have been lost due to conges-
tion while going back to the FH. In order to facilitate
the sender getting to the current state of the connection
as fast as possible, a TCP acknowledgment corre-
sponding to the last ACK seen at the BS is generated
by the snoop module (with the source address and port
corresponding to the MH) and sent to the FH.

3. An out-of-sequence packet that has not been cached
earlier: In this case the packet was either lost earlier
due to congestion on the wired network or has been
delivered out of order by the network. The former is
more likely, especially if the sequence number of the
packet (i.e, the sequence number of its first data byte)
is more than one or two packets away from the last one
seen so far by the snoop module. This packet is for-
warded to the MH, and also marked as having been
retransmitted by the sender. Snoop_ack() uses this
information to process acknowledgments (for this
packet) from the MH. 

3.1.2  Snoop_ack().

Snoop_ack() monitors and processes the acknowledgments
(ACKs) sent back by the MH and performs various opera-
tions depending on the type and number of acknowledg-
ments it receives. These ACKs fall into one of three
categories:

1. A new ACK: This is the common case (when the con-
nection is fairly error-free and there is little user move-
ment), and signifies an increase in the packet sequence
received at the MH. This acknowledgment initiates the
cleaning of the snoop cache and all acknowledged
packets are freed. The round-trip time estimate for the
wireless link is also updated at this time. This estimate
is not done for every packet, but only for one packet in
each window of transmission, and only if no retrans-
missions happened in that window. The last condition
is needed because it is impossible in general to deter-
mine if the arrival of an acknowledgment for a retrans-
mitted packet was for the original packet or for the
retransmission [KP87]. Finally, the acknowledgment is
forwarded to the FH.

2. A spurious ACK: This is an acknowledgment less than
the last acknowledgment seen by the snoop module
and is a situation that rarely happens. It is discarded
and the protocol continues.

3. A duplicate ACK (DUPACK): This is an ACK that is
identical to a previously received one. In particular, it
is the same as the last ACK seen so far. In this case the
next packet in sequence from the DUPACK has not
been received by the MH. However, some subsequent
packets in the sequence have been received, since the
MH generates a DUPACK for each TCP segment
received out of sequence. One of several actions is
taken depending on the type of duplicate acknowledg-
ment and the current state of snoop: 

• The first case occurs when we receive a DUPACK
for a packet that is either not in the snoop cache or
has been marked as having been retransmitted by

Figure 2. Flowchart for snoop_ack().
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the sender. If the packet is not in the cache, it needs
to be resent from the FH, perhaps after invoking
the necessary congestion control mechanisms at
the sender. If the packet was marked as a sender-
retransmitted packet, the DUPACK needs to be
routed to the FH because the TCP stack there
maintains state based on the number of duplicate
acknowledgments it receives when it retransmits a
packet. Therefore, both these situations require the
DUPACK to be routed to the FH.

• The second case occurs when snoop gets a
DUPACK that it doesn’t expect to receive for the
packet. This typically happens when the first
DUPACK arrives for the packet, after a subsequent
packet in the stream reaches the MH. The arrival of
each successive packet in the window causes a
DUPACK to be generated for the lost packet. In
order to make the number of such DUPACKs as
small as possible, the lost packet is retransmitted as
soon as the loss is detected, and at a higher priority
than normal packets. This is done by maintaining
two queues at the link layer for high and normal
priority packets. In addition, snoop also estimates
the maximum number of duplicate acknowledg-
ments that can arrive for this packet. This is done
by counting the number of packets that were trans-
mitted after the lost packet prior to its retransmis-
sion.

• The third case occurs when an “expected”
DUPACK arrives, based on the above maximum
estimate. The missing packet would have already
been retransmitted when the first DUPACK arrived
(and the estimate was zero), so this acknowledg-
ment is discarded. In practice, the retransmitted
packet reaches the MH before most of the later
packets do and the BS sees an increase in the ACK
sequence before all the expected DUPACKs arrive.

Retransmitting packets at a higher priority using a fast
queue improves performance at all error rates. The benefits
of this approach are most visible at low to medium bit-error
rates. This is a consequence of the average queue lengths in
the retransmission queue. At high bit-error rates, most pack-
ets need to be retransmitted, and there is no significant
advantage to be derived from maintaining two queues. How-
ever, at low and medium error rates, the fast queue enables
retransmitted packets to reach the mobile host sooner than if
there were only one queue, leading to improved throughput.

Snoop keeps track of the number of local retransmissions
for a packet, but resets this number to zero if the packet
arrives again from the sender following a timeout or a fast
retransmission. In addition to retransmitting packets
depending on the number and type of acknowledgments, the
snoop protocol also performs retransmissions driven by tim-
eouts. This is described in more detail in the section on

Implementation (Section 4).

3.2  Data Transfer from a Mobile Host

It is unclear that a protocol with modifications made only at
the base station can substantially improve end-to-end per-
formance of reliable bulk data transfers from the mobile
host to other hosts on the network, while preserving the pre-
cise semantics of TCP acknowledgments. For example, sim-
ply caching packets at the base station and retransmitting
them as necessary will not be very useful, since the bulk of
the packet losses are likely to be from the mobile host to the
base station. There is no way for the mobile sender to know
if the loss of a packet happened on the wireless link or else-
where in the network due to congestion. Since TCP per-
forms retransmissions on the basis of round-trip time
estimates for the connection, sender timeouts for packets
lost on the (first) wireless link will happen much later than
they should.

Our design involves a slight modification to the TCP code at
the mobile host. At the base station, we keep track of the
packets that were lost in any transmitted window, and gener-
ate negative acknowledgments (NACKs) for those packets
back to the mobile. This is especially useful if several pack-
ets are lost in a single transmission window, a situation that
happens often under high interference or in fades where the
strength and quality of the signal are low. These NACKs are
sent when either a threshold number of packets (from a sin-
gle window) have reached the base station or when a certain
amount of time has expired without any new packets from
the mobile. Encoding these NACKs as a bit vector can
ensure that the relative fraction of the sparse wireless band-
width consumed by NACKs is relatively low.

Our implementation of NACKs is based on using the Selec-
tive Acknowledgment (SACK) option in TCP [JB88].
Selective acknowledgments, currently unsupported in most
TCP implementations, were introduced to improve TCP
performance for connections on “long fat networks”, or
LFNs. These are networks where the capacity of the net-
work (the product of bandwidth and round-trip time) is
large. SACKs were proposed to handle multiple dropped
packets in a window, but the current TCP specification
(JBB92) does not include this feature. The basic idea here is
that in addition to the normal cumulative ACKs the receiver
can inform the sender which specific packets it didn’t
receive. The snoop protocol uses SACKs to cause the
mobile host to quickly (relative to the round-trip time of the
connection) retransmit missing packets. The only change
required at the mobile host will be to enable SACK process-
ing. No changes of any sort are required in any of the fixed
hosts.

We have implemented the ability to generate SACKs at the
base station and process them at the mobile hosts to retrans-
mit lost packets and are currently measuring the perfor-



mance of transfers from the mobile host. 

3.3  Mobility Handling

Handoffs in our system are based on multicast [Dee91].
Most often, they are mobile-initiated and occur when the
mobile host discovers a base station with a stronger signal
than the current one. When a handoff is requested by the
mobile host or anticipated by the base station, the nearby
base stations also begin receiving packets destined for the
mobile host. This allows them to begin building up their
snoop caches for this mobile host. However, during this
period these nearby “buffering” base stations cannot snoop
on any acknowledgments sent from the mobile host. Once
the handoff occurs information to synchronize the snoop
cache is sent to the base station that the mobile host has
transferred to. This scheme has the advantage that the dura-
tion of a handoff is quite short (because the snoop cache has
been primed in advance) and the sender can continue send-
ing packets without experiencing much delay.

We have implemented the algorithms for handoff and inte-
grated it with the snoop protocol. Preliminary measure-
ments indicate that handoffs are completed between 10 and
25 ms. 

4. Implementation

We have implemented the snoop protocol on a testbed con-
sisting of IBM ThinkPad laptops and i486 base stations run-
ning BSD/OS 2.0 from BSDI, communicating over an
AT&T Wavelan. The maximum raw bandwidth of the Wave-
lan is about 2Mb/s per mobile-host. The implementation
currently supports bulk transfers to and from mobile hosts
and supports smooth handoffs. The network topology is
shown in Figure 3.

The state maintained by snoop is soft state and can easily be
reconstructed from scratch by snooping on a few packets
and acknowledgments. The snoop cache is maintained as a
circular buffer of packets, consisting mainly of pointers to
kernel mbufs [LMKQ89] and some other associated infor-
mation that includes the packet sequence number, its size,

the number of local retransmissions, and a flag set if the
packet was retransmitted by the sender. In general, the size
of the cache needs to be large enough to handle the maxi-
mum transmission window size. In practice, we set a “high-
water mark” on the cache: the only packets accepted into the
cache after this point is reached are those that are out of
order and earlier in sequence than the last one seen. Other
packets are forwarded to the mobile host without being
cached. This is because it is more important for the older,
rather than newer, packets to be cached and retransmitted,
since they will cause sender timeouts earlier. 

Several studies have shown that one of the predominant
costs of TCP is the copying of data [CJRS89, KP93]. We
use the reference counting mechanism present in kernel
mbufs to avoid data copying in the snoop protocol. Thus,
we do not incur any extra overhead associated with copying
at the base station. When error rates are relatively low, the
protocol overhead is small -- an incoming packet is added to
the cache without copying it, and it is forwarded on to the
mobile host. A small number of state variables (e.g., the last
sequence number seen) are updated. When a new acknowl-
edgment arrives at the base station, we forward it on to the
fixed host and clean the snoop cache by freeing the packets
corresponding to packets already acknowledged by the
mobile. The last link round-trip time estimate is updated
once per transmission window.

In addition to retransmitting packets depending on the num-
ber and type of acknowledgments received, the snoop proto-
col also performs retransmissions driven by timeouts. There
are two types of timer interrupts in the protocol, the round-
trip timer and the persist timer. The round-trip timer is
based on the estimate of the smoothed round-trip time (srtt)
of the last link. We compute this using the standard adaptive
technique, srtt=(1-α)*old_srtt+α *curr_rtt, with α set to
0.25, so that integer shift operations can be used. The packet
is retransmitted if an acknowledgment hasn’t been received
in twice this time. In order to limit the amount of time spent
processing timer interrupts, we don’t timeout more fre-
quently than a threshold time, currently set to 40ms. Addi-
tionally, we trigger this t imeout only after the first
retransmission of a packet from the snoop cache, caused by
the arrival of a duplicate acknowledgment. This also ensures
that a negligible number of (unnecessary) retransmissions
occur for packets that have already reached the mobile host. 

The persist timer triggers a retransmission if there are unac-
knowledged packets in the cache, and if there has been no
activity either from the sender or receiver for 200ms. This
timer also sets the number of expected DUPACKs to zero
and the next expected acknowledgment to one more than the
last ACK seen so far. These timers and their associated
retransmissions are critical when packet losses are high
(e.g., due to interference or movement), since they increase
the number of transmission attempts and thereby increase
the likelihood of the packet getting through sooner to the
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Figure 3. Network topology for experiments.



Figure 4. Throughput received by the mobile host at different bit-error rates (log2 scale). The vertical error bars show 
the standard deviations of the receiver throughput. 
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5. Performance

We performed several experiments with the snoop protocol
on our wireless testbed and compared the resulting perfor-
mance with unmodified TCP. We present the results of these
experiments in this section. In the presence of no packet
losses, the maximum throughput achieved by a TCP connec-
tion over the wireless link was about 1.6 Mbits/s. The rated
maximum raw bandwidth of the wireless link was 2 Mbits/s.
We present the results of data transfer from a fixed sender to
a mobile receiver. These were obtained using the network
configuration shown in Figure 3. The sender TCP stack was
based on TCP Reno, an implementation that supported fast
retransmissions upon the arrival of three duplicate acknowl-
edgments. The maximum possible window size for the con-
nection was 64 KBytes and the maximum TCP segment size
was 1460 bytes.

In order to measure the performance of the implementation
under controlled conditions, we used a Poisson-distributed
bit error model. We generated a Poisson distribution for each
bit-error rate and changed the TCP checksum of the packet at
the base station if the error generator determined that the
packet should be dropped at the receiver, before forwarding
the packet over the wireless link. The same operation was
done for packets (acknowledgments) from the mobile host.
Each run involved a 10 MByte transfer and this was repeated
ten times at each error rate. Figure 4 compares the
throughput of a connection using the snoop protocol with
that of a connection using an unmodified TCP implemen-
tation, for various Poisson-distributed bit-error rates shown
on a log scale. The vertical error bars in the figure show the
standard deviation of the receiver throughput.

We see that for error rates of over 5x10-7 (close to the 2
Mb point on the x-axis of the graph) the snoop protocol
performs significantly better than unmodified TCP, achiev-
ing a bandwidth improvement factor of 1 to 20 depending
on the bit error rate. In fact, the snoop protocol was robust
and completed the run even when every other packet was
being dropped over the last link, while the regular TCP
connection didn’t make any progress. Under conditions of
very low bit error rates (< 5x10-7), we see little difference
between the snoop protocol and unmodified TCP. At such
low bit errors there is typically less than one error per
transmitted window and unmodified TCP is quite robust at
handling these. At these low error rates, snoop behaves as
is it were not present and this ensures no degradation in
performance.

A more detailed picture of the behavior of the connection
can be seen can be seen in Figure 5, which plots the
sequence numbers of the received TCP packets versus time
for one of the experiments. These values were obtained
using the tcpdump [MJ93] network monitoring tool. The
figure shows the comparison of sequence number progres-
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sion in a connection using the snoop protocol and a connec-
tion using unmodified TCP for a Poisson-distributed bit
error rate of 3.9x10-6 (a bit error every 256 Kbits on aver-
age). We see that the snoop protocol maintains a high and
consistent throughput. On the other hand, regular TCP
unnecessarily invokes congestion control procedures several
times during the duration of the connection. This phenome-
non appears as the flat and empty regions of the curve and
degrades the throughput significantly. For this particular
run, the aggregate bandwidth with the snoop protocol was
about 1 Mbit/s, while it was only about 0.25 Mbit/s for reg-
ular TCP. 

In summary, the results for moderate to high error rates are
very encouraging. For bit error rates greater than 5x10-7 we
see an increase in throughput by a factor of up to 20 times
compared to regular TCP depending on the bit error rate.
For error rates that are lower than this, there is little differ-
ence between the performance of snoop and regular TCP,
showing that the overhead caused by snoop is negligible.

6. Comparisons with Other Approaches

In this section, we compare the snoop protocol to the other
protocols described in Section 2.. All these protocols seek to
improve end-to-end performance by minimizing the number
of sender timeouts and retransmissions. In addition, the time
for which the connection remains idle after a handoff is
completed must be made as small as possible [CI94].

As mentioned in Section 2., the main drawback of the split
connection approach is that the semantics of TCP acknowl-
edgments are violated. In contrast, the snoop protocol main-
tains the end-to-end semantics of the TCP connection
between the fixed and mobile hosts by not generating any
artificial acknowledgments. Handoffs in this approach
require the transfer of a significant amount of state. For
example, I-TCP handoff times vary between 265 and 1400
ms depending on the amount of data in the socket buffers
that need to be transferred from one base station to another
[BB95]. The snoop protocol performs handoffs based on
multicast as described in Section 3.3 and typical completion
times are between 10 and 25 ms.

Caceres and Iftode [CI94] show that show that a mechanism
based on fast retransmissions is quite successful in reducing
delays after a handoff. However, one drawback of their
approach is that it doesn’t handle errors well. Another prob-
lem is that the sender usually reduces the transmission win-
dow size before starting fast retransmissions. Furthermore,
several TCP implementations don’t support fast retransmis-
sions. In contrast, the snoop mechanism has the advantage
that the connection will not be idle for much time after a
handoff since the new base station will forward cached
packets as soon as the mobile host is ready to receive them.
One other advantage of this approach is that it results in
low-latency handoffs for non-TCP streams as well, espe-
cially continuous media streams.

The snoop protocol is similar to link-level retransmissions



over the wireless links in that both schemes perform retrans-
missions locally to the mobile host. However, the snoop pro-
tocol is closely coupled to TCP, and so does not perform
many redundant (and possibly competing) retransmissions
(i.e, few packets are retransmitted both locally and by the
sender because of timeouts). Packets retransmitted by the
sender that arrive at a base station are already cached there.
This happens most often because the sender often transmits
half a window’s worth of data and several of these packets
are already in the cache. In our experiments, a very small
percentage of these packets actually arrived because of
sender timeouts. In order for link-level retransmissions to
perform well, they need to be closely coupled with the
higher-level protocols, especially if those also provide reli-
able service via retransmissions. Also, there are several
higher-level protocols that don’t require reliable transfer, but
those packets may also be retransmitted multiple times on
the wireless link. This is not necessary, since packets arriv-
ing late are useless for several applications, and retransmis-
sions at the link-level are not required for them.

7. Future Work

We are currently in the process of measuring and optimizing
the performance of the snoop protocol under various situa-
tions. These include wide-area connections to a mobile host,
data transfers from a mobile host, and multicast-based hand-
offs. We are also working on characterizing the behavior of
TCP connections and the snoop protocol in the presence of
real-life sources of interference.

In addition to this, we have started working on improving
the TCP performance of the Metricom system, a metropoli-
tan-area packet relay network. This system has multiple
wireless hops from the base station to a mobile host and
operates at bandwidths of about 100 Kbits/s. Although there
are several differences between this and the Wavelan, we
believe that with minor modifications the snoop protocol
will result in improved performance in this environment.

Wireless networks of the future are likely to be heteroge-
neous where each host will simultaneously be connected to
different wireless interfaces, that may interfere with each
other. An example of this is an in-building Wavelan network
and a campus-wide packet relay network, that also extends
inside buildings. The problems of improving TCP perfor-
mance, routing and handoff in such heterogeneous net-
works, characterizing the impact of interference on
connection quality, and support for network-characteristic-
aware applications are challenging ones with significant
practical value [Kat94].

8. Summary

We have presented a protocol to improve the performance of
TCP in networks with wireless links and mobile hosts. This
protocol works by modifying the network-layer software at

the base station, and involves no other changes to any of the
fixed hosts elsewhere in the network. The main idea is the
caching of packets intended for the mobile host at the base
station and performing local retransmissions across the
wireless link. We have implemented this protocol on a wire-
less testbed consisting of IBM ThinkPad laptops and i486
base stations running BSD/OS 2.0 communicating over a 2
Mbits/s AT&T Wavelan. Experiments show that the proto-
col is significantly more robust than regular TCP at dealing
with unreliable links and multiple errors in a window; we
have achieved performance improvements of up to 20 times
over normal TCP/IP for data transfer from a fixed to a
mobile host across a wide range of bit error rates.
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